
TU ILMENAU

Automation Engineering

Yuri A.W. Shardt

Version 4.0.en

 i

Foreword
 This book will examine the foundations of automation engineering in a world increasingly

focused on the development and implementation of automation. It will provide the reader with an

understanding of the key principles and components of automation engineering and how these

principles can then be combined and implemented in a real industrial system to provide safe,

economically viable, and efficient systems. Application will focus on a wide range of different

systems including chemical, electrical, and mechanical systems.

 At the end of each chapter, questions testing the reader’s understanding of the material

presented as well as providing places for extension and deeper understanding of the topics at hand

are given.

 In order to clearly differentiate between regular text and computer-related symbols, the font

“Courier New” is used for all computer-related symbols.

 This book is meant to be used as the course material for an introductory, bachelor’s-level

course in automation engineering. It is possible to present different permutations and combinations

of the material depending on what topics are of interest to the particular students.

 Computer files and related material can be downloaded from the book website (please

insert the appropriate book website once the book has been published).

 The authors would like to thank Ying Deng and M.P. for their help in preparing some of

the material used in this book.

 ii

Table of Contents

Foreword i

Chapter 1 : Introduction to Automation Engineering 16

Section 1.1 : The History of Automation Engineering 16

Section 1.2 : The Key Concepts in Automation Engineering 20

Section 1.3 : Automation-Engineering Framework 23

Section 1.4 : The Automation-Engineering Pyramid 24

Section 1.5 : Chapter Problems 26

Section 1.5.1 : Basic Concepts 26

Section 1.5.2 : Short Exercises 27

Chapter 2 : Instrumentation and Signals 28

Section 2.1 : Types of Signals 28

Section 2.2 : Sensors 31

Section 2.2.1 : Pressure Sensor 33

Section 2.2.2 : Liquid-Level Sensors 34

Section 2.2.3 : Flow Sensors 35

Section 2.2.4 : Temperature Sensors 37

Section 2.2.5 : Concentration, Density, Moisture, and Other Physical Property Sensors 38

Section 2.3 : Actuators 38

Section 2.3.1 : Valves 39

Section 2.3.2 : Pumps 44

Section 2.3.3 : Variable Current Devices 46

Section 2.4 : Programmable Logic Computer (PLCs) 47

Section 2.5 : Communication Devices 51

Section 2.6 : Chapter Problems 52

Section 2.6.1 : Basic Concepts 53

Section 2.6.2 : Short Questions 54

Chapter 3 : Mathematical Representation of a Process 56

Section 3.1 : Laplace and Z-Transforms 56

 iii

Section 3.1.1 : Laplace Transform 56

Section 3.1.2 : Z-Transform 61

Section 3.2 : Time- and Frequency-Based Models 64

Section 3.2.1 : Time- and Frequency-Domain Representations 65

Section 3.2.2 : Converting Between Representations 67

Section 3.2.3 : Discrete-Domain Models 70

Section 3.2.4 : Converting Between Discrete and Continuous Models 72

Section 3.2.5 : Impulse Response Model 73

Section 3.2.6 : Compact State-Space Representation 74

Section 3.3 : Process Analysis 75

Section 3.3.1 : Frequency-Domain Analysis 79

Section 3.3.2 : Stability 82

Section 3.3.3 : Controllability and Observability 93

Section 3.3.4 : Analysis of Special Transfer Functions 95

Section 3.4 : Event-Based Representations 116

Section 3.5 : Chapter Problems 126

Section 3.5.1 : Basic Concepts 126

Section 3.5.2 : Short Questions 128

Section 3.5.3 : Computational Exercises 132

Chapter 4 : Schematic Representation of a Process 133

Section 4.1 : Block Diagrams 133

Section 4.2 : Process Flow Diagrams 136

Section 4.3 : Piping and Instrumentation Diagrams (P&ID) 137

Section 4.3.1 : P&ID Component Symbols According to the DIN EN 62424 138

Section 4.3.2 : Connections and Piping in P&IDs 140

Section 4.3.3 : Labels in P&IDs 141

Section 4.4 : Electric and Logic Circuit Diagrams 145

Section 4.5 : Chapter Problems 147

Section 4.5.1 : Basic Concepts 147

Section 4.5.2 : Short Questions 147

Section 4.5.3 : Computational Exercises 153

 iv

Chapter 5 : Control and Automation Strategies 154

Section 5.1 : Open- and Closed-Loop Control 155

Section 5.1.1 : Open-Loop Control 155

Section 5.1.2 : Closed-Loop Control 156

Section 5.2 : Feedforward Control 179

Section 5.3 : Discrete-Event Control 182

Section 5.4 : Supervisory Control 183

Section 5.4.1 : Cascade Control 184

Section 5.4.2 : Model Predictive Control 185

Section 5.5 : Advanced Control Strategies 191

Section 5.5.1 : Smith Predictor 191

Section 5.5.2 : Deadbanding and Gain Scheduling 191

Section 5.5.3 : Squared Control 192

Section 5.5.4 : Ratio Control 192

Section 5.5.5 : Input-Position Control 194

Section 5.5.6 : Nonlinear Characterisation 195

Section 5.5.7 : Bumpless Transfer 195

Section 5.6 : Chapter Problems 195

Section 5.6.1 : Basic Concepts 195

Section 5.6.2 : Short Questions 197

Chapter 6 : Boolean Algebra 200

Section 6.1 : Boolean Operators 200

Section 6.2 : Boolean Axioms and Theorems 201

Section 6.3 : Boolean Functions 202

Section 6.3.1 : Sum-of-Products Form and Minterms 203

Section 6.3.2 : Product-of-Sums Form and Maxterms 205

Section 6.3.3 : Don’t-Care Values 207

Section 6.3.4 : Duality 208

Section 6.4 : Minimising a Boolean Function 208

Section 6.4.1 : Karnaugh Map 209

Section 6.5 : Chapter Problems 214

 v

Section 6.5.1 : Basic Concepts 214

Section 6.5.2 : Short Questions 215

Chapter 7 : PLC Programming 217

Section 7.1 : The Common IEC-Standard Hierarchy 217

Section 7.2 : Types of Variables 219

Section 7.3 : Variables, Data Types, and Other Common Elements 220

Section 7.3.1 : Simple Elements 221

Section 7.3.2 : Variables 230

Section 7.3.3 : Data Types 230

Section 7.4 : Ladder Logic (LL) 234

Section 7.4.1 : Components of Ladder Logic 234

Section 7.4.2 : Functions and Ladder Logic 237

Section 7.4.3 : Examples of Using Ladder Logic 238

Section 7.4.4 : Comments 240

Section 7.5 : Instruction List (IL) 240

Section 7.5.1 : Universal Accumulator 241

Section 7.5.2 : Operators 242

Section 7.5.3 : Functions in Instruction List 243

Section 7.5.4 : Calling Function Blocks in Instruction List 244

Section 7.5.5 : Examples 245

Section 7.5.6 : Comments 246

Section 7.6 : Function-Block Language (FB) 247

Section 7.6.1 : Blocks used in the Function-Block Language 247

Section 7.6.2 : Feedback Variable 249

Section 7.6.3 : Example 249

Section 7.6.4 : Comments 250

Section 7.7 : Structured Text (ST) 250

Section 7.7.1 : Commands in Structured Text 250

Section 7.7.2 : Operators in Structured Text 252

Section 7.7.3 : Calling Function Blocks in Structured Text 253

Section 7.7.4 : Example 253

 vi

Section 7.7.5 : Comments 255

Section 7.8 : Sequential-Function-Chart Language (SFC) 256

Section 7.8.1 : Steps and Transitions 256

Section 7.8.2 : Action Blocks 258

Section 7.8.3 : Sequential Function Charts 259

Section 7.8.4 : Example 261

Section 7.8.5 : Validity of a Sequential Function Chart 264

Section 7.9 : Chapter Problems 267

Section 7.9.1 : Basic Concepts 267

Section 7.9.2 : Short Questions 268

Section 7.9.3 : Computational Exercises 272

Chapter 8 : Safety in the Automation Industry 273

Section 8.1 : Safety of the Physical System 273

Section 8.1.1 : Quantifying Risk and the Safety Integrity Level 275

Section 8.2 : Safety Regulations 277

Section 8.3 : Digital Safety 278

Section 8.4 : Chapter Problems 279

Section 8.4.1 : Basic Concepts 279

Section 8.4.2 : Short Questions 280

Bibliography 282

Appendix I : Partial Fractioning 283

 vii

List of Figures
Figure 1: Automation engineering in the time of the ancient Greeks: (left) Æolipile (steam engine)

and (right) Automated temple door opening device 18

Figure 2: Watt governor (a: fly ball, b: arms, c: spindle, d: sleeve, e: ball crank lever, and f: throttle)

 18

Figure 3: A system in automation engineering 21

Figure 4: General structure of an automated system 23

Figure 5: A description of the components of the automation-engineering pyramid 25

Figure 6: A timing diagram for two binary signals A and B 29

Figure 7: Continuous and discrete signals 30

Figure 8: Analogue-to-digital conversion 30

Figure 9: Typical Calibration Curve 32

Figure 10: Measurement set-up for pressure sensors: (a) Measuring differential pressure and (b)

Measuring absolute pressure (a: flexible membrane, Pa: ambient pressure, Pm: to-be-

measured pressure, and Pf: fixed pressure) 33

Figure 11: High-pressure transducer-based pressure sensor (a: measuring diaphragm, b: strain

gauge, c: reference hole to the atmosphere, d: true gauge diaphragm, and e: area for the

resistor for temperature correction and internal electronic amplifiers) 34

Figure 12: Level measurement and control using a float (a: trip lever, b: refill tube, c: float, d:

overflow tube, e: ballcock, f: lift chain, and g: flush valve) 35

Figure 13: Venturi tube (a: datum, b: U-tube manometer, c: manometer fluid, d: inlet, e: outlet, f:

main pipe, g: converging cone; h: throat, i: diverging cone, D1: diameter of the main pipe,

D2: diameter of the throat, Z1: reference height 1, Z2: reference height 2, and h: height

difference in the manometer) 36

Figure 14: Thermocouple (a: metal 1, b: metal 2, c: measurement point, d: reference location, T1:

to-be-measured temperature, T2: reference temperature, and V: voltmeter) 37

Figure 15: Pneumatically Actuated Control Valve (air-to-close) (a: supply air connection, b:

mechanical stop, c: diaphragm, d: upper chamber, d: lower chamber, f: spring, g: housing,

h: local position indicator, i: stem, j: flow direction, and k: transducer) 40

Figure 16: Inherent valve characteristics 43

 viii

Figure 17: Phase plot for the typical behaviour of a valve with stiction (after (Shoukat Choudhury,

Thornhill, & Shah, 2005)). The arrows show the direction in which the values were

changed. 43

Figure 18: Centrifugal Pump (a: inflow, b: impeller, c: shaft, and d: outflow) 44

Figure 19: Positive-Displacement Pump (a: inflow, b: packing, c: piston rod, d: stuffing-box

bushing, e: liner, f: piston, g: working fluid, h: valve, and i: outflow) 45

Figure 20: Typical pump characteristic curve for a centrifugal pump 46

Figure 21: Layout of a PLC 48

Figure 22: Pre-emptive and nonpre-emptive tasks 51

Figure 23: Determining the Settling Time 76

Figure 24: Bode Plot: The Argument-Ratio and Phase-Angle Plots 81

Figure 25: A Nyquist Plot (for the same process as given by Bode plot in Figure 24) 82

Figure 26: Bode Plot for Closed-Loop Stability Analysis 92

Figure 27: Closed-loop stability using the Bode plot 93

Figure 28: Closed-loop stability using the Nyquist plot 93

Figure 29: Response of the Integrator 1 / s to a Unit-Step Input 96

Figure 30: Bode Plot for an Integrator 97

Figure 31: Bode Plot for a Lead Term (top row) K > 0, (bottom row) K < 0, (left) τL > 0, and (right)

τL < 0 99

Figure 32: Step Response of a Stable, First-Order System to a Step Response 101

Figure 33: Bode Plot for a First-Order System (top row) K > 0, (bottom row) K < 0, (left) τp > 0,

and (right) τp < 0 102

Figure 34: Second-Order Underdamped Process 104

Figure 35: Step Response of a Critically Damped System (ζ = 1, τp = 10, and K = 1) 105

Figure 36: Step Response of an Overdamped System (ζ = 2, τp = 5, and K = 1) 106

Figure 37: Bode Plots for τp = 5, (top) ζ = 0.5, (middle) ζ = 1, (bottom) ζ = 2; (left) K = 1 and

(right) K = −1 109

Figure 38: Step Response of a Second-Order System with Inverse Response (τL = −25, ζ = 5/√7,

τp = 10√7 and K = 1) 110

Figure 39: Bode Plots for (left) τL = −5, (right) τL = 5, and (top) ζ = 0.5 and (bottom) ζ = 2 110

 ix

Figure 40: Sketch of the Transfer Function Step Responses: (left) first transfer function, (middle)

second transfer function, and (right) third transfer function. 112

Figure 41: Graphical Representation of an Automaton 118

Figure 42: Automaton for the example 118

Figure 43: Automaton 120

Figure 44: The Trimmed Automaton 121

Figure 45: G1 122

Figure 46: G2 123

Figure 47: The product of G1 and G2 123

Figure 48: The parallel composition of G1 and G2 125

Figure 49: Timed Automaton 125

Figure 50: Automata for Questions 40 and 41 131

Figure 51: Automata for Question 42 132

Figure 52: The basic block diagram 133

Figure 53: Summation block: (top) full form and (bottom) short-hand equivalent 134

Figure 54: Block diagram algebra: In order to relate U and Y, the transfer functions between the

two points need to be multiplied, thus, Y = G3G2G1U. 134

Figure 55: Generic closed-loop, feedback control system 135

Figure 56: Process Flow Diagram for Alkylate Splitter 136

Figure 57: P&ID for a Gas Chilling and Separation Plant According to Canadian Design Standards

(Note the engineering stamp in the bottom middle box.) 137

Figure 58: Fields in a P&ID Label 142

Figure 59: Connections: a) recommend form for contact; b) commonly encountered form for

contact; and c) no contact 147

Figure 60: Block Diagrams for Question 11 148

Figure 61: Sketch of Process Flow Diagram for Question 13 150

Figure 62: P&IDs for Question 14 150

Figure 63: P&ID for Question 15 151

Figure 64: P&ID for Question 16 152

Figure 65: Maple Syrup P&ID for Question 17 153

Figure 66: Open-Loop Control 155

 x

Figure 67: Open-Loop Control for the Temperature in the House 156

Figure 68: Closed-Loop Control 157

Figure 69: Closed-Loop Control of the House Temperature 158

Figure 70: State-feedback control 159

Figure 71: Effect of Changing Kc for a P-Controller 163

Figure 72: Integral Wind-Up 165

Figure 73: Effect of Changing τI for a I-Controller. The solid, black line is the setpoint. 166

Figure 74: Jitter with a Derivative Term 168

Figure 75: Derivative Kick 168

Figure 76: Effect of Changing τD for a D-Controller 169

Figure 77: Controller Tuning Workflow 172

Figure 78: Closed-Loop Performance of the PI Controller 176

Figure 79: Measures of Servo Control Performance 178

Figure 80: Block Diagram for Feedforward Control 179

Figure 81: Effect of Feedforward Control on a Process 182

Figure 82: Block Diagram for Cascade Control 185

Figure 83: Block Diagram for Smith Predictor Control 191

Figure 84: Ratio Control with Trim Feedback Control 193

Figure 85: Input-Position Control 194

Figure 86: Karnaugh map for the function F = B′ 209

Figure 87: Karnaugh map for the function F = Σm(0, 3, 5) 210

Figure 88: Karnaugh map for the function F = A′BD + B′C′D′ + C 210

Figure 89: Karnaugh map for the function F = ΠM(2, 5, 7, 9, 13, 15, 16, 17, 18,

20, 24, 25, 27) 210

Figure 90: Prime implicant and implicant 212

Figure 91: Karnaugh map for Example 40 212

Figure 92: Procedure for minimising a Karnaugh map 213

Figure 93: Karnaugh map for Question 27 216

Figure 94: Visual representation of a configuration 219

Figure 95: Pre-emptive and nonpre-emptive tasks 219

Figure 96: (top) AND and (bottom) OR in ladder logic 237

 xi

Figure 97: Calling a function in ladder logic 237

Figure 98: Ladder Logic for Example 41 238

Figure 99: Ladder Logic for Example 42 240

Figure 100: Diagram using the Function-Block Language 249

Figure 101: Feedback in the Function-Block Language 249

Figure 102: The Function Q in the Function-Block Language 250

Figure 103: Tank System for the Structured-Text Example 254

Figure 104: Steps in Sequential Function Charts: (left) general step and (right) initial step 256

Figure 105: Transitions Conditions in Different PLC Languages 257

Figure 106: Components of an Action Block: a: Qualifier; b: Action Name; c: Indicator Variable;

d: Process Description 258

Figure 107: Alternative Paths in Sequential Function Charts 260

Figure 108: Usual Decision Order for Alternative Paths in Sequential Function Charts 260

Figure 109: User-Defined Decision Order for Alternative Paths in Sequential Function Charts 260

Figure 110: Parallel Paths in Sequential Function Charts 261

Figure 111: Schematic of the Reactor 262

Figure 112: Sequential Function Chart 263

Figure 113: Sequential Function Chart for Checking Its Validity 265

Figure 114: First Reduction 266

Figure 115: Second Reduction 266

Figure 116: Third Reduction 266

Figure 117: Fourth and Final Reduction 267

Figure 118: Validity of Sequential Function Charts 269

Figure 119: Stirring Process 269

Figure 120: Washing Machine 270

Figure 121: Ladder Logic 272

Figure 122: Relationship between the parameters and the safety integrity levels 277

Figure 123: P&ID for a Compressor Unit 281

 xii

List of Tables
Table 1: Thermocouple Types 37

Table 2: Data for creating the valve characterisation curve for Question 34) 54

Table 3: Sensor Calibration Data for Question 35) 55

Table 4: Table of Common Laplace Transforms 57

Table 5: Useful Inverse Laplace Table 58

Table 6: Table of Common z-Transforms (Ts is the sampling time) 62

Table 7: Useful Inverse Z-Transform Table (A and D can be complex) 63

Table 8: Padé Approximations for the Exponential Function, ez 78

Table 9: Summary of the Stability Conditions for Different Representations and Time Domains

 83

Table 10: Routh Stability Analysis Table 86

Table 11: Routh Array 87

Table 12: Table for the Jury Stability Analysis 88

Table 13: Table for Jury stability 90

Table 14: Basic Information About an Integrator 96

Table 15: Basic Information About a Lead Term 98

Table 16: Basic Information About a First-Order System 101

Table 17: Basic Information About a Secord-Order System 108

Table 18: Graphical Representation of the Different Types of Functions (The ringing cases can

only occur in the discrete domain.) 113

Table 19: Component Symbols for P&IDs According to the DIN EN 62424 138

Table 20: Connections Types for P&IDs 140

Table 21: Location Symbols 141

Table 22: Type Symbols 141

Table 23: PCE Categories 142

Table 24: PCE Processing Categories 143

Table 25: Common Symbols in Circuit Diagrams 145

Table 26: PI controller constants for first-order-plus-deadtime models 175

Table 27: PID controller constants for first-order-plus-deadtime models 175

 xiii

Table 28: PID controller constants for a second-order-plus-deadtime models 175

Table 29: Boolean operators, where a, b ∊ 𝔹𝔹 200

Table 30: Truth table for the Boolean Operators (left) AND and (right) OR 203

Table 31: Delimiters in the IEC IEC 61131-3 standard 221

Table 32: All Keywords in the IEC standard 224

Table 33: Special Strings 228

Table 34: The elementary data types in the IEC 61131-3 Standard. The initial letters in the data

types represent: D = double, L = long, S= short, and U = unsigned. 231

Table 35: Components of Ladder Logic 234

Table 36: Changes in the Current Result for Different Operator Groups 241

Table 37: Operators in Instruction List 242

Table 38: Two Possibilities for Calling the Function LIMIT(MN, IN, MX) 243

Table 39: Three Methods for Calling the Function Block ZEIT1(IN, PT) with output variables

Q and ET. 244

Table 40: Blocks used in the function-block language 247

Table 41: Commands in Structured Text 251

Table 42: Operators and their Priority in Structured Text 252

Table 43: Qualifiers in Sequential Function Charts 258

Table 44: I/O for the Washing Machine 271

Table 45: Truth Table I 272

Table 46: Truth Table II 272

List of Examples
Example 1 : Laplace Transform 59

Example 2 : Inverse Laplace Transform 60

Example 3 : Z-Transform 63

Example 4 : Inverse z-Transform 63

Example 5 : Numeric Example of Obtaining a Transfer Function 67

Example 6 : General Univariate Case 68

Example 7 : Multivariate Example 68

 xiv

Example 8 : Converting a Transfer Function into its Controllable Canonical Realisation 70

Example 9 : Extracting Information from a Transfer Function 79

Example 10 : Determining the Stability of a Transfer Function 83

Example 11 : Determining the Stability of a State-Space Model 84

Example 12 : Example of Routh Stability Analysis 86

Example 13 : Example of Jury Stability Analysis 89

Example 14 : Sketching the Expected Time-Domain Response 111

Example 15 : Origin of Ringing in Discrete-Time Systems 114

Example 16 : Automaton for a Process 118

Example 17 : Blocking in an Automaton 120

Example 18 : Trimming an Automaton 121

Example 19 : Product of Two Automata 122

Example 20 : Parallel Composition of Two Automata 124

Example 21 : Complex Block Diagrams 135

Example 22 : P&ID Tags 144

Example 23 : Heating the House: Part I: Open-Loop Control 156

Example 24 : Temperature Control: Closed-Loop Case 157

Example 25 : Investigation of the Proportional Term on Stability and Performance 163

Example 26 : Investigation of the Integral Term on Stability and Performance 165

Example 27 : Investigation of the Derivative Term on Stability and Performance 168

Example 28 : Designing a PI Controller 176

Example 29 : Designing a Feedforward Controller 181

Example 30 : Design of a Model Predictive Controller 187

Example 31 : Truth Table 203

Example 32 : Sum-of-Products Form 203

Example 33 : Converting into the Sum-of-Products Form 204

Example 34 : Compact Sum-of-Products Form 204

Example 35 : Product-of-Sums Form 205

Example 36 : Converting into the Product-of-Sums Form 206

Example 37 : Compact Product-of-Sums Form 206

Example 38 : Don’t Cares 207

 xv

Example 39 : Dual of a Function 208

Example 40 : Karnaugh map 212

Example 41 : Ladder Logic for a Boolean Function 238

Example 42 : Ladder Logic for a Recipe 238

Example 43 : Example of the Computation of the Current Result 245

Example 44 : Writing the Instruction List Programme 246

Example 45 : Creating the Diagram using the Function-Block Language 249

Example 46 : Structured Text 253

Example 47 : Creating a Sequential Function Chart 261

Example 48 : Determining the Validity of a Network 265

Example 49 : Partial Fractioning 284

 16

Chapter 1: Introduction to Automation

Engineering
 Automation engineering is an important component of modern industrial systems that

focuses on the development, analysis, optimisation, and implementation of complex systems to

provide safe, economically viable, and efficient processes. Automation engineering seeks to

eliminate as much as possible human intervention into the process. However, it should be noted

that this does not mean that humans are not required to monitor and assist with the running of the

process; it simply implies that the mundane, often repetitive, tasks are delegated to computer

systems that are better suited for performing such work.

 In order to understand automation engineering, it is important to briefly review its long

history, its main principles, and its foundations.

Section 1.1: The History of Automation Engineering
 Ever since humans developed the need to implement complex tasks, the desire for making

them faster and easier was also present. All such endeavours have sought to harness the power of

nature using ingenious methods to provide the desired outcomes. Often, these devices have had

practical or military implications.

 One of the first to develop an interest in automating processes were the ancient Greeks,

who developed a wide range of devices. Since these devices acted on their own, they were often

called automata (singular: automaton; from the Greek αὐτόματον1, which means acting of one’s

own will). These automata performed a wide variety of tasks and were first described by Homer

(gr: Ὅμηρος, c. 8th century BC) to describe such devices as automated moving temple doors or

tripods. The first known device with feedback control is the water clock developed by Ctesibius

(gr: Κτησίβιος; fl. 285 to 222 BC) that was able to accurately maintain the time. In fact, this water

clock remained the most accurate time-keeping device until the invention of the pendulum clock

1 This word is ultimately derived from the Greek word αὐτός, meaning self, and an unattested root, which comes from
the proto-Indo-European word *méntis ~ mn̥téis, meaning thought (which in turn gave us such words as mind in
English)

 17

in AD 1656 by Christiaan Huygens. Later, a primitive steam engine, called an æolipile, was

developed by Hero of Alexandria (gr: Ἥρων ὁ Ἀλεξανδρεύς, c. AD 10 to 70). Examples of these

devices are shown in Figure 1. As well, objects that assisted in the computation of heavenly bodies

(essentially the first computers) were also developed. The most famous is the Antikythera

mechanism, a type of astronomical clock based on a gear-driven apparatus. This tradition of

developing mechanical automated objects was continued long into the Middle Ages both in Europe

and in the Middle East, with such work as the Book of Ingenious Devices (ar: كتاب الحیل (Kitab al-

Hiyal) or pe: ترفندھا ,by the brothers Banu Musa published in A.D. 850 ((Ketab tarfandha) كتاب

which describe various automata, including primitive control methods, automatic fountains,

mechanical music machines, and water dispensers. Similarly, in the court rooms around the world,

various automata in the shape of singing animals were being developed and maintained. Famous

examples can be found in the (now destroyed) palaces of the Khanbaliq of the Chinese Yuan

dynasty and the court of Robert II, Count of Artois.

 The interest in the development of automata continued into the Renaissance with the

development of life-size automata, such as The Flute Player by the French engineer Jacques de

Vaucanson (1709 – 1782) in 1737.

 With the rediscovery of steam engines, the ability to develop large and complex automated

system become a reality sparking the first Industrial Revolution (1760 to 1840). One of the first

such examples was the Jacquard loom that could be programmed to automatically weave different

designs using punch cards. The development of advanced systems required methods of controlling

them, so that explosions and damage were minimised. The first dedicated device for controlling a

steam engine, called the Watt governor, was developed by James Watt (1736 – 1819). The Watt

governor, shown in Figure 2, regulates the amount of fuel entering the system so that the speed of

the engine remains in a desired range. The development of the first Watt governor was followed

by a rash of patents trying to improve various aspects, including one by William Siemens

(1823 – 1883). It was not until 1868, when James Clerk Maxwell (1831 – 1879) provided a

mathematical description of the governor in his aptly named paper On Governors that a rigorous

mathematical foundation for the development of methods for controlling a process was available.

As the systems became more complex in the succeeding decades and centuries, there came an

ever-increasing need for understanding these intricate systems in order that they be properly run

so as to avoid unsafe operating conditions.

 18

Figure 1: Automation engineering in the time of the ancient Greeks: (left) Æolipile (steam engine) and (right) Automated temple
door opening device

Figure 2: Watt governor (a: fly ball, b: arms, c: spindle, d: sleeve, e: ball crank lever, and f: throttle)

 19

 The demand for automation continued with the onset of the second Industrial Revolution

(1870 – 1915), which focused on the development of efficient manufacturing methods (production

lines, Taylorism, and similar ideas) coupled with the development of electricity and the first

electrical devices.

 By the 1950s, a new industrial revolution, often called the third Industrial Revolution or

the Digital Revolution, had started. This revolution focused on the implementation and use of

complex electrical circuits that can be used to quickly and efficiently perform complex processes.

With the development of these circuits, it became easy and cost-effective to implement automation

in a wide range of different fields. From the perspective of automation engineering, the key event

was the development of programmable logic controller (PLCs) that could be used to implement

advanced control methods in an industrial setting. The first PLCs were developed by Bedford

Associates from Bedford, Massachusetts, USA based on a white paper written by the engineer

Edward R. Clark in 1968 for General Motors (GM). One of the key people working on this project

was Richard E. “Dick” Morley (1932 – 2017), who is often considered the father of the PLC. Other

important work was performed by Odo Josef Struger (1931 − 1998) of Allen-Bradley in the period

1958 – 1960. At the same time, there was an explosion of interest in a theoretical perspective on

automation engineering, especially in the areas of control and process optimisation. This research

by such people as Andrei Kolmagorov (ru: Андре́й Никола́евич Колмого́ров, 1903 − 1987),

Rudolf Kálmán (hu: Kálmán Rudolf Emil, 1930 − 2016), Richard E. Bellman (1920 – 1984) and

others lead to a strong foundation for the subsequent development and implementation of advanced

control methods in industry.

 Within the context of the third Industrial Revolution, the concept of robots was also

considered. The word robot itself was first used by the Czech author Karel Čapek (1890 – 1938)

in his 1920 drama R.U.R. (cz: Rossumovi Univerzální Roboti or en: Rossum’s Universal Robots)

as a word for artificial humanoid servants that provided cheap labour. Karel credited his brother

painter Josef Čapek (1887 – 1945) with inventing this word. The word robot stems from the Czech

root robota, that means serfdom, which ultimately comes from the proto-Indo-European word,

*h₃erbʰ−, that means “to change or evolve status” from which the English word arbitrate is also

derived.

 More recently, with the growth of interconnectedness and the development of smart

technologies, some have proposed that a new industrial revolution is dawning. This revolution has

 20

been called the fourth Industrial Revolution, or Industry 4.0, which focuses on the development of

self-functioning, interconnected systems in an increasingly globalised world. Its main drivers are

ever increasing automation and digitalisation of the industrial plant combined with globalisation

and customisation of the supply chains.

Section 1.2: The Key Concepts in Automation Engineering
 Automation engineering can be applied to a wide range of different cases. Instead of

considering each situation separately, automation engineering has developed a set of abstract

concepts that allow the ideas to be applied to any relevant situation.

 The basic concept in automation engineering is a process or system.2 Figure 3 shows a

typical system with some important components. In automation engineering, as shown in Figure

3, a system consists of inputs, denoted by u, and outputs, y. Inputs represent those variables,

whose change will lead to a change in the system. Inputs can be divided into two types:

manipulative and disturbance. A manipulative input is an input, whose value can be changed

through some device, for example, the flow rate in a valve can be manipulated by opening or

closing a valve. A disturbance input is an input, whose value cannot be changed (at least in

context of the given situation), for example, the ambient temperature cannot be readily modified.

Similarly, outputs can be divided into two categories: observable or measurable and

unobservable or unmeasurable. Observable or measurable outputs are those variables whose value

can be measured or inferred using some device, for example, the temperature of a fluid can be

measured or determined using a thermometer. Unobservable or unmeasurable outputs are those

variables that cannot be measured (at least in context of the given situation), for example, the

density of a complex mixture consisting of multiple phases and components may not be easy to

measure. Finally, we can consider the states of the system, which are the internal variables that

describe the behaviour of the system. In many cases, the states of a system are equivalent to the

outputs and can be categorised using a similar terminology. Often, not all the states can be observed.

2 In this textbook, the two words will not be distinguished. Some authors consider the process to be the overall way
something is done, while a system represents the actual physical realisation of the process. Since in many cases, these
words are used interchangeably, the textbook will primarily use system.

 21

Figure 3: A system in automation engineering

 It goes without saying that if we wish to understand the system, we require a model of the

system. A model of the system is a mathematical representation of the relationship between the

inputs, outputs, and states. The complexity of the required model depends on the purposes that the

model will be used. Modelling a process is a complex endeavour that requires insight into the

process and the ability to handle large data sets quickly and effortlessly.

 In order to complete the picture regarding the system, it is necessary to extend our view to

include parts that allow us to interact with the system or influence its behaviour. Such a view is

provided in Figure 4, which shows the key components and their interactions. It is important to

briefly consider the impact of these in order to understand how the system can be influenced and

how it will react. In this view, the eight key components can be described as (the number is the

same as in Figure 4):

1) Actual Process: This represents the process under consideration. Normally, the actual

process is unknown. Instead, a model of the actual process is used.

2) Sensors: The sensors provide the ability to measure the process and understand how the

variables are changing.

3) Actuators: The actuators allow the value of a variable to be changed. If we cannot change

the value of a variable, then it is hard to use it in an automation strategy. When deciding

on which actuators to use, it is important to consider such factors as the variable being

manipulated, the automation requirements (e.g. required accuracy, tolerance, or precision),

and the type of service required (e.g. continuous, discrete, or emergency).

4) Automation Devices: The automation devices are the controllers and related components

that are used to automate the process. Most of the time the automation hardware consists

of computers and other digital devices, such as programmable logic controllers (PLCs),

that implement the required functions. The design of the automation hardware (and

software) requires knowledge of the limitations and requirements of the system.

5) Environment: The environment represents everything that surrounds the system to be

automated that can have an impact on the overall performance of the system. This influence

can be caused either by changes in other processes that interact with the system of interest

 22

or by direct environmental changes, such as for example, changes in the ambient

temperature. The system will exchange mass, energy, and information with its environment.

6) Automation Objectives: The automation objectives play a very important role in the

development and implementation of the final automation system. Poorly defined or unclear

objectives can make achieving the project difficult if not impossible. Furthermore, the

objectives often need to be translated from the language of business into actually

implementable objectives on a system. This translation can cause additional uncertainties

and lack of clarity.

7) Operators: Although the human component is often minimised or ignored when designing

automation systems, it is in fact very important. Many complicated automation systems

have failed due to a lack of proper consideration of the operators. In general, the operators

need to have the required information easily available (no fancy graphics are needed) and

they can enter the required information into the system quickly and efficiently. Appropriate

feedback and safety checking of the entered values must be performed to avoid confusion.

The operators interact with the process using a human-machine interface (HMI). An

HMI provides two key functions. It allows the operators to see the important process values

and to manipulate as necessary the process values. Manipulating the values implies that the

operators can change at what value the process operates, for example, changing the flow

rate in a pipe. Finally, when designing the HMI, it is important to consider any safety

features, such as logic, that limits which values can be entered by the operators. This

prevents mistakes both accidental, such as mistyped numbers or the wrong information in

a given field, and malicious, such as changes introduced by illegal access to the system,

from having an impact on the process.

8) Disturbances: Disturbances are everything that can impact the system, but whose presence

cannot be directly controlled. Disturbances can originate in the environment (for example,

the ambient temperature) or in the devices themselves (for example, measurement noise in

sensors). One of the objectives of the automation system is to minimise, as much as

possible, the impact of these disturbances on the process.

The final aspect that needs to be considered is safety. The automation system that has been

designed should allow the process to operate in a safe manner without any unexpected behaviour,

from serious errors to a system failure. The system should also be robust, that is, minor changes

 23

in the process should not cause the whole system to fail catastrophically. A robust system can

handle small changes in the process conditions and still attain the required goals.

Figure 4: General structure of an automated system

Section 1.3: Automation-Engineering Framework
 When solving an automation engineering problem, the following steps should be

considered:

1) Modelling of the Process, which involves developing an appropriate model of the process.

2) Analysis of the Process, which involves using the model to analyse how the process will

behave under different conditions. This can be performed using either mathematical

analysis or simulations.

3) Design of the Automation Strategy, which based on the process properties and required

behaviour, provides an appropriate automation strategy that attains the required automation

objectives.

 24

4) Validation of the Proposed Automation Strategy, which validates the proposed

automation strategy using the process model. This determines if the proposed strategy can,

in fact, achieve all the desired automation objectives. Should it be found that the proposed

strategy is lacking, then the strategy needs to be refined and retested. This implies that there

may need to iterate until the final automation strategy is found.

5) Implementation and Commissioning of the Proposed Automation Strategy, which

involves the implementation of the strategy in the real process. Naturally, the

implementation on the real system may lead to changes in the strategy. This implies that

before commissioning, the automation strategy should be tested on the actual process in as

realistic conditions as possible. In certain cases, this may not be feasible and advanced

simulations, using hardware-in-the-loop methods can be implemented to provide a

realistic simulation of the system.

Section 1.4: The Automation-Engineering Pyramid
 The automation-engineering pyramid is an overall description of the way in which

different automation strategies can be organised and structured. It examines two key components:

speed of response, or how often the system is expected to respond to changes, and process details.

Figure 5 shows the general pyramid that consists of 6 different levels (from top to bottom):

• Level 5 – Enterprise Resource Planning (ERP) level: This level focuses on the abstract

analysis of the overall company strategies for dealing with the current market conditions.

This level runs at a very long-time horizon, often in terms of years. At this level, the focus

is on market analysis, strategic investment and personnel planning, and corporate

governance.

• Level 4 – Manufacturing Execution Level: This level considers the specific strategies

that allow for the overall plant/process to run. This includes such details as production

planning, production data acquisition, organisation of delivery orders, and deadline

monitoring. The time horizon for actions can reach into months. Often, at this level, various

software systems, such as a manufacturing execution system (MES) or a management

information system (MIS), are used.

• Level 3 – Process Control Level: This level focuses on short-term production planning,

quality control, and maintenance planning with an action horizon of at most days. Often,

 25

software, such as a supervisory control and data acquisition (SCADA) programme, will be

used.

• Level 2 – Control Level: This level considers how to run the algorithms for controlling

the process using the available process information on the time horizon of minutes or even

seconds. Various hardware, such as programmable logic controllers (PLCs) or industrial

PCs (IPCs) are used to compute the required actions. It is on this level that this book focuses.

• Level 1 – Field Level: This level focuses on the sensors and actuators. Information is

actively exchanged with Level 2, often using fieldbuses. The time horizon is often in the

range of seconds or faster.

• Level 0 – Process Level: This level represents the actual process that is running in real

time.

It can be noted that the process description becomes more abstract as we go from bottom to top.

While Level 0 is very concrete and describes everything in great detail, Level 5 is very abstract

and only focuses on describing the process inputs and outputs to give an overall picture of the

process.

Figure 5: A description of the components of the automation-engineering pyramid

 26

Section 1.5: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 1.5.1: Basic Concepts
 Determine if the following statements are true or false and state why this is the case.

1) A system consists of inputs, outputs, and states.

2) Inputs are variables that influence the system.

3) All outputs can always be measured.

4) A disturbance is a variable whose value can be easily changed as desired.

5) The state of a system describes the internal behaviour of the system.

6) Actuators are used to manipulate disturbances.

7) PLCs are commonly used to automate the process.

8) The environment has minimal impact on an automation system.

9) HMIs should be easy to read and understand.

10) An automation system that explodes periodically is a well-designed system.

11) An automation system should fail the second the system deviates from the expected

conditions.

12) A system exchanges mass, energy, and information with the environment.

13) Disturbances can affect sensors, actuators, and control devices.

14) Validating a proposed automation strategy using appropriate models of the system is a good

strategy to consider.

15) Before commissioning of the automation strategy, it should be tested on the actual system

in as real conditions as possible.

16) The enterprise resource planning level focuses on controlling the process in fine detail and

making decisions every millisecond.

17) The process control level often uses SCADA systems to implement its tasks.

 27

18) In the field level, sensors gather the information and transfer it using fieldbuses to the

control level.

19) A process variable that cannot be measured should be used to control the process.

20) Safety is always an unimportant topic in automation engineering.

Section 1.5.2: Short Exercises
 These questions should be solved using only a simple, nonprogrammable, nongraphical

calculator combined with pen and paper.

21) How is that information can be created and destroyed, but matter and energy cannot be?

Provide some examples of such cases.

22) You have been assigned the task of designing an automation system for a traffic light

system. Explain how you would apply the automation engineering framework to this

problem.

23) You have been given the task of designing a large, multi-unit chemical plant. Explain how

the automation-engineering pyramid could apply to this problem.

24) You have been given the task of designing a self-driving car. Explain how you would

implement the automation engineering framework to this problem. Would you consider

safety and robustness to be significant factors?

 28

Chapter 2: Instrumentation and Signals
 The foundational component of any automation system is the instrumentation, that is, the

sensors, actuators, and the computer hardware which together produce a stream of values, often

called a signal, that can be used for subsequent processing. Before we can look at the sensors,

actuators, and control concepts, it is helpful to understand the types of signals and how they can

be generated.

Section 2.1: Types of Signals
 In automation engineering, signals can be classified using two domains: time and value.

Each domain has two options: continuous and discrete. In general, a continuous signal can take

any value within the set of (positive) real numbers, while a discrete signal can only take certain,

specified values (for example, only natural numbers).

 In the time domain, a signal is said to be continuous, if there exists a signal value for any

time t, that is, the signal can be written as a continuous function of t. An example of a continuous-

time signal would be the outdoor temperature, which contains a value for each possible time

instance.

 A signal is said to be discrete in the time domain, if it is only defined at certain values tk,

where k ∊ ℤ (or ℕ). Normally, it is assumed that the values are available with a specified constant

sampling rate, ts, so that tk = kts. Obviously, as the sampling time decreases, then the signal

approaches that of a continuous signal.

 Similar to the time domain, the value domain of the signal can be classified into continuous

or discrete. A continuous value for a signal implies that the signal can take any real number (subject

to any physical constraints, for example, always positive or in the range [0, 1]). A continuous

valued signal can be written as a continuous function that in general depends on time and any

additional variables.

 A discrete-valued signal can only take specific values. Often the discrete values are

partitioned into equidistant bands. In automation systems, a common discrete-valued signal is a

binary signal that can only take two values (conventionally denoted by 0 or 1). Such a signal is

common when dealing with alarms that are triggered when a certain condition occurs, for example,

if the pressure in the reactor surpasses a given value, then the signal value is set to 1 and the alarm

 29

is triggered. Such signals work by assigning one value (say 0) to the normal state and the other

value to the alarm state (say 1). Binary signals are often displayed using what is called a timing

diagram. In a timing diagram, the binary signal is plotted as a function of time. Multiple different

binary signals are normally placed on separate y-axis, but a common time x-axis. Figure 6 shows

such a typical timing diagram.

Figure 6: A timing diagram for two binary signals A and B

 Based on the classification in the time and value domains, it is possible to have four

different types of signals, which are shown in Figure 7. By convention, a signal that is continuous

in both the time and value domains is called an analogue signal, while a signal that is discrete in

both the time and value domains is called a digital signal.

 Since most real processes require and produce continuous, analogue signals, but computers

perform their computations using discrete, digital signals, there is a need to understand how signals

can be converted between the two forms. Converting from analogue to digital signals is shown in

Figure 8, and consists of three components: sampler, quantiser, and encoder. The sampler

measures (samples) the value of the analogue signal on a fixed frequency to convert the signal into

the discrete time domain. Next, the quantiser coverts this sampled signal into the available closest

value (quantum) to create a digital signal. The encoder simply encodes the digital signal into a

 30

given digital representation that can be used by the computer. This process is often denoted as an

analogue-to-digital (A/D) converter.

 Time Domain
 Continuous Discrete

V
al

ue
 D

om
ai

n

Continuous

Discrete

Figure 7: Continuous and discrete signals

Figure 8: Analogue-to-digital conversion

 When quantising a continuous signal, its values are compared against fixed (equidistant)

quantisation levels. If the value of the continuous signal is between two decision thresholds, the

lower value is usually selected. For example, if a continuous signal has a value of 0.44 with

quantisation levels at 0.25 and 0.5, the quantised (sampled) signal will be set to 0.25. The selection

of appropriate quantization levels is important, since this selection affects the accuracy of the

mapping of the process, for example, if the steps are too far apart, important information can be

lost.

 When going in the other direction, it is normal to assume that the value of the signal will

not be changed and only the time component needs to be made analogue. This is normally

accomplished using a hold, which holds the value of signal until a new value is received. The most

 31

common hold is the zero-order hold, which simply holds the last value received until a new value

is received. A more accurate hold is the first-order or linear hold, which uses an interpolation

between the previous two data points to obtain a linearly varying value over the sampling period.

This process is called digital-to-analogue (D/A) conversion.

Section 2.2: Sensors
 A sensor is a device that can detect changes in a variable and upon calibration display these

changes in a manner that can be understood by others, often with reference to some absolute scale.

 A sensor is characterised by two properties: accuracy and precision or reproducibility.

Accuracy measures the ability of a sensor to give the “true” value, which is usually determined

based on some standard. The difference between the true and measured values is often called bias.

Precision or reproducibility measures the variability of the sensor when measuring the same value.

Ideally, it is desired that the values reported by a sensor be tightly located about the mean value,

that is, the variance of the sensor values should be small. It should be noted that an inaccurate

sensor may be very precise with a tight distribution about an incorrect value. Another issue to

consider is the range of the sensor. The range of a sensor is defined as the difference between the

largest and smallest values that the sensor can measure. The accuracy and precision of a sensor is

often a function of the range of values that the sensor is meant to measure. The larger the range

the less precise the values will be. Similarly, the smaller the range, the more precise the values will

be. This implies that when dealing with processes that have values covering a large range it may

be necessary to install multiple sensors which are accurate in a limited region and then using only

the appropriate sensor value.

 Sensors need to be calibrated before being used or to check that they are behaving as

expected. Calibration involves using standards with accurate and well-defined values to compare

against the measured value given by the sensor. Plotting the measured and true values against each

other will allow the calibration of the sensor to be determined. A typical calibration curve is shown

in Figure 9. There are two parameters of interest here: the y-intercept, which gives the bias, and

the slope of the line (or lack of linearity). The slope of the line and the general distribution of the

points suggest whether or not an appropriate calibration curve was used. Ideally, the line should

be linear and the slope equal to exactly one.

 32

Figure 9: Typical Calibration Curve

 A single sensor depending on its calibration and physical arrangement can be used to

measure different physical variables, for example, a differential pressure cell can measure both

flow rates and level.

 Selecting an appropriate sensor depends on the following criteria:

1) Measurement Range (Span): The required measurement range for the process variable

should lie within the instrument’s range.

2) Performance: Depending on the specific application, different factors, such as accuracy,

precision, and speed of response, will need to be considered.

3) Reliability: How well does the sensor work in the given operating conditions, for example,

if the sensor must be placed in harsh operating conditions, can it handle them and for how

long?

4) Materials of Construction: Depending on the application, the required materials of

construction for the sensor may be different, for example, a temperature sensor in a blast

furnace will require a different material than a temperature sensor in the living room of a

house.

5) Invasive or Noninvasive: An invasive sensor comes in direct contact with the object being

measured, for example, inserting a probe into a liquid to measure the temperature. If an

invasive sensor comes into contact with the process, it can influence the process or be

influenced by the process itself. Thus, invasive methods can have issues with long-term

accuracy due to fouling or corrosion of the probe surface. On the other hand, noninvasive

sensors do not come in contact with the process. In such cases, the process is not disturbed,

 33

but the measurement may be less accurate. However, noninvasive sensors are generally

easier to use and can be easily retrofitted into an already built environment.

Section 2.2.1: Pressure Sensor
 In general, most industrial pressure sensors are constructed using a transducer that can

convert the force per given area (pressure) into an electric signal. Nonelectronic pressure sensors,

often called manometers, do not produce an electric signal and often have a calibrated faceplate

that allows the value to be read. For this reason, the signals produced cannot, in most cases, be

used for industrial automation. A pressure sensor can either measure an absolute pressure or a

pressure difference. A simplified schematic of these two possibilities is shown in Figure 10. Most

pressure sensors measure a pressure difference, which is often expressed as deviations from

atmospheric pressure. As shown in Figure 10 (a), this is accomplished by leaving one of the two

taps or sides of a pressure sensor open to the atmosphere. Such a reading is often called gauge

pressure. A negative gauge pressure is expressed by using the term vacuum, for example, a

reading of 10 kPa vacuum, would imply that the pressure of 10 kPa below atmospheric pressure

has been achieved. Instead of using the varying atmospheric pressure, it is possible to fix the

pressure value on one side of the sesnsor and use the resulting system to measure the system

pressure. As shown in Figure 10 (b), such a set up will allow the measurement of absolute pressure

to be achieved.

Figure 10: Measurement set-up for pressure sensors: (a) Measuring differential pressure and (b) Measuring absolute pressure (a:
flexible membrane, Pa: ambient pressure, Pm: to-be-measured pressure, and Pf: fixed pressure)

 Most transducer-based pressure sensors use some type of electric circuit (for example, a

Wien bridge) to measure the strain induced by the pressure on the system. Common strain gauges

include piezoresistive, capacitive, electromagnetic, piezoelectric, and optical. Figure 11 shows a

typical high-pressure transducer-based pressure sensor. Similarly, manometers are also based on

the effect of pressure on some system property. They include the common hydrostatic manometers,

 34

which basically measure the difference in pressure between the two taps, and mechanical

manometers, which measure the effect of pressure on the strain of the material. Mechanical

manometers have the advantage that they do not interact strongly with the fluid and can provide

very sensitive readings. On the other hand, compared to the hydrostatic manometers, they can be

more expensive.

Figure 11: High-pressure transducer-based pressure sensor (a: measuring diaphragm, b: strain gauge, c: reference hole to the
atmosphere, d: true gauge diaphragm, and e: area for the resistor for temperature correction and internal electronic amplifiers)

Section 2.2.2: Liquid-Level Sensors
 Determining the liquid level in tanks or other similar containers is a very common need in

many chemical plants. Liquid level can be determined using many different methods, including

differential pressure cells, floats, and various radio-based methods. Of these, the most common

approach is to use a differential pressure cell, which measures the pressure gradient between the

top of the liquid and the bottom of the liquid. Since pressure is proportional to the height of the

liquid in the tank, it is relatively easy to calibrate and determine the height. On the other hand,

since density depends on the temperature, this approach will not work in cases where there can be

wide fluctuations in temperature (for example, a boiling liquid). A float measurement device works

on a similar principle, of pressure difference, but records the values differently. Figure 12 shows

an example of float to measure the level in a toilet for controlling the flow of water into the toilet

tank. This shows a relatively simple example of automation that can be implemented with an

appropriately selected sensor. Finally, various radio-based methods, for example, ultrasonic pulse

 35

generating devices, can be used to determine the surface level. However, in order to get an accurate

estimate, it is required that the surface be relatively flat and consistent. Froths and other particles

can impact the accuracy and precision of the measurements.

Figure 12: Level measurement and control using a float (a: trip lever, b: refill tube, c: float, d: overflow tube, e: ballcock, f: lift
chain, and g: flush valve)

Section 2.2.3: Flow Sensors
 Flow sensors are used to measure the speed at which a liquid or gas is moving. There are

three main types of flow sensors: mechanical flow sensors, pressure-based flow sensors, and

electromagnetic flow sensors (including optical and ultrasonic flow sensors). Depending on the

fluid present, each of the three types will have different accuracies and characteristics.

 Mechanical flow sensors are based on the idea of timing how long it takes the liquid or gas

to fill some known unit of volume. Most mechanical flow sensors have some type of wheel or

paddle that is turned by the flowing medium inducing an electric signal, which is then calibrated

to give a flow rate. In general, mechanical flow sensors are good with simple fluids, for example,

water, in a single phase over a limited range of flow rates. Suspended particles in the fluid as well

as multiple phases can cause the mechanical flow sensor to give incorrect readings.

 36

 Pressure-based flow sensors measure the pressure difference caused by some constriction

in flow to determine the flow rate. Common pressure-based flow sensors include Venturi tubes,

orifice-plate differential pressure cells, and Pitot tubes. As with mechanical flow sensors, these

flow sensors tend to work best with uniphase flow of simple fluids without any suspended particles.

Figure 13 shows the basic operating principles of a Venturi tube.

Figure 13: Venturi tube (a: datum, b: U-tube manometer, c: manometer fluid, d: inlet, e: outlet, f: main pipe, g: converging cone;
h: throat, i: diverging cone, D1: diameter of the main pipe, D2: diameter of the throat, Z1: reference height 1, Z2: reference height

2, and h: height difference in the manometer)

 Electromagnetic flow sensors use various electromagnetic waves (including light) to

measure the flow of the fluid. Although not strictly speaking an electromagnetic flow sensor,

ultrasonic flow sensors are based on a similar principle and can be included here. Magnetic flow

sensors measure the changes induced by a flowing fluid in a local electric field. In many cases, the

flowing fluid should be conductive and the surrounding pipe a nonconductor. Optical flow sensors

use the time it takes for small, suspended particles inside a flowing gas to cross two laser beams.

Based on this time, the bulk flow rate can be computed. Finally, ultrasonic flow sensors use the

Doppler effect to measure the flow rate. An advantage of the ultrasonic flow sensors is that they

can be nonintrusive, that is, the measurement can be done without coming in contact with either

the pipe or the fluid. On the other hand, these sensors require the speed of sound for the flowing

fluid to be known in order to calibrate the results correctly.

 37

 In most industrial cases, pressure-based flow meters are used, since they are simple to use,

robust, and easy to maintain. On the other hand, when dealing with exotic or extreme fluids, then

more complex methods may be required.

Section 2.2.4: Temperature Sensors
 Temperature sensors are used to measure the temperature of a stream, be it liquid or gas.

The most common industrial temperature sensor is a thermocouple, where temperature changes

induce a voltage (called the Seebeck effect) in the two different touching conductors. It is possible

to calibrate this change with temperature and hence use it. The construction of the thermocouple

is shown in Figure 14. Determining an appropriate span and calibration for a thermocouple is very

important in order to allow for maximal benefit. Inappropriate calibration can lead to accuracy

issues with the sensor. The most common types of thermocouples are shown in Table 1.

Figure 14: Thermocouple (a: metal 1, b: metal 2, c: measurement point, d: reference location, T1: to-be-measured temperature, T2:
reference temperature, and V: voltmeter)

Table 1: Thermocouple Types

Thermocouple

Type

Temperature Range

(°C)

Material of

Construction
Comments

K −200 to 1350 chromel−alumel Cheap, not too precise

E −110 to 140 (narrow)

−50 to 740 (wide)

chromel−constantan Good for cryogenic use

J −40 to 750 iron-constantan More sensitive than K

B and R 50 to 1800 platinum-rhodium

alloys

Good for high temperature

use, expensive

 38

Thermocouple

Type

Temperature Range

(°C)

Material of

Construction
Comments

C, D, and G 0 to 2320 tungsten/rhenium

alloys

Cannot be used in

presence of oxygen,

expensive.

Chromel-

gold/iron

−273.15 to 25 chromel-gold−iron Cryogenic applications

Section 2.2.5: Concentration, Density, Moisture, and Other Physical

Property Sensors
 There exist various online sensors that can quickly provide readings for many different

types of physical properties. Unfortunately, most of these sensors are relatively limited in their

accuracy or precision. This often results from the extreme or nonideal conditions in which such

systems are used. Often the laboratory measurements are more accurate and trusted. Most of these

sensors use various photonic, magnetic, or sonic pulse methods to determine concentrations or

densities. Consider, for example, a moisture sensor for water in soil. At present, there are 4 main

ways to measure the moisture: tensiometers, which measure the water tension in the soil; electrical

resistance blocks, which measure the resistance of a ceramic block in contact with the soil;

electrical conductivity probes, which measure the conductivity of the soil between 2 plates; and

dielectric sensors, which measure the dielectric constant of the soil. All methods require regular

maintenance and are sensitive to ambient conditions, for example, placing more fertiliser will

change the electrical conductivity of the moisture and hence disrupt the sensor.

Section 2.3: Actuators
 An actuator is a device that can change the amount of some variable that enters a system.

An actuator is characterised by three properties: accuracy, precision or reproducibility, and

performance. Accuracy measures the ability of an actuator to give the “true” value, which is

usually determined based on some standard. The difference between the true and measured values

is often called bias. Precision or reproducibility measures the variability of the actuator when

delivering the same value. Ideally, it is desired that the value delivered by an actuator be close to

the desired true value. The final issue to consider is the performance or how long does it take for

 39

the actuator to respond to a change. In general, it is desired that an actuator respond quickly to

changes and deliver the final desired value in a short period of time. Most actuators are designed

so that 0% corresponds to no value and 100% corresponds to the maximal value. A common

problem with actuators is that their response is nonlinear. One way to resolve this problem is to

use a characterisation function that will convert the desired linear values into the actuator’s

nonlinear values.

 Actuators need to be calibrated before being used or to check that they are behaving as

expected. Calibration involves using standards with accurate and well-defined values to compare

against the measured value by the sensor. However, the exact relationships and behaviour of the

calibration will depend on the specific actuator.

 There are three common actuators: valves, pumps, and variable current actuators.

Section 2.3.1: Valves
 Valves are one of the most common actuators seen in a plant. They allow the flow rate of

a liquid or gas to be controlled. Since valves are so ubiquitous in plants, there is a vast amount of

work done on understanding valves and how they impact the performance of automation. The most

common type of control valve is a pneumatic control valve that uses air to change the flow rate. A

typical control valve is shown in Figure 15. A pneumatic control valve consists of three

components: the current-to-pressure converter (I/P converter), the valve itself, and a positioner.

The I/P converter takes the electric 4-20 mA signal and converts it to an appropriate pressure signal

that can provide the motive force required to move the piston. There exist two types of control

valves: air-to-close and air-to-open. Air-to-open valves are also called fail close valves because

in the event of a loss of air pressure, the valve will close. Similarly, air-to-close valves are called

fail open valves because in the event of a loss of air pressure, the valve will remain open. The

choice of air-to-open or air-to-close valves is based on the outcome of a process hazard review.

 For an air-to-close valve as shown in Figure 15, the compressed air enters the top of the

valve actuator, exerts force against the diaphragm, and moves the diaphragm until the resistance

force from the spring is equal to the force on the diaphragm from the compressed air. An increase

in air pressure will tend to push the diaphragm down, while a decrease in air pressure will result

in the spring forcing the diaphragm up to a new equilibrium point. The valve stem is attached to

the diaphragm, and as the stem moves up and down it changes the position of a tapered plug (or

 40

“trim”) relative to a seat. As the stem moves, it changes the cross-sectional area available for flow,

and thus the resistance to flow. For an air-to-close valve, an increase in air pressure will push the

plug towards the seat, thus reducing the area available for flow, increasing the resistance to flow,

and reducing the flow rate though the valve. For an air-to-open valve, the air enters on the bottom

of the diaphragm, so an increase in air pressure will raise the diaphragm, thus opening the valve.

Figure 15: Pneumatically Actuated Control Valve (air-to-close) (a: supply air connection, b: mechanical stop, c: diaphragm, d:
upper chamber, d: lower chamber, f: spring, g: housing, h: local position indicator, i: stem, j: flow direction, and k: transducer)

 Many modern valves have an additional element called a positioner that seeks to overcome

any potential errors in the valve. A positioner basically compares the current valve location against

the reference value and will change the air supply to allow for the difference to be zero.

 The behaviour of a valve is normally specified based on the percentage of the total distance

that the valve is opened or closed. This eliminates the need to know the exact flow rates. Therefore,

the flow rates of a valve are often stated in terms of percent open (often abbreviated as %open).

 41

 Properly selecting a valve for automation (or control) is very important. There are two

variables to consider: sizing and dynamic performance.

Section 2.3.1.1: Valve Sizing
 Control valves must be specified, just like piping, heat exchangers, and other process

equipment. The sizing of a control valve determines the range of flow rates over which the valve

can produce a hydrodynamically stable flow.

 A valve that is too small will not permit enough flow when it is fully open, which is defined

in terms of the needs for process regulation. A control valve must permit significantly greater flow

than the steady-state requirement in order to be able to provide reasonable performance. A valve

that is too large will have a sufficiently high maximum flow but will provide poor regulation when

the flow is low. For a number of reasons, valves are not very precise instruments, and the relative

errors tend to be greatest when the valve is almost closed.

 A valve that is open by less than 10% is generally considered effectively closed, and a

valve that is more than 90% open is generally considered effectively fully open.

 To determine whether a control valve is undersized or oversized, examine the range of

controller output values used when the valve is in service. If the valve spends a significant fraction

of the time fully open, then it can be considered undersized. If it spends a significant fraction of

the time less than 10% open, or if the flow through the valve reaches a maximum before the valve

is fully open, then the valve is oversized.

Section 2.3.1.2: Dynamic Performance of Valves
 In most flow control applications, it is desirable for the flow through the valve to be a linear

function of valve position. If a plot of valve %open as a function of steady-state flow rate produces

a straight line, then the valve is said to be linear. There exist two types of valves which will give a

nonlinear plot: quick-opening valves and equal-percentage valves, whose plots are shown in

Figure 16. A quick-opening valve, as its name suggests, will quickly open and reach the maximal

flow rate, while an equal-percentage valve will reach the maximal flow rate more slowly. Since

this behaviour of the valve is determined by the manufacturer, it is often called the inherent valve

characteristic. If the valve is nonlinear, then the control performance can be improved by

including a characterisation block that converts the linear flow rates desired into the corresponding

percentage, rather than assuming a linear relationship.

 42

 Furthermore, since a valve is a mechanical system, friction will cause two additional types

of nonlinearities to be present in the system: static and dynamic. Static nonlinearity refers to the

nonlinearity introduced by static friction when initiating changes in the valve position, while

dynamic nonlinearity results from the dynamic friction in the valve, usually between the valve

stem and the seal. Static friction between the stem and seal results in the valve not moving when

there is a small change in the control signal (air pressure) input to the valve. Static friction, or

“stiction,” can significantly affect controller performance.

 To find static and dynamic nonlinearities in a control valve, step the valve from 0% open

to 100% open and then back to 0% in small steps and record the steady-state flow at each step.

Plot the data points on a graph of steady-state flow versus %open, and use different lines for

opening and closing. The resulting graph will be similar to that shown in Figure 17, where the

ideal valve behaviour is shown as a dashed line. Static nonlinearity consists of the deadband

region over which the flow rate does not change even though the signal to the valve increases and

the slip-jump behaviour, while dynamic nonlinearity consists of hysteresis, which is the gap

between the two lines. Slip-jump behaviour is caused by the static friction that must first be

overcome before the valve changes its position. Since the dynamic friction is much smaller than

the static friction, the valve will overshoot the position defined by the force as soon as it starts to

move. This will make the curve look like a staircase. Hysteresis arises from the difference between

the measured flow rate when opening and closing a valve. This effect can be explained by the

different effect of dynamic friction on the moving valve. When the valve is being opened, due to

dynamic friction, it will open less than desired. On the other hand, when it is being closed, the

valve will be more open than specified, that is, it will close less than desired.

 43

Figure 16: Inherent valve characteristics

Figure 17: Phase plot for the typical behaviour of a valve with stiction (after (Shoukat Choudhury, Thornhill, & Shah, 2005)).
The arrows show the direction in which the values were changed.

 44

Section 2.3.2: Pumps
 Another actuator that can control the flow rate in a stream is a pump. A pump is a

mechanical device that takes a fluid, most often a liquid, from a storage tank and moves it to some

other location. The main types of pumps are centrifugal pumps, positive-displacement pumps, and

axial-flow pumps. In centrifugal pumps, the flow direction changes by 90° as it moves over the

impeller, while in an axial-flow pump the flow direction is not changed. In positive-displacement

pumps, the fluid is trapped in a fixed volume and forced (or displaced) into the discharge pipe.

The traditional hand pump is a good example of a positive-displacement pump. Of these three

types, the most common type is a centrifugal pump. A positive-displacement pump is often used

if flows are small or extreme precision is required. Figure 18 shows a schematic diagram of a

centrifugal pump, while Figure 19 shows a positive-displacement pump.

 Compared to valves, pumps tend to provide better control of the flow rate and have fewer

nonlinear characteristics. However, they have much higher energy consumption than valves. The

main considerations for a pump, as for valves, are sizing and performance.

Figure 18: Centrifugal Pump (a: inflow, b: impeller, c: shaft, and d: outflow)

 45

Figure 19: Positive-Displacement Pump (a: inflow, b: packing, c: piston rod, d: stuffing-box bushing, e: liner, f: piston,
g: working fluid, h: valve, and i: outflow)

Section 2.3.2.1: Pump Sizing
 Control pumps must be specified, just like piping, heat exchangers, and other process

equipment. The sizing of a control pump determines the range of flow rates over which the pump

can produce a hydrodynamically stable flow.

 An undersized pump will not permit enough flow when it is fully operating, which is

defined in terms of the needs for process regulation. A control pump must permit significantly

greater flow than the steady-state requirement in order to be able to provide reasonable

performance. An oversized pump will have a sufficiently high maximum flow, but will provide

poor regulation when the flow is low.

 Pumps operating for most of the time at less than about 10% are said to be oversized, while

those operating at more than 90% are said to be undersized.

Section 2.3.2.2: Dynamic Performance of Pumps
 Unlike for a valve, the performance of a control pump is easier to quantify. In general,

pumps are linear. The only significant issue is that with certain types of pumps a deadband may

be present at low flow rates, that is, there may be no observed flow. This can be attributed to the

fact that the pump cannot overcome the effects of gravity and friction, and hence, produce a flow.

 The behaviour of a pump is characterised by its pump characteristic curve, which is often

supplied by the manufacturer of the pump. A typical pump characteristic curve for a centrifugal

 46

pump is shown in Figure 20. The head, H, normally expressed in units of length, such as metres

or feet, shows how high a given column of liquid could be lifted by a pump. It represents the

effective pressure gradient that the pump can overcome. The efficiency, η, represents how much

work put into the pump is converted into lifting the liquid. As in many engineering applications,

the higher the efficiency, the better it is. For centrifugal pumps, the net positive suction head

(NPSH) is the minimum head (pressure) at the inlet before cavitation occurs. Cavitation is defined

as the boiling of a liquid in a pump, which is evidently a very undesirable event. Therefore, the

head at the inlet must be greater than the specified value.

Figure 20: Typical pump characteristic curve for a centrifugal pump

Section 2.3.3: Variable Current Devices
 The final actuator of interest is a variable current device that can modulate (vary) the

current entering a device. Since these devices are mechanical, they tend not to have any issues

with nonlinearities or undesired behaviour. As with all equipment, sizing can be a problem that

needs to be appropriate resolved.

 47

Section 2.4: Programmable Logic Computer (PLCs)
 Programmable logic computers (PLCs) are small computers that have been made robust

and rugged. They are often used in industry for controlling processes, such as assembly lines,

robots, or complex chemical processes. PLCs allow the collection of the different signals and their

subsequent processing to reach a decision or action that may need to be taken. Given the

computational power, they can also perform relatively advanced logical and mathematical

functions that can be used to control the process.

 As shown in Figure 21, a typical PLC consists of 6 key components:

1) Inputs: These allow information from outside the PLC to be incorporated and used. Most

often, they are electrical signals coming from sensors or switches.

2) Power Supply: This provides the power required to run the PLC and operate all the

circuitry. Internally, most PLCs use a 5-V standard. However, the power supply most often

provides 230 V AC, 120 V AC, or 24 V DC. Furthermore, the power supplies are often

built as a replaceable module, so that depending on the application, the appropriate power

can be provided, for example, in Europe one could use 230 V, but in North America 120 V.

3) Central Processing Unit (CPU): The CPU is the brain of the PLC that performs all the

required instructions, calculations, operations, and control functions.

4) Memory: The PLC must also contain memory or the ability to store relevant information

for future use. The amount of memory available depends on the PLC and the programming

requirements. Some PLCs can have additional memory cards inserted, so that they have

more available memory. There are two main types of memory:

a. Read-Only Memory (ROM): ROM is the permanent storage for the operating

system and system data. Since a true ROM cannot be changed, in practice, an

erasable programmable ROM (EPROM) is used, so that it is possible to update

the operating system for the PLC.

b. Random-Access Memory (RAM): RAM is used to store all other information

required by the PLC including any programmes and variables. Accessing RAM is

very fast. However, when power is lost, the information in RAM is also lost.

Therefore, a PLC will always have an additional battery to maintain power to the

RAM, so that the information that is contained in the RAM is not lost during a

power outage.

 48

5) Communications Unit: The communications unit allows for the PLC to interact with other

devices to exchange information using different types of protocols. Often, this exchange of

information involves sending new or updated programmes to the PLC. In general, the

communications unit will often include the ability to communicate with an operator panel,

printers, networks, or other computers.

6) Outputs: These allow the PLC to exchange information with other devices to cause them

to take an action. Such devices include motors, valves, pumps, and alarms.

In a PLC, communication between the components occurs using groups of copper wires called

buses. A bus consists of a bundle of wires that allow for the transmission of binary information,

for example, if the bus contains eight wires, then it is possible to transmit up to 8 bits of information

per bus. A typical PLC consists of four buses:

1) Data Bus: The data bus is used to transfer information between the CPU, memory, and I/O.

2) Address Bus: The address bus is used to transfer the memory addresses from which the

data will be fetched or to which data will be written.

3) Control Bus: The control bus is used to synchronise and control the traffic circuits.

4) System Bus: The system bus is used for input-output communications.

Figure 21: Layout of a PLC

 Since a PLC operates more or less similarly to that of a computer, this means that in order

for a PLC to do anything useful, it must be programmed. The basic idea for a PLC is to monitor

and control a process. A process in this context is anything that requires monitoring and control

and can range from a simple unit that requires its output to be maintained at a prespecified value

to a complex, highly interacting system like a room with multiple heating ovens, lights, ventilations

systems, and windows, wherein the temperature, carbon-monoxide levels, and humidity must be

monitored and maintained at safe levels. In PLC terms, a process is said to be in a given operating

 49

mode3, when the process is operating in some specified mode, for example, when the pump is on,

off, or operating. Finally, the PLC requires a user programme that takes the inputs, outputs, and

internal information to make decisions about the process.

 Before we look at how a PLC operates, it can be useful to note the different operating

modes (states) that a PLC itself can be in. In general, the operating modes for a PLC are

programming, stop, error, diagnostic, and run. In programming mode, a PLC is being

programmed, usually using an external device. In stop mode, the PLC is stopped and will only

perform some basic operations. In error mode, the PLC has encountered some sort of problem and

has stopped working. In diagnostic mode, the PLC runs without necessarily activating any inputs

or outputs, allowing for the validity of the programme to be determined. Often, test signals are

used in place of the real inputs and outputs. In run mode, a PLC is actively working and performing

the requested actions. Each PLC manufacturer may call these operating modes different names

and not all of them may be present for a given PLC.

 Naturally, the most important mode from the perspective of automation is the run mode.

Thus, its behaviour will be examined in greater detail. In run mode, the PLC performs the same

four operations in a repeating cycle:

1) Internal Processing, where the PLC checks its own state and determines if it is ready for

operation. Should the response from hardware or communication units be lacking, the PLC

can give notice of these events by setting a flag, which is an internal Boolean address (or

visual indicator) that can be checked by the user to determine the presence of an error state.

Normally, the PLC will continue operation, unless the error is serious, in which case, it

will suspend operation. In this step, software-related events are also performed. These

include such things as updating clocks, changing PLC modes, and setting watchdog times

to zero. A watchdog is a timer that is used to prevent a programme from taking too long to

execute, for example, it could be stated that if a programme does not terminate in one

second, then it could be stuck inside an unending while-loop and an error state will be

returned.

3 Often also called a state, but this term is avoided since it has another meaning in control and process analysis.

 50

2) Reading Inputs: Next, all the input statuses are copied into memory. This means that the

PLC will only use the values from memory rather than checking to make sure that the most

recent value is available. This means that at any given point the programme will use the

same values during the same scan time. Furthermore, reading values from memory is faster

than reading them each and every time from the input.

3) Executing Programmes: After the inputs have been read, the programmes are executed in

the order in which the code has been written. The order of execution can be changed by

changing the associated priority of the given code or using conditional statements and

subroutines. It should be noted that at this point only internal variables and output addresses

are updated in memory; the physical outputs are not changed at this point.

4) Updating Outputs: Once the programmes have been finished, the output memory is

written so that the state and values of the outputs can be updated. This will then complete

a single cycle and the PLC will return to the first step, that is, internal processing.

Since it can be seen that the PLC in run mode performs these four operations repeatedly, the

question becomes what is the best approach for how the PLC should repeat these operations. By

convention, a single pass through the four operations is called a scan and the scan time or cycle

time is the amount of time required to perform a single scan. In practice, the scan time can vary

between scans due to the presence of different events or conditions requiring the execution of more

or less code. In order to accomplish the repetitions effectively, a programme can be associated

with a task, whose execution type can be specified. There are three common execution types:

1) Cyclic Execution: In cyclic execution, the time between scans is fixed. Obviously, the time

must be set so that the PLC has the time to complete all the required code. Naturally, certain

tasks, such as counting or timing, should always be run on cyclic execution.

2) Freewheeling Execution: In freewheeling execution, as soon as one scan has been

completed, then the next scan is started. This is the fastest way of running a task, since

there is no waiting between scans.

3) Event-Driven Execution: In event-driven execution, a task is only executed when a given

Boolean condition is fulfilled. Event-driven execution is useful for emergency stop routines,

start-up routines, and other extraordinary events.

Furthermore, the nature of the task must be specified: can the task be interrupted by another task?

If the task can be interrupted, then it is called pre-emptive; if it cannot be, nonpre-emptive. The

 51

difference between these two types of tasks is shown in Figure 22. Finally, the priority of a task

must be specified ranging from high to low (the exact details depend on the specific PLC and

standard used).

Figure 22: Pre-emptive and nonpre-emptive tasks

Section 2.5: Communication Devices
 The last type of instrumentation is the communication devices which allow all the

actuators, sensors, and control logic to communicate with each other. The following equipment is

often found:

1) Analogue-to-Digital Converters (A/D Converter), which convert the analogue signal

received from the sensor into a digital signal. At this point, quantisation (or resolution)

can be an issue. If an insufficient number of levels (decimals) are present, then the

resulting data may not carry as much information as before.

2) Digital-to-Analogue Converters (D/A Converter), which convert a digital signal

received from the computer/software into an analogue signal that can be used by the

actuator. Different methods exist for implementing this conversion including a zero-order

hold, where the previous value is maintained until a change occurs, or a first-order hold,

where some average of the previous values is used until a new value is available. In most

implementations, a zero-order hold is used due to its simplicity and sufficiency.

3) Control Software, which can reside either on the programmable logic computer or as a

separate software programme on a computer.

 52

4) Data Historian, which stores all the values for future retrieval. Selecting an appropriate

sampling time, or how fast the data are recorded, can determine the usefulness of the

stored data for future applications.

5) Network Cables, Switches, and Accessories, which physically connect all the

equipment and allow for the strategy to be implemented.

The main issue with the design of the communication units is the available bandwidth. The faster

the data is sampled and the more computations that need to be performed, the larger the bandwidth

and computational power that will be needed.

 In automation, signals can be encoded using many different standards. The two most

common standards are the current-based standard of 4 to 20 mA and the pressure-based standard

of 3 to 15 psig.4 It should be noted that both of these standards do not start at zero, since a value

of zero is ambiguous: is the device not working properly or is the value actually zero. By using a

live zero, that is, the value of zero corresponds to some nonzero current or pressure means that it

is possible to distinguish between the case of a zero value and a faulty device. Furthermore, a live

zero allows part of the remaining current or pressure to be used for operating the device without

needing additional power supply. This means that the device can be used in remote areas without

its own power supply. The lower limit for the live zero was historically determined as the smallest

measurable value. In most cases, the upper limit was chosen so that the lower and upper limits are

in the ratio 1:5.

Section 2.6: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

4 A psi is a unit of pressure in the imperial system of measurement. It is an abbreviation for pounds (force) per square
inch. The conversion factor is 1 psi = 6.894 757 kPa. The g represents gauge or the value above atmospheric pressure.

 53

Section 2.6.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) An analogue signal is continuous in both the time and value domains.

2) A binary signal is an example of a digital signal.

3) A signal can only be discretised in the value domain.

4) A precise sensor will always give a value close to the true value.

5) If the observer sensor value is 3 kg with a standard deviation of 0.5 kg and the true value

is 10 kg, then we can say that the sensor is precise and accurate.

6) A manometer measures the pressure difference using a transducer.

7) A differential pressure cell can measure the level of a liquid in a tank.

8) Venturi tubes are an example of a pressure-based flow sensor.

9) The Doppler effect can be used to measure flow rates.

10) The Seebeck effect allows us to measure pressure changes.

11) A J-type thermocouple can be used to measure the temperature of molten silica which is at

least 1000°C.

12) It is not possible to use thermocouples to measure temperatures below 0°C.

13) Actuators should be selected so that they are used in the range 20 to 60%.

14) Valves are a type of actuator that restricts flows.

15) An air-to-close valve will remain open should the air supply fail.

16) A quick-opening valve is useful for rapid dosing of a liquid.

17) Slip-jump in valves results from dynamic friction of the moving parts.

18) The efficiency of a pump represents the pressure gradient that it can produce at a given

flow rate.

19) A PLC consists of inputs, power supply, CPU, memory, outputs, and communication

devices.

20) A bus in a PLC is a location in memory used to store information about where different

variables are stored.

21) A PLC in programming mode is being programmed from an external device.

22) A flag in a PLC is a Boolean variable that shows the presence of an error state.

23) A watchdog in a PLC is a variable that prevents the PLC from being interrupted by external

users as it is running.

 54

24) A PLC scan is the amount of time it takes for the PLC to read the inputs.

25) Freewheeling execution occurs when the PLC executes a task solely on demand from an

external event.

26) A pre-emptive task can never be interrupted.

27) An analogue-to-digital converter is found in all computer-based automation solutions.

28) A data historian stores the data collected from a process.

29) Live zero implies that when the signal value is zero then the current has a value of 4 mA.

30) A PLC normally has a battery to provide power in case of a power failure.

Section 2.6.2: Short Questions
31) Consider that you have been assigned the task of designing an automation system for a

door to monitor who is present at the door and allow the occupant of the house to open the

door if necessary. List what sensors, actuators, and other devices would be needed to

accomplish this task.

32) Consider the task of monitoring the temperature of a glass furnace. What considerations

should you take into account? Which sensors would you use?

33) Consider the task of pumping a mixture of sand, water, oil, air, and various particles. What

would you need to consider when designing the pump? What kind of sensors would you

consider? Do you think you can achieve highly accurate results?

34) Consider the data shown in Table 2. Create the valve characterisation curve using the data.

Determine what type of valve this is and how reproducible the values are. Are there any

static or dynamic nonlinearities present? How can you determine this?

Table 2: Data for creating the valve characterisation curve for Question 34)

%open
Flow Rate, ṁ (kg/min)

Run 1 Run 2 Run 3

0 0 0 0

10 0.5 0.5 0.4

20 2.3 2.3 2.3

30 4 4 4

40 5.6 5.5 5.5

%open
Flow Rate, ṁ (kg/min)

Run 1 Run 2 Run 3

50 6.8 6.8 6.8

60 8 8 7.9

70 8.9 8.9 8.9

80 9.7 9.7 9.7

90 10.4 10.5 10.5

 55

%open
Flow Rate, ṁ (kg/min)

Run 1 Run 2 Run 3

100 11 11 11

90 10.7 10.7 10.7

80 10 10 10

70 9.2 9.2 9.2

60 8.3 8.3 8.4

50 7.2 7.2 7.2

%open
Flow Rate, ṁ (kg/min)

Run 1 Run 2 Run 3

40 6 6 6

30 4.6 4.6 4.6

20 3 3 3

10 1.2 1.2 1.2

0 0 0 0

35) Consider the sensor data shown in Table 3. It is desired to determine if the sensor values

are properly calibrated against the measured values. Determine if the calibration is correct.

Are the values reliable?

Table 3: Sensor Calibration Data for Question 35)

Measured Height

(m)

Sensor Value (m)

Run 1 Run 2

0.00 0.02 0.03

0.10 0.115 0.105

0.15 0.149 0.152

0.20 0.229 0.215

0.25 0.248 0.251

Measured Height

(m)

Sensor Value (m)

Run 1 Run 2

0.30 0.321 0.312

0.35 0.348 0.349

0.40 0.412 0.392

0.45 0.452 0.457

0.50 0.512 0.493

 56

Chapter 3: Mathematical Representation of a

Process
 In order to understand and provide useful information about a process, it is necessary to

understand how different processes and systems can be represented. In practice, there exist two

main types of representations: mathematical and schematic. A mathematical representation

focuses on providing an abstract description of the process that provides information about the

process. A good mathematical representation of the system can provide a deep understanding of

how the system works and how it will behave in the future. On the other hand, a schematic

representation focuses on the relationships between the different components and how they relate

to each other. It is primarily a visual approach that allows the actual process to be represented on

a piece of paper.

 Common mathematical representations include state-space models, transfer function

models, and automata.

Section 3.1: Laplace and Z-Transforms
 Before considering the mathematical models themselves, it is helpful to review two very

common transformations between the time and frequency domains: the Laplace and z-transforms.

If the time domain is continuous, then the Laplace transform is used, while if the time domain is

discrete, then the z-transform is used.

Section 3.1.1: Laplace Transform
 The Laplace transform converts a function from the time domain into the frequency

domain. This transform allows for a simple algebraic solution of complex differential equations.

Due to this feature, Laplace transforms are widely used in automation engineering to understand

process behaviour and obtain solutions to various control problems.

 The Laplace transform is defined as

 () ()
0

stF s f t e dt
∞

−= ∫ (1)

 57

where F is the Laplace transformed function, f the original function, and s the Laplace variable.

Conventionally, the Laplace transform is denoted by a Faktur L, 𝔏𝔏 (U+1D50F), that is,

F(s) = 𝔏𝔏(f(t)). Converting from the frequency domain to the time domain is conventionally shown

using the inverse of the Laplace transform, 𝔏𝔏−1. Table 4 presents a summary of the most common

Laplace transforms. The following are some useful properties of the Laplace transform:

1) Linearity: 𝔏𝔏(f + g) = 𝔏𝔏(f) + 𝔏𝔏(g).

2) Superposition: 𝔏𝔏(αf) = α𝔏𝔏(f).

3) Convolution: 𝔏𝔏(f ⁎g) = 𝔏𝔏 () ()
0

t

f g t dτ τ τ
 

− 
 
∫ = F(s)G(s).

4) Shifting Properties: The following rules can be useful in solving problems involving

Laplace transforms:

 𝔏𝔏(f(t − a)u(t – a)) = e−asF(s) (2)

 𝔏𝔏 (g(t)u(t – a)) = e−as𝔏𝔏(g(t + a)) (3)

 𝔏𝔏(δ(t – a)) = e−as (4)

 𝔏𝔏(f(t)δ(t – a)) = f(a)e−as (5)

5) Final Value Theorem: Assuming that the poles (roots of the denominator) lie in the left-

hand plane5, then

0

lim () lim ()
t s

f t sF s
→∞ →

= (6)

6) Initial Value Theorem: The value in the time domain at the starting point t = 0 is given

by

0

lim () lim ()
t s

f t sF s
→ →∞

= (7)

Table 4: Table of Common Laplace Transforms

Case
Time Domain

f(t)

Frequency Domain

F(s)

Dirac Delta or Impulse

Function, δ

0
()

t a
t a

t a
δ

≠
− = ∞ =

 e−as

5 Equivalently, the real component of all the poles must be less than 0 or the system is stable.

 58

Case
Time Domain

f(t)

Frequency Domain

F(s)

Unit Step Function, u ()
0 0
1 0

t
u t

t
≤

=  >
 s−1

Polynomials ()
1

1 !

nt
n

−

−
 1

ns

Exponential e−at (s + a)−1

Cosine e−atcos(ωt) ()2 2

s a
s a ω

+

+ +

Sine e−atsin(ωt) ()2 2s a
ω

ω+ +

Derivative ()
n

n
n

d f f
dt

= () () ()1

1
0

n
n kn k

k
s F s s f −−

=

−∑ 6

Integration ()f t dt∫ ()1 F s
s

Time Shift (or Time Delay) f(t − a)u(t − a) e−asF(s)

 Often, when we are given an equation in the Laplace domain, it may be necessary to convert

it into the time domain. This can be performed by using the inverse Laplace transform, 𝔏𝔏−1, such

that 𝔏𝔏−1(𝔏𝔏(f(t)) = f(t). In most automation-engineering problems, the general case reduces to

finding the time-domain function corresponding to some rational function of s. In such cases,

partial fractioning (see Appendix I for the details) is required to break up the original fraction into

its constituent parts so that the known functions given in Table 5 can be used.

Table 5: Useful Inverse Laplace Table

𝔏𝔏(f(t)) f(t)

A
Cs D+

Dt

CA e
C

−

6 If it is assumed that the system is initial at steady-state and using deviational variables, then all derivatives will be
zero and this equation will reduce to the first term snF(s).

 59

𝔏𝔏(f(t)) f(t)

()n
A

Cs D+

()
1

1 !

Dtn C
n

A t e
n C

−
−

−

2

Cs E
s sα β γ

+
+ +

(irreducible

quadratic)

2 22 sin cos
t t

CE Ce t e t
β β
α α

β
ρ ρα
α α ααρ

− −
 −      +              
 

with
2

0
4
βρ γ
α

= − ≥

()2 n
Cs D

s sα β γ

+

+ +

(irreducible

quadratic)

2 2 2

/2

2
1

cos
(2)!

2 sin
2

n
t tn

n

nn
t

n

C t e e t
n

D C e t

β β
α α

β
α

ρ
α α

α β α ρ
α ρ α

⊗
− −

−

⊗
−

+

       ⊗ +       −         

    −
             

with n ≠ 1,
2

0
4
βρ γ
α

= − ≥ , ⊗ is convolution, and (f)⊗n is defined as the

convolution of f, n times, i.e.
 timesn

f f f f⊗ ⊗ ⋅⋅⋅


.

Example 1: Laplace Transform

 Compute the Laplace transform for the function

 yt = t5 + e−5tcos(7t) (8)

Solution

 Since the Laplace transform is linear, we can determine the Laplace forms of each part

separately and then combine them together. From Table 4, we see that

()

1 1
1 !

n

n

t
n s

− 
=  − 

L (9)

Setting n – 1 = 5, which is the exponent of t5 and noting that we will need to multiply both sides

by the factorial (n – 1)!, will give a Laplace form of

 6

5!
s

 (10)

Similarly, for the second term, from Table 4, we have that

 60

 ()()
()2 2

cosate t s a
s a

ω
ω

− +
=

+ +
L (11)

Comparing with the form that we have, we see that a = 5 and ω = 7. Thus, the Laplace transform

is

()2 2

5
5 7
s

s
+

+ +
 (12)

Combining the two parts together gives

 ()()
()2 2

5
6

5 5!7 5cos
5 7

tt e
s

t s
s

−+
+

= +
+ +

L (13)

which is the Laplace transform of yt.

Example 2: Inverse Laplace Transform

 Compute the time-domain representation of the following partial-fractioned Laplace

function

()5

5 8
10 1 2 1s s

+
+ +

 (14)

Solution

 The solution will be found by treating each fraction separately and using the information

in Table 5. For the first term, the general form of the transform can be found from Table 5 as

 1
Dt

CA A e
Cs D C

−
−   = + 
L (15)

Comparing the general form with our first term, we see that A = 5, C = 10, and D = 1, which

implies that the inverse Laplace form will be

1

1 0.1105 5 0.5
10 1 10

t te e
s

−
− −  = = + 
L (16)

For the second term, the general form can be written as

() ()

1 1

1 !

Dtn C
n n

A A t e
n CCs D

−
− −
 

= 
  −+ 

L (17)

Comparing the general form with our second term, we see that A = 8, C = 2, D = 1, and n = 5,

which implies that the inverse Laplace form will be

 61

() ()

1
1 5 1 4 0.52

5 5

8 8 1
5 1 !2 962 1

t tt e t e
s

−
− − −
 

= = 
  −+ 

L (18)

Combining the two terms together gives

()

1 0.1 4 0.5
5

5 8 10.5
10 1 962 1

t te t e
s s

− − −
 

+ = + 
 + + 

L (19)

This gives us the time-domain representation of the original Laplace function.

Section 3.1.2: Z-Transform
 The z-transform converts a discrete function from the time domain into the frequency

domain. This transform allows for a simple algebraic solution of complex difference equations.

Due to this feature, z-transforms are widely used in automation engineering to understand process

behaviour and obtain solutions to various control problems.

 The z-transform is defined as

 ()
0

n
n

n
F z f z

∞
−

=

=∑ (20)

where F is the transformed function and f the original discrete function. Conventionally, the z-

transform is denoted by a script 𝒵𝒵, (U+1D4B5). Table 6 presents a summary of the most common

z-transforms. The following are some useful properties:

1) Linearity: 𝒵𝒵(f + g) = 𝒵𝒵(f) + 𝒵𝒵(g).

2) Superposition: 𝒵𝒵(αf) = α𝒵𝒵(f).

3) Final Value Theorem: Assuming that the poles (roots of the denominator) lie inside the

unit circle, then7

 ()
1

lim lim 1 ()kk z
f z F z

→∞ →
= − (21)

4) Initial Value Theorem: The value in the time domain at the starting point k = 0 is given

by

 ()
0

lim limkk z
f zF z

→ →∞
= (22)

7 The roots are expressed in terms of z. Equivalently, the system is stable.

 62

Table 6: Table of Common z-Transforms (Ts is the sampling time)

Case

Continuous Time

Domain

f(t)

Discrete-Time

Domain (f(kTs))

Frequency Domain

F(s)

Dirac Delta, δ
0

()
t a

t a
t a

δ
≠

− = ∞ =

0
k a

k a
k a

δ −

≠
= ∞ =

 z−a

Step Function,

u
()

0 0
1 0

t
u t

t
≤

=  >

0 0
1 0k

k
u

k
≤

=  >
 1

1
1 z−−

Exponential eat sakTe 1

1
1 saTe z−−

Exponential +

Cosine
eatcos(ωt) ()cossakT

se kTω ()
()

1

21 2

1 cos
1 2 cos

s

s s

aT
s

aT aT
s

e T z
e T z e z

ω
ω

−

− −

−
− +

Exponential +

Sine
eatsin(ωt) ()sinsakT

se kTω ()
()

1

21 2

sin
1 2 cos

s

s s

aT
s

aT aT
s

e T z
e T z e z

ω
ω

−

− −− +

General Power

Series
 ak 1

1
1 az−−

First

Difference

(Derivative)

df
dt

 fk – fk – 1 (1 – z−1)F(z)

Time Shift

(Delay)
f(t − a)u(t − a) fk − auk − a z−aF(z)

 As can be seen from Table 6, many of the forms involve z−1. For this reason, automation

engineering, it is common to treat z−1 as the variable, which is called the backshift operator.

Converting between the two representations is rather easy as it involves multiplying by the highest

power present in the equation.

 The inverse operation of finding the time-domain representation given the z-transform is

performed using the inverse z-transform. Since most automation-engineering examples consider

rational functions of z, this will require partial fractioning in order to split the rational function into

its constituent parts (see Appendix I for details). Once the constituent parts have been obtained,

we can then use Table 7 to find the corresponding time-domain representation. Instead of partial-

 63

fractioning, it may be possible to perform long division to obtain the individual values. However,

this can be quite long and difficult to do.

Table 7: Useful Inverse Z-Transform Table (A and D can be complex)

𝒵𝒵(f(k)) yk

1

Az

Cz D

A
C Dz−+

=
+

k

k
A Dy
C C
 = − 
 

()n

Az

Cz D+

()

()

1

1
1

1
,

1 !

n

j k
k n n

k j
A Dy

C n C
α α

α

−

=
−

 
− + 

 = = −
 −
 
 

∏

()1 n

A

C Dz−+
 , n ∊ ℤ 1

,
1

k
k n

k nA Dy
nC C

α α
+ − 

= = − − 

Example 3: Z-Transform

 Compute the z-transform of the following function

 25 , 2k
ky k−= ≥ (23)

Solution

 From Table 6, we see that an exponential function ak has the z-transform

 1

1
1 az−−

 (24)

In our case, this implies that a = 5. However, we can note that the values are delayed by 2 samples.

Therefore, we will need to also use the delay formula from Table 6 to obtain the final result. Thus,

the z-transform is

 ()
2

2
15

1 5
k z

z

−
−

−=
−

 (25)

Example 4: Inverse z-Transform

 Compute for the following frequency-domain function

 1

2
1 5z−+

 (26)

the corresponding time-domain representation.

 64

Solution

 From Table 7, we can see that this represents the first case with A = 2, C = 1, and D = 5.

This implies that the time-domain representation is

 ()1
1

2 2 5 2 5
1 5 1 1

k k
kA D

z C C
−

−

     = − = − = −     +     
 (27)

 Finally, we can note that there is a relationship between the Laplace transform of the

continuous time domain and the z-transform of the discrete time domain. If we set

 z = esT (28)

This means that results obtained in the continuous domain will have a transformed representation

in the discrete domain. Of note, the imaginary axis of the continuous domain is mapped onto the

boundary of the unit circle. This relationship will appear in our further analysis.

Section 3.2: Time- and Frequency-Based Models
 Time- and frequency-based models are one of the most commonly encountered

mathematical representations of a process. Time-based models focus on the behaviour of the

system with respect to time, that is, how the system evolves or changes over time given specific

inputs and states. However, since solutions can only often be obtained by integrating the complex

differential equations, recourse is often made to frequency-based models where it can be easier to

understand how the process will behave when the inputs change.

 Before looking into the different types of time- and frequency-based models, it can be

useful to consider some of the terms that can be used to classify the different types of models:

1) Linear versus nonlinear: A model f(t) is said to be linear with respect to t if the

following two statements hold:

a. Principle of Superposition or additivity: f(t1 + t2) = f(t1) + f(t2), and

b. Principle of Homogeneity: f(αt1) = αf(t1).

If these two statements do not hold, then the model is said to be nonlinear. Linearity is a

very useful property that allows for a system to be easily analysed using known, well-

established theoretical methods. Nonlinear models can be linearised, so that in a given

region they are well described by the linear equivalent model. A model can be linear with

respect to one variable, but not another.

 65

2) Time-invariant versus time-variant: A model is said to be time-invariant if the

parameters in the model are constant with respect to time. In a time-varying system, the

model parameters can depend on the time period.

3) Lumped parameter versus distributed parameter: A model is said to be a lumped

parameter system if the model does not depend on the location, that is, there are no space

derivatives present. A model that depends on the location, that is, it contains space

derivatives, is called a distributed parameter system. For example, if the temperature T is

a function of the x- or y-direction, that is, we have a derivative of the form
2

2

T
x

∂
∂

in the

model, then the model is a distributed-parameter system. If the temperature only depends

on the time, then we have a lumped-parameter system. The analysis of distributed-

parameter systems is often much more difficult than that of a lumped-parameter system.

A distributed-parameter system can be reduced to a lumped-parameter model if it is

assumed that the variables are homogenously distributed within the space, and hence, all

the space derivatives are zero.

4) Causal versus noncausal: A system is said to be causal if the future values only depend

on the current and past values. In a noncausal system, the future values depend on the

current, past, and future values. A noncausal system is not physically realisable, since the

future values will never be known.

5) System with memory (dynamic) versus system without memory (static): A system is

said to have memory if the future values depend on both the past and present. On the

other hand, a system is said to be without memory or memoryless if future values only

depend on the current value.

Section 3.2.1: Time- and Frequency-Domain Representations
 In automation engineering, there are two common representations of a system: state-space

and transfer-function models.

 The state-space model focuses on the relationship between states, inputs, and outputs in

the time domain. The general state-space model is given as

 ()

()

,

,

dx f x u
dt

y g x u

=

=





 

   

 (29)

 66

where x is the state variable, u is the input variable, t is the time, y is an output, f and g are some

functions, and an arrow above denotes a vector. The state variable is a variable that describes the

current location of the system from which the system’s future behaviour can be determined. A

state variable will often appear in some equation as a derivative with respect to time. The input

variable, u, is a variable that describes the properties of a stream entering a system. Traditionally,

the number of inputs is denoted by m, the number of states by n, and the number of outputs by p.

A system where p = m = 1 is said to be univariate or single-input, single-output (SISO). If p and

m are greater than 1, then the system is said to be multivariate or multi-input, multi-output

(MIMO). A system is said to be multi-input, single-output (MISO) if p = 1 and m > 1.

 The general state-space model is often reduced to a linear form

dx x u
dt

y x u

= +

= +



 

  

 

 
 (30)

where 𝒜𝒜 is the n×n state matrix, ℬ is the n×m input matrix, 𝒞𝒞 is the p×n output matrix, and 𝒟𝒟 is

the p×m feed-through matrix.

 On the other hand, the transfer-function representation focuses solely on the relationship

between the inputs and outputs in the Laplace domain and allows easier analysis of the system

than for a state-space model. The general transfer function representation can be written as

 () () ()Y s s U s=
 

 (31)

where G is a matrix containing the transfer function representation of the model, that is

 ()
()

()
()

()

()
()

() ()

() ()

1 1 11 1

1

, ,
m

p m p pm

Y s U s G s G s
Y s U s s

Y s U s G s G s

    
    = = =    
        



 

   



 (32)

It is often assumed that each transfer function can be written as

 () ()
()

sN s
G s e

D s
θ−= (33)

where N and D are polynomials of s and θ is the deadtime or time delay in the system. Time delay

arises in real systems due to the transport phenomena, measurement delays, and approximations

introduced when linearising a system. The order of a transfer function is equal to the highest

power of the D-polynomial.

 67

 Given the simple form of a transfer-function representation, much of the analysis in control

is performed using it.

Section 3.2.2: Converting Between Representations
 The state-space model can be converted to a transfer function model, by applying the

Laplace transform to Equation (30) and re-arranging to give8

sX X U

Y X U

= +

= +

  

  

 

 
 (34)

 () 1X s U

Y X U

−= −

= +

 

  

  

 
 (35)9

 () () 1YG s C sI A B D
U

−= = − +




 (36)

where ℐ is the n×n identity matrix and s is the Laplace transform variable.

Example 5: Numeric Example of Obtaining a Transfer Function

 Consider the example

5 3dx x u

dt
y x

 + =

 =

 (37)

Taking the Laplace transform of Equation (37) gives

() () ()

() ()
5 3sX s X s U s

Y s X s

+ =


=
 (38)

Substituting Y for X in the first equation of Equation (38) gives

 () () ()5 3sY s Y s U s+ = (39)

Solving for Y / U gives

8 In automation engineering, we often deal with deviation variables that are defined as x̃ = x – xss, where xss is some
steady-state value. Since we assume that the process is initially in steady state, this means that the initial conditions
will always be zero.
9 The inverse exists since the 𝒜𝒜-matrix only contains numeric entries.

 68

() () ()

()
()

5 3

1
5 3

s Y s U s

Y s
U s s

+ =

=
+

 (40)

Therefore, the transfer function is

 () ()
()

1
5 3

Y s
G s

U s s
= =

+
 (41)

Example 6: General Univariate Case

 Consider the following Nth-order ordinary differential equation

1 1

1 0 1 01 1

n n n

n nn n n

d x d x d ua a x b b u
dt dt dt

y x

− −

− −− −


+ + + = + +


 =

  

 
 

 

 (42)

such that at t = 0, all the derivatives are equal to zero and x̃ = ỹ = 0. Taking the Laplace transform

of Equation (42) and simplifying gives

() () () () ()
() ()

() () () () ()

1 1
1 0 1 0

1 1
1 0 1 0

n n n
n n

n n n
n n

s X s a s X s a X s b s U s b U s

Y s X s

s Y s a s Y s a Y s b s U s b U s

− −
− −

− −
− −

 + + + = + +


=
+ + + = + +

 

 

 (43)

Collecting like terms and re-arranging gives

() () () ()

() ()
()

()
()

1 1
1 0 1 0

1
1 0

1
1 0

n n n
n n

n
n

n n
n

s a s a Y s b s b U s

b s bY s
G s

U s s a s a

− −
− −

−
−

−
−

+ + + = + +

+ +
= =

+ + +

 





 (44)

Example 7: Multivariate Example

 Consider the following differential equation

 1 1 2 2
dx ax b u b u
dt
y x

 = − + +

 =



  

 

 (45)

and determine the transfer functions for the system. Note that there are two inputs (m = 2) and one

output (p = 1).

Solution

 69

() () () ()
() ()

() () () ()
() () () ()

() () ()

1 1 2 2

1 1 2 2

1 1 2 2

1 2
1 2

sX s aX s bU s b U s

Y s X s

sY s aY s bU s b U s

s a Y s bU s b U s
b bY s U s U s

s a s a

= − + +


=
+ = +

+ = +

= +
+ +

 (46)

Rewriting this into matrix form gives

 () ()
()

11 2

2

U sb bY s
U ss a s a
  =   + +   

 (47)

Note that this can be written separately, since linear functions are being considered. As well, note

that the principle of superposition holds, so that we can study each transfer function separately and

then combine the results together.

 The reverse operation of converting a transfer function into a state-space representation

does not yield a unique solution or realisation. Consider the following transfer function, where

p < n:

 ()
1

1 1 0
1

1 1 0

p p
p p

n n
n

s s s
G s

s s s
β β β β

α α α

−
−

−
−

+ + + +
=

+ + + +





 (48)

then the controllable canonical realisation is

1 2 1 0

1

1 1 0 1 11

1
1 0 0 0 0
0 1

0
0 0 1 0 0

0 0 0

n n

n n n

p p n

α α α α

β β β β

− −

× ×

− ××

− − − −   
   
   
   = =
   
   
      

 = = 





   

    



 

 

 

 (49)

while the observable canonical realisation is

 70

1 2 1 0

1

1 1 0 1 11

1
1 0 0 0 0
0 1

0
0 0 1 0 0

0 0 0

T T
n n

n n n
T

p p n

α α α α

β β β β

− −

× ×

− ××

− − − −   
   
   
   = =
   
   
      

 = = 





   

    



 

 

 

 (50)

Note that for 𝒞𝒞 in the controllable canonical realisation and for ℬ in the observable canonical

realisation, there will be n – p – 1 zeroes. The fact that the two forms are related by taking the

transpose is not coincidental.

Example 8: Converting a Transfer Function into its Controllable Canonical Realisation

 Convert the transfer function

 () 2

2
4 1

sG s
s s

−
=

− +
 (51)

into its controllable canonical realisation.

Solution

 First, we need to make sure that the transfer function is the form given by Equation (48)

and determine the values of the parameters. Since the equations have the same form, we note that

n = 2 (highest power in the denominator) and p = 1 (highest power in the numerator), which implies

that the transfer function satisfies the requirements. Thus, we can simply compare the parameters

and obtain their values, that is, α2 = 1, α1 = −4, α0 = 1, β1 = 1, and β0 = −2. Thus, using Equation

(49), the controllable canonical realisation is

[] 1 1

4 1 1
1 0 0

1 2 0 ×

−   
= =   
   

= − =

 

 

 (52)

Thus, we have defined the four matrices for one of the state-space representations of the given

transfer function.

Section 3.2.3: Discrete-Domain Models
 In the discrete domain, the form and types of available models is similar. The linearised

state-space representation can be written as

 71

 1k d k d k

k d k d k

x x u
y x u
+ = +
= +

  

  

 
 

 (53)

The subscript d in Equation (53) can be dropped if it is clear that a discrete state-space

representation is being considered. The discrete transfer function is the same as the continuous

version except that all s are replaced by either z or z−1. To convert between the discrete state-space

and transfer function representations, Equation (36), can be used, mutatis mutandis.

 With discrete transfer functions, it is common to explicitly include the unmeasured

disturbance, denoted by et, in the final model. In such cases, the unmeasured disturbance signal is

assumed to be a stochastic (random) Gaussian, white noise signal. A Gaussian, white noise signal

implies that the values of this signal are normally distributed and independent of past or future

values. The general discrete transfer function can be written as

 () ()1 1, ,t p t l ty G z u G z eθ θ− −= +
 

 (54)

where Gp is the process transfer function, θ the parameters, and Gl the disturbance transfer function.

Since in most applications, it is assumed that the transfer functions are rational functions of z-1, the

most common discrete transfer function equation can be written in a form called the prediction

error model, which has the following form:

1 1

1
1 1

() ()()
() ()t t k t

B z C zA z y u e
F z D z

− −
−

−− −= + (55)

where A(z-1), C(z-1), D(z-1), and F(z-1) are polynomials in z-1 of the form

1

1
an

i
i

i
zθ −

=

+∑ (56)

where na is the order of the polynomial and θi are the parameters, B(z-1), is a polynomial in z-1 of

the form

1

bn
i

i
i

zθ −

=
∑ (57)

where nb is the order of the polynomial, and k is the time delay in the system. In general, it is very

rare for this system to be used directly. Instead, any of the following simplifications may be used:

1) Box-Jenkins Model: In this model, the A(z-1) polynomial is ignored. Thus, this model

is given as

 72

1 1

1 1

() ()
() ()t t k t

B z C zy u e
F z D z

− −

−− −= + (58)

 In practice, this method is sufficient to fit an accurate model of the system.

2) Autoregressive Moving-Average Exogenous Model (ARMAX): In this model, the

D(z-1) and F(z-1) polynomials are ignored, which gives

 1 1 1() () ()t t k tA z y B z u C z e− − −
−= + (59)

 This model assumes that the denominator for both the input and the error is the same.

However, this model has the beneficial property that the estimation of its parameters

can be performed using least-squares analysis. A further simplification is to ignore the

C(z-1) term. This gives an autoregressive exogenous model (ARX). This model has

the form given by:

 1 1() ()t t k tA z y B z u e− −
−= + (60)

3) Output-Error Model (OE): In this model, only the model for the input is fit to the

data. The error terms are ignored. Thus, the model is given as

1

1

()
()t t k t

B zy u e
F z

−

−−= + (61)

Section 3.2.4: Converting Between Discrete and Continuous Models
 It is possible to convert between continuous and discrete forms of a model under certain

assumption regarding the discretisation. The most common assumption is that the input stays

constant between sampling instances, that is, a zero-order hold is used to convert from the

continuous (analogue) to discrete (digital) domains. In such case, it can be shown that the

continuous state-space representation can be converted into the discrete time using the following

formulae:

0

s

s

A
d

A
d

d

d

e

e d B

C
D

τ

τ τ
τ

τ

τ
=

=

=

 
=   
 

=
=

∫








 (62)

 73

where τs is the sampling time. It should be noted that all exponentiation is matrixwise

exponentiation. The corresponding transfer function can then be obtained using Equation (36). For

a simple, first order, continuous transfer function given as

 () ()
1p

KY s U s
sτ

=
+

 (63)

the discrete, transfer function is given as

()
() 1

1 e

1 1 e

p

s

p

s

k k
Ky u

z

τ
τ

τ
τ

−

−
−

−
=

− −

 (64)

If a system has time delay, then it can be converted using the following formula

s

k θ
τ
 

=  
 

 (65)

where θ is the continuous time delay and    is an appropriately selected rounding function

converts to an integer value.

 The general rule of thumb for selecting the sampling time is that

 () ()min0.1 to 0.2s pτ τ= (66)

where ()min
pτ is the smallest time constant present in the system.

Section 3.2.5: Impulse Response Model
 In the discrete domain, the infinite impulse response model is defined as

0 0

i
k i k i k i

i i
y h z u h u

∞ ∞
−

−
= =

= =∑ ∑ (67)

where h are the impulse coefficients. The values of h can be obtained by either performing long

division on the transfer function or partial fractioning the result to obtain the impulse coefficients.

Since the values of h can often quickly taper off, it is possible to convert the infinite impulse

response model into a finite impulse response (FIR) model, that is,

0 0

n n
i

k i k i k i
i i

y h z u h u−
−

= =

= =∑ ∑ (68)

where n is an integer representing the number of terms selected for the model.

 74

Section 3.2.6: Compact State-Space Representation
 In many theoretical applications, the state-space representation is often written in a compact

manner that resembles a transfer-function formulism but using matrices. For the standard state-

space representation given by Equation (30), the compact or block state-space representation

can be written as

 G
 

=  
 

 
  (69)

Using this representation, it is possible to easily partition the matrices and show this in a compact

manner, for example,

11 12 1

21 22 2

1 2

G
 
 =  
  

  
  
  

 (70)

where the states have been split into four groups and the relationships between the different groups

can easily be shown.

 When using the compact representation, various short cuts can be used when combining

two models. When adding two compact representations, that is the transfer functions are in parallel,

1 1

2 21 2

1 2 1 2

0
0G G

 
 + =  
 + 

 
 

   
 (71)

When multiplying two representations, that is the transfer functions are in series,

1 1 2 1 2

2 21 2

1 1 2 1 2

0G G
 
 =  
  

  
 

  
 (72)

The inverse of a compact state-space representation can be written as

1 1

1
1 1G

− −
−

− −

 − −
=  
  

   
  

 (73)

provided that D is invertible. Finally, the transpose of this representation can be written as

T T

T
T TG

 
=  
  

 
 

 (74)

 75

A common operation with state-space models is to transform the order or meaning of the states. In

such cases, the compact representation can be derived as follows. Assume that

x x
u u
y y

=
=
=











 (75)

where T, R, and S are appropriately sized nonsingular (invertible) matrices. In this case, the

transformed compact representation can be written as

1 1

1 1G
− −

− −

 
=  
  



 
 

 (76)

Section 3.3: Process Analysis
 Having considered the different models, it would be useful to understand what information

can be easily extracted from such models that would allow us to understand how the process

behaves. Since it is easier to extract information from transfer functions, the focus will be on

analysing them. It will be assumed that the transfer function can be written in the continuous

domain as

 () ()
()

sN s
G s e

D s
θ−= (77)

or in the discrete domain as

 () ()
()

kN z
G z z

D z
−= (78)

The order of a polynomial, denoted by n, is defined as the highest power present in a given

polynomial, for example, x4 + x2 is a fourth-order polynomial, since the highest power is 4. The

order of a transfer function is equal to the order of the denominator polynomial, D. A transfer

function is said to be proper if the order of the numerator is less than or equal to the order of the

denominator, that is, nN ≤ nD. A transfer function is said to be strictly proper if the order of the

numerator is less than the order of the denominator, that is, nN < nD. For most physical processes,

a transfer function will be strictly proper.

 A process is said to be causal if the time delay, θ (or k) is nonnegative; otherwise, the

process is noncausal. In the discrete domain, causality is ensured by a proper transfer function. A

 76

causal process does not depend on unknown future values. Again, all physical processes must be

causal or else they would be able to predict the future.

 The poles of a transfer function are defined as the roots of the denominator, D, that is, those

values of s (or z) such that D = 0. The zeros of a transfer function are defined as the roots of the

numerator, N.

 A process is said to be at steady state if all derivatives are equal to zero, that is,

 0dx
dt

=


 (79)

If Equation (79) does not hold, then the process is said to be operating in transient mode. It should

be noted that small deviations from zero do not necessarily mean that the process is now in a

transient mode. In practice, it may not be possible to achieve an exact steady state, where all the

derivatives are exactly equal to zero, both due to continual small fluctuations and measurement

imprecisions. In such cases, it is common to define the settling time, ts, of a process as the time it

takes for the process to reach and stay within an envelope centred on the new steady-state value

and has bounds that are 5% of the change in the process variable. Figure 23 shows how the settling

time is computed.

Figure 23: Determining the Settling Time

1.05 KM

0.95 KM
y∞

Original
Steady
State

ts

New Steady State

Time, t

O
ut

pu
t S

ig
na

l

KM

M

Time, t

In
pu

t S
ig

na
l

θ

 77

 For a process modelled by a continuous transfer function, there are three key parameters of

interest: gain, time constant, and time delay (deadtime or process delay). The gain, K, of the

process represents the steady-state behaviour of the system for a unit change in the input. It is

defined as

 ()
()

y t
K

u t
→∞

=
→∞

 (80)

where it is assumed that the input is bounded as t → ∞. The gain is the same irrespective of the

bounded input used. Using the final value theorem for a general transfer function and a step change

in the input, it can be seen that

() () ()

()
()

0 0 0

1
1 0

10
1 0

0

0

lim lim lim

lim

s s s

n
n s

n ns
n

sG s
K sY s G s

s
b s b

e
s a s a

b
a

θ

→ → →

−
− −

−→
−

= = =

+ +
=

+ + +

=





 (81)

The ratio b0 / a0 is called the gain, K, of the process.

 The process time constant represents the transient or dynamic component of the system,

that is, how quickly the system responds to changes in the input and reaches a new steady-state

value. The larger the time constant the longer it takes to reach steady state. It can be obtained from

the transfer function by factoring the denominator into the form

()

()
()

()

1 1
1 0 1 0

1
1 0

1

1

n n
n n

nn n
n

i
i

b s b b s b

s a s a sτ

− −
− −

−
−

=

+ + + +
=

+ + + +∏

 



 (82)

which gives the time constants, τ, of the process. If there are multiple time constants, then the

largest time constant will determine the overall process response speed.

 The final parameter of interest is the time delay, θ, which measures how long it takes

before the system responds to a change in the input. Time delays can arise from two different

sources: physical and measurement. Physically, time delays are perceived times at which a system

is not responding to changes in the input. They can arise if it takes time for an observable change

to be seen, for example, heating a large tank would take some time before the temperature rises by

an appreciable amount that can be measured. On the other hand, measurement time delays arise

 78

due to the placement of sensors. In many systems it may not be possible to measure the variable

immediately where it will act on the process. In this case, it will take some time before the variable

actually affects the system, for example, the flow rate in a pipe could be measured at the beginning

of the pipe and it could take some time before it will reach the process. In the frequency domain,

the time delay is found as

 e−θs
 (83)

where θ is the time delay. In many applications, it may be necessary to convert the exponential

form of the time delay into a polynomial expansion. This conversion can be accomplished using

the Padé approximation, denoted as the n/m Padé Approximation, where n is the order of the

polynomial in the numerator and m is the order of the polynomial in the denominator. The 1/1

Padé approximation is given as

1

2
1

2

s
s

e
s

θ

θ

θ
−

−
=

+
 (84)

The 2/2 Padé approximation is given as

2

2

1
2 12

1
2 12

s
s s

e
s s

θ

θ θ

θ θ
−

− +
=

+ +
 (85)

A table of the Padé Approximation for the exponential function up to 3/3 are given in Table 8,

from which the Padé Approximation for the deadtime can be easily derived.

Table 8: Padé Approximations for the Exponential Function, ez

n
→
m↓

0 1 2 3

0 1
1

 1
1 z−

 2

1
11
2

z z− +

2 3

1
1 11
2 6

z z z− + −

1 1
1

z+
11
2
11
2

z

z

+

−

2

11
3

2 11
3 6

z

z z

+

− +

2 3

11
4

3 1 11
4 4 24

z

z z z

+

− + −

 79

n
→
m↓

0 1 2 3

2
211

2
1

z z+ +

22 11
3 6

11
3

z z

z

+ +

−

2

2

1 11
2 12
1 11
2 12

z z

z z

+ +

− +

2

2 3

2 11
5 20

3 3 11
5 20 60

z z

z z z

+ +

− + −

3
2 31 11

2 6
1

z z z+ + +

2 33 1 11
4 4 24

11
4

z z z

z

+ + +

−

2 3

2

3 3 11
5 20 60

2 11
5 20

z z z

z z

+ + +

− +

2 3

2 3

1 1 11
2 10 120
1 1 11
2 10 120

z z z

z z z

+ + +

− + −

Example 9: Extracting Information from a Transfer Function

 Determine the gain, time constant, and time delay for the following transfer function

 () ()
()

51
5 3

sY s
G s e

U s s
−= =

+
 (86)

Solution

 Re-arranging into the required form gives

 () ()
()

51/ 3
5 1
3

sY s
G s e

U s s

−= =
+

 (87)

from which, by inspection, the gain is ⅓ and the time constant is 5 / 3. The time delay is 5.

Section 3.3.1: Frequency-Domain Analysis
 In frequency-domain analysis, the transfer function is solely used and analysed to

determine its behaviour at different frequencies. Frequency-domain analysis is often presented

graphically and was once used extensively before the advent of computers. Understanding the

principles of frequency-domain analysis is still important, especially when designing various

filters for electronic systems, such as microphones.

 Frequency-domain methods are based on setting s = jω, where j is the imaginary number

1 and ω is the frequency. This basically means that we are considering the response of the system

to sinusoidal waves with different frequencies. The goal is to see how the process changes the

amplitude or strength and the phase shift, that is, assuming that the original input has the form

 sin ωt (88)

 80

the response will have the form

 Asin(ωt + ϕ) (89)

where A is the amplitude and ϕ is the phase shift. Consider a general transfer function, G(s), then

define the amplitude ratio, AR, (which corresponds to a normalised amplitude) as

 () ()() ()()2 2
AR Re ImG j G j G jω ω ω= = + (90)

where Re is the real component of a complex number, Im is the imaginary component, and ||·|| is

the modulus function. It should be noted that in many applications, the logarithm of the amplitude

ratio is used. In most cases, a base-10 logarithm is used. Occasionally, a decibel logarithm will be

used, that is, AR = 20 log ||G(jω)||. The phase angle, ϕ, conventionally expressed in degrees, is

defined as

()()
()()

Im
arctan

Re
G j
G j

ω
φ

ω

 
=   

 
 (91)

where arctan is the standard inverse tangent function defined on]−90°, 90°[. It should be noted

that if the denominator is negative, then it is necessary to add 180° to the value obtained previously.

This is because the arctan function does not work on the complete circle.10

 It can be noted that if the original transfer function is a product of simpler transfer functions,

that is,

 () ()iG s G s=∏ (92)

then the amplitude ratio can be computed as

 ()AR AR
iG s=∏ (93)

which is the product of the individual amplitude ratios corresponding to each simpler transfer

function. The phase angle can be computed as

 ()iG sφ φ=∑ (94)

These two formulae can simplify the determination of the amplitude ratio and phase angles of

complex transfer functions. This formulae result from the fact that all transfer functions can be

10 In some programmes, an “astronomical” arctangent function is defined as arctan2(y, x), which will return the value
in the correct quadrant based on the signs of y and x. If available, it should be used.

 81

expressed in polar form as G(jω) = ||G(jω)||e−ϕj, from which it is easy to see that combining

multiple transfer functions as given by Equation (92), the given formulae will result.

 The amplitude ratio and phase angle can be graphically presented in two different forms,

either as a Bode plot or as a Nyquist plot. In a Bode plot, the x-axis is the frequency, ω, and the

y-axis is either the amplitude ratio or phase angle. A typical Bode plot is shown in Figure 24.

Figure 24: Bode Plot: The Argument-Ratio and Phase-Angle Plots

 In a Nyquist plot, the real component of G(jω) is plotted on the x-axis and the imaginary

component of G(jω) is plotted on the y-axis. A typical Nyquist plot is shown in Figure 25. Both

graphs give similar information. In most applications, Bode plots are used, but a Nyquist plot can

be useful to analysis the interactions between different systems.

-150

-100

-50

0

50

A
m

pl
itu

de
 R

at
io

, A
R

 (d
B

)

10-1 100 101 102 103
-270

-225

-180

-135

-90

Ph
as

e A
ng

le
, 𝜙

 (°
)

Frequency, ω (rad/s)

 82

Figure 25: A Nyquist Plot (for the same process as given by Bode plot in Figure 24)

Section 3.3.2: Stability
 Stability of a model refers to the behaviour of the model as t → ∞ for the case where the

input is bounded, that is, |ut| ≤ L, where L is a constant. A model is said to be stable if as t → ∞

for a bounded input, y∞ → K, where K is a constant. Otherwise, a model is said to be unstable.

Determining the stability of a process depends on the type of representation used and nature of the

time domain. Table 9 summarises the key results regarding stability. A detailed examination of

how the different types of stability manifest themselves can be found in Section 3.3.4.6.

 For a state-space representation, stability is determined by examining the eigenvalues of

the state matrix, 𝒜𝒜. In the continuous time domain, the real part of all the eigenvalues must be less

than zero, for the model to be stable; otherwise, the model is said to be unstable. In the discrete

time domain, the magnitude of all the eigenvalues must be less than 1, that is, the eigenvalues must

lie inside the unit circle, for the process to be stable; otherwise, the model is said to be unstable.

 For a transfer-function representation, stability is determined by examining the poles, or

roots of the denominator, D. In the continuous time domain, the real part of all the poles must be

less than zero, for the model to be stable; otherwise, the model is unstable. In the discrete time

-1 -0.8 -0.6 -0.4 -0.2 0
-10

-8

-6

-4

-2

0

2

4

6

8

10

Real Component

Im
ag

in
ar

y
C

om
po

ne
nt

 83

domain, the magnitude of all the poles must be less than 1, that is, the poles must lie inside the unit

circle, for the process to be stable; otherwise, the process is unstable.11

 Finally, it can be noted that if the state-space representation is stable, then so will the

transfer function representation be. However, the converse is not true, since each transfer function

does not have a unique state-space representation and it is possible to construct an unstable state-

space representation for a stable transfer function, by adding an unobservable unstable state.

Table 9: Summary of the Stability Conditions for Different Representations and Time Domains

Representation Analysis Metric, p Stable Unstable

C
on

tin
uo

us
 T

im
e State-Space Eigenvalues of the state-

space matrix, 𝒜𝒜
Re(p) < 0 Re(p) ≥ 0

Transfer

Function
Poles of the transfer function

(Roots of D)
Re(p) < 0 Re(p) ≥ 0

D
is

cr
et

e
Ti

m
e State-Space Eigenvalues of the state-

space matrix, 𝒜𝒜
||p|| < 1 ||p|| ≥ 1

Transfer

Function

Poles of the transfer function

(Roots of D)
||p|| < 1 ||p|| ≥ 1

Example 10: Determining the Stability of a Transfer Function

 Determine if the following processes are stable:

 () 5
1

1
5 3

sG s e
s

−=
+

 (95)

 ()
()()

5
2 2

1
5 3 4

sG s e
s s

−=
+ +

 (96)

 ()
2

3 4 3 2 1
zG z

z z z z
=

+ + + −
 (97)

11 In the discrete domain with a transfer function, it is very important to take into consideration what variable is being
used and how the stability condition is being phrased. Often, especially in control, stability is discussed in terms of
z−1, in which case the above rules need to be inverted, that is, stability implies poles outside the unit circle. For
consistency, stability in this book will be discussed in terms of z.

 84

Solution

 For G1, setting 5s + 3 equal to zero and solving, gives a pole of −3/5. According to the

results in Table 9 for a continuous transfer function, the system is stable, since the pole is less than

zero.

 For G2, setting the two terms to zero and solving, gives three poles of −3/5 and ±2i. From

Table 9 for a continuous transfer function, we conclude that the system is unstable since the we

have two poles with a real component equal to zero and one pole whose value is less than zero.

 For G3, the setting the denominator equal to zero and solving, gives poles of −1.291,

−0.1141±1.217i, and 0.519. For a discrete transfer function, Table 9 states that in order for the

system to be stable, the magnitude of the roots must be less than one. We see that we have at least

one pole (−1.291) whose magnitude will be greater than zero. This implies that the system will be

unstable.

Example 11: Determining the Stability of a State-Space Model

 Determine if the given 𝒜𝒜-matrices represent stable continuous processes:

 1

2 0
3 2
 

=  − 
 (98)

 2

5 5 6
0 3 2
0 0 1

− 
 = − 
 − 

 (99)

 3

2 1
1 2

 
=  − 

 (100)

Solution

 For 𝒜𝒜1, since it is a triangular matrix, the eigenvalues can be directly found by looking at

the main diagonal entries. This implies that the eigenvalues are 2 and −2. According to the results

in Table 9 for a continuous state-space model, the system is unstable, since one of the eigenvalues

is greater than zero.

 Likewise, for 𝒜𝒜2, we can find the eigenvalues by looking at the main diagonal entries. This

gives −5, −3, and −1. Since all of the eigenvalues are less than zero, from Table 9 for a continuous

state-space model, we conclude that the system is stable.

 For 𝒜𝒜3, we need to compute the eigenvalues as follows

 85

() () ()()2
3

2

det 2 1 1

4 5
2

I

i

λ λ

λ λ

− = − − −

= − +
= ±



 (101)

Since the real part of the eigenvalues is greater than zero, from Table 9 that states that in order for

the system to be stable, the real part of roots must be less than zero, we conclude that the system

is unstable.

Section 3.3.2.1: Routh Stability Analysis
 Although the results presented in Table 9 are very useful when a numerical transfer

function is available, determining the roots algebraically can be difficult, if not impossible for

higher-order systems. For this reason, there exist special tests for stability that do not require the

roots of the polynomial to be determined. One of the most common tests for a continuous-time

transfer function is the Routh stability analysis. By simply considering the coefficients of the

denominator polynomial, the stability of the system can be determined. Consider the characteristic

polynomial (the polynomial of the denominator) as

 ansn + an – 1sn – 1 + an – 2sn – 2 +…+ a1s + a0 = 0 (102)

There are two conditions for the Routh stability test:

1) All coefficients must be present and have the same sign (either all strictly positive, that is,

greater than zero or all strictly negative, that is less than zero). If this is not the case, the

system is unstable.

2) If condition 1 is satisfied, then create the table shown in Table 10.

a) In the first row, place the coefficients corresponding to an, an – 2,…

b) In the second row, place the coefficients corresponding to an − 1, an – 3,…

c) Using the values from the rows above and the current column and the column to

the right, compute a determinant-like number using the formula provided in the

table. For the ith row in the jth column (i ∊ {1, 2, …, n + 1, j ∊ {1, 2, …, ⌈0.5n⌉}),

the general formula is

 ()
() () () ()2 1 2 1

1 1
1

1

j j j j
j i i i i

i j

λ λ λ λλ
λ

− − − −
+ +

−

−
= (103)

where ()1
2 2i n iaλ − += and ()2

2 1i n iaλ − += (the first two rows are the coefficients of the

polynomial of interest). Any values that are not given are assumed to be zero.

 86

d) Continue computing this value until the table has n + 1 rows.

e) A polynomial is stable (all roots of the characteristics polynomial are negative) if

all the values in the first column have the same sign, either strictly positive or

strictly negative.

Table 10: Routh Stability Analysis Table

Row 1 2 3 …

1 an an − 2 an − 4 …

2 an − 1 an − 3 an − 5 …

3 1 2 3
1

1

n n n n

n

a a a ab
a

− − −

−

−
= 1 4 5

2
1

n n n n

n

a a a ab
a

− − −

−

−
= …

4 1 3 2 1
1

1

n nb a b ac
b

− −−
= …

…

…

…

n + 1 z1

Example 12: Example of Routh Stability Analysis

 Using Routh stability, determine the stability of the following two transfer functions:

1) () 6 4 3 2

5
5 6 2 3 1

G s
s s s s s

=
+ − + + +

2) () 4 3 2

4
3 2 1

G s
s s s s

=
+ + + +

Solution

 For the first transfer function, we can determine the stability by inspection. Since we are

missing one of the powers (s5) and the coefficients are both negative and positive, we can conclude

on the basis of condition (1) of the Routh stability analysis that this transfer function is unstable.

 For the second transfer function, we see that condition (1) is satisfied, as all the powers are

present and the coefficients have the same sign. Therefore, we will need to check condition (2) by

constructing the Routh array. There will be 3 (always n / 2, rounded up) columns in the array. In

the first row (denoted as 1 in Table 11), we place the even coefficients ordered in decreasing

 87

powers. In the second row, we place the odd coefficients. In Rows 3, 4, and 5, we compute the

values using the formula:

 () ()1 2 3
1

1

3 1 1 2 1
3 3

n n n n

n

a a a ab
a

− − −

−

−−
= = =

 () ()1 4 5
2

1

3 1 1 0
1

3
n n n n

n

a a a ab
a

− − −

−

−−
= = =

() ()1

3
1 1

3

2 3 1
7c

−
= = −

() ()()1

3
1

7 1 0
1

7
z

− −
= =

−

It can be noted that any values that do not exist (such as an – 5) are equal to zero. As stated by the

definition of the condition, we will always have n + 1 rows. The formulae used to compute the

subsequent values are essentially determinants with the sign in the numerator flipped.

Table 11: Routh Array

Row 1 2 3

1 1 1 1

2 3 2

3 ⅓ 1

4 −7

5 1

From Table 11, we see that there is a sign change in Column 1, row 4, which implies that the

system is unstable.

Section 3.3.2.2: Jury Stability Analysis
 Although the results presented in Table 9 are very useful when a numerical transfer

function is available, determining the roots algebraically can be difficult, if not impossible for

higher-order systems. For this reason, there exist special tests for stability that do not require the

roots of the polynomial to be determined. One of the most common tests for a discrete-time transfer

function is the Jury Stability Analysis. By simply considering the coefficients of the denominator

 88

polynomial, the stability of the system can be determined. Like with the Routh stability test, a table

is constructed. Consider that the polynomial of interest is given as

 () 1
1 1 0

n n
n nD z a z a z a z a−

−= + + + + (104)

Construct the following table (similar to that shown in Table 12), where the first row contains all

the coefficients starting from a0 and ending with an. The second row is the first row reversed, that

is, the first column contains an, and the last column contains a0. The third row is computed using

 0i i n n ib a a a a −= − (105)

while the fourth row is the third row reversed. Note that only the first n values are reversed.

Effectively, we have now created a new reduced polynomial that needs to be analysed. Thus, the

fifth row is computed using the same formula as for the third row given by Equation (105), but

replacing n by n – 1 coefficients, that is,

 0 1 1i i n n ic b b b b− − −= − (106)

This procedure is then repeated until there is row with only 3 elements left (denoted as q0, q1, and

q2), that is, the table will have 2n – 3 rows. In general, for the (2j + 1)th row (j = 1, 2, …, n – 2),

that is, each odd-numbered row, we can write the relationship as follows

 () () () () ()2 1 2 1 2 1 2 1 2 1
0 1 1

j j j j j
i i n j n j id d d d d+ − − − −

− + − − += − (107)

where ()1
i id a= , that is, the first row contains the actual polynomial coefficients. The (2j + 2)th

row, that is, the even row, will then be the n – j + 1 coefficients written in reversed order. It can be

noted that the odd rows are essentially a determinant of the above two rows.

 The conditions for stability can then be stated as:

1) D(1) > 0

2) (−1)nD(−1) > 0

3) |a0| > |an|

4) |b0| > |bn − 1|, and continuing in this manner until the last row is reach, where |q0| > |q2|.

If any of the above conditions fail, then the system will have at least one pole outside the unit circle

and hence be unstable.

Table 12: Table for the Jury Stability Analysis

Row 0 1 … n − 1 n

 89

1 a0 a1 … an − 1 an

2 an an − 1 … a1 a0

3
0 0 0 n nb a a a a= − 1 0 1 1n nb a a a a −= − … 1 0 1 1n n nb a a a a− −= − 0

4 bn − 1 bn – 2 … b0 0

5

…

…

…
 …

…

…

2n − 3 q0 q1 … … 0

Example 13: Example of Jury Stability Analysis

 Using Jury stability, determine the stability of the following two discrete transfer functions:

1) () 6 4 3 2

5
5 6 2 3 1

G z
z z z z z

=
+ + + + +

2) () 4 3 2

4
10 3 5 1

G z
z z z z

=
+ + + +

Solution

 For the first transfer function, we need to test the initial constraints before we consider

creating the table. For condition 1, D(1) > 0, we get

 1 + 5 + 6 + 2 + 3 + 1 = 18 > 1

which implies that this condition is satisfied. Condition 2, (−1)nD(−1) > 0, gives

 (−1)6[1(−1)6 + 5(−1)4 + 6(−1)3 + 2(−1)2 + 3(−1)1 + 1] = 0

which is not satisfied. This implies that the first transfer function is not stable.

 For the second transfer function, testing the three initial conditions gives

Condition (1): 10 + 3 + 1 + 5 + 1 = 20 > 0 (satisfied)

Condition (2): (−1)4[10(−1)4 + 3(−1)3 + (−1)2 + 5(−1)1 + 1] = 4 > 0 (satisfied)

Condition (3): |an| > |a0| ⇒ |10| > |1| (satisfied)

Since all the preliminary conditions have been satisfied, the Jury array can be constructed. This is

shown in Table 13. The first row consists of the coefficients arranged in increasing powers, while

the second row consists of the coefficients arranged in decreasing power. In Row 3, we compute

the values using the formula

 0i i n n ib a a a a −= − (108)

 90

which gives

 () ()0 0 0 4 4 0 1 1 10 10 99b a a a a −= − = − = −

 () ()1 0 1 4 4 1 1 5 10 3 25b a a a a −= − = − = −

 () ()2 0 2 4 4 2 1 1 10 1 9b a a a a −= − = − = −

 () ()3 0 3 4 4 3 3 1 10 5 47b a a a a −= − = − = −

From here, we should check that the condition |b0| > |bn – 1| is satisfied. Since |−99| > |−47|, it holds

and we proceed to the next step. We reverse the order of the remaining n – 1 coefficients and write

them in Row 4. Effectively, we have created a new polynomial of order n – 1 that we need to test.

Thus, in Row 5, we will use a modified form of Equation (108) to give

0 1 1i i n n ic b b b b− − −= − (109)

Effectively, this is the same as Equation (108), but with the value of n reduced by 1. Evaluating

Equation (109) for the n – 2 columns gives

 () ()2 2
0 0 0 3 3 99 47 7592c b b b b= − = − − − =

 () ()()1 0 1 3 2 99 25 47 9 2052c b b b b= − = − − − − − =

 () ()()2 0 2 3 1 9 99 47 25 284c b b b b= − = − − − − − = −

Since we are left with three columns, we simply need to determine |q0| > |q2|, which in our case

becomes |7592| > |−284|. Since it holds, we can conclude that the system is stable.

Table 13: Table for Jury stability

Row 0 1 2 3 4

1 1 5 1 3 10

2 10 3 1 5 1

3 −99 −25 −9 −47

4 −47 −9 −25 −99

5 7592 2052 −284

 91

Section 3.3.2.3: Closed-Loop Stability Analysis
 For closed-loop systems, stability can be analysed by considering the closed-loop transfer

function, Gcl,

1

c p
cl

c p

G G
G

G G
=

+
 (110)

Since it has been shown that the poles of the system are the determining factor for stability, it

therefore suffices to consider only the denominator of the closed-loop transfer function, that is, the

term 1 + GcGp. It is possible to apply either the Routh or the Jury Stability Tests to determine under

what conditions the system will be stable.

 However, in some circumstances, it can be instructive to look at the frequency-domain

plots, especially the Bode plot, to determine stability. In order to make the analysis simpler, we

will rewrite the denominator to

 GcGp = −1 (111)

Taking the magnitude (or modulus) of Equation (111) gives

 ||GcGp|| = ||−1|| (112)

while the phase angle for −1 is −180°, since the imaginary component is 0 and the real component

is −1, which after subtracting −180° gives the correct location. Therefore, plotting the Bode plot

for the open-loop transfer function GcGp will allow the stability of the system to be determined by

examining the critical frequency, ωc, which is the frequency corresponding to a phase angle of

−180°. If the value of amplitude ratio at this point is greater than 1 (or 0 if a logarithmic basis is

being used), then the process will be closed-loop unstable. An example is shown in Figure 26.

 92

Figure 26: Bode Plot for Closed-Loop Stability Analysis

 Furthermore, we can define two additional parameters of interest: the gain margin (GM)

and the phase margin (PM). These two margins represent how much room we have before the

system becomes unstable. On a Bode plot, instability implies an amplitude ratio above 1 (or 0 for

the logarithmic case) or a phase angle below −180°. These parameters are shown in Figure 27 for

the Bode plot and in Figure 28 for the Nyquist plot. The phase margin is defined by adding 180°

to the phase angle when the gain crosses the value of 1, which is denoted by ωg and called the gain

crossover, that is,

 PM = ϕ(ωg) + 180° (113)

The gain margin is defined as the difference between 1 (or 0 for a logarithmic case) and the value

when the phase angle crosses the phase angle of −180°, which is denoted by ωp and called the

phase crossover, that is,

 GM = 1 – AR(ωp) (114)

It is possible to design controllers by specifying the phase and gain margins.

-150

-100

-50

0

50

A
m

pl
itu

de
 R

at
io

, A
R

 (d
B

)

10-1 100 101 102 103
-270

-225

-180

-135

-90

Ph
as

e A
ng

le
, 𝜙

 (°
)

Frequency, ω (rad/s)

ωg ωc

PM 𝜙 = -180°

A = 1 GM

 93

Figure 27: Closed-loop stability using the Bode plot

Figure 28: Closed-loop stability using the Nyquist plot

Section 3.3.3: Controllability and Observability
 Since we are ultimately interested in automating our process, it is important to understand

if our process can in fact be automated. For state-space representations, it is very common to talk

about the controllability and observability of the process. The state equation or the pair (𝒜𝒜, 𝒞𝒞) is

observable if and only if for any unknown initial state, x0, there exists a finite time t (greater than

-150

-100

-50

0

50

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

-360

-270

-180

-90

0

Ph
as

e A
ng

le
, 𝜙

 (°
)

Frequency, ω (rad/s)

ωg ωc

Unstable Region

Unstable Region

Gain Margin

Gain Crossover

Phase Margin Phase Crossover

1-1 Re

Im

1 Re

Im

ω → ∞ ω → ∞

Phase Crossover
ω = ωc

ω = 0 ω = 0

|G(jωc)|
Phase

Margin

-1

Gain Crossover
ω = ωg

Gain Margin

 94

zero), such that the knowledge of the input, u(t), and output, y(t) in the interval [0, t] is sufficient

to determine the initial state, x0. This can be accomplished if and only if

1) 2

1n

nq n

−

×

=

 
 
 
 
 
 
  







 



has full rank n, where  is the observability matrix.

2) The observability Grammian, ()
0

T
t

T
o n n

t e e dτ τ τ
×
= ∫     is nonsingular for all t > 0. The

energy of the output signal can be given as () () () ()0 0T
y cE t x t x=  .

3) The n-by-n matrix
iλ− 

 
 

 


 has rank n for all eigenvalues λi of 𝒜𝒜. This allows the

individual states or eigenvalues of 𝒜𝒜 to be classified.

A system is said to be detectable if all unstable states of a state-space representation can be

observed. This can be determined by examining
iλ− 

 
 

 


 for each of the unstable states and

determining if it is full rank.

 The state equation or the pair (𝒜𝒜, ℬ) are said to be controllable if and only if for any initial

state, x0, and final state, x1, there exists an input, u(t), that transfers x0 to x1 in finite time. This can

be accomplished if and only if:

1) 2 1n
n np

−
×  =         has full rank n, where  is the controllability matrix.

2) The controllability Grammian, ()
0

T
t

T
c n n

t e e dτ τ τ
×
= ∫    , is nonsingular for all t > 0.

1
c
− is a measure of the energy required to control the process. A larger value implies that

more energy (or effort) is required.

3) The n-by-n matrix [𝒜𝒜 − λiℐ | ℬ] has rank n for all eigenvalues λi of 𝒜𝒜. This allows the

individual states or eigenvalues of 𝒜𝒜 to be classified.

 95

A system is said to be stabilisable if all unstable states of a state-space representation can be

controlled. This can be determined by examining [𝒜𝒜 − λiℐ | ℬ] for each of the unstable states and

determining if it is full rank.

 It can be noted that controllability and observability are duals of each other, that is, if (𝒜𝒜,

ℬ) is controllable, then (𝒜𝒜T, ℬT) is observable. Similarly, if (𝒜𝒜, 𝒞𝒞) is observable, then (𝒜𝒜T, 𝒞𝒞T) is

controllable.

Section 3.3.4: Analysis of Special Transfer Functions
 In this section, the properties of different commonly encountered transfer functions will be

considered. Since much of the analysis in automation focuses on using transfer functions, it is

important to understand the behaviour of the common transfer functions. Time-domain responses

of these transfer functions to a step input will also be considered, since it is important to recognise

these transfer functions in their most common manifestations in a real process. Discrete time

systems will only be briefly considered, since most discrete time analysis is still based on the

underlying continuous-time systems.

Section 3.3.4.1: Integrator
 The integrator, as its name suggests, integrates a variable. It is a common model for level

in a tank. Its Laplace transform is

 I
I

MG
s

= (115)

where MI is the gain. It is an unstable system, which will always increase even if the input is

bounded. The step response of the system can be determined as

2

I

I

I

Y G U
M MY
s s

M M
s

=

=

=

 (116)

From Table 4, the time domain representation for Equation (116) is

t Iy M Mt= (117)

This shows that the integrator will continual increase even if the input is bounded. A representative

plot is shown in Figure 29. Its Bode plot can be determined as

 96

()

2
2AR= 0

arctan 90
0

I I
I

II

I

M M jG j
j

MM

M

ω
ω ω

ω ω

ωφ

= = −

 ⇒ + − = 
 

 − 
= = − ° 

 
 

 (118)

A representative Bode plot is shown in Figure 30. The key properties of the integrator are

summarised in Table 14.

Table 14: Basic Information About an Integrator

Property Value

Laplace Transform I
I

MG
s

=

Step Response (Time Domain) yt = MIMt

B
od

e

Pl
ot

s AR |MI| / ω

ϕ −90°

Stable No

Figure 29: Response of the Integrator 1 / s to a Unit-Step Input

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Time, t (s)

R
es

po
ns

e

 97

Figure 30: Bode Plot for an Integrator

Section 3.3.4.2: Lead Term
 The lead term is a simple, first-order transfer function that is occasionally found in

combination with other transfer function to model unusual or more complex initial dynamics in a

process. Its Laplace transform is

 ()1L LG K sτ= + (119)

where K is the gain and τL is a time constant. The step response of the system can be determined

as

 ()

()

1

1

L

L

L

Y G U
MY K s
s

s
KM

s

τ

τ

=

= +

+
=

 (120)

In order to obtain a time-domain representation, it is necessary to perform a partial fraction

decomposition of Equation (120) to give

-360

-270

-180

-90

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-15

-10

-20

-5

0

5

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

100 101

 98

()1

1

L

L

s
Y KM

s

Y KM
s

τ

τ

+
=

 = + 
 

 (121)

From Table 5, the time domain representation for Equation (121) is

 ()t L ty KM uτ δ= + (122)

where δ is the Dirac delta function and ut is the unit step function. This shows that the lead function

is bounded. Its Bode plot can be determined as

() ()

()22 2 2

1

AR= 1

arctan 0
arctan

arctan 180 0

I L L

L L

LL

L

G j K j K K j

K K K

KK
KK

ω τ ω τ ω

τ ω τ ω

τ ωτ ωφ
τ ω

= + = +

⇒ + = +

> = =   + ° <  

 (123)

A representative Bode plot is shown in Figure 31 for all 4 possible combinations of K and τL. The

key properties of the lead term are summarised in Table 15.

Table 15: Basic Information About a Lead Term

Property Value

Laplace Transform ()1L LG K sτ= +

Step Response (Time Domain) yt = KM(τLδ + ut)

B
od

e
Pl

ot
s AR 2 21 LK τ ω+

ϕ
arctan 0

arctan 180 0
L

L

K
K

τ ω
τ ω

>
 + ° <

Stable Yes

Comment

Negative values of τL (positive zeros) can

induce an inverse response in a system, that

is, the variable first decreases in value and

increases to reach its new steady-state value

(or vice versa).

 99

Figure 31: Bode Plot for a Lead Term (top row) K > 0, (bottom row) K < 0, (left) τL > 0, and (right) τL < 0

Section 3.3.4.3: First-Order Transfer Function
 A first-order system is one of the most common transfer functions encountered in

automation engineering. It can be used to model any system ranging from simple heated tanks to

complex multicomponent reactions. Its Laplace transform is

()1F

p

KG
sτ

=
+

 (124)

where K is the gain and τp is the process time constant. It is often coupled with a deadtime term to

give a first-order plus deadtime (FOPDT) process model, that is,

()1

s
FD

p

KG e
s

θ

τ
−=

+
 (125)

The step response of the pure, first-order system can be determined as

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
180

210

240

270

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

0

10

20

30

40

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
90

120

150

180

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

0

10

20

30

40
A

m
pl

itu
de

 R
at

io
, A

R
(d

B)

10-1 100 101 102
0

45

90

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

0

10

20

30

40

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
270

315

360

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

0

10

20

30

40

 100

()

()

1

1

F

p

p

Y G U
K MY

ss

KM
s s

τ

τ

=

=
+

=
+

 (126)

In order to obtain a time-domain representation, it is necessary to perform a partial fraction

decomposition of Equation (126) to give

()

()

1

1
1

p

KMY
s s

Y s KM
s s

τ

τ
τ

=
+

− = + + 

 (127)

From Table 5, the time domain representation for Equation (127) is

 () 1
t

y t KM e τ
− 

= − 
 

 (128)

The process is stable if τ > 0, but unstable if τ < 0. Assuming τ > 0, then using the final value

theorem, it can be shown that the new steady-state value will be

() ()

() ()
0 0

0 0

lim lim lim

lim lim 0

F
tt s s

F Fs s

MG s
y sY s s

s
MG s MG

KM

→∞ → →

→ →

= =

= =

=

 (129)

The time response of a stable first-order system is shown in Figure 32, as well as how to compute

the key parameters from its graph. Its Bode plot can be determined as

() ()
()

()
()

2 2

22

2 2 22 2

1
11

AR=
11

arctan 0
arctan

180 arctan 0

p
I

pp

p

pp

pp

p

K jKG j
j

K K K

KK
KK

τ ω
ω

τ ωτ ω

τ ω

τ ωτ ω

τ ωτ ω
φ

τ ω

−
= =

++

+ −
⇒ =

++

− >−  
= =   ° − <  

 (130)

In order to avoid a discontinuity when it pass through 0°, it is common to use negative angles when

plotting this function, that is −45° rather than the equivalent 315°. A representative Bode plot is

 101

shown in Figure 31 for all 4 possible combinations of K and τp. The key properties of the first-

order system are summarised in Table 16.

Table 16: Basic Information About a First-Order System

Property Value

Laplace Transform ()1F
p

KG
sτ

=
+

Step Response (Time Domain) () 1
t

y t KM e τ
− 

= − 
 

B
od

e
Pl

ot
s

AR 2 21 p

K

τ ω+

ϕ
arctan 0

180 arctan 0
p

p

K
K

τ ω
τ ω

− >
 °− <

Stable Yes, if τp > 0

Comment

This is one of the most common transfer

functions encountered in process control and

is used to model many different applications,

often by including a time delay term.

Figure 32: Step Response of a Stable, First-Order System to a Step Response

y∞

Original
Steady State, ySS, 1

Time Constant, τp

Time Delay, θ

New Steady State, ySS, 2

Time, t

O
ut

pu
t

Si
gn

al

KM

M

Time, t

In
pu

t S
ig

na
l

0.632 KM
K =

ySS, 2– ySS, 1

M

 102

Figure 33: Bode Plot for a First-Order System (top row) K > 0, (bottom row) K < 0, (left) τp > 0, and (right) τp < 0

Section 3.3.4.4: Second-Order System
 A second-order system is another commonly encountered transfer function that is often

used to model oscillations or periodic behaviour in a process. Its Laplace transform is

()2 2 2 1II

p p

KG
s sτ ζτ

=
+ +

 (131)

where K is the gain, τp is the process time constant, and ζ is the damping coefficient. This basic

transfer function can be augmented by adding a lead term to model various behaviours to give

()

()2 2

1
2 1
L

II
p p

K s
G

s s
τ

τ ζτ
+

=
+ +

 (132)

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
-90

-45

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-30

-20

-10

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
0

45

90

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-30

-20

-10

0
A

m
pl

itu
de

 R
at

io
, A

R
(d

B)

10-1 100 101 102
-180

-135

-90

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-30

-20

-10

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-1 100 101 102
90

135

180

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-30

-20

-10

0

 103

As well, it can be coupled with a deadtime term to give a second-order plus deadtime (SOPDT)

process model, that is,

()2 2 2 1

s
IID

p p

KG e
s s

θ

τ ζτ
−=

+ +
 (133)

The poles of the second-order transfer function can be written as

2 2 2

2

2

2 4 4

2 2 1

p p p

p

p

s
ζτ ζ τ τ

τ

ζ ζ
τ

− ± −
=

− ± −
=

 (134)

Depending on the value of ζ, three different cases can be determined:

1) Case I: Underdamped System, where |ζ| < 1. In this case, the poles will contain an

imaginary component.

2) Case II: Critically Damped System, where |ζ| = 1. In this case, the poles will both be

real and the same.

3) Case III: Overdamped System, where |ζ| > 1. In this case, the poles will both be real.

The behaviour and critical information depends on the particular case being considered.

 For the underdamped case, where |ζ| < 1, the poles of Equation (131) will contain an

imaginary component. The presence of an imaginary component will imply that there will be

oscillations present in the time response. If ζ = 0, then the system will continuously oscillate about

a mean value. In all other cases, stability will depend on the sign of ζτp: if positive, the system will

be stable (decaying oscillations); if negative, the system will be unstable (increasing oscillations).

The step response of this system can be written as

2 22

2

1 1() 1 cos sin
1

p

t

p p

y t KM e t t
ζ
τ ζ ζζ

τ τζ

−     − −     = − +
     −     

 (135)

A typical underdamped step response is shown in Figure 34. Some of the key parameters that can

be extracted from a step response are:

1) Time to First Peak:
21pt πτ

ζ
=

−

2) Overshoot: 2
exp

1
aOS
b

πζ
ζ

 −= =  − 
.

 104

3) Decay Ratio: The decay ratio is the square of the overshoot ratio, i.e.

2
2exp

1
cDR
a

πζ
ζ

 −= =  − 
.

4) Period of Oscillation: This is the time between 2 oscillations. It is given by

2

2
1

P πτ
ζ

=
−

.

5) Settling Time, ts: The time required for the process to remain within 5% of the steady-

state value. The first time this occurs is called the settling time.

6) Rise Time, tr: Time required to first reach the steady state value.

Figure 34: Second-Order Underdamped Process

1.05 y∞

0.95 y∞

y∞

Original
Steady State, ySS, 1

ts

New Steady State, ySS, 2

Time, t

KM

M

Time, t
Period

a

b

c

tr

tpθ

In
pu

t S
ig

na
l

O
ut

pu
t S

ig
na

l

 105

 For the critically damped system, where |ζ| = 1, the poles of Equation (131) will both be

the same and contain no imaginary component. The system will be stable if the sign of ζτp is

positive and unstable if ζτp is negative. The step response of this system can be written as

 () 1 1 p

t

p

ty t KM e
ζ
τ

τ

−  
= − +      

 (136)

A typical stable, critically damped step response is shown in Figure 35. In general, such a system

looks very similar to a first-order plus deadtime system and is often analysed as such. The biggest

difference is the slightly slower initial response, which is often treated as a time delay.

Figure 35: Step Response of a Critically Damped System (ζ = 1, τp = 10, and K = 1)

 For the overdamped case, where |ζ| > 1, the poles of Equation (131) will only be real

numbers. This implies that there will be no oscillations in the step response. The system will be

stable if the sign of ζτp is positive and unstable if ζτp is negative. The step response of this system

can be written as12

2 22

2

1 1() 1 cosh sinh
1

p

t

p p

y t KM e t t
ζ
τ ζ ζζ

τ τζ

−     − −     = − +
     −     

 (137)

A typical overdamped step response is shown in Figure 36. In most cases, this system can be

analysed as a first-order plus deadtime process. It can be noted that the overdamped case has the

12 cosh is the hyperbolic cosine function defined as ½(ex + e−x) and sinh is the hyperbolic sine function defined as
½(ex – e−x).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time, t (s)

R
es

po
ns

e

6040 80 100 120200

 106

slowest initial response of all second-order and first-order systems. This slow initial response is

often treated as a deadtime when fitting a first-order system.

Figure 36: Step Response of an Overdamped System (ζ = 2, τp = 5, and K = 1)

 The Bode plot of a second-order system can be determined as

()
()

()
()

() ()
()() ()

()

2 2

2 22 22 2 2 2 2 2

2 22 2 2 2

2 22 2 2 2 2 22 2 2 2 2

2 2

2 2

1 2
1 22 1 1 4

1 2
AR=

1 41 4

2
arctan 0, 1

1
2

arctan
2

arctan
1

p p
II

p pp p p p

p p

p pp p

p
p

p

p

p

K jK KG j
jj j

K K K

K

K
K

τ ω ζτ ω
ω

τ ω ζτ ωτ ω ζτ ω τ ω ζ τ ω

τ ω ζτ ω

τ ω ζ τ ωτ ω ζ τ ω

ζτ ω
τ ω

τ ω

ζτ ω
φ

τ ω

− −
= = =

− ++ + − +

− + −
⇒ =

− +− +

− > <
−

−
 −
 = =
 − 

2 2

2 2

2 2

180 0, 1
1

2
180 arctan 0, 1

1
2

arctan 0, 1
1

p
p

p

p
p

p

p
p

p

K

K

K

ζτ ω
τ ω

τ ω

ζτ ω
τ ω

τ ω

ζτ ω
τ ω

τ ω





 − ° > >

−

 °− < < −



− < > −

 (138)

 When dealing with second-order systems, there is a potential that the amplitude ratio can

be greater than the original starting value of |K|. Specifically, this occurs whenever the denominator

is less than 1. Taking the denominator of the amplitude ratio for a second-order system and solving

it gives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time, t (s)

A
m

pl
itu

de

6040 80 100 120200

 107

()22 2 2 2 2

2 2 4 4 2 2 2

2 2 2

2
2

2

22

2

1 4 1

1 2 4 1

2 4 0

2 4

2 42 4

p p

p p p

p

p

p p

τ ω ζ τ ω

τ ω τ ω ζ τ ω

τ ω ζ

ζω
τ

ζζω
τ τ

− + <

− + + <

− + + <

−
<

−−
< =

 (139)

Since the frequency is only a positive real number, the term under the square root must also only

be positive (since a negative would give a complex number), that is,

22 4 0

0.5 0.707

ζ

ζ

− ≥

≥ ≈
 (140)

If the damping coefficient lies within the region given by Equation (140), then there will be a hump

in the Bode plot, as shown in Figure 37 (top). Since these frequencies magnify the system response,

it is important that special care be taken when designing controllers for such systems.

 If a lead term has been added to a second-order system, as given by Equation (132), then

the system will display an inverse response if the zeros of the transfer function are positive, for

example, as shown in Figure 38. The Bode plot for this composite system can be obtained by

invoking the rules for combinations of transfer functions, that is,

()
()

()

2 2

2 2

22 2 2 2 2

2 2

1
2 1

1
AR AR AR

1 4

2
arctan arctan

1
(ignoring all angle complications)

L
II II L

p p

L
II L

p p

p
II L L

p

K s
G G G

s s

K

τ
τ ζτ

τ ω

τ ω ζ τ ω

ζτ ω
φ φ φ τ ω

τ ω

+
= =

+ +

+
= =

− +

= + = −
−

 (141)

An example is shown in Figure 39.

 Representative Bode plots are shown in Figure 37 for different combinations of the

parameters. The key properties of the second-order system are summarised in Table 17.

 108

Table 17: Basic Information About a Secord-Order System

Property Value

Laplace Transform ()2 2 2 1II
p p

KG
s sτ ζτ

=
+ +

Step Response (Time Domain)

|ζ| < 1: Equation (135)

|ζ| = 1: Equation (136)

|ζ| > 1: Equation (137)

B
od

e
Pl

ot
s

AR ()22 2 2 2 21 4p p

K

τ ω ζ τ ω− +

ϕ
2 2

2
arctan

1
p

p

ζτ ω
τ ω

−
−

,

see Equation (138) for greater detail

Stable Yes, if ζτp > 0

Comment

This transfer function is commonly used to

describe oscillations and inverse responses in

a system.

 109

Figure 37: Bode Plots for τp = 5, (top) ζ = 0.5, (middle) ζ = 1, (bottom) ζ = 2; (left) K = 1 and (right) K = −1

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-2 10-1 100 101
-180

-90

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-60

-40

-20

0
A

m
pl

itu
de

 R
at

io
, A

R
(d

B)

10-3 10-2 10010-1 101
-180

-90

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-60

-40

-20

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10-1 100 101 102
-180

-90

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-100

-60

-40

-20

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-2 10-1 100 101
0

90

180

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-60

-40

-20

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10010-1 101
0

90

180

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-60

-40

-20

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10-1 100 101 102
0

90

180

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-80

-100

-60

-40

-20

0

 110

Figure 38: Step Response of a Second-Order System with Inverse Response (τL = −25, ζ = 5/√7, τp = 10√7 and K = 1)

Figure 39: Bode Plots for (left) τL = −5, (right) τL = 5, and (top) ζ = 0.5 and (bottom) ζ = 2

0 20 40 60 80 100 120 140 160
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time, s

R
es

po
ns

e

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10-1 100 101
90

180

360

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-30

-40

-20

-10

0

10
A

m
pl

itu
de

 R
at

io
, A

R
(d

B)

10-2 10-1 100
-90

-45

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-10

-15

-5

0

5

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10-1 100 102101
90

180

270

360

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-50

-30

-20

-10

0

A
m

pl
itu

de
 R

at
io

, A
R

(d
B)

10-3 10-2 10-1 100 101
-90

-45

0

Ph
as

e A
ng

le
, ϕ

 (°
)

Frequency, ω (rad/s)

-40

-30

-20

-10

0

 111

Section 3.3.4.5: Higher-Order Systems
 Analysing higher-order systems is based on the results obtained from the analysis of the

simpler systems. The following are some key points to consider for the analysis in the time domain:

1) Poles: The poles of the process transfer function determine the stability of the system. If

the poles are less than zero, then the system is stable; otherwise, it is unstable. If the poles

contain an imaginary component, then there will be oscillations in the system.

2) Zeros: If the zeros of the transfer function are positive, then there will be an inverse

response in the system.

3) Time Constant: The largest stable pole in absolute magnitude can be treated as the

dominating time constant of the process.

In the frequency domain, the Bode plots are obtained by combining the appropriate simple transfer

functions, using the rules for composition of the amplitude ratio (multiplication) and phase angle

(addition).

Example 14: Sketching the Expected Time-Domain Response

 For the following three transfer functions, sketch the expected time-domain response of the

system when a positive step change is made:

1) ()
()()()

10
1

1.54 5 1
5 1 4 2 2 1

ss
G e

s s s
−− +

=
+ + +

2)
()

2 2

1.54 5 1
100 200 1

s
G

s s
+

=
− +

3)
()()3 2

1.54
100 10 1 4 1

G
s s s

=
− + − +

Solution:

First Transfer Function

 For the first transfer function, the gain is 1.54 (by inspection), the zero is 0.2, and the poles

are −0.2 (= −1/5), −0.5 (= −2/4), and −0.5 (= −1/2), and the time delay is 10. Since the zero is

positive, we expect an inverse response, while all poles are negative, which implies that the system

is stable. As well, none of the poles have an imaginary component and so there are no oscillations.

The plot would therefore be as given in Figure 40 (left).

Second Transfer Function

 112

 For the second transfer function, the zero is −0.2. Instead of computing the poles directly,

we can note that this is a second-order system. Therefore, writing it into the standard form for a

second-order system, it can be seen that τp = 10 and ζ = −10. Since τpζ < 0, the system is unstable

and without any oscillations (|ζ| > 1). The “gain” is positive, which implies that the function will

go towards +∞. Thus, the plot would be as given in Figure 40 (middle).

Third Transfer Function

 For the third transfer function, there are no zeros or time delay. Similar to the second

transfer function, let us rewrite the denominator into the required form to give

()() ()()3 2 2

1.54 1 1.54
1100 10 1 4 1 100 10 1 4 1

G
s s s s s s

− −
= =

−− + − + − + +
.

By comparison, we can see that the second-order term has the following characteristics, τp = 10

and ζ = −0.5. This implies that the poles are unstable and oscillatory. The second term will give a

stable pole (−0.25 = −1/4). Therefore, the plot of this transfer function will be given as Figure 40

(right).

Figure 40: Sketch of the Transfer Function Step Responses: (left) first transfer function, (middle) second transfer

function, and (right) third transfer function.

It can be noted that when sketching the transfer function, it is important to only give the general

characteristics, while the exact values can be ignored.

Section 3.3.4.6: Summary of Functional Behaviour in Continuous- and

Discrete-Time Domains
 Table 18 summarises the relationship between the location of the poles of the transfer

function and the generalised behaviour in both the continuous- and discrete-time domains. The

 113

ringing cases can only occur in the discrete-time domain as a result of how the discretisation is

taken.

Table 18: Graphical Representation of the Different Types of Functions (The ringing cases can only occur in the discrete
domain.)

Case
Location of the Poles Unit-Step Response

Continuous Discrete Continuous Discrete

Stable,

exponential

decay

Stable,

oscillatory

Unstable, pure

oscillatory

Unstable,

Integrator

Unstable,

exponential

growth

Unstable,

oscillatory

Ringing, stable

Ringing, stable

oscillatory

 114

Case
Location of the Poles Unit-Step Response

Continuous Discrete Continuous Discrete

Ringing,

integrator

Ringing,

unstable

Ringing,

unstable,

oscillatory

Example 15: Origin of Ringing in Discrete-Time Systems

 Consider the continuous exponential and cosine system

 y(t) = eatcos(ωt) (142)

that is sampled with a sampling time of Ts to give a discrete-time system of the form

 ()cossakT
k sy e kTω= (143)

which, from Table 6, has the z-transform of

 ()
()

1

21 2

1 cos
1 2 cos

s

s s

aT
s

aT aT
s

e T z
e T z e z

ω
ω

−

− −

−
− +

 (144)

We will assume that a ∊ ℝ so that values of α ≥ 0 will lead to an unstable system. It can be noted

that the results for sine will be the same mutatis mutanda. Examine the impact of the sampling

time on the resulting discrete-time function and its z-transform.

Solution

 The behaviour of the transfer function is determined by the values of its poles, that is, the

roots of the denominator. Using the quadratic formula gives the general form of the poles as

() () () ()

2 2 2
22 cos 4 cos 4

cos cos 1
2

s s
s S

T T
z T T

ψ ω ψ ω ψ
ψ ω ψ ω

± −
= = ± − (145)

where to simplify notation saTeψ = . We can note that ψ will always be positive since the

exponential of any real number is positive.

 115

 In order to understand the behaviour of the discrete function, we will need to examine the

determinant of the equation (the part inside the square root) and consider three cases: when the

determinant is greater than zero, exactly zero, and less than zero.

Case 1: Determinant greater than zero

 For the determinant to be greater than zero, it follows that

 () ()2 2cos 1 0 cos 1S sT Tω ω− > ⇒ > (146)

However, the cosine function is never greater than 1. Thus, this situation cannot occur and there

will not be two distinct real roots.

Case 2: Determinant equal to zero

 For the determinant to be exactly zero, it follows that

 () ()2 2cos 1 0 cos 1S sT Tω ω− = ⇒ = (147)

Taking the square root of the right-hand side and noting that there are two solutions gives

 ()cos 1sTω = ± (148)

which occurs when

 ωTs = πn

for n ∊ ℤ. If we restrict ourselves to the domain [0, 2π[, we see that we have two solutions: at n =

0 with a value of 1 and n = 1 with a value of −1. In such a case, the double root will be located on

the x-axis at the location of ψ for n even and at the location of −ψ for n odd. When n is odd, the

poles will lie in the left-hand plane of the discrete domain, which implies that we will have ringing

behaviour. Stability will be determined by the value of ψ. However, there will not be any

oscillatory behaviour. The general form of the discrete function is then

 ()cosk
ky k nψ π= (149)

When n is odd, the value of cos(kπn) will oscillate between 1 and −1 which will give the

characteristic ringing behaviour.

Case 3: Determinant less than zero

 For the determinant to be less than zero, it follows that

 () ()2 2cos 1 0 cos 1S sT Tω ω− < ⇒ < (150)

In such cases, there will be two imaginary roots that are complements of each other, that is, ψ + γi

and ψ – γi, where γ is equal to ()21 cos STψ ω− . This implies that there will be a clear oscillatory

 116

behaviour. If we restrict ourselves to the domain [0, 2π[, we can note that cos(ωTs) will be positive

in the region [0, 0.5π[∪]1.5π, 2π[and negative in the region]0.5π, 1.5π[. The function will be

exactly zero at 0.5π and 1.5π. In the positive region, this will place the poles in the right-hand side

of the discrete system, while when negative it will place them in the left-hand side leading to

ringing. When cos(ωTs) is exactly zero, we will have two roots at the origin of the system and we

will have no information about the system. This brings us directly to the constraint given by the

Shannon sampling theorem that the sampling time must lie be greater than 2/ω.

Section 3.4: Event-Based Representations
 In event-based systems, where the changes in events drive the process, a different type of

model is required, where the impact of the events can be more clearly seen on the system. An

automaton or, in the older literature machine, is a way of representing how a process changes

from state to state based on discrete events. At each state, a series of inputs are recognised and

cause the automaton to move to another (or perhaps even, the same) state.

 Before considering a formal definition of an automaton, let us examine a simple case and

how it could be modelled as an automaton. Consider a system that consists of only two inputs a

and b. The objective of this system is to determine when the sequence of inputs is baba. In

automaton theory, the acceptable inputs are called the alphabet, while the actual sequence of

inputs is called a word. Thus, in this example, the alphabet is the set {a, b} and the word of interest

is baba. A state is defined as an internal representation of the system and its expected behaviour.

In this example, we can define 5 states: Z0 that represents the initial state, Z1 when we have

received the first b, Z2, when we have received ba, Z3, when we have received bab, and Z4, when

we have received baba. Based on the inputs and current state, a transition function shows how

the system will move to the next state. For example, if we are in state Z0 and receive an a, then

the system will transition to Z0 (remain in the same place), while if a b is received, the system will

transition to Z1. States can be classified as either accepting (also called marked states) or

rejecting. An accepting state is one that has the desired outcome. In this particular example, it

would be state Z4. A rejecting state is one that does not have the desired outcome. In this particular

example, it would be all the other states. When an automaton has finished reading a word, we can

note the final state of the automaton. If it is an accepting state, then we can say that the automaton

 117

accepts the word; otherwise it rejects the word. The set of all words accepted by the automaton is

called the language recognised (or marked) by the automaton.

 Mathematically, for a finite-state automaton A, we can write this as the quintuple

 A ≡ (𝕏𝕏, Σ, f, x0, 𝕏𝕏m) (151)

where 𝕏𝕏 is the finite set of states, Σ the finite set of symbols, called the alphabet of the automaton,

x0 ∊ 𝕏𝕏 the initial state, 𝕏𝕏m ⊆ 𝕏𝕏 the set of all accepting states, and f the transition function defined

as

 f: 𝕏𝕏×Σ → 𝕏𝕏 (152)

The alphabet represents all possible values that the automaton will recognise. It can consist of

letters, values, or any other acceptable symbol. An automaton generates a language, L, which

simply consists of all possible strings (irrespective of the final state) generated by the automaton.

An automaton is said to recognise (or mark) a specific language Lm.

 As well, it is possible to define an output function, g, that determines what the output from

the automaton will be. In general, it is defined as

 g: 𝕏𝕏×Σ → Y, (153)

that is, the output function depends on the state and inputs. In such cases, this automaton is called

a Mealy Automaton. On the other hand, when the output function, g, is defined as

 g: 𝕏𝕏 → Y (154)

that is, the output function only depends on the state, then we have a Moore Automaton.

 It is also possible to provide a graphical representation of an automaton. Figure 41 shows

a typical representation of an automaton. The most important components are:

• The states are shown with “Z” followed by a number.

o Normally, Z0 is the initial state.

• Each state is enclosed by a circle.

• The initial state is shown by an arrow pointing to the state and without any additional

markings.

• The transitions between the states are shown with arrows.

• On the arrows, the combination of inputs and outputs that lead to the next state are

shown.

• Accepting states are enclosed by a double circle.

 118

Figure 41: Graphical Representation of an Automaton

 The sending and receiving of symbols for the inputs and outputs is assumed to be

instantaneous. A finite-state automaton must allocate for each input symbol at each time point a

valid transition. Often such a transition can be a self-loop, that is, a transition where the initial and

final states are the same.

Example 16: Automaton for a Process

 Consider the previously mentioned process where it was desired to find the word baba.

Draw the automaton for this process and define the all the components in the mathematical

description of the automaton.

Solution

 The automaton is shown in Figure 42.

Figure 42: Automaton for the example

 The mathematical description can be stated as:

 𝕏𝕏 = {Z0, Z1, Z2, Z3, Z4}

 Σ = {a, b}

 x0 = Z0

 𝕏𝕏m = {Z4}

The transition function, f, is defined as follows:

 f(Z0, a) = Z0 (which is a self-loop)

 f(Z0, b) = Z1

 f(Z1, a) = Z2

 119

 f(Z1, b) = Z1

 f(Z2, a) = Z0

 f(Z2, b) = Z3

 f(Z3, a) = Z4

 f(Z3, b) = Z1

 f(Z4, a) = Z0

 f(Z4, b) = Z1

Note that the transition function should match the arrows drawn in the schematic for the

automaton!

 Transitions in an automaton can be spontaneous, that is, we do not know exactly when a

given transition occurs, for example, the transition from filling a tank to full can be spontaneous

(especially, if we do not know the height of the tank). Such a transition is denoted using the symbol

“ε” on the arrow. Spontaneous transitions often arise when there is incomplete knowledge of the

system. Automata containing spontaneous transitions are said to be nondeterministic, since it is

not possible to know in which states the automaton currently is. Another form of nondeterminism

is the presence of multiple transitions with the same label, for example, two transitions labelled a

leading to two different states. In such cases, it is likewise impossible to know in which state the

automaton is in. In all other cases, the automaton is said to be deterministic since it is possible to

precisely determine the next state given all past information.

 The states in an automaton can be classified as follows:

1) Periodic States: Periodic states are a set of states between which the automaton can

oscillate. Normally, one takes the largest set of states between which the automaton can

oscillate.

2) Ergodic States: Ergodic states are those states once reached the automaton cannot leave.

3) Transient States: All states that are not ergodic are called transient states.

Section 3.4.1.1: Analysis of Automata
 With the above mathematical model of an automaton, it is possible to analyse and

manipulate the automata. This section will briefly look at some of the ways in which we can

manipulate and analyse automata.

 120

 Deadlock is said to occur if an automaton ends up in a rejecting state from which it cannot

leave. Such an automaton has come to a standstill and cannot take further action. Since automata

represent real processes, this is an undesirable state of events and should be avoided. A similar

concept is livelock which is said to occur if an automaton ends up in a periodic set that consists

solely of rejecting states. This means that although the automaton can make a next move it can

never reach an accepting state and terminate. Both such situations are highly undesired. Together

deadlock and livelock are referred to as blocking, since the automaton is blocked from completing

its task.

Example 17: Blocking in an Automaton

 Determine if the automaton shown in Figure 43, is blocking. If it is blocking, determine

what types of blocking occur.

Figure 43: Automaton

 Solution

 Looking at Figure 43, state Z3 is an ergodic state which is not accepting. Therefore,

deadlock will occur in this state. Thus, the system is blocking. State Z3 is a deadlock. States Z5

and Z6 form a periodic set from which there is no escape. However, neither state is accepting.

Therefore, livelock will occur for these two states.

 It is possible to manipulate automata. The following are some common manipulations and

their definitions:

1) Accessible Operator (Acc): This removes all unreachable states and their associated

transitions. This operation is necessary when performing more advanced manipulations on

automata to clean up the resulting automaton. This operation will not change the generated

 121

or recognised languages. A state is defined as being unreachable if there exists no path

from the initial state to the given state.

2) Co-accessible Operator (CoAc): This removes any states and their associated transitions

from which one cannot end up in an accepting state. An automaton where A = CoAc(A) is

called a co-accessible automaton and is never blocking. This operation can change the

generated language but not the recognised language.

3) Trim Operator (Trim): This operation creates an automaton that is both co-accessible and

accessible. The order of operation is immaterial, that is, Trim(A) = CoAc(Acc(A)) =

Acc(CoAc(A)).

Example 18: Trimming an Automaton

 Apply the trim operation to the automaton shown in Figure 43.

Solution

 Quickly looking at the automaton in Figure 43, we that there are no states that cannot be

accessed from the initial state. Thus, we need to consider the co-accessible operator. Here, we see

that we need to remove states Z5, Z6, and Z3 since we know that they are blocking. However, by

removing Z3, we now make Z2 blocking. Therefore, we must also remove it. In general, this

process is iterative and continues until we have removed all states or there are no more states to

remove. The final automation in shown in Figure 44.

Figure 44: The Trimmed Automaton

Section 3.4.1.2: Combining Automata
 Having looked at various operations on single automata, it is worthwhile to consider

manipulating two or more different automata. When we wish to combine two automata, we can

perform two different operations: product, denoted by ×, and parallel composition, denoted by

||. Parallel composition is often also called synchronous composition.

 122

 Product composition is defined as combination of two automaton considering only the

letters of the alphabet that the two automata have in common, that is, Σ1∪ Σ2. Formally, for two

automata G1 and G2, their product can be written as

 ()()1 2 1 21 2 1 2 1 2 0 0Acc , , , , , m mG G f x x× ≡ × Σ ∪Σ ×    (155)

where

 ()() () ()()1 1 2 2
1 2

, , , if is a valid input at the given point
, ,

undefined otherwise

f x e f x e e
f x x e

≡ 


 (156)

In product composition, the transitions of the two automata are always synchronised on a common

event. This implies that a transition occurs only if the input is a valid input for both automata. The

states of G1 × G2 are given as the pair (x1, x2), where x1 is the current state of G1 and x2 is the

current state of G2. It follows from the definition of the product composition that

() () ()
() () ()

1 2 1 2

1 2 1 2m m m

L G G L G L G

L G G L G L G

× = ∩

× = ∩
 (157)

Product composition has the following properties:

1) It is commutative up to a re-ordering of the state components in the composed states.

2) It is associative. This implies that G1×G2×G3 ≡ (G1×G2)×G3 = G1×(G2×G3).

Example 19: Product of Two Automata

 Consider the automata shown in Figure 45 and Figure 46. Determine the product of these

two automata.

Figure 45: G1

 123

Figure 46: G2

Solution

 Before we can start with drawing the final automaton, it makes sense to first consider which

inputs are valid for the final automaton. From Figure 45, it can be seen that, for G1, the inputs are

{a, b, g}. Similarly, from Figure 46, it can be seen that, for G2, the inputs are {a, b}. Therefore,

the common set is {a, b}.

 When drawing the final automaton, it helps to start from the initial states of both and work

through all the possible transitions and draw the next state. Thus, starting from (x, 0), with an input

of a, G1 remains in state x, but G2 goes to state 1. Therefore, the new state in the product automaton

will be (x, 1). This is the only valid transition since from (x, 0), an input of b is not valid for G1.

An input must be valid for both automata for it to occur in the product. Note that g will not occur

since it is not a common input. We will then continue in the same fashion by looking at the possible

states and how the inputs would affect them. A state will be marked if all the states in the original

automaton are marked. The final automaton is shown in Figure 47.

Figure 47: The product of G1 and G2

 As can be seen, product composition is relatively restrictive in that a given input must be

valid for both automata. One way to relax this constraint is to consider parallel composition. In

parallel composition, the inputs are split into two parts: common inputs and private inputs. A

private input only pertains to a given automaton, while common inputs are shared with other

automata. Formally, the parallel composition of two automata G1 and G2, denoted as G1 || G2, is

defined as

 ()()1 2 1 21 2 1 2 1 2 0 0|| Acc , , , , , m mG G f x x≡ × Σ ∪Σ ×    (158)

 124

where

()()

() ()()
()()

()()

1 1 2 2

1 1 2 1
1 2

1 2 2 2

, , , if is a valid common input for both automata

, , if is a private event to
, ,

, , if is a private event to

undefined otherwise

f x e f x e e

f x e x e G
f x x e

x f x e e G



≡ 




 (159)

Note that the only difference between parallel and product composition is how the transition

function is defined.

 Product composition has the following properties:

1) It is commutative up to a re-ordering of the state components in the composed states.

2) It is associative. This implies that G1 || G2 || G3 ≡ (G1 || G2) || G3 = G1 || (G2 || G3).

Example 20: Parallel Composition of Two Automata

 Consider the same two automata as for Example 19. Determine the parallel composition of

these two automata.

Solution

 The general procedure for solving such a problem is similar to that of the product

composition. First, we need to determine which inputs belong to which categories. Since input g

only affects G1, it is a private input for G1. The other two inputs {a, b} are the common inputs to

both automata.

 Again, we start with the initial states of both automata and work our way through. From

the initial state of (x, 0), we have two valid inputs (the common input a and the private input g).

The common input a will bring us as before to the state (x, 1), while the private input g will bring

us to the state (z, 0). In the state (z, 0), there are three valid inputs (the common events a and b as

well as the private input g). Input a will bring us to state (x, 1), while input b will be a self-loop.

Private input g, which only affects G1, will bring us to state (y, 0). The final automaton is shown

in Figure 48.

 125

Figure 48: The parallel composition of G1 and G2

Section 3.4.1.3: Timed Automata
 A timed automaton is an automaton that is linked with a clock. A timed automaton has

four components: the finite-state automaton, the clock, the invariants, and the guards. Such

automata can model minimal and maximal times associated with a given action. Figure 49 shows

part of a timed automaton. The clock variable c represents the elapsed time since the last reset,

which is denoted as c ≡ 0. A guard shows when a transition is activated and can be implemented,

for example, in Figure 49, we see that the transition Z0 → Z1 can only be considered once c ≥

180 s. An invariant shows how long the automaton can remain in a given state, for example, in

Figure 49, we see that the process can remain in state Z0 until c = 240 s, at which point it must

leave the state. The implies that a time automaton has an infinite number of possible realisations,

since the system can switch states at any point between 180 and 240 s. Thus, a timed automaton

has an infinite state space.

Figure 49: Timed Automaton

c ≥ 180 s

c ≡ 0

c ≤ 180 s

Condition for the
transition Z0 → Z1

Invariant for the
state Z0

Reset of clock c
Z1Z0

 126

 Mathematically, a timed automaton can be represented as

 A ≡ (𝕏𝕏, Σ, f, ℂ, I, x0, 𝕏𝕏m) (160)

where ℂ is a finite set of clock variables and I is the invariant function that links the states with the

transition constraints, that is,

 I: 𝕏𝕏 → Φ(ℂ) (161)

where Φ(ℂ) is the set of transition constraints δ. The transition constraints δ are always either true

or false based on the current clock variables. The allowed transition constraints are (where a ∊ ℝ):

• δ ≡ (c ≤ a)

• δ ≡ (c = a)

• δ ≡ (c ≥ a)

• δ ≡ (δ1 OR δ2)

• δ ≡ ¬(δ)

• δ ≡ ∅ or {}

The transition function is defined as

 f: 𝕏𝕏×U×Φ(ℂ) → 𝕏𝕏×2|ℂ| (162)

where 2|ℂ| represents the power set of ℂ.

 In certain formalisms, transitions can be specified as either urgent or nonurgent. Urgent

transitions will always be taken as soon as possible, while nonurgent transitions can wait. Normally,

spontaneous transitions are assumed to be nonurgent.

Section 3.5: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 3.5.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) A process satisfying the principles of superposition and homogeneity is said to be linear.

 127

2) In a time-variant model, the parameters themselves vary with respect to time.

3) In a lumped-parameter model, there are space derivatives.

4) A noncausal system depends on future values.

5) A system with memory only cares about the current value of the process.

6) A state-space representation provides a model linking states, inputs, and outputs.

7) A transfer function can only be written for linear processes.

8) Every transfer function has a unique state-space representation.

9) Prediction error models are discrete-time models of the process.

10) A white noise signal depends on past values of the noise.

11) In a Box-Jenkins model, the order of the A-polynomial is fixed to zero.

12) In an autoregressive exogenous model, the only orders of the C- and D-polynomials are

zero.

13) It is not possible to convert a continuous model into a discrete model.

14) A process at steady state will experience wild, unpredictable swings in values.

15) The gain of a process represents the transient behaviour of the process.

16) The process time constant represents the delay before a process responds.

17) A continuous transfer function with poles of −2, −1, and 0 is stable.

18) A continuous transfer function with poles of 1, 2, and 5 is stable.

19) A discrete transfer function with poles of 0.5, −0.5, and 1 is unstable.

20) A discrete transfer function with poles of 0.25, 0.36, 0.25±0.5i is stable.

21) A continuous state-space model with eigenvalues of 0.25±2i is stable.

22) A discrete state-space model with eigenvalues of ±0.25i is stable.

23) The alphabet of an automaton represents the allowed inputs into the process.

24) An accepting state is a state that has the desired outcome.

25) The language recognised by an automaton is the set of all words accepted by the automaton.

26) In a Mealy automaton, the output function depends only on the states.

27) Blocking occurs when an automaton cannot reach an accepting state.

28) We denote spontaneous transitions by ε.

29) An automaton with spontaneous transitions is called a deterministic automaton.

30) The co-accessible operator removes all states and their associated transitions that are

unreachable from the initial state.

 128

31) In a timed automaton, a guard determines the maximal time in which we can remain in a

given state.

32) For a timed automaton, δ ≡ (c ≤ 1.000) is an acceptable time constraint.

33) For a timed automation, δ ≡ (c = abcd) is an acceptable time constraint.

34) There is no escape from an ergodic set.

Section 3.5.2: Short Questions
These questions should be solved using pen and paper. Appropriate software for drawing the

required diagrams can also be used to assist with the design.

35) For the following models, classify them based on the information in this chapter. Are the

models linear, time-invariant, lumped parameter, memoryless, or causal?

a. 1 54 7 5k k k ky y u e+ += + − .

b. ()
2

2

T Tt
x t

α∂ ∂
= −

∂ ∂
 , where α is a parameter that depends on time.

c. 1 4 3k k ky y e+ = − −

d. () ()1T t u t
t

α∂
= − +

∂
, where α is a parameter that depends on time.

36) For the following continuous-time transfer function, determine their stability. For the stable

transfer functions, determine the gain, time constant, and time delay.

a. () () 3
3 2

5 1
6 11 6 1

ss
G s e

s s s
−+

=
+ + +

b. () 10
3 2

5
150 65 2 1

sG s e
s s s

−−
=

+ + −

c. () 10
2

4.5
15 8 1

sG s e
s s

−=
+ +

d. () 7
2

4.5
15 26 7

sG s e
s s

−=
+ +

37) For the following continuous-time state-space models, determine their stability. Convert

the models to a transfer function. For the stable models, determine their gain and time

constant.

 129

a.

5 0 2
0 2 1

1 0
0 1

dx x u
dt

y x

   
= +   −   
 

=  
 



 



b.

5 0 2
0 2 1

2 0
0 1

dx x u
dt

y x

− −   
= +   −   
 

=  
 



 



c.

2 1 2 1
0 3 2 0.5
0 0 1 2

2 0 0
0 1 0
0 0 1

dx x u
dt

y x

−   
   = − + −   
   −   
 
 = − 
  



 



38) For the following discrete-time models, determine their stability:

a. 1 54 7 5k k k ky y u e+ += + −

b.
5

1 11 4k k
zy u

z

−

+ −=
−

c.
5 4

1 6 5 4 3 2 1 1k k
z zy u

z z z z z z+

+
=

+ + + + + +

d.

1

0.5 1 2 1
0 0.5 2 0.5
0 0 0.25 2

2 0 0
0 1 0
0 0 1

k k k

k k

x x u

y x

+

−   
   = + −   
      
 
 = − 
  

  

 

 130

e.

1

1.5 0 0 1
3 1.5 0 0.5
1 2 2.25 3

1 0 0
0 1 0
0 0 1

k k k

k k

x x u

y x

+

− −   
   = +   
      
 
 =  
  

  

 

39) What is the relationship between the eigenvalues of the state-space model and the time

constant (as determined from the transfer function)?

40) For the automata shown in Figure 50, classify the states into marked, ergodic, periodic, and

transient. Determine if there is blocking. If present, give the type of blocking encountered.

 131

Figure 50: Automata for Questions 40 and 41

41) Perform the trim operation on the automata in Figure 50

42) Using the automata given in Figure 51, perform the following operations: K1×K2, K1||K2,

K1×K3, K1||K2||K3, and K1×K2×K3.

 132

Figure 51: Automata for Question 42

43) Draw the automata for the following processes:

a. Given the letters a and b, find the string abab.

b. Given the letters c, d, and e, find the string decd.

c. Given the letters g, h, and i, find the strings hig and high.

Section 3.5.3: Computational Exercises
The following problems should be solved with the help of a computer and appropriate software

packages, such as MATLAB® or Excel®.

44) Model a system that you are familiar with. Be sure to include all the differential equations

required for the process.

 133

Chapter 4: Schematic Representation of a

Process
 This section will describe the most common schematic methods for representing a process,

including block diagrams, piping and instrumentation diagrams (P&IDs), process flow

diagrams (PFDs), and electrical and logic circuit diagrams.

Section 4.1: Block Diagrams
 A block diagram is an abstract way of representing a system in the frequency domain that

allows for all the messy details to be hidden and only the essential elements shown.13 The basic

block diagram consists of three parts, as shown in Figure 52. On the left, entering the block

diagram, is the input, denoted by U, while on the right, leaving the block diagram, is the output,

denoted by Y. Inside the block, the process model, denoted by G, is shown. In most cases, the

exact form of the process model will not be specified, but it can be any relationship between the

input and output.

Figure 52: The basic block diagram

 Another common block is the summation block, which shows how two or more signals

are to be combined. Figure 53 shows a typical summation block. The signs inside the circle show

whether the signal coming in should be added or subtracted. Given the common nature of a

summation block, two simplifications can be made. Rather than using a full circle, the signals are

simply shown to connect and the signs are shown beside each signal. This is shown in the bottom

part of Figure 53. A further simplification is to completely ignore any positive signs and only give

the negative signs beside the appropriate signals. A commonly used standard is to place the

summation signs on the left-hand side of the arrow.

13 Often it will also be used for a time domain representation by ignoring the composition and summation rules and
using slightly different models. In such cases, they are better called process flow diagrams, which are described in
Section 4.2.

 134

Figure 53: Summation block: (top) full form and (bottom) short-hand equivalent

 One of the most useful features of block diagrams is the ability to easily compute the

relationship between the different signals. For the basic block shown in Figure 52, the relationship

between the input and output can be written as:

 Y = GU (163)

while for the summation block, it can be written as

 Y = U1 – U2 (164)

Now, consider the process shown in Figure 54, where it is desired to determine the relationship

between Y and U, where there are three blocks in series. The naïve approach would be to denoted

each of the outputs from the two intermediate steps to be denoted as Y1 and Y2 and then write

relationships between each of these variables to obtain the final result, that is,

 Y1 = G1U (165)

 Y2 = G2Y1 = G2G1U (166)

 Y = G3Y2 = G3G2G1U (167)

This shows that the final relationship can be written as Y = G3G2G1U. The easier approach is to

note that since these process blocks are in series, the process models can be multiplied together to

give the desired result (as the final result shows). However, the naïve approach is very useful if

the system is very complex with many different summation blocks and functions.

Figure 54: Block diagram algebra: In order to relate U and Y, the transfer functions between the two points need to be multiplied,
thus, Y = G3G2G1U.

 135

Example 21: Complex Block Diagrams

 Consider the closed-loop system shown in Figure 55 and derive the expression for the

relationship between R and Y. Assume that all signals are in the frequency domain.

Figure 55: Generic closed-loop, feedback control system

Solution:

 Starting from the desired signal R and moving towards Y, the following relationships can

be written

 ε = R − GmY

 U = Gcε

 Y = GpGaU + GdD

Substituting the first relationships into the second and then the combined into the third gives

 Y = Gp GaGc(R − GmY) + GdD

Re-arranging this equation gives

 Y = Gp GaGcR − Gp GaGcGmY + GdD

Solving this equation for Y gives

1 1
p a c d

p a c m p a c m

G G G GY R D
G G G G G G G G

= +
+ +

Since we are only interested in the relationship between Y and R, we can set D = 0 to get

1

p a c

p a c m

G G G
Y R

G G G G
=

+

These equations are commonly encountered in closed-loop control.

 136

 The creation of block diagram for a given process can be quite a complex task, but it is

worthwhile as it allows the essential features of the system to be abstracted out and understood.

Section 4.2: Process Flow Diagrams
 The process flow diagram is a simplified diagram of the process, where only the key

components and connections are shown. For complex processes, the process flow diagram is often

created using blocks, where the blocks show a subprocess. In such cases, they can approximate the

block diagrams described in Section 4.1.

 A process flow diagram for a single process normally contains the following elements:

process piping, key components, key valves and control valves, connections to other systems, key

bypass and recycle streams, and process flow names.

 Figure 56 shows a typical process flow diagram. The rules for creating a process flow

diagram are similar to the rules for creating a piping and instrumentation diagram, given in Section

4.3. The only difference is the level of detail.

Figure 56: Process Flow Diagram for Alkylate Splitter

 137

Section 4.3: Piping and Instrumentation Diagrams (P&ID)
 The piping and instrumentation diagram (P&ID) is a detailed description of the process,

where all connections and components are shown. A P&ID contains, in addition to the information

found in a process flow diagram, the following information:

1) Type and Identification number for all components

2) Piping, fittings with nominal diameters, pressure stages, and materials

3) Drives

4) All measurement and control devices

Figure 57 shows a typical P&ID for part of a chemical plant.

Figure 57: P&ID for a Gas Chilling and Separation Plant According to Canadian Design Standards (Note the engineering stamp
in the bottom middle box.)

 138

Section 4.3.1: P&ID Component Symbols According to the DIN EN

62424
 Table 19 shows the typical component symbols according to the DIN EN 62424 Standard.14

Additional symbols can be found in the standard itself.

Table 19: Component Symbols for P&IDs According to the DIN EN 62424

Symbol Name

 Pipe15

 Insulated pipe

Jacketed pipe

Cooled or heated pipe

Vessel (chemical reactor)

with jacket

Horizontal pressurised

vessel

Half-pipe reactor

14 The older German standard DIN 19227 matches closely the ISA or North American standard. Differences include
how the different sensors or functions are denoted and minor details regarding the proper location for various pieces
of additional information. This book will follow the new standard without necessarily making any comments about
the other possibilities in order to avoid confusion.
15 This represents a general pipe.

Symbol Name

Fluid-contacting column

Pump

Vacuum pump or

compressor

Bag

Column with trays

Fan

 139

Symbol Name

Axial fan

Radial fan

Gas bottle

Furnace

Cooling tower

Dryer

Cooler

Heat exchanger without

cross of fluxes

Heat exchanger with cross

of fluxes

Symbol Name

Plate heat exchanger

Spiral heat exchanger

Double-pipe heat

exchanger

Fixed straight-tube heat

exchanger

U-shaped-tube heat

exchanger

Finned-tube heat

exchanger with axial fan

Covered gas vent

Curved gas vent

Dust or particle trap

Funnel

Steam trap

 140

Symbol Name

Viewing glass

Pressure reducing valve

Flexible pipe

Valve

Control valve

Manual valve

Symbol Name

Back draft damper

Needle valve

Butterfly valve

Diaphragm valve

Ball valve

Spring safety valve

Section 4.3.2: Connections and Piping in P&IDs
 The type of connection must be shown in a P&ID. Table 20 shows the most common

possibilities for such connections.

Table 20: Connections Types for P&IDs

Symbol Name

 Pipe (process flow)

 Pneumatic signal

 Electrical signal

 Hydraulic signal

 141

Symbol Name

 Electromagnetic Signal

Section 4.3.3: Labels in P&IDs
 Another important feature of P&IDs is that the various components must be clearly

identified. Sensors, valves, and other actuators should be named according to different guidelines.

As well, the type and location of the components must be clearly shown. Table 21 and Table 22

shows the symbols that are used to show the location of actuators and sensors.

Table 21: Location Symbols

Location Local/in the field In a central location In a local central point

Symbol
PI

123.4

PI
123.4

PI
123.4

Comments

Component is found in

the neighbourhood of

the process itself.

Component is found in

some central location.

Often, this central location

is a computer.

Component is found in

some local central point,

for example, a process

control cabinet.

Table 22: Type Symbols

 General Process Control Function

Symbol
PI

123.4

 There are many different fields in the equipment label. These are shown in Figure 58. The

left fields (#1 to 3) are only used if needed and there are no restrictions on what can be placed

there. Field #1 often gives the supplier, while Field #2 gives the standard value of the component.

The two central fields (#4 and 5) show the important information about the component. Field #4

shows the PCE category 16 und the PCE processing category (see Table 23 for additional

information). Field #5 shows the PCE tag that is arbitrary. The right fields (#6 to 12) show

16 PCE is an abbreviation for “Process Control Engineering”.

 142

additional information about the component. For example, Fields #6 to #8 show alarms and

notifications related to upper limits, while Fields #10 to 12 contain alarms and notifications related

to lower limits. The fields located furthest from the center contain the most important information.

Field #9 shows the importance of the component. A triangle (▲) shows a safety-relevant

component, while a circle (●) shows a component required for the good manufacturing process

(GMP). A square (■) shows a quality relevant component.

Figure 58: Fields in a P&ID Label

 Table 23 shows the PCE categories, while Table 24 shows the PCE processing functions.

For motorised drives (PCE category N), there are only two possibilities for the processing function:

S, which implies an on/off motor, and C, which implies motor control. For valves (PCE category

Y), there are also limitations: S implies an on/off valve, C implies a control valve, Z implies an

on/off valve with safety relevance, and IC implies a control valve with a continuous position

indicator. For process control functions, there are some very specific rules:

1) The PCE category is always the same U.

2) The following letters are often A, C, D, F, Q, S, Y, or Z. Combinations of these letters are

possible.

Table 23: PCE Categories

 143

Letter Meaning

A Analysis
B Burner Combustion

C17 Conductivity
D Density
E Voltage
F Flow
G Gap
H Hand
I Current
J Power
K Time Schedule
L Level
M Moisture
N Motor
O Free
P Pressure
Q Quantity/Event
R Radiation
S Speed, Frequency
T Temperature
U anticipated for PCE control functions
V Vibration
W Weight
X Free
Y Valve
Z Free

 Table 24: PCE Processing Categories

Letter Meaning Comment

A Alarming only in Fields #6,7, 8, 10, 11, and 12; in
Field #4 for process control functions

B Condition, Limitation only in Field 4
C Control only in Field 4
D Difference only in Field 4
F Fraction only in Field 4
H High, on, open only in Fields #6,7, 8, 10, 11, and 12
I Indicator only in Field 4
L Low, off, closed only in Fields #6,7, 8, 10, 11, and 12
O Local or PCS status indictor from a

binary signal
only in Fields #6,7, 8, 10, 11, and 12

17 Officially, this is a free variable to be set as needed. Practically, it is often used for conductivity.

 144

Letter Meaning Comment

Q Quantity only Field 4
R Recording only Field 4
S Switching only in Fields #6,7, 8, 10, 11, and 12; in

Field #4 for process control functions
Y Computation only in Field 4
Z Emergency only in Fields #6,7, 8, 10, 11, and 12; in

Field #4 for process control functions

Example 22: P&ID Tags

 What is the meaning of the following P&ID tags: PI-512, UZ-512 und MDI-512?

Solution

 For PI-512, the first letter is “P”. From Table 23, we can see that “P” represents pressure.

The following letter is “I”. From Table 24, we can see that “I” represents indicator. Thus, “PI-512”

represents a pressure indicator.

 For UZ-512, the first letter is “U”. From Table 23, we can see that “U” represents a process

control function. The following letter is “Z”. From Table 24, we can see that “Z” represents a

safety-critical control function. Thus, “UZ-512” represents a safety-critical control function that is

computed using a computer/PLC.

 For MDI-512, the first letter is “M”. From Table 23, we can see that “M” represents

moisture. The following letters are “DI”. From Table 24, we can see that “D” represents difference

and “I” represents indicator. Thus, “MDI-512” represents a moisture difference indicator.

 The labels for the other fields are not standardised. However, in a P&ID, the same label

should be used for the same component/idea. All P&IDs require a legend, where all the

components are briefly described, including such information as their name, engineering data (size,

material), and operating conditions. Appropriate stamps and signatures may need to be affixed

depending on local laws, for example, in Canada, all engineering documents require a stamp and

signature from a practising engineer.

 145

Section 4.4: Electric and Logic Circuit Diagrams
 Since much automation is implemented using electrical signals and logic statements, it is

useful to understand the basics of how such circuit diagrams are constructed. As well, some of

these symbols will re-appear when considering graphical programming languages.

 There exist two main standards for drawing the shapes in electric and logic circuit

diagrams: the official DIN EN 60617 (a.k.a. the IEC 617) standard and the nonpreferred, but

commonly encountered, ANSI IEEE 91-1991 standard. The official standard, although not

explicitly showing the nonpreferred symbols, states that it is permissive to use locally accepted

national versions of the symbols. Common symbols for both standards are shown in Table 25.

 Furthermore, when it comes to showing connections, for example, the splitting of a wire,

different formats are possible. The recommended approach is to use T-junctions to show a split (as

shown by Figure 59a). However, often, the split will be shown as in Figure 59b. A simple crossing

of wires is shown by Figure 59c.

Table 25: Common Symbols in Circuit Diagrams

Item DIN-60617 Symbol ANSI Symbol Comments

Resistor

Inductor

Direct-Current

Voltage Source
Essentially a battery

Alternating-

Current Voltage

Source

Diode

Capacitor

AND Gate

 146

Item DIN-60617 Symbol ANSI Symbol Comments

OR Gate

Inverter

NAND Gate

NOR Gate

XOR Gate

Ground

Variable

The arrow is placed

over the element that

is variable, for

example, a variable

resistor:

General Negation

Negation is placed

where the signal

enters or leaves a

block (see, for

example, the NAND

or NOR gates above).

 147

Figure 59: Connections: a) recommend form for contact; b) commonly encountered form for contact; and c) no contact

Section 4.5: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 4.5.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) A block diagram is a frequency-domain representation of the process.

2) A pneumatic signal is denoted using a line with sinusoids.

3) An electric signal is denoted using a dashed line.

4) A tag placed in a round symbol with a single line through the middle represents a

component located in some central location.

5) An instrument with the tag TIC is a density-indicator controller.

6) An instrument with the tag PIC is a pressure-indicator controller.

7) An instrument with the tag RI is a radiation indicator.

8) An instrument with the tag TDI is a temperature-difference indicator.

9) An instrument with the tag JI is a current indicator.

10) A P&ID should contain a legend explaining the symbols and notation used.

Section 4.5.2: Short Questions
These questions should be solved using pen and paper. Appropriate software for drawing the

required diagrams can also be used to assist with the design.

 148

11) Write the process model between U and Y for the block diagrams shown in Figure 60.

Figure 60: Block Diagrams for Question 11

12) Draw the process flow diagrams for the following process descriptions. Hint: Knowledge

of chemical engineering and physical behaviour of systems required.

a. The DEA solution enters the treatment unit via a throttle valve and is heated in three

consecutive heat exchangers. The heated solution enters the first evaporation

column which is operated under vacuum at 80 kPa and a temperature of 150°C.

Most of the water is evaporated here. The water vapour is used in the first heat

exchanger to heat the incoming solution. The concentrated DEA solution is

transferred from the first evaporator to a second evaporation column via a second

throttle valve, so that the pressure can be lowered to 10 kPa. The second

evaporation column is a thin film evaporator (similarly built to a scraped wall heat

exchanger), which is heated by high pressure steam. Here most of the DEA is

evaporated. The remaining HSS slurry is removed from the column by a positive

displacement pump. The DEA vapour is used to heat the feed in the second heat

exchanger. The third heat exchanger in the feed line is heated by medium pressure

steam to achieve sufficient evaporation in the first evaporation column. After

exchanging heat with the feed stream, the water vapour and DEA vapour streams

 149

are completely liquefied in two condensers operated with cooling water, before

being pumped to a T-junction and returned to the gas scrubbing process.

b. A concentrated solution of 99% triethylene glycol (C6H14O4) and 1% water is

commonly used to absorb moisture from natural gas at 4.1 MPa. Natural gas is

mainly methane, with smaller amounts of ethane, propane, carbon dioxide and

nitrogen. The water-saturated natural gas is contacted with the triethylene glycol at

40°C in a trayed absorber column to remove the water. The dried gas in then ready

for piping to market. The triethylene glycol solution leaving the absorber column

is diluted by water, and must be regenerated for re-use. It first passes through a

flash drum at a pressure of 110 kPa to release dissolved gases. Then, it is heated in

a heat exchanger with the hot regenerated glycol. The dilute solution then enters

the top of a packed regeneration column. As it flows downward over the packing,

it passes steam flowing upwards which evaporates water from the glycol solution.

The reboiler at the bottom of the regeneration column uses medium-pressure steam

to heat the triethylene glycol solution to 200°C to generate the vapour that passes

up the column. At the top of the column, the vapour (i.e. the water evaporated from

the triethylene glycol solution) is vented to the atmosphere. The hot regenerated

solution from the bottom of the regenerator column is cooled in a heat exchanger

with the dilute solution from the absorber. It is then pumped through an air cooler

and then back to the absorber column at approximately 45°C.

13) Using the sketch of the process flow diagram in Figure 61 and the process description

below, provide a properly formatted process flow diagram that includes all the required

components and information. The process description is as follows. Ethyl chloride

(C2H5Cl) is produced in a continuous, stirred tank reactor (CSTR) filled with a slurry of

catalyst suspended in liquid ethyl chloride. Most of the heat of reaction is absorbed by

vaporising 25 kmol/hr of the liquid ethyl chloride. This vapour leaves the reactor with the

product stream. The reactor is jacketed to allow additional temperature control if required.

All of the ethyl chloride in the product stream is condensed and enough ethyl chloride is

returned to the reactor to maintain steady state. The waste gas is sent to the flare system.

 150

Figure 61: Sketch of Process Flow Diagram for Question 13

14) Evaluate the P&IDs shown in Figure 62. Have they been corrected drawn? Is there anything

that is missing? Are all the streams correctly shown?

 Figure 62: P&IDs for Question 14

15) Given the P&ID in Figure 63, determine where the controller is located and what signals it

requires.

 151

Figure 63: P&ID for Question 15

16) For the process shown in Figure 64, answer the following questions:

a. What kind of alarm does the controller provide?

b. How is the level measured? What kind of signal is produced?

c. What kind of valve is used to control the level?

d. What do the double lines for item LI-135 mean?

 152

Figure 64: P&ID for Question 16

17) Imagine that you producing maple syrup. The P&ID along with the current values is shown

in Figure 65. Determine if there are any measurement errors.

 153

Figure 65: Maple Syrup P&ID for Question 17

Section 4.5.3: Computational Exercises
The following problems should be solved with the help of a computer and appropriate software

packages, such as MATLAB® or Excel®.

18) Take a complex process and draw the P&ID for it. Make sure to include all the relevant

sensors and controllers.

19) Using the P&ID from Question 18, create a simplified process flow diagram for the process.

 154

Chapter 5: Control and Automation

Strategies
 Having looked at the different instruments that can be used for automation and how to

describe the process and its interconnections, it is now necessary to see how the desired automation

can actually be implemented. The control or automation strategy is the method used to

control/automate the process to achieve the desired objectives. Although two different words can

be used here, the overall concepts are very similar: produce a system that can operate on its own

with minimal human interference. Depending on the field and even industry, one of these two

words may be more common.

 There exist many different ways to classify the different types of strategies that can be

implemented. Often, in practice, these strategies can be combined to produce a final overall control

strategy. The following are the most common types of control strategies:

1) Open-Loop Control (or steering, servo response): In open-loop control, the desired

trajectory is set and implemented. The object follows this trajectory without taking into

consideration any variations in the environment or surroundings. Clearly, if there are any

changes in the environment, the object may not achieve its trajectory.

2) Closed-Loop Control (or regulation, regulatory response): In closed-loop control, the

actual value of the system is always compared against the setpoint value. Any deviations

are then corrected using a controller. This allows for the system to make corrections based

on imperfections in the original specifications, changes in the environment, or unexpected

events. In most control strategies, some aspect of closed-loop control will be implemented.

3) Feedforward Control: In feedforward control, known disturbances are measured and

corrective action is taken so that the disturbance does not impact the plant. This is a way

of taking into consideration future information about the process and taking action now.

4) Discrete-Event Control: In discrete-event control, control only occurs, when some logic

condition is triggered. This is often used in safety-relevant systems to trigger immediate

action or raise an alarm, for example, if the pressure is above a certain threshold, then the

pressure release valve should be opened. Often, such systems are modelled using automata.

 155

5) Supervisory Control: In supervisory control, the control loop does not control a process,

but it controls another control loop. Supervisory control loops are common in complex

industrial systems, where there may be multiple objectives and variables to control.

Section 5.1: Open- and Closed-Loop Control
 Since the two control strategies are often combined together, it is useful to understand the

difference between them.

Section 5.1.1: Open-Loop Control
 Consider a system as shown in Figure 66, where the manipulated variable u(t) influences

the output variable, y(t). The desired behaviour is specified by the setpoint r(t). The path from r(t)

to u(t) to y(t) is called the open-loop control path. The objective here is to design a controller, Gc,

such that given a setpoint trajectory, it can produce a sequence of value for the manipulated

variable u(t), so that the output y(t) attains the values specified by r(t). The disturbance affecting

the system is given as e(t). Often, it will be assumed that e(t) is a Gaussian, white noise signal.

Figure 66: Open-Loop Control

 In principle, if we are given a mathematical function that converts u(t) into y(t), more

commonly called a plant model and denoted by Gp, then by taking the inverse of this model as the

controller will allow us to attain the goal of making y(t) = r(t). However, in practice, the following

issues arise:

1. Unrealisability of the Model Inverse: Due to time delays and unstable zeros of the process,

it may not be possible to obtain a realisable inverse model.

2. Plant-Model Mismatch: It is very likely that the mode for Gp is not exact, which implies

that the incorrect parameters are given to the controller leading to incorrect results.

3. Disturbances: In reality, there will be disturbances that prevent y(t) from reaching the

value specified by r(t). One solution to this problem is to implement feedforward control

 156

that measures the disturbance and takes corrective action. However, this only solves the

problem if the disturbance variable can be measured.

Example 23: Heating the House: Part I: Open-Loop Control

Figure 67: Open-Loop Control for the Temperature in the House

 Figure 67 shows a schematic diagram for the open-loop control of the temperature in the

house, where the radiator setting is used to determine the temperature in the room. However, once

the radiator setting is set, no further actions are taken if a disturbance should occur, for example,

the temperature outside changes, more people enter the room, the window is opened, or the sun

starts shining. All of these disturbances will change the temperature in the room, but no automatic

change will occur in radiator setting. Of the disturbances, the largest is probably the outside

temperature. If, as shown in Figure 67, we can measure the outside temperature, then we can design

a feedforward controller to correct for the disturbance caused by this variable.

Section 5.1.2: Closed-Loop Control
 In closed-loop control, information about the process is used to update the control action.

Figure 68 shows the overall closed-loop control system, where the difference between the

reference signal and the actual output is used as the input into the controller. The controller error,

ε(t), is defined as the difference between the setpoint and the measured output. This error is then

 157

the input into the controller. In order to emphasise that the output must be measurable in order for

closed-loop control to occur, the measuring transfer function, Gm, is explicitly shown. In most

applications, it will be assumed that Gm has a minimal impact on the overall system, and hence, it

will be ignored.

Figure 68: Closed-Loop Control

 Closed-loop control provides the following advantages over open-loop control:

1) Better accuracy, especially since it can compensate for unknown and unmeasurable

disturbances or imprecise models of the system.

2) Stability, since closed-loop control can stabilise unstable processes.

On the other hand, closed-loop control requires the ability to measure the output variables, which

can lead to a greater cost. As well, a poorly designed closed-loop controller can destabilise the

system.

Example 24: Temperature Control: Closed-Loop Case

 Consider the same set-up as in Example 23, but modified as shown in Figure 69, so that

the temperature in the room can now be measured and an appropriate controller designed. Based

on the temperature in the room, the controller can set the valve opening which will determine the

flow of heat into the room. Opening the valve more will cause more heat to enter the room; thus,

increasing its temperature. Closing the valve will cause less heat to enter the room; thus, decreasing

its temperature.

 158

Figure 69: Closed-Loop Control of the House Temperature

 Furthermore, other disturbances may occur that are not easily measured, but whose impact

can be controlled by the closed-loop controller. Figure 69 shows people in the room (S1), an open

window (S2) and direct sunlight (S3). Since these will influence the room temperature, their impact

will be noticed by the room temperature sensor that will cause the controller to make appropriate

changes to maintain the temperature at its desired value.

 In closed-loop control, the following are the key ideas to consider (Seborg, Edgar,

Mellichamp, & Doyle, 2011):

1) The closed-loop system should be stable; otherwise, the system is worse than before.

2) The impact of disturbances should be minimised.

3) The controller should provide quick and effective change between different setpoints, that

is, setpoint tracking should be good.

4) There should not be any bias, that is, the output should reach the desired value.

5) Large actuator values should be minimised.

6) The controller should be robust, that is, small changes in the process characteristics should

not make the overall system unstable.

 159

When designing a closed-loop control strategy, there are two common approaches to take:

1) State Feedback, where it is assumed that the controller is a constant K and all the states

are measurable and available, that is, yt = xt. The control law is given as ut = −Kxt.

2) Proportional, Integral, and Derivative (PID) Control, where the control law can be

written as

 () ()11c D
I

U s K s s
s

τ ε
τ

 
= + + 

 
 (168)

where Kc, τI, and τD are parameters to be determined. There exist different forms of the PID

control law depending on the industry, era, and implementation. It is common to drop the

D term, that is, set τD = 0, and have a PI controller.

In addition to these common methods, there also exist various nonlinear approaches that can be

applied to improve overall control, such as deadbanding or squared-error control.

Section 5.1.2.1: State Feedback
 A state feedback controller is an effective manner for designing a controller when it is

possible to determine the behaviour of the states. A state feedback controller consists of two parts:

an observer and a controller. The observer uses the output from the process to estimate the states,

while the controller uses the (estimated) states to determine the input. Figure 70 shows a diagram

of such a state-feedback controller and observer.

Figure 70: State-feedback control

 160

 It is possible to design different types of observers, depending on the intended application.

The most common observer is the Luenberger observer which seeks to minimise the error in the

predicted and actual states. Assume that the Luenberger observer can be written as

 ()ˆ ˆ ˆ

ˆ ˆ

x x y y u

y x u

= + − +

= +

    


  

  

 
 (169)

where ℒ, the observer gain, is an appropriately sized matrix that needs to be designed and ◌̂

represents an estimated value. Rewriting Equation (169) gives

 () ()ˆ ˆ

ˆ ˆ
x x y u

y x u

= − + + −

= +

   


  

    

 
 (170)

Let the error be defined as

 ˆe x x= −
   (171)

Taking the derivative (or difference) of Equation (171) gives

 ˆe x x= −
  



  (172)

Substituting Equations (30) and (170) into Equation (172) gives

 () () ()
()

ˆe x u x x u u

e

= + − − − + − −

= −

      





        

 
 (173)

From Equation (173), it can be seen that for the error to reach zero 𝒜𝒜 – ℒ𝒞𝒞 must be stable, that is,

the eigenvalues of 𝒜𝒜 – ℒ𝒞𝒞 must lie to make the process stable.18

 Now that we can estimate the state values, it makes sense to design a state controller.

Assume that the state controller law can be written as

 ˆu x= −
 

 (174)19

Before examining the general case, let us consider the situation, where perfect information can be

obtained about the states and there is no need to design an observer, that is, 𝒞𝒞 = ℐ, which implies

that y x=
  . In this situation, we can use the basic state-space equations, given by Equation (30),

to describe the system. Substituting Equation (174) into Equation (30) and re-arranging gives

18 continuous domain: Re(λ) < 0; discrete domain: ||λ|| < 1
19 Often, the estimated state is replaced by the true state value. As it will be shown, this makes sense in many cases
since we have full information about the states by actually measuring them.

 161

 () ()x x x x
y x u
= − = −

= +

   



  

    

 
 (175)

Thus, it can be seen that the stability of the controlled (overall, closed-loop) system is determined

by the location of the eigenvalues of the 𝒜𝒜 – 𝒦𝒦𝒦𝒦 matrix.

 Now consider the case, where we do not have full information about the process. In this

case, we will need to consider two different equations: the observer equation and the true state-

space model. Substituting the control law given by Equation (174) into the observer equation,

Equation (170), gives

 ()ˆ ˆ

ˆ ˆ ˆ
x x y

y x x

= − − + +

= −

  


  

    

 
 (176)

The fact that both terms are present in this equation raises the question if the controller and

observer must be designed simultaneously or could they be designed separately.

 In fact, the linear, state-space law presented here coupled with the linear observer are fully

separable and stability will be assured if both components are stable. In order to show this, rewrite

the controller law as

 ()u x e= − −
  

 (177)

From Equation (175), we can write the true state-space system as

 () ()x x x e x e= − − = − +
     

      (178)

Now, combining this equation with the error equation, given as Equation (173), into a single

equation, we can see that the combined system consisting of the states and errors can be written as

0

xx
ee

  −   
=     −    













  
 

 (179)

Since the combined system matrix is triangular, the eigenvalues can be obtained by considering

the eigenvalues of the diagonal elements, that is, the eigenvalues of the 𝒜𝒜 – ℬ𝒦𝒦 and 𝒜𝒜 – ℒ𝒦𝒦

matrices. Furthermore, since neither of the two matrices interact with each other, it can be

concluded that both can be designed separately and then combined. As long as each is stable, then

the overall system will also be. This result is called the separation principle and is a very powerful

result in designing state-feedback systems.

 162

Section 5.1.2.2: Proportional, Integral, and Derivative (PID) Control
 Another class of common controllers is the proportional, integral, and derivative (PID)

controllers. This class of controllers provides effective control for many industrial processes and

can be configured to deal with a wide range of different situations. The general form of the PID

controller can be written as

 11c c D
I

G K s
s

τ
τ

 
= + + 

 
 (180)

where Kc is the proportional term or controller (proportional) gain, τI is the integral term or

the integral time constant in units of time, and τD is the derivative term or the derivative time

constant in units of time. Another common representation is given as

 1
c c I DG K K K s

s
= + + (181)

where KI is the integral gain and KD is the derivative gain. In many industrial plants, it is possible

to find the terms reset for integral and rate for derivative, for example, τI would be called the reset

time constant.

 In industry, different combinations of this controller can be found including the rather

common proportional and integral controller (PI), where τD = KD = 0, that is, the D-term is ignored.

In order to understand the behaviour of this controller, each of the three terms (P, I, and D) will be

investigated separately. As well, the two common configurations (PI and PID) will be considered

in greater detail.

Section 5.1.2.2.a: Proportional Term

 The proportional term, Kc, has the greatest impact on the overall control performance. It

represents the contribution of the current error to the overall controller action, and thus, controls

two key aspects: stability and speed of response. The larger the absolute value of Kc is, the faster

the system will response to changes, but the less stable the system will be. Furthermore, a controller

containing only the proportional term will have bias or offset, that is,

0 0

lim lim
1 1 1

c p c p c p rr
ss s

c p c p c p

sG G sK G K K MMR
G G K G s K K→ →

= =
+ + +

 (182)

where Rs is the setpoint which gives a step change of Mr and Kp is the process gain. It is assumed

that the overall closed-loop transfer function is stable. From Equation (182), it can be seen that the

 163

steady-state value for the closed-loop transfer function is not 1. This implies that the final value

will not be equal to the setpoint. For this reason, pure P-controllers are rarely used.

Example 25: Investigation of the Proportional Term on Stability and Performance

 Consider the following first-order system

 101.5
20 1

s
pG e

s
−=

+
 (183)

controlled with a proportional controller Gc = Kc. Setting Kc equal to −0.25, 0, 0.5, 1.0, and 2.0,

show how the closed-loop response to a step change of 2 in the setpoint changes.

Solution:

Figure 71 shows the results for changing the Kc. It can be seen that for none of the cases is

the setpoint attained. There is offset for all of the cases. Furthermore, for Kc = 0, the process

remains at zero, since no control is being implemented. As Kc increases, the amount of oscillation

and length of time required to attain a steady-state value increase. In fact, if Kc is increased further,

the process will become unstable. Similarly, for Kc < 0, the process is initially stable. However,

increasing the value will rapidly make the system unstable.

Figure 71: Effect of Changing Kc for a P-Controller

 164

Section 5.1.2.2.b: Integral Term

 The integral term, τI, provides a measure of additional stability to the system as well as

removing any bias present. It represents the contribution of past errors on the current controller

action. In general, the integral term is always combined with a proportional term to give the

proportional and integral controller. Furthermore, a controller containing only the integral term

will have no bias or offset, that is,

0 0 0

1

lim lim lim11 1

p
c p r pI r

s rs s s
c p I p

p
I

s GsG G M Gs MR M
G G s s GG

s

τ
τ

τ
→ → →

= = =
+ ++

 (184)

where Rs is the setpoint which makes a step change of Mr. It is assumed that the overall closed-

loop transfer function is stable. From Equation (184), it can be seen that the closed-loop gain is

exactly equal to the step change in the setpoint, which implies that there will be no bias or offset.

 Since the integral term represents the effect of past errors on the current controller action,

it is possible that in a real implementation, integral (reset) wind-up can occur. This occurs when

the controller output is above the physical limit of the actuator. Since the controller does not have

a way of knowing that the physical limit has been reached, it continues to increase the desired

controller output as the error keeps on increasing. This makes the integral term very large. When

there is a need to now decrease this value, the controller decreases the output value from its large,

unphysical value until it goes below the upper limit. The time delay between when the actuator

should have started to respond and when it is observed to be responding is called integral wind-up.

This is shown in Figure 72, where it can be seen that at 100 min, when the setpoint is changed, it

takes the process another 20 minutes before it even starts changing, since the true actuator value

remains saturated at its upper limit. Integral wind-up can be avoided by including the physical

limits of the actuator in the controller, that is, by making values beyond the physical limits of the

actuator equal to the physical limit.

 165

Figure 72: Integral Wind-Up

Example 26: Investigation of the Integral Term on Stability and Performance

 Consider the following first-order system

 101.5
20 1

s
pG e

s
−=

+
 (185)

controlled with a proportional controller Gc = 1 / τIs. Varying the value of τI from 20 to 100 in

increments of 10 show how the closed-loop response to a step change of 2 in the setpoint changes.

Solution:

 Figure 73 show the results. It can be seen that as τI increases the impact on the system

decreases. Note that the system is originally stable so that without any control it will reach the

desired setpoint. Furthermore, and unlike with only a P-term, there is no bias in the closed-loop

system.

0 50 100 150 200 250
0

1

2

3

Pr
oc

es
s

ou
tp

ut
, y

Setpoint

Actual

0 50 100 150 200 250

Time (min)

0

5

10

In
pu

t,
u

Controller

Actual

Integral Wind-Up

 166

Figure 73: Effect of Changing τI for a I-Controller. The solid, black line is the setpoint.

Section 5.1.2.2.c: Derivative Term

 The derivative term, τD, provides a measure of additional stability to the system. The

derivative term represents the contribution of future (estimated) errors on the controller action. In

general, the derivative term is almost always combined with a proportional and integral terms.

Furthermore, a controller containing only the derivative term will be unable to track the setpoint,

that is,

0 0 0

lim lim lim 0
1 1 1

c p D p r pr
ss s s

c p D p D p

sG G s sG sM GMR
G G sG s sG

τ
τ τ→ → →

= = =
+ + +

 (186)

where Rs is the setpoint which makes a step change of Mr. It is assumed that the overall closed-

loop transfer function is stable. From Equation (186), it can be seen that irrespective of the change

in the setpoint, the system will return to zero, which implies that the derivative term cannot track

the setpoint. Therefore, the main role of the derivative term is for disturbance rejection, since in

that case, it is desired that the system return to the same initial value.

 The derivative term as written cannot be physically realised, since the numerator is greater

than the denominator. In order to avoid this problem, it is common to rewrite the derivative term

into the following form:

,

1
c real D

NG
N
s

τ=
 + 
 

 (187)

 167

where N is a filter parameter to be selected. It can be noted that as N → ∞, this form will become

equal to the original version.

 Using a derivative term introduces two potential problems into the control strategy: jitter

and derivative kick. Jitter occurs when error signal fluctuates greatly about some mean value

causing the estimated value of the future error to also fluctuate greatly. This in turn causes

unnecessary fluctuations in the controller output, which can lead to issues with the actuator. Figure

74 shows the typical situation where jitter is present. Jitter can be mitigated by filtering the error

signal used in computing the derivative term with a low-pass filter, which removes the high

frequency component of the noise. Derivative kick occurs when the setpoint has a sudden change

in value (for example, a step change) causing the instantaneous error to be practically speaking

infinite. This causes the controller error to spike for a very short period of time after the change

occurs. Figure 75 shows the typical situation when derivative kick occurs. When the setpoint

changes at 10 s, there is a corresponding spike in the actuator value. Note that in practice, due to

saturation in the actuator, the impact of the derivative kick will be less than shown. Nevertheless,

it will be present. Derivative kick can be lessened by solely using the change in the output rather

than the error when computing the derivative term, that is,

t D tu syτ= (188)

Since it has been shown that the overall impact of the derivative term is primarily for disturbance

rejection, that is, making yt ≈ 0, this approach is reasonable.

 168

Figure 74: Jitter with a Derivative Term

Figure 75: Derivative Kick

Example 27: Investigation of the Derivative Term on Stability and Performance

 Consider the following first-order system

 101.5
20 1

s
pG e

s
−=

+
 (189)

0 50 100 150 200 250 300 350 400 450

Time (s)

-2

-1

0

1

2

3

4

O
ut

pu
t,

y

Setpoint

Actual

 169

controlled with a derivative controller Gc = τDs. Varying the value of τD from 1 to 11 in increments

of 2 show the closed-loop response of the controller to a white-noise disturbance of magnitude

0.05.

Solution:

 Figure 76 show the results. It can be seen that as the magnitude of the D-Term increases,

so does the magnitude of the response. This implies that the D-Term only influences the magnitude

of the response.

Figure 76: Effect of Changing τD for a D-Controller

Section 5.1.2.2.d: Proportional and Integral (PI) Controller

 A proportional and integral (PI) controller is one of the most common industrial controllers

found. It combines the proportional and integral terms to give

 11c c
I

G K
sτ

 
= + 

 
 (190)

The behaviour of a PI controller will be similar to that of each of the two separate terms, that is,

the proportional term will influence the stability and overall performance, while the integral term

 170

will provide a bias-free controller. This controller can be interpreted as only considering the current

and past information about the process and how that impacts the overall control performance.

 PI control can be used for both disturbance rejection and setpoint tracking in many different

applications including flows, levels, and temperatures. Large time delays and highly nonlinear

systems can limit its effectiveness.

Section 5.1.2.2.e: Proportional, Integral, and Derivative (PID) Controller

 A proportional, integral, and derivative (PID) controller can be tuned on the basis of the

three previously considered terms. Such a controller takes all available information about the

process and predicts the future trajectory of the system. It is commonly used in large complex

systems where there is a need for an additional degree-of-freedom to stabilise the system. Systems

which have a very jittery output or setpoint would need to be filtered before being used as the

unfiltered signal can cause undesired behaviour.

Section 5.1.2.2.f: Discretisation of the PID Controller

 Since many control algorithms are implemented on a computer, it can often be helpful to

implement the PID controller in the discrete domain. To discretise the PID controller, let s = 1 – z−1

in Equation (180) to give

() ()1

1

11 1
1k c D k

I

u K z
z

τ ε
τ

−
−

 
 = + + −
 − 

 (191)

Re-arranging Equation (191) gives

 () () ()21 1
1

11 1
1

c
k D k

I

Ku z z
z

τ ε
τ

− −
−

 
= − + + − 

−  
 (192)

Equation (192) is often called the positional form of the discretised PID controller. Re-arranging

Equation (192) to give

 () () ()21 1 111 1 1k k c D k
I

z u u K z zτ ε
τ

− − − 
− = ∆ = − + + − 

 
 (193)

produces another common PID equation called the velocity form of the discretised PID controller.

In industrial implementations, it is possible to encounter both forms. Although these forms do not

have an impact on controller design, they will have an impact on understanding the values obtained.

 171

Section 5.1.2.3: Controller Tuning
 Having established the different types of controllers that can be used and understood some

of behaviour of the parameters on the overall control system, the remaining question is how do we

correlate a given set of performance criteria (for example, the objectives of control previously

mentioned) and the different controller parameters. One easy approach would be to use some

simulation software to obtain the desired parameter values using a trial-and-error method. As one

can easily see, this approach could take very long and not necessarily provide the optimal

parameter values. Instead, various correlations or approaches have been developed that will allow

for the performance of a controller to be specified. In this section, we will consider the methods

for tuning state-space controllers and PID controllers. Irrespective of the approach used, there will

always be a need to simulate the resulting control system to make sure that there are no issues with

the performance. Furthermore, it should be noted that for certain applications, there exist, specific

controller tuning rules that provide optimal performance for the problem at hand, for example,

level controllers are often tuned using special rules that seek to minimise large deviations from the

setpoint.

 The general approach to controller tuning can be summarised by Figure 77. Before starting

the tuning procedure, it is required that the process be understood or modelled, that the

performance criteria be clearly specified, and that the control strategies of interest be known. The

first step will be to determine the initial controller parameters, followed by a simulation (or actual

implementation, if the system can handle repeated perturbations). Based on the test and a

comparison with the desired performance, new controller parameters can be obtained and new tests

performed. This would be repeated until either the desired criteria are satisfied or the time available

has run out. At this point, it may happen that the process understanding is found to be deficient

and additional information would need to be sought. If the controller has not been implemented on

the real system during the initial controller testing, then it will be necessary to repeat this procedure

once more on the actual system. Very often, it will be found that the performance may not be as

expected given the differences between the simulated and actual processes. However, following

this procedure will minimise the risk of the occurrence of such a situation.

 172

Figure 77: Controller Tuning Workflow

Section 5.1.2.3.a: Tuning a State-Space Controller

 A state-space controller is often tuned using pole placement, which involves selecting the

desired poles of the closed-loop transfer function and designing a controller that can achieve this.

 When placing the poles or eigenvalues of the closed-loop transfer function using a state-

space approach, both the controller and observer will need to have their poles placed. The general

rule of thumb is that the poles of the observer should be 10 to 20 times faster than the poles of the

controller. Pole placement can be achieved using two different methods: characteristic

polynomial and Ackermann’s Formula. The approaches work for both continuous and discrete

controllers. It should be noted that for multi-input systems, the computed value of 𝒦𝒦 is not

necessarily unique.

 The general problem statement is: given the desired eigenvalues {λ1, λ2, …, λn} and the

system {, , }, determine the state feedback controller gain . For the characteristic polynomial

approach, perform the following steps:

1) Compute () 1
1 1

1

()
n

n n
i n n

i

s s s s sλ α α α−
−

=

′ ′ ′∆ = − = + + + +∏ 

.

2) Compute 1
1 1() n n

n ns s s sα α α−
−∆ = + + + + , which is the characteristic polynomial of .

 173

3) Compute

1 1 1
1 0 0 0

,
0 0 0 0
0 0 1 0 0

n nα α α−′ ′ ′− − −   
   
   = =
   
   
   





  .

4) Compute 1n− =       and 1n− ′ =       .

5) [] 1
1 1 n nα α α α −′ ′ ′= − −   .

Similarly, Ackermann’s formula, uses the following steps to place the poles:

1) Compute () 1
1 1

1

()
n

n n
i n n

i

s s s s sλ α α α−
−

=

′ ′ ′∆ = − = + + + +∏ 

.

2) Compute 1
1 1() n n

n ns s s sα α α−
−∆ = + + + + , which is the characteristic polynomial of .

3) Compute

1 1 1
1 0 0 0

,
0 0 0 0
0 0 1 0 0

n nα α α−′ ′ ′− − −   
   
   = =
   
   
   





  .

4) Compute 1n− =       and 1n− ′ =       .

5) [] ()1
1

0 0 1
n

−
×

= ∆   .

It is also possible to design the observer using Ackermann’s formula which gives

 () []1
1

0 0 1 T

n
−

×
= ∆    (194)

When using pole placement, the following points should be borne in mind:

1) The magnitude of 𝒦𝒦 gives the amount of effort required to control the process. The

further the desired poles are from the actual poles of the system, the larger the controller

gain 𝒦𝒦.

2) For multi-input systems, 𝒦𝒦 is not unique.

3) (𝒜𝒜, ℬ) and (𝒜𝒜 − ℬ𝒦𝒦, ℬ) are controllable. However, due to pole-zero cancellations, the

resulting system may not be observable.

4) Discrete systems can be controlled in the same manner, mutatis mutandi.

Section 5.1.2.3.b: Tuning a PID Controller

 When designing a PID controller, there exist various different approaches that can be taken

to specifying the initial controller parameters. In practice, once these initial parameters have been

 174

obtained, they will be fine-tuned to obtain the desired performance. There are two main approaches

to controller tuning: model-based and structure-based.

 In model-based controller tuning, a model of the process is required and the closed-loop

behaviour of the resulting system is specified. Using this information, it is possible to obtain the

resulting form of the controller transfer function. Comparing the resulting controller transfer

function with the standard PID controller allows equations for the constants to be determined. The

most common model-based approach is the internal model control (IMC) framework. The main

advantage of this approach is that it allows the engineer to specify the desired closed-loop

behaviour of the system, while the main disadvantage of this approach is that a relatively accurate

model of the system is required. Note that the specification of the closed-loop transfer function

can be used to add robustness to the system by changing the speed (time constant) of the response.

The faster the system responds to changes the less robust is the resulting closed-loop system. In

many cases, the simplified IMC (SIMC) rules provide better control performance for industrial

systems. The SIMC rules take into consideration additional factors, such as disturbances in the

input and faster response for systems with large time constants. SIMC rules recommend PI

controllers for first-order systems and PID controllers for second-order systems.

 In structure-based controller tuning, the structure (or type) of a controller, the objective

(disturbance rejection or setpoint tracking), and metric for measuring good control are specified.

Minimising this metric allows the values of the parameters to be determined. The most common

structure-based approach is using the integrated time-averaged error (ITAE) as the metric. Using

the ITAE metric penalises persistent errors, which can be small errors that last for a long period of

time, and provides a conservative approach to control. The main advantage of this method is that

a model of the system need not be provided, while the main disadvantages are that the engineer

has no control over the closed-loop response of the system and that the resulting system is not very

robust to changes in the process.

 Table 26 and Table 27 present some common tuning methods for first-order transfer

functions. Table 28 presents the SIMC tuning method for a second-order transfer function. It

should be noted that the PID controller has the following series form:

 ()11 1c c D
I

G K s
s

τ
τ

 
= + + 

 






 (195)

 175

where the controller parameters with the tilde (◌̃) have the same meaning as the corresponding

controller parameters without a tilde.

Table 26: PI controller constants for first-order-plus-deadtime models

Controller Method Kc
 τI

St
ru

ct
ur

e-
ba

se
d ITAE

(setpoint tracking)

0.9160.586
K

θ
τ

−
 
 
 

 1.03 0.165

τ
θ
τ
 −  
 

ITAE

(disturbance rejection)

0.9770.859
K

θ
τ

−
 
 
 

0.680

0.674
τ θ

τ
 
 
 

M
od

el
-b

as
ed

SIMC

(τc chosen so that τc / θ > 0.8

and τc > τ / 10)

1

cK
τ

θ τ+
 min(τ, 4(τc + θ))

Table 27: PID controller constants for first-order-plus-deadtime models

Controller Method Kc
 τI

 τD

St
ru

ct
ur

e-
ba

se
d ITAE

(setpoint tracking)

0.850.965
K

θ
τ

−
 
 
 

 0.796 0.147

τ
θ
τ
 −  
 

 0.929

0.308 θτ
τ
 
 
 

ITAE

(disturbance rejection)

0.9471.357
K

θ
τ

−
 
 
 

0.738

0.842
τ θ

τ
 
 
 

0.995

0.381 θτ
τ
 
 
 

M
od

el
-b

as
ed

 IMC

(τc chosen so that

τc / θ > 0.8 and

τc > τ / 10)

2 11

2 1CK

τ
θ
τ
θ

 + 
 
 +
 

2
θ τ+

2 1

τ
τ
θ
  + 
 

Table 28: PID controller constants for a second-order-plus-deadtime models

Controller Method K̃c
 τ̃I τ̃D

M
od

el
-b

as
ed

 SIMC

()()1 2

1 2

1 1
with

s
p

KG e
s s

θ

τ τ
τ τ

−=
+ +

>

11

cK
τ

θ τ
 
 + 

 min(τ1, 4(θ + τc)) τ2

 176

Example 28: Designing a PI Controller

 Consider the following first-order system

 101.5
20 1

s
pG e

s
−=

+
 (196)

Determine the controller parameters for a PI controller using the IMC method.

Solution

 Before solving the problem, it is helpful to determine the values of the various constants

 Gain: K = 1.5

 Time Constant: τ = 20

 Time Delay: θ = 10

For the IMC method, there is a need to also specify the value of τc, which is essentially the closed-

loop time constant. The smaller the value, the faster the response is, but less robust is the overall

system. The constraints given with this method imply that τc > 0.8θ = 8 and τc > 0.1τ = 2. For the

purposes of this example, set the value of τc to be 10, which satisfies both constraints.

 Therefore, the controller parameters can be computed from Table 26 as follows:

 1 1 20 2
1.5 10 10 3c

c

K
K

τ
θ τ

 = = = + + 
 (197)

 20Iτ τ= = (198)

The resulting behaviour of the closed-loop system is shown in Figure 78. It can be seen that the

process responds almost exactly as expected.

Figure 78: Closed-Loop Performance of the PI Controller

0 50 100 150 200 250 300 350 400 450

Time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Pr
oc

es
s

Va
lu

e

Setpoint

Actual Value

 177

Section 5.1.2.4: Controller Performance
 Once a controller has been designed, it is often necessary to measure its performance and

determine if the controller is attaining its objectives. As with any such measurements, performance

is measured against some (engineering-related) specification. Unlike most other equipment, the

specification for a controller involves time, either explicitly when speed of response is a criterion,

or implicitly, for statistics such as standard deviation. The performance of a controller can be

measured based on two different sets of criteria: how the controller responds to a change in setpoint,

that is, the servo response, and how the controller responds to disturbances, that is, the regulatory

response.

 Since the objective in servo response performance is how well the controller responds to a

setpoint change, it is easy to determine an appropriate measure for performance assessment. For

this reason, servo response is often used to design a controller. As a first approximation, a closed-

loop system can be considered to be a second-order system with time delay. Therefore, the

response of the closed loop to a step change in setpoint would be the step response of a second-

order system. The most common servo control performance measures are just characteristics of a

second-order system responding to a step input, that is, rise time, overshoot, and settling time of

the controlled variable, as shown in Figure 79. The rise time, τr, is defined as the first time the

process reaches the setpoint value. The overshoot is defined as the ratio of how much the process

goes over (or under) the setpoint divided by the magnitude of the step change. Note that if the step

change is negative, then the overshoot will also be negative (that is, it is really an undershoot) so

that the ratio remains positive. The settling time, τs, is defined as the last time for which the process

lies outside the 5% bounds. The 5% bounds are defined as a boundary on either side of the new

setpoint that is defined as 2.5% of the difference (yss, 2 – yss, 1), where yss is the steady-state value

and the numeric subscripts represent the initial and final values. The settling time is roughly three

times the closed-loop time constant.

 178

Figure 79: Measures of Servo Control Performance

 On the other hand, for performance assessment of regulatory response, the objective is less

certain. Instead, various quantitative measures are used to quantify performance assessment,

including:

1) Standard deviation of manipulated variable: This is the simplest and most important

measure of control performance. However, it is difficult to specify the desired value a

priori since it depends on the nature and magnitude of disturbances affecting the process.

What can be specified, or at least described qualitatively, is the trade-off between control

error and control action. One way of thinking of a controller is that it moves variation

from one variable (usually the controlled variable) to another (usually the manipulated

variable). As disturbances affect the process, the controller will respond by changing the

0 50 100 150 200 250 300 350

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Pr

oc
es

s
Va

lu
e

Setpoint

Actual Value

a

b

Settling time,
τs

Rise time, τr

Overshoot = a/b

0.05b

 179

manipulated variable. The response will then mitigate the effect of the disturbances.

Larger disturbances will require greater control action than small disturbances.

2) Mean of the output variable: This can be used to assess how well the controller

maintains the given setpoint in the presence of disturbances.

3) Advanced performance assessment: More advanced performance assessment methods

are available, such as the minimum variance controller and the Harris Index, which can

provide appropriate benchmarks for determining good performance.

Section 5.2: Feedforward Control
 In feedforward control, a measurable disturbance is used as the input to a controller, so as

to take corrective action before the disturbance impacts the process. The goal when using

feedforward control is to design a controller that can correct the disturbance at the same time as

the disturbance affects the process. In practice, such a controller can rarely be designed, since there

will be time delay in the system, that is, there is some time period between when the variable is

measured and it impacts the system. If the time delay between the disturbance and the process is

smaller than the time delay between the input and the process, then it is not possible to compensate

the disturbance before it has impacted the system. Figure 80 shows a typical feedforward control

loop.

Figure 80: Block Diagram for Feedforward Control

 A special type of feedforward controller is a decoupler, which seeks to separate two or

more interacting processes so that they can be treated as independent systems controlled by their

 180

own SISO control loops. A decoupler basically takes the controller output from the other

controllers and treats them as a measurable disturbance that needs to be counteracted. Decouples

can be very effective in controlling a multivariate system when the interactions are relatively

straight forward and not too nonlinear.

 In feedforward control design, the objective to design a controller that can compensate for

a measured disturbance before it can affect the process. Assume that the process model is Gp and

the disturbance model is Gd, then for the feedforward controller shown in Figure 80, the basic form

of the feedforward controller can be written as

 d
ff

p

GG
G

= − (199)

In the ideal situation, this will exactly cancel out the effect of the measured disturbance. However,

in practice, such a controller cannot be implemented for the following two reasons:

1) Time Delay: If the time delay in the process response is larger than the time delay in the

disturbance response, then the overall time delay for the process will be negative

requiring knowledge of future information about the process. Since such a situation is

impossible, the general solution is to drop the unrealisable time delay from the final

controller.

2) Unstable Zeroes in Gp: If the process contains unstable zeroes, then the resulting transfer

function will also be unstable. In such a case, it will not be possible to realise the

controller. A common solution in this case is to drop the offending zeroes from the final

representation.

There are two common feedforward controllers that can be designed:

1) Static controllers where only the gains of the process are considered, that is,

 d
ff

p

KG
K

= − (200)

where Kd is the disturbance gain and Kp is the process gain.

2) Dynamic controllers where the process and disturbance dynamics are included in the

final control law. Very often, the controller takes the form of a lead-lag controller, that is,

 ()
()

1
1

ffd p s
ff

p d

K s
G e

K s
θτ

τ
−+

= −
+

 (201)

 181

where τp is the process time constant, τd is the disturbance time constant, and θff = θd – θp.

If θff is negative, then the term is often ignored. Ideally, |τp / τd| < 1, which avoids large

spikes when this controller is used.

Example 29: Designing a Feedforward Controller

 Given the following system, design both a dynamic and a static feedforward controller.

Compare the performance of both. The system parameters are:

 ()
()()

101.5 1
1 10 1

s
p

s
G e

s s
−− −

=
+ +

 (202)

()()

50.5
5 1 7 1

s
dG e

s s
−−

=
+ +

 (203)

 2 11
3 20cG

s
 = + 
 

 (204)

For the simulation, assume that the measured disturbance is driven by Gaussian white noise with

a magnitude of 0.5 and there is a step change in the setpoint of 2 units after 100 s.

Solution

 Using Equation (200), the static feedforward controller can be computed as

,

0.5 1
1.5 3

d
ff s

p

KG
K

−
= − = − = (205)

Note that the gain can be obtained by setting s = 0 and evaluating the resulting value.

 When creating the dynamic feedforward controller, it is important that the transfer

functions be written in their standard form, that is, all roots are of the form τs + 1. In this particular

example, the zero of the process transfer function needs to be written into this form to give

 ()
()()

101.5 1
1 10 1

s
p

s
G e

s s
−− +

=
+ +

 (206)

The dynamic feedforward controller can be designed using Equation (199). This gives

 ()()
()

()()

()()
()()()

5

5
,

10

0.5
5 1 7 1 1 10 11
1.5 1 3 5 1 7 1 1

1 10 1

s

sd
ff d

sp

e
s s s sGG e

sG s s se
s s

−

−

−
+ + + +

= − = − =
− + + + − +

+ +

 (207)

However, this controller as written cannot be realised since there is an unstable pole and the time

delay requires future values. In order to obtain a realisable dynamic feedforward controller, both

 182

the unstable pole and time delay terms will be dropped. This gives the following form for the

controller

 ()()
()(),

1 10 11
3 5 1 7 1ff d

s s
G

s s
+ +

=
+ +

 (208)

 Figure 81 shows the effects of both feedforward controllers on the process. It can be seen

that without the feedforward controller the process has greater oscillations. Adding the static

feedforward controller tends to decrease the impact of the oscillations. However, the behaviour is

still rather jittery. The dynamic feedforward controller has smoothed out the jitter and the

behaviour is cleaner.

Figure 81: Effect of Feedforward Control on a Process

Section 5.3: Discrete-Event Control
 In discrete-event control, a specific event or series of events triggers a given control

sequence. This can often be seen when dealing with safety-oriented control situations, where, for

0 50 100 150 200 250 300 350 400 450

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

O
ut

pu
t,

y

Setpoint

w/o Feedforward Control

Static Feedforward

Dynamic Feedfoward

 183

example, a pressure relief valve will only open if the pressure is above a certain value and will

close once the pressure falls below the threshold.

 Another type of discrete event control is interlocking, where a specified set of

circumstances must hold before a given action can occur, for example, a microwave cannot be

started until the microwave door has been closed, which minimises the impact of the radiation on

the user. Interlocking is an important component of safety considerations in order to prevent

operators from taking inappropriate action. Designing the correct interlocks can be a challenging

proposition.

 A special type of discrete-event control occurs when binary signals are used, for example,

a sensor will report when the elevator has reached the correct floor, and then the motor of the drive

will be switched off. The exact height of the elevator above the ground is not continuously

measured and monitored. When dealing with binary signals, there are two possible types of

controllers: logic control and sequential control.

 In logic controllers, also called combinatorial controllers, one obtains the control variable

as a combination, that is, a logical operation, of signals, for example, system output signals (sensor

values such as door open or closed) or user inputs (e.g emergency button pressed or not pressed).

Consider a simple example of a lathe. A lathe is turned on when the user presses the power button

and the chuck is closed. The lathe is switched off when an end position is reached or the emergency

stop button is pressed.

 In sequential control, individual control operations are performed in certain steps. The

advancement to the next step occurs either after a certain time has passed (time-dependent

sequence control), for example, a simple traffic light, or in the presence of a specific event

(process-dependent sequence control), for example, traffic lights that change their signal when a

pedestrian presses the button. In contrast to the logic controllers, it is therefore not possible to

clearly determine the manipulated variable even if all signal values are known, since one also has

to know at which point in the process one is currently located.

Section 5.4: Supervisory Control
 Supervisory control focuses on designing controllers that can deal with complex,

interacting systems incorporating physical, process, and economic constraints, as well as dealing

with changing economic circumstances. Supervisory control systems will often set the setpoint for

 184

subsidiary (or slave) controllers. They can be used to control large systems containing many

different variables and even locations. A supervisory control system can range from a simple

nested control loop system to complex model predictive control systems. There are two primary

control systems cascade control and model predictive control (MPC), which is often called

advanced process control (APC) in the petrochemical industry.

Section 5.4.1: Cascade Control
 In cascade control, at least two control loops are nested within each other. A typical cascade

control strategy is shown in Figure 82, where it is desired to ensure that the flow rate controlled

by the valve is as accurate as possible, so that the process experiences the tightest control possible.

The primary or master control loop is the outer control loop, which sets the setpoint for the

secondary or slave control loop. The general procedure for tuning a cascade control loop is to first

tune the innermost loop and then work up towards the uppermost loop, treating all tuned controllers

as part of the process. The closed-loop time constant of the inner loop should be smaller (faster)

than the closed-loop time constant of the outer loop. A common rule of thumb is that the ratio of

closed-loop time constant of the primary loop and that of the secondary loop (τc, p / τc, s) should be

between 4 and 10. Too small a ratio implies that the secondary loop will not have reached steady

state and there will be interactions between the two loops leading to a loss of overall performance.

Too large a ratio implies that the advantages of cascade control will be lost as it will slow down

the overall response of the system. However, it will make it more robust to changes in the

underlying process models.

 185

Figure 82: Block Diagram for Cascade Control

Section 5.4.2: Model Predictive Control
 Model predictive control is an advanced control strategy that can take into consideration

not only the deviations from the setpoint, but also various economic and physical constraints, for

example, it can explicitly handle the situation where the water in the tank should not go above a

given value. In order to accurately handle these constraints, this approach requires a good model

and proper engineering design. Model predictive control works by optimising the control actions

over a period of time, often called the control horizon, using the predicted values from the model.

Any constraints are then implemented as necessary on the predicted results. The controller then

implements the next control action and repeats the optimisation procedure again. This ensures that

the impact of disturbances, plant-model mismatches, and other imperfections in the system do not

have a too large impact on the overall performance.

 Model predictive control is effective in handling complex process with multiple inputs and

outputs that interact strongly. Although the original version was designed for linear systems,

variants exist for nonlinear systems.

 One of the key disadvantages of model predictive control is that it requires a good model

that must be updated as necessary. A poor model can cause the control system to degrade and forgo

the benefits of the approach.

 186

 There are many different implementations of model predictive control. The most popular

implementation in the industry is the dynamic-matrix controller (DMC) approach, which is

detailed here. The objective function for model predictive control is

() () () ()

*

ˆ ˆmin

subject to
ˆ

T T

u
r y r y u u

y y u

∆

 − − + ∆ ∆  

= + ∆



     

  

 



 (209)

where r is the reference vector, ŷ the vector of the predicted process values with control, 𝒬𝒬 the

process scaling matrix, u∆  the vector of the changes in the controller action, ℛ the input scaling

matrix, *y the vector of the process values without control, and 𝒜𝒜 the dynamic matrix.

Furthermore, let m be the control horizon, p the prediction horizon, d the process deadtime, and n

the settling time. It should be noted that 1 ≤ m ≤ p – d and p > d.

 The solution requires the step response of the process, that is,

1

i
t i t

i
y a z u

∞
−

=

= ∆∑ (210)

where ai is the step-response coefficient. The step-response coefficient can be calculated either by

polynomial division of the transfer function model or using the coefficients of the impulse response.

The coefficients ai of the step response have the following relationship to the coefficients of the

impulse response hj

1

i

i j
j

a h
=

=∑ (211)

Furthermore, the settling time is defined as the time at which the first coefficient an is within a

range of between 0.975 and 1.025 times the value of a∞, where a∞ is the steady-state value. All

step response coefficients after the settling time n can be assumed to be equal to an + 1. The p × m

dynamic matrix 𝒜𝒜 can written as

1

2 1

1

1 1

0 0

0

p p p m

a
a a

a
a a a− − +

 
 
 
 =
 
 
  



 

  

 



 (212)

For a univariate system with only one input variable and one output variable, the solution for

Equation (209) is

 187

 () ()1 *T T T
Cu K e r y

−
∆ = = + −



   

     (213)

where

 ()*

1

n

t l t i l i t i
i

y y a a u+ + −
=

= − − ∆∑ (214)

Once the solution has been implemented, then the first control action Δu1 will be implemented by

the controller. At the next sampling time, the above optimisation procedure is repeated, a new

optimal value is calculated, and the first control action is implemented. This allows the system to

take unexpected process changes into consideration.

Example 30: Design of a Model Predictive Controller

 Design a model predictive controller for the following SISO system:

1

1

2
1 0,75p

zG
z

−

−=
−

 (215)

Set up the required matrices and perform the first step of the iteration. For this, assume that m = p

= 3. Let 𝒬𝒬 = ℐp and ℛ = ℐ3, where ℐn is the n×n identity matrix. Furthermore, a step change occurs

at t = 0, with the process having previously been in steady state.

Solution

 To determine the required model predictive controller, we must first determine the step-

response model. This can be determined using long division, which gives the impulse response

coefficients from which the step response coefficients can be easily calculated. Thus,

1 2 3

1 1

1 2

2

2 3

3

2 1.5 1.125
1 0.75 2

2 1.5
 1.5
 1.5 1.125
 1.125

z z z
z z

z z
z

z z
z

− − −

− −

− −

−

− −

−

+ +
−

− +

− +



 (216)

It can be seen that hi = 2(0.75)i – 1 for i ≥ 1. In general, for a transfer function of the form

11

d

p
zG

z
β
α

−

−=
−

 (217)

the coefficients of the impulse response can be given as

0

i d

i
i d

h
i d

βα − ≥
= 

<
 (218)

The required step response coefficients can be found using Equation (211)

 188

 ()1

0 1
2 0.75

i i
j

i j
j j

a h −

= =

= =∑ ∑ (219)

Equation (219) gives a geometric series that can be written as

 ()1 1 0.751 2
1 1 0.75

ii d

ia αβ
α

− + − −
= = − − 

 (220)

It follows that

()

()

()

1

2

2

3

3

1 0.75
2 2

1 0.75
1 0.75

2 3.5
1 0.75
1 0.75

2 4.625
1 0.75

a

a

a

−
= =

−
−

= =
−
−

= =
−

 (221)

Incidentally, since d = 1 for this example, the step response coefficients with a smaller d have a

value of zero and can thus be ignored in the summation.

 In the next step, the settling time is calculated. For a converging geometric series (implies

that the process of interest is stable), the value to which the series converges is given by

 2 8
1 1 0.75pK a β

α∞= = = =
− −

 (222)

This gives the settling time for the first value for which the process lies in the interval 0.975×8 and

1.025×8. Since the process under consideration has no oscillations, only the lower limit is of

interest to us. Given that the settling time is equal to the value of i in Equation (220), we get

11 0.975

1 1

n dα ββ
α α

− + −
= − − 

, (223)

which can be solved for n to give

 ln 0,025 1
ln

n d
α

= + − (224)

In our case, we obtain

 ln 0,025 1 1 12,8 13
ln 0,75

n = + − = = (225)

Note that n is always an integer, so we need to round the resulting value up to the nearest integer

value.

 The 3×3 dynamic matrix 𝒜𝒜 is then

 189

1

2 1

1

1 1

0 0
2 0 0

0 3.5 2 0
4.625 3.5 2

p p p m

a
a a

a
a a a− − +

 
       = =       
  



 

  

 



 (226)

This gives

2 0 0 1 0 0 2 0 0 1 0 0
3.5 2 0 0 1 0 3.5 2 0 0 1 0

4.625 3.5 2 0 0 1 4.625 3.5 2 0 0 1

38.640 625 23.1875 9.25
23.1875 17.25 7

9.25 7 5

T

T

       
       + = +       
              
 
 =  
  

  

 (227)

The required inverse is then

()
1

1
38.640 625 23.1875 9.25

23.1875 17.25 7
9.25 7 5

0.134 046 0.184 200 0.009 896
0.184 200 0.387 349 0.201518

0.009 896 0.201 518 0.463 818

T

−

−
 
 + =  
  

− 
 = − − 
 − 

  

 (228)

For the controller gain, we obtain the result

() 1

0.134 046 0.184 200 0.009 896 2 0 0 1 0 0
0.184 200 0.387 349 0.201518 3.5 2 0 0 1 0

0.009 896 0.201 518 0.463 818 4.625 3.5 2 0 0 1

0.268 091 0.100 759 0.004 948
0.368 400 0.129

T T T
C

T

K
−

= +

−     
     = − −     
     −     

−
= −



    

997 0.100 759
0.019 792 0.368 400 0.268 091

 
 
 
 − 

 (229)

The reference signal for the next three sample periods is

1
1
1

r
 
 =  
  



 (230)

 190

The predicted uncontrolled position will be equal to the steady state value, i.e. zero since no control

has been made. This implies that

 *

0
0
0

y
 
 =  
  



 (231)

The controller action is then

()*

0.268 091 0.100 759 0.004 948 1 0
0.368 400 0.129 997 0.00 759 1 0

0.019 792 0.368 400 0.268 091 1 0

0.363 902
0.137 644
0.080 517

C Cu K e K r y∆ = = −

− −   
   = − −   
   − −   
 
 = − 
 − 

 

   

 (232)

Only the first controller action Δu1 = 0.363 902 will be implemented. At the next time point,

Equation (232) will be recomputed using the new values for r and y*.

 For a multivariate system, the vectors and matrices become “supervectors” and

“supermatrices”, meaning that a vector consists of many vectors, for example

1

h

u
u

u

∆ 
 ∆ =  
 ∆ 









 (233)

where iu∆  is the input vector for the ith input. Let us consider a MIMO System with s outputs and

h inputs. This gives a dynamic matrix 𝒜𝒜 with the following form

11 1

1

h

s sh

 
 =  
  



 



 


 
 (234)

where 𝒜𝒜ij is the dynamic matrix between the jth input and ith output. From Equation (213), it

follows that

 ()*
, , , , ,

1 1

h n

i t l i t ij k ij l k j t k
j k

y y a a u+ + −
= =

= − − ∆∑∑ (235)

and

 191

 ()*

1
, 1, 0,1,..., 1

ps

j ji i i
i

u k r y j km k h
=

∆ = − = + = −∑ (236)

where aij, k is the kth coefficient of the step response for the process between the jth input and ith

output and Δuj, t – k is the change in the control action for the jth input at time point t − k.

Section 5.5: Advanced Control Strategies
 In addition to the control strategies mentioned so far, there exist various useful strategies

that can be combined with the aforementioned approach to obtain a better result. Such methods

include the Smith predictor, deadbanding, squared control, ratio control, input position

control, and characterisation of nonlinearities.

Section 5.5.1: Smith Predictor
 The Smith predictor is an approach that seeks to minimise the effect of time delay on the

control strategy. It is useful when there is a larger time delay in the system that needs to be dealt

with. The control strategy for this approach is shown in Figure 83.

Figure 83: Block Diagram for Smith Predictor Control

Section 5.5.2: Deadbanding and Gain Scheduling
 Deadbanding refers to the idea that when the control error is within some band of the

reference point, then there is no need to perform additional control. Deadbanding means that as

long the value is within the band then no control action will be made. In turn, once the error strays

outside the deadband, then control will be performed. Mathematically, this can be written as

 0
otherwise

t db
t

c

K
u

G
ε <

= 


 (237)

 192

where Kdb is the deadband constant. The deadband can be specified as either some fixed value of

the setpoint (for example, within 5°C of the setpoint) or as a percentage (within 5% of the setpoint).

Deadbanding is useful when tight control is not desired, that is, small deviations are permissible.

It is often used with level control for surge tanks as these will often need to maintain a general

level rather than a specific value. Furthermore, the controller can be made more aggressive outside

the band to quickly drive the system to the desired value.

 A more generalised approach to deadbanding is called gain scheduling, where the

controller gain changes depending on the value of the scheduling variable. Most often, the domain

of the scheduling variable is partitioned into different regions. For each region, a different

controller gain may be assigned. Mathematically, this can be written as

,1 ,1

,2 ,1 ,2

, ,n

c t gs

c gs t gs
t c

c n gs t

K s K
K K s K

u G

K K s

<
 ≤ <= 

 <

 

 (238)

where Kc, i is the controller gain for the ith region, Kgs, i is the ith scheduling limit, and st is the

scheduling variable. This approach allows for a nonlinear process to be controller with a series of

linear controllers, which would not be possible with a single controller.

Section 5.5.3: Squared Control
 Squared control is useful if it is desired to penalise large deviation from the setpoint more

strongly than those close to the setpoint. This control law can be written as

 () 2signt c t tu K e e= (239)

where sign is the sign function that returns −1 if et is negative, 0 if the value is zero, and 1 otherwise.

Section 5.5.4: Ratio Control
 In certain systems, it may be desirable to keep two variables in a constant ratio, for example,

in a mixing process, to keep the composition of the mixture constant, the ratio between the

flowrates of the two inlets should be maintained constant. In such cases, we can implement ratio

control to make sure that the ratio, R, is maintained at the desired value. A schematic for ratio

control is shown in Figure 84. The ratio control is implemented by the multiplication block that

takes the measured value of the solids and multiplies it by the desired ratio set by the VC controller.

 193

 When implementing ratio control, the ratio itself should not be controlled, but rather the

ratio controller should set the setpoint for one of the variables using the ratio, for example, if R =

u1 / u2, then we could set u2 = Ru1 and use this u2 as the setpoint to the u2 controller. In all cases,

division should be avoided since if one of the variables becomes zero, this will then cause an error.

As well, it should be noted that ratio control is implemented using the absolute values of the

variables and not their deviational values as is common with other forms of control.

Figure 84: Ratio Control with Trim Feedback Control

 Ratio control is useful when it is desired to control some intensive (amount-invariant)

variable, such as composition, density, viscosity, or temperature, using extensive (amount-

varying) variables, such as flowrates. Note that when implementing ratio control, we need to be

able to scale all extensive variables by the same amount and keep all independent intensive

variables constant. Thus, for example, a heat exchanger cannot be effectively controlled by ratio

control, since it is not feasible to change the surface area during operation. One solution to the

problem of keeping all independent intensive variables constant is to implement a form of feedback

control on the ratio itself. Such control is often called feedback trim control. It shown using dashed

lines in Figure 84, where the ratio is set based on the measured and desired values for y. Another

advantage of ratio control is that it does not require a model to implement meaning that we can

obtain feedforward-like control without requiring any models of the system.

VC ys
ym

×

R = (F2 / F1)s

Solids (F1)
FC

F2s

F2m
Valve

Water (F2)

Product (y)

Process

 194

Section 5.5.5: Input-Position Control
 Input-position control, also called valve-position control, allows controlling multi-input,

single-output systems using more advanced methods. In this control strategy, it is normally

assumed that there are two inputs: a fast-acting but expensive (or otherwise restricted) input, u1,

and a slow-acting but cheap (or otherwise abundant) input, u2. An example would be cooling an

exothermic reactor using both coolant (expensive, but fast) and cooling water (abundant, but slow).

In general, the cheap input is used for controlling the process, but the expensive input can be used

to improve the speed of response. Basically, at steady state, it is assumed that the expensive input

will attain some steady-state value u1s, so that the overall process will be controlled by u2. A

schematic of this control strategy is shown in Figure 85.

Figure 85: Input-Position Control

 Since input-position control can be treated as a modification of cascade control, the fast

loop given by u1 is tuned first and then the slower loop given by u2. This also implies that the rule

regarding time constants between the loops for cascade control should hold, that is, τc2 / τc1 should

be between 4 and 10. In general, both controllers are designed as simple PI controllers without any

anti-windup features.

−

Process

Gc1

y

u1 ys

Gc2

u1s − u2

 195

Section 5.5.6: Nonlinear Characterisation
 Nonlinear characterisation allows nonlinearities present in actuators to be dealt with

separately from the controller itself. The nonlinear characterisation block converts the linear

controller output into the nonlinear actuator output, for example, if the controller gives a flow rate,

then this block can convert the flow rate into the corresponding value. Very often, this block is a

look-up table with interpolation between the given data points. Such an approach can allow for the

system to be focused on those areas that are highly nonlinear.

Section 5.5.7: Bumpless Transfer
 Bumpless transfer is the smooth transfer from one control mode or strategy to another

without causing any visible, undesirable changes (bumps) in the process variables. This often

arises from a mismatch between the requested input values in the two modes. In general, bumpless

transfer is ensured using an appropriate anti-wind-up method. However, there is one case, where

it may be necessary to take special action and that is when transferring from manual to automatic

mode. In these cases, the automatic input value will not be exactly equal to the manual value

meaning that it can lead to a bump in the output. The solution is to match the current manual value

with the expected automatic value. As well, it may be helpful to reset the integration so that it

equals zero at the moment of the switch.

Section 5.6: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 5.6.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) In open-loop control, the controller uses the measured output to determine how to control

the process.

 196

2) In closed-loop control, it is important to be able to measure the output.

3) Plant-model mismatch can derail open-loop control.

4) Closed-loop control should provide stable, biasfree, and robust control.

5) A state-space controller requires measurement of the states.

6) In state-space control, the separation principle implies that we can separate the design of

the observer and controller.

7) A proportional-only controller will always provide biasfree control.

8) The integral term considers the effect of future values on the system.

9) Integral wind-up occurs when the disturbance changes a lot causing the manipulated

variable to fluctuate.

10) Derivative kick occurs in PID controllers when there is a step change in the setpoint.

11) Increasing the absolute value of Kc in a PI controller will cause the system to become more

stable.

12) The proportional term in a PID controller considers the current values of the error.

13) A PI controller can be tuned using the IMC method.

14) The rise time of a closed-loop system can be used to determine how well a controller

regulates the disturbance.

15) The settling time is defined as three times the closed-loop time constant.

16) For regulatory controller performance, it is easy to specify the desired values.

17) Feedforward control seeks to minimise the effects of unmeasurable disturbances on the

process.

18) A decoupler is a type of feedforward control.

19) In feedforward control, it may be necessary to remove terms such as time delay or unstable

zeros from the final controller.

20) Interlocking occurs when a series of discrete events must be fulfilled before some action

can occur.

21) Batch control is an example of sequential control.

22) Supervisory control allows us to create a network of controllers each of which can be

controlling another controller.

23) In cascade control, the master controller should always be faster than the slave controller.

 197

24) Model predictive control allows constraints and economic conditions to be considered in

controlling the process.

25) Model predictive control requires good models.

Section 5.6.2: Short Questions
26) Describe in words how the following control works. What kind of methods are being used?

What are the objectives and what are some potential disturbances?

a. An elevator reaching a given floor.

b. Temperature control in a home oven.

c. Temperature control in a fridge/freezer.

d. Driving a car on the highway.

e. Driving a car on the highway using cruise control.

27) Design PI controllers using the formulae in Table 26 for the following processes:

a. 152
30 1

s
pG e

s
−=

+

b. 152
30 1

s
pG e

s
−−

=
+

c. 1502
3 1

s
pG e

s
−=

+

d. 155
0.5

s
pG e

s
−−

=
−

You should use the smallest τc possible.

28) Design PID controllers using the formulae in Table 27 for the same processes as in

Question 27). You should use the smallest τc possible.

29) Simulate the controllers from Questions 27) and 28) for a setpoint change of +2 and −2.

You can assume that there is no disturbance affecting the process. Explain what you see.

Which controller would you recommend for each process? Why?

30) Design dynamic feedforward controllers for the following processes.

a. 15 52 2,
30 1 15 1

s s
p dG e G e

s s
− −−

= =
+ +

b. ()
()()

15 202 5 1 2,
30 1 25 1 5 1

s s
p d

s
G e G e

s s s
− −− −

= =
+ + +

 198

c.
()()

52 2,
3 1 10 1 15 1

s s
p dG e G e

s s s
− −−

= =
+ + +

31) Design static feedforward controllers for the processes in Question 31). Simulate and

compare the performance of the two types of feedforward controllers for a setpoint change

of +2. You can assume that the disturbance is driven by Gaussian, white noise.

32) Consider a cascade loop with the following two transfer functions:

 20
, slave , master

2 2,
3 1 30 1

s s
p pG e G e

s s
− −−

= =
+ +

 (240)

Design appropriate PI controllers for this cascade loop. What aspects should you take into

consideration when designing this controller? Simulate the system.

33) Consider the same situation as in Question 32), but now you also wish to ensure that the

slave loop does not have any oscillations and reaches the setpoint as fast as possible. Using

simulations, design appropriate controllers for this system.

34) You need to design a controller for a process whose model has been determined

experimental to be

 101ˆ
15 1

s
pG e

s
−=

+
 (241)

However, you do not know how well the experimental model reflects the true process.

Using the IMC tuning method, design a PID controller assuming that the experimental

model is correct. Knowing that the model may be incorrect, do not pick a too small τc.

Simulate your model assuming Equation (241) is correct. If your controller is satisfactory,

then try simulating the closed-loop assuming that the true process model is given by

a. Small Mismatch: 111.1
16 1

s
pG e

s
−=

+

b. Large Mismatch in Gain: 92
14 1

s
pG e

s
−=

+

c. Large Mismatch in the Time Constant: 101.05
4 1

s
pG e

s
−=

+

d. Large Mismatch in Time Delay: 251
14 1

s
pG e

s
−=

+

If your system is unstable, design a new controller that makes your system stable using

both the experimental model and the true model. What conclusions can you draw about

the controller design?

 199

35) For the following two-input, two-output system, design a decoupler between u2 and y1. The

PID couplings are y1 with u1 and y2 with u2.

 () ()()
()

()() ()

15 10

1 1

2 225 30

10 2
10 1 15 1 10 1

5 10 1 5
15 1 20 1 10 1

s s

s s

e e
s s sy u

y us
e e

s s s

− −

− −

− 
 + + +    =    +    

+ + −  

 (242)

36) Simulate the system given by Equation (242) with and without the decoupler. What is the

effect of the decoupler? The PI controllers are given as

()

()

1 1 1

2 2 2

1 11
10 25
1 11
5 40

r y
s

r y
s

ε

ε

 = + − 
 
 = + − 
 

 (243)

37) Using the DMC method, design a model predictive controller for the following system:

10

11 0.25t t
zy u

z

−

−=
−

 (244)

38) Using the DMC method, design a model predictive controller for the following system:

5 15

1 1

10 102 2

2 2
10 1 5 1

5 4
15 1 10 1

s s

s s

e ey us s
y ue e

s s

− −

− −

− 
    + +=     

    
 + + 

 (245)

Assume that the sampling time is 1 s.

 200

Chapter 6: Boolean Algebra
 Boolean algebra is the algebra of binary variables that can only take two values, for

example, true and false or 1 and 0. It is very useful for solving problems in logic and is a

requirement for good programming. George Boole (1815 – 1864) is the discoverer of Boolean

algebra.

 A Boolean expression is a group of elementary terms that are linked with connectors

(operators). The mathematical space in which a Boolean algebra is defined will be denoted using

a double-struck B (𝔹𝔹, U+1D539).

Section 6.1: Boolean Operators
 In Boolean algebra, there are 5 operators: conjunction, disjunction, negation, implication,

and equivalency. These 5 operators are described in Table 29. It should be noted that negation is

a unary operator, that is, it only requires a single variable. All other operators are binary

operators, that is, they require two variables. When we write a Boolean expression, it is common

to write conjunction as multiplication and disjunction as addition, that is, a ∧ b is written as ab

and a ∨ b as a + b.

Table 29: Boolean operators, where a, b ∊ 𝔹𝔹

Operator Symbol Statement
Other

Representations

Word

Representation

Conjunction ∧ (U+2227) a ∧ b a·b, ab,

a AND b,

a & b

AND

Disjunction ∨ (U+2228) a ∨ b a + b, a OR

b, a || b

OR

Negation ¬ (U+00AC) ¬b, b′ b̄ NOT b, !b NOT

Implication → (U+2192) a → b — IF-THEN

Equivalence ↔ (U+2194) a ↔ b — IF-&ONLY-IF

 201

 All Boolean expressions can be written using ∧, ∨, ¬, 0 and 1. The precedence of the

operators is such that ∧ has a higher precedence than ∨, for example, a ∨ b ∧ c = a ∨ (b

∧ c).

Section 6.2: Boolean Axioms and Theorems
 For the Boolean space 𝔹𝔹 = {0, 1} with variables a, b, and c and operators ∧ und ∨, the

following axioms hold:

1) Closure

a. a ∨ b ∊ 𝔹𝔹

b. a ∧ b ∊ 𝔹𝔹

2) Commutativity

a. a ∨ b = b ∨ a

b. a ∧ b = b ∧ a

3) Distributivity

a. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

b. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

4) Identity

a. a ∨ 0 = a

b. a ∧ 1 = a

5) Complementation

a. a ∧ ¬a = 0

b. a ∨ ¬a = 1

6) Annihilator

a. a ∨ 1 = 1

b. a ∧ 0 = 0

7) Associativity

a. (a ∧ b) ∧ c = a ∧ (b ∧ c)

b. (a ∨ b) ∨ c = a ∨ (b ∨ c)

8) Idempotence

a. a ∨ a = a

 202

b. a ∧ a = a

9) Involution

a. ¬¬a = a

10) Absorption

a. a ∧ (a ∨ c) = a

b. a ∨ (a ∧ c) = a

With these axioms, it is possible to define a complete Boolean algebra.

 An important law is De Morgan’s Law:

 ¬(a ∨ b) = ¬a ∧ ¬b (246)

 ¬(a ∧ b) = ¬a ∨ ¬b (247)

This law can be used to simplify many complex Boolean expressions or convert between two

representations.

Section 6.3: Boolean Functions
 A Boolean function is a function where all variables are Boolean variables, for example,

 F = f(X1, X2), where X1, X2 ∊ 𝔹𝔹 (248)

Typically, a Boolean variable is shown using a capital letter.

 A truth table shows the values of the expression for each combination of values of the

variables, that is, each possible input value. This implies that a truth table will have 2N rows, where

N is the number of variables (input variables), for example, for two variables, we will have 22 = 4

rows and for four variables 24 = 16 rows.

 The truth table for the Boolean AND operator is shown in Table 30 (left). Since the AND

operator requires that both inputs be TRUE, there is only a single row that evaluates to TRUE. For

the Boolean OR operator, the truth table is shown in Table 30 (right). Since the OR operator requires

that at least one of the inputs be TRUE, there are three rows that evaluate to TRUE and one, where

both inputs are FALSE, that evaluates to FALSE.

 203

Table 30: Truth table for the Boolean Operators (left) AND and (right) OR

AND OR

A B AB A B A+B

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

Example 31: Truth Table

 What is the truth table for the Boolean function F = AB′?

Solution

 Since we have two variables (A and B), N = 2. This means that there will be 22 = 4 rows in

the truth table.

A B B′ F

0 0 1 0

0 1 0 0

1 0 1 1

1 1 0 0

 There are two common representations for Boolean functions: the sum-of-products (SOP)

form and the product-of-sums (POS) form.

Section 6.3.1: Sum-of-Products Form and Minterms
 The sum-of-products form is a representation of a Boolean function where all products (or

terms) are products of single variable, for example, F = ABC + B′CDE′ + A′B′ or

F = BCDE + AB′E + HI′ + C. Using the axioms, it is possible to convert all functions to a

sum-of-products form.

Example 32: Sum-of-Products Form

 Which of the following functions are in the sum-of-product form:

1) F = ABC + B′CDE′

 204

2) F = (A + B)C

3) F = ABC + B′(D + E)

4) F = BC + DE′?

Solution

 Only 1) and 4) are in the sum-of-product form, since these representations are a sum of the

products of individual variables. In 2) and 3), we have a product of many variables (A and B) in 2)

and (D and E) in 3).

Example 33: Converting into the Sum-of-Products Form

 Convert this function into the sum-of-products form: F = (A + B)C.

Solution

 Using the distributive property, we can obtain the sum-of-products form, that is,
 F = (A + B)C = AC + BC

 A minterm is a row in the truth table where the value is “1”. The symbol for a minterm is

mi, where i is the decimal row number. The compact sum-of-products form is Σm(i,…), where i is

the row number of the minterms. When the minterms are converted into a functional representation,

each variable, whose value is 1, will be written in its plain form, while each variable, whose value

is 0 will be written in its negated form, for example, for m2, the minterm with the value 0102, the

term will be given as A′BC’.

Example 34: Compact Sum-of-Products Form

 What is the compact sum-of-products form for the function F = (A + B)C.

Solution

 First, we require a truth table. Then, we can simply find the rows with a value of 1.

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

 205

A B C F

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

 The rows in red are the rows, where the function has a value of 1. We can find the decimal

row number simply by converting the binary representation into a decimal value, that is, for the

first red row (011)

 0112 = 2 + 1 = 3

and

 1012 = 22 + 1 = 5

 1112 = 22 + 2 + 1 = 7

Thus, the compact sum-of-products form is

 Σm(3, 5, 7).

It should be noted that the ordering of the Boolean variables is important. When the ordering is

changed, then the compact sum-of-products form will also change.

Section 6.3.2: Product-of-Sums Form and Maxterms
 The product-of-sums form is a representation of a Boolean function, where all the factors

are sums of individual variables, for example, F = (A + B + C)(B′ + C + D)E′ or

F = (A + B)C. Using the axioms, it is possible to convert all functions into a product-of-sums

form.

Example 35: Product-of-Sums Form

 Which of the following Boolean functions are in the product-of-sums form:

1) F = ABC + B′CDE′

2) F = (A + B)C

3) F = (A + B + C)B′(D + E)

4) F = BC + DE′?

 206

Solution

 Only 2) and 3) are in the product-of-sums form, since these representations are products of

sums with individual variables. In 1) and 4), we have a sum of many variables (A, B, and C) in 1)

and (B, C, D, and E) in 4).

Example 36: Converting into the Product-of-Sums Form

 Convert the function F = AC + BC into its product-of-sums form.

Solution

 Using the distributive property, we can obtain the product-of-sums form, that is,
 F = AC + BC = (A + B)C

 A maxterm is a row in the truth table with the value of 0. The symbol for a maxterm is Mi,

where i is the decimal value of the row. The compact product-of-sums form is ΠM(i,…), where i

is the decimal row value of the corresponding maxterm. When maxterms are converted into a

functional representation, then each variable with the value of 0 is converted as written, while each

variable with a value of 1 is written in its negated form, for example, M2, the maxterm with the

value 0102, would be written a A + B’ + C.

Example 37: Compact Product-of-Sums Form

 What is the compact product-of-sums form for the function F = (A + B)C.

Solution

 First, we require the truth table for the function. Then, we can easily find the rows with a

value of 0.

A B C F

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

 207

A B C F

1 0 1 1

1 1 0 0

1 1 1 1

 The rows in red are the rows where the function has a value of 0. We can obtain the row

number by converting the binary values into a decimal representation, for example, for the first

row (000)

 0002 = 0 + 0 + 0 = 0

and

 0012 = 0 + 0 + 1 = 1

 0102 = 0 + 2 + 0 = 2

 1002 = 22 + 0 + 0 = 4

 1102 = 22 + 2 + 0 = 6

Therefore, the compact product-of-sums form is

 ΠM(0, 1, 2, 4, 6).

It is important to note that the order of Boolean variables is important. When the order is changed,

then the compact product-of-sums form will also change. Also, it is obvious that any terms in the

sum-of-products form are not in the product-of-sums form!

Section 6.3.3: Don’t-Care Values
 It can happen that a given logical situation cannot occur. Such cases are often denoted using

* or × in the truth table. It is then up to the engineer to determine which value (0 or 1) is best.

Such cases are called don’t-care values.

Example 38: Don’t Cares

 What is the truth table for the Boolean function F = AB, when the case A = B = 0 is

not possible?

Solution

 The truth table is

A B F

0 0 ×

 208

A B F

0 1 0

1 0 0

1 1 1

Section 6.3.4: Duality
 Duality in Boolean algebra has the following definition:

• Replace all AND by OR.

• Replace all OR by AND.

• Replace 0 by 1.

• Replace 1 by 0.

Duality is an important property when we are simplifying or minimising an expression. Often the

dual of the representation can be easier to work with.

Example 39: Dual of a Function

 What is the dual of the function F = (A + B)C?

Solution
 F = (A + B)C

 FD = [(A + B)C]D

 FD = [(A + B)]D + C D

 FD = AB + C

The dual of a function is often represented by a superscript D.

Section 6.4: Minimising a Boolean Function
 When a logical expression is to be implemented using electronic gates, it is often important

to minimise the expression, that means, that the number of required gates is minimised. Often,

each Boolean operation requires a separate logic gate. There are three ways to minimise a Boolean

function:

1) Manually using the axioms and theorems of Boolean algebra;

2) Using a Karnaugh map; and

 209

3) Using the Quine-McCluskey algorithm, which is often used for large (greater than 10

variables) Boolean functions.

In general, the Karnaugh map is the best method for minimising a Boolean function.

Section 6.4.1: Karnaugh Map
 A Karnaugh map is a visual algorithm that minimises a Boolean function so that the largest

number of groups of 0 and 1 are found. We search for groups of 0 to find the minimal product-

of-sums representation and groups for 1 to find the minimal sum-of-products representation. The

0’s and 1’s can only be arranged in groups of 2n, where n ∊ ℕ. There are simple Karnaugh maps

for 2, 3, 4, and 5 variables.

 The Karnaugh map for two variables is shown in Figure 86. The diagram is created so that

on one axis lies one variable and on the other axis the other variable. Then, for the minimal sum-

of-products representation, we circle the largest group with a size that is a power of 2 that covers

as many of the 1 as possible.

Figure 86: Karnaugh map for the function F = B′

 The Karnaugh map for three variables is shown in Figure 87. The diagram is created so

that on one axis lies one variable and on the other axis the remaining two variables. Each row and

column has one of the two possible values (0 or 1) so that each adjacent row or column only differs

by one entry, for example, when the row is 01, then the next row must be 11, since only one entry

should be changed.

 210

Figure 87: Karnaugh map for the function F = Σm(0, 3, 5)

 The Karnaugh map for four variables is shown in Figure 88. Each row and column has two

variables. The Karnaugh map for five variables is shown in Figure 89. When we are looking for 1,

it is common to not bother with writing the 0.

Figure 88: Karnaugh map for the function F = A′BD + B′C′D′ + C

Figure 89: Karnaugh map for the function F = ΠM(2, 5, 7, 9, 13, 15, 16, 17, 18, 20, 24, 25, 27)

 211

 The general procedure for finding the minimal sum-of-products form is:

1) Construct the Karnaugh map.

2) Circle the 1 into the largest groups possible.

3) Write the corresponding sum-of-product form based on the circled groups. For each group,

we only write the variables whose value is not changed. Variables with a value of 0 are

negated, for example, in Figure 88, for the loop in the first row, A varies between 0 and 1,

which means that it is ignored. The other variables remain constant and have a value of 0.

Thus, we write the negated forms of these variables, that is, B′C′D′.

 The general procedure for finding the minimal product-of-sums form is:

1) Construct the Karnaugh map.

2) Circle the 0 into the largest groups possible.

3) Write the corresponding sum-of-product form for F′ based on the circled groups. For each

group, we only write the variables whose value is not changed. Variables with a value of

0 are negated, for example, in Figure 88, for the loop in the first row, A varies between 0

and 1, which means that it is ignored. The other variables remain constant and have a value

of 0. Thus, we write the negated forms of these variables, that is, B′C′D′.

4) Convert F′ to F.

Of course, we can look for the loops using trial and error, but we have no guarantee that we will

find the best loops. Therefore, we wish to find a procedure that we can always find the best loops.

 Before we can describe such a procedure, we need to define certain words. An implicant

is a single 1 or group of 1’s. A prime implicant is an implicant that cannot be further combined,

that means, that a single 1 creates a prime implicant if there are not adjacent 1. Two adjacent 1’s

create a prime implicant if they cannot be combined into a group of four 1’s, while four adjacent

1’s create a prime implicant if they cannot be combined into a group of eight 1’s. Figure 90 shows

the difference between an implicant and a prime implicant. We can state that a sum-of-products

form with nonprime implicants is not a minimal form, but not all prime implicants will necessarily

be required for the minimal sum-of-products form. An essential prime implicant is a minterm

that is covered only by a single prime implicant. All essential prime implicants must be in the

minimal sum-of-products form. Thus, we can say that the objective is to find all the essential prime

terms. Figure 92 shows the procedure for minimising a Karnaugh map.

 212

Figure 90: Prime implicant and implicant

Example 40: Karnaugh map

 For the Karnaugh map shown in Figure 91, find the minimal sum-of-products form.

Figure 91: Karnaugh map for Example 40

Solution

1) We start with the first 1 (cell: 0000). The largest group that we can

find is four 1. This group is an essential prime implicant.

2) The next unlooped 1 is in the cell 0010. This 1 can only be combined

with the 1 in cell 0000. This group is also an essential prime implicant.

 213

3) The next free 1 is in cell 0111. Here we have two possibilities. We

could make the loop with either cell 0101 or cell 1111. This implies that

we have a prime implicant.

4) The next free 1 is in cell 1011, which we can combine with cell 1111.

This is the only possibility for combining this cell. Therefore, this group

is also an essential prime implicant.

5) The last step is to write the minimal sum-of-product form. First, we will write all the essential

prime implicants, that is, A′B′D′, A′C′ and ACD. Then, we must select one of the remaining

prime implicants (A′BD or BCD). There is no difference between which of these two prime

implicants we select. The minimal sum-of-products form is then

 F = A′B′D′ + A′C′ + ACD + {A′BD or BCD}

Figure 92: Procedure for minimising a Karnaugh map

 214

Section 6.5: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 6.5.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) In Boolean algebra, there are three possibilities: −1, 0, and 1.

2) In Boolean algebra, conjunction is denoted using ∧.

3) In Boolean algebra, negation is denoted using ∨.

4) The Boolean statements ¬b and b′ have the same meaning.

5) The Boolean operator ∧ is a unary operator.

6) If a = 1, b = 0, and c = 1, then the Boolean statement a ∨ b ∧ c evaluates to

“false”.

7) Boolean algebra does not obey the law of associativity.

8) Boolean algebra obeys the law of distributivity.

9) De Morgan’s Law states that (A + B)′ ≡ A′B′.

10) The function F = (A + B)C is in a sum-of-products form.

11) The function F = ABC + A′B′C′ is in a sum-of-products form.

12) The function F = (A + B)C is in a product-of-sums form.

13) The function F = ABC + A′B′C′ is in a product-of-sums form.

14) For a function with the representation F = Σm(1, 3, 5), the minterm m2 is equal to 1.

15) For the function with the representation F = ΠM(1, 3, 5), the maxterm M3 is equal

to 0.

16) The dual of F = A + BC is FD = A(B + C).

17) We must always assign a “don’t care” a value of 1.

18) All prime implicants are in the minimal sum-of-products form.

 215

19) All essential prime implicants are in the minimal sum-of-products form.

20) A Karnaugh map can be used to determine the minimal product-of-sums form.

Section 6.5.2: Short Questions
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator

combined with pen and paper.

21) Simplify the following function Z = (A + B)(A + BC)(B + BC). Using a truth

table, show that the original and simplified functions are the same.

22) Convert the following functions into the sum-of-products form:

a. Z = (A + B)(A + C)(A + D)(BDC + E)

b. Z = (A + B + C)(B + C + D)(A + C)

23) Convert the following functions into a product-of-sums form:

a. Z = W + XYZ

b. Z = ABC + ADE + ABF

24) Find the compact product-of-sums form for the following functions:

a. F(A, B, C) = A′.

b. F(A, B, C, D) = A′B′ + A′B′(CD + CD′).

25) Find the compact sum-of-products form for the following functions:

a. F(A, B, C) = (A′ + B + C)(A + C).

b. F(A, B, C, D) = A′B′ + A′B(CD + CD′).

26) Using a Karnaugh map, find the minimal sum-of-products form for the following functions:

a. F(A, B, C, D) = A′B′ + A′B(CD + CD′).

b. F(A, B, C, D) = Σm(0, 1, 2, 3, 6, 7).

c. F(A, B, C, D) = Σm(0, 4, 5, 6, 8, 9, 10, 11).

d. F(A, B, C, D) = Σm(10, 12, 14) .

27) For the Karnaugh map shown in Figure 93, find all prime implicants and essential prime

implicants.

 216

Figure 93: Karnaugh map for Question 27

1 0

CD
AB 00 01 11 10

10

11

01

00 0 0

1 1 0 0

0 1 0 0

0 1 1 0

 217

Chapter 7: PLC Programming
 When using a PLC, it is necessary to transfer the required information to the PLC using

some methods. There are two possible approaches. We could use an ad-hoc approach that depends

on the PLC or situation or we could use some type of standard. It is obvious that using standards

is better since we can re-use the information, for example, the same code can be re-used for

different cases without having to worry about compatibility problems. The IEC/EC 61131 is the

standard for PLC programming and will be described in the following sections. This standard

consists of five different programming languages and a common set of rules that apply to all the

programming languages.

Section 7.1: The Common IEC-Standard Hierarchy
 The foundational component of the IEC 61131-3 standard is the programme organisation

unit (POU). The POU is the smallest self-standing component of a PLC programme. There are

three types of POUs:

1) Function (FUN): A function is a parametrisable POU without any static variables or state

information (memory) that given the same input parameters will give the same output.

2) Function Block (FB): A function block is a parametrisable POU with static variables (that

is, memory). Given the same input values, a function block can give different values that

depend on the internal function block values, as well as external values.

3) Programme (PROG): A programme represents the “main programme.” All the variables

for the programme and their physical addresses must be specified. Otherwise, a programme

is like a function block.

Programmes and function blocks can have input and output parameters, while functions only have

input parameters and the function value as the return value. A POU consists of three parts:

1) Declaration of the POU type with POU name (and data type for functions). The

possibilities are:

a. Function: FUNCTION Name DataType … END_FUNCTION

b. Function block: FUNCTION_BLOCK Name … END_FUNCTION_BLOCK

c. Programme: PROGRAM Name … END_PROGRAM

2) Declaration of variables

 218

3) Remainder of the POU with the instructions.

Before a POU can be used, each programme must be associated with a task. Before we can load a

task into the PLC, we must first define:

1) Which resources do we need? In the standard, a resource is defined as either a CPU (central

processing unit) or a special processor.

2) How is the program executed and with what priority?

3) Do variables have to be assigned to physical PLC addresses?

4) Do references to other programs have to be made using global or external variables?

The priority of a task shows how the given task should be executed. There two important parts to

define the priority:

1) Scheduling: Scheduling focuses on how the programme is executed. There are two

possibilities: cyclically, that is, the programme will be continually executed; and on

demand, that is, the programme will only be executed as need.

2) Priority Type: The priority type represents whether the programme can be interrupted.

Again, there are two possibilities: nonpre-emptive and pre-emptive. A nonpre-emptive

task must always be completed before another task can be started. A pre-emptive task can

be stopped if a task higher priority occurs. Figure 95 shows the two possibilities. As well,

the priority level needs to be set. This ranges from 0 for the highest priority to 3 for the

lowest priority.

Defining the above components creates a configuration. Figure 94 shows a visual representation

of the components of a configuration and how these are combined together.

 The call hierarchy is defined as follows: a programme can only call function blocks and

functions. A function block can only call other function blocks and functions, while a function can

only call other functions. Recursion cannot be implemented in this standard. POUs cannot call

themselves nor can they be called as a result of a chain of POUs.

 219

Figure 94: Visual representation of a configuration

Figure 95: Pre-emptive and nonpre-emptive tasks

Section 7.2: Types of Variables
 In the IEC standard, there are many different types of variables:

1) Variables (VAR): These are general variables that can be used by all POUs.

2) Input Variables (VAR_INPUT): The actual parameter will be transferred by value to the

POU, that is, the variable itself is not passed to the POU, but only a copy. This ensures that

Configuration

 …

Resource Resource

Task

Task

Task

POU

Function Block

Function Block

Function Function

POU
…

POU
…

POU
…

 220

the input variable outside of the POU cannot be changed. This concept is also often called

call by value. All POUs can use this type.

3) Output Variables (VAR_OUTPUT): The output variable will be returned to the calling

POU as a value. This concept is also called return by value. All POUs can use this type.

4) Input-and-Output Variables (VAR_IN_OUT): The actual parameter will be transferred

to the called POU as a pointer, that is, the location of the variable will be given so that any

changes made to the variable are directly stored. The concept is also called call by reference.

For variables with complex data structures, this can lead to efficient programming.

However, since the variable location is passed, this means that (undesired) changes will

impact the variable even outside the calling function. All POUs can use this type.

5) External Variables (VAR_EXTERNAL): This variable can be changed outside of the POU

using the variable. An external variable is required to have read and write access to a global

variable of another POU within a given POU. It is only visible for POUs that list this global

variable under VAR_EXTERNAL, all others have no access to this global variable. The

identifier and type of a variable under VAR_EXTERNAL must match the corresponding

VAR_GLOBAL declaration in the program. Only programs and function blocks can use this

type.

6) Global Variables (VAR_GLOBAL): A globally declared variable can be read and written

to by several POUs. To do this, the variable must be specified in the other POUs under the

VAR_EXTERNAL with the same name and type.

7) Access Variables (VAR_ACCESS): Access variables are global variables for the

configurations that act as a communication channel between components (resources) of the

configurations. It can be used like a global variable within the POU.

Section 7.3: Variables, Data Types, and Other Common

Elements
 The IEC standard defines common elements that apply to all programmes. These elements

are not only components, but also rules that determine how the elements can be used.

 221

Section 7.3.1: Simple Elements
 Each PLC programme consists of basic elements that are defined as the smallest unit that,

when combined together, build declarations and instructions, which form a complete programme.

These simple elements can be classified into delimiters, keywords, literals, and identifiers.

Section 7.3.1.1: Delimiters
 Delimiters are symbols that separate the individual components from one another. Typical

delimiters include the space, +, the comma (,), and *. Table 31 shows all the delimiters in the IEC

standard.

Table 31: Delimiters in the IEC IEC 61131-3 standard

Delimiter Meaning, Clarification

Space Can be inserted anywhere, except within keywords, literals,

identifiers, directly represented variables, or combinations

of delimiters, such as (* or *). IEC 61131-3 does not

specifically make any statements about tabs and, hence, they

are usually treated as spaces.

End-of-Line At the end of an instruction line in instruction list, in

structured text also permitted within an instruction. Not

permitted within comments in instruction list.

Start of Comment (* Starts a comment (not nestable)

End of Comment *) Ends a comment

Plus + 1. Leading sign of a decimal literal
2. In the exponent of a floating-point literal
3. Addition operator in expressions

Minus - 1. Leading sign of a decimal literal
2. In the exponent of a floating-point literal
3. Negation operator in expressions
4. Year-month-day separator in time literals

Octothorpe # 1. Base-number separator in literals
2. Time-literal separator

Period . 1. Integer / fraction separator
2. Separator within hierarchical addresses of directly

represented and symbolic variables
3. Separator between components of a data structure

(when accessing it)

 222

Delimiter Meaning, Clarification

4. Separator for components of a FB instance (when
accessing it)

e, E Leading character for exponents of floating-point literals

Quotation Mark ' Start and end of strings

Dollar sign $ Start of a special symbol in a string

Prefix for Time literal
t#,T#; d#, D#;

d, D; h, H; m, M;

s, S; ms, MS;

date#, DATE#;

time#, TIME#;

time_of_day#;

TIME_OF_DAY#;

tod#, TOD#;

date_and_time#;

DATE_AND_TIME#;

dt#, DT#

Introductory characters for time literals, combinations of
lowercase and uppercase letters are permitted

Colon : Separator for:
1. Time within time literals
2. Definition of the data type for variable declaration
3. Definition of a data-type name
4. Step names
5. PROGRAM ... WITH ...
6. Function name / data type
7. Access path: data / type
8. Jump label before the next instruction
9. Network name before the next instruction

Assignment (Walrus)

Operator :=

1. Operator for initial value assignment
2. Input connection operator (assignment of actual

parameters to formal parameters when calling the POU)
3. Assignment operator

(Round) Brackets (…) Start and end of:
1. Initial value list, also: multiple initial values (with

repetition number)
2. Range specification
3. Field index
4. Sequence length

 223

Delimiter Meaning, Clarification

5. Operator in instruction list (calculation level)
6. Parameter list when calling the POU
7. Subexpression hierarchy

Square Brackets […] Start and end of:
1. Array index (access to an array)
2. String length (when declaring a string)

Comma , Separator for:
1. Lists
2. Initial-value lists
3. Array indices
4. Variable names (when there are multiple variables with

the same data type)
5. Parameter list when calling a POU
6. Operator in instruction list
7. CASE list

Semicolon ; End of:
1. Definition of a (data) type
2. Declaration (of a variable)
3. Structured text command

Period-Period .. Separator for:
1. Range specifications
2. CASE branches

Percent % Introductory character for hierarchical addresses for directly
represented and symbolic variables

Assignment Operator => Output binding operator (assignment of formal parameters
to actual parameter when calling a PROGRAM)

Comparison >,<; >=, <=;

=, <>

Comparison operators in expressions

Exponent ** An operator in expressions

Multiplication * Multiplication in expressions

Division / Division in expressions

Ampersand & AND operator in expressions

Section 7.3.1.2: Keywords
 In the IEC 61131-3 standard, keywords are the elementary “word”. Normally, keywords

are written in bold. They are standard identifiers that are clearly specified in the IEC 61131-3

standard in terms of spelling and purpose. Therefore, they cannot be used in a user-defined manner

for variable or other names. Capitalisation is not significant for keywords, i.e. they can be written

 224

using all lowercase, all uppercase, or a mixture of the two. In this book, all keywords are shown

in capitals. The keywords include the following possibilities:

1) Names of elementary data types

2) Names of standard functions

3) Names of standard function blocks

4) Names of the input variables for the standard functions

5) Names of the input and output variables of the standard function blocks

6) The variables EN und ENO in the graphical programming languages

7) The operators of the instruction list language

8) The elements of the structure text language and

9) The elements of sequential charts

Table 32 shows all the keywords in the IEC standard.

Table 32: All Keywords in the IEC standard

A

ABS

ACOS

ACTION

ADD

AND

ANDN

ANY

ANY_BIT

ANY_DATE

ANY_DERIVED

ANY_ELEMENTARY

ANY_INT

ANY_MAGNITUDE

ANY_NUM

ANY_REAL ARRAY

ASIN

AT

ATAN

B

BOOL BY BYTE

C

CAL

CALC

CALCN

CASE

CD

CDT

CLK

CONCAT

CONFIGURATION

CONSTANT

COS

CTD

CTU

CTUD

CU

CV

D

 225

D

DATE

DATE_AND_TIME

DELETE

DINT

DIV

DO

DS

DT

DWORD

E

ELSE

ESIF

END_ACTION

END_CASE

END_CONFIGURATION

END_FOR

END_FUNCTION

END_FUNCTION_BLOCK

END_IF

END_PROGRAM

END_REPEAT

END_RESOURCE

END_STEP

END_STRUCT

END_TRANSITION

END_TYPE

END_VAR

END_WHILE

EN

ENO

EQ

ET

EXIT

EXP

EXPT

F

FALSE

F_EDGE

F_TRIG

FIND

FOR

FROM

FUNCTION

FUNCTION_BLOCK

G

GE GT

I

IF

IN

INITIAL_STEP

INSERT

INT

INTERVAL

J

JMP JMPC JMPCN

L

L

LD

LDN

LE

LEFT

LEN

LIMIT

LINT

LN

LOG

LREAL

LT

 226

LWORD

M

MAX

MID

MIN

MOD

MOVE

MUL

MUX

N

N

NE

NEG

NON_RETAIN

NOT

O

OF

ON

OR

ORN

P

P

PRIORITY

PROGRAM

PT

PV

Q

Q

Q1

QU

QD

R

R

R1

R_EDGE

R_TRIG

READ_ONLY

READ_WRITE

REAL

RELEASE

REPEAT

REPLACE

RESOURCE

RET

RETAIN

RETC

RETCN

RETURN

RIGHT

ROL

ROR

RS

S

S

S1

SD

SEL

SEMA

SHL

SHR

SIN

SINGLE

SINT

SL

SQRT

 227

SR

ST

STEP

STN

STRING

STRUCT

SUB

T

T

TAN

TASK

THEN

TIME

TIME_OF_DAY

TO

TOD

TOF

TON

TP

TRANSITION

TRUE

TYPE

U

UDINT

UINT

ULINT

UNTIL

USINT

V

VAR

VAR_ACCESS

VAR_CONFIG

VAR_EXTERNAL

VAR_GLOBAL

VAR_INPUT

VAR_IN_OUT

VAR_OUTPUT

VAR_TEMP

W

WHILE

WITH

WORD

WSTRING

X

XOR XORN

Section 7.3.1.3: Literals
 Literals are used to represent the value of a variable (constant). They depend on the data

types of these variables. A distinction is made between the following three basic types:

1) Numerical Literals, that give the numeric value of a number as a bit sequence, as well as

integer and floating-point numbers.

2) String Literals, that give the value of a string in either single- or double-byte

representation. A string literal is delimited by single straight quotation marks ('; U+0027),

for example, '' is the empty string literal and 'Automation Engineering!'. If

 228

we wish to use a reserved symbol in a string literal, we must place a dollar sign before the

reserved symbol, for example, '$$45' will give “$45”. As well, there are various

nonprintable special characters that can be represented using the dollar sign. Table 33 lists

some of the more common special characters.

3) Time Literals, that give the value for time points, durations, and dates.

Table 33: Special Strings

Dollar-Sign Representation Representation on the Screen or Printer

$nn Shows “nn” in hexadecimal in ASCII
$$ $

$', $" ', "

$L, $l Line feed ($0A)

$N, $n New line
$P, $p New page

$R, $r Carriage return20 ($0D)

$T, $t Tab

The octothorpe is used to give additional information about the literal, for example, 2# implies a

binary representation. The additional information always comes before the octothorpe. Common

representations are:

1) Binary Representation: 2#

2) Hexadecimal Representation: 16#

3) Duration Representation: T# or TIME#

4) Date Representation: D# or DATE#

5) Time-of-Day Representation: TOD# or TIME_OF_DAY#

6) Date-and-Time Representation: DT# or DATE_AND_TIME#

20 This term comes from the days of typewriters, where the writing head with the ink ribbon was attached to a carriage
that had to be pushed at the end of each line to the beginning of the new line.

 229

It is possible to use any defined data structure with the octothorpe. Numerical and time literals may

also contain underscores in order to make the presentation more legible. Capitalisation is not

important.

 Time literals have some special properties. There are multiple different types of time

literals: duration, date, time of day, and date and time. For each case, there is a special

representation with its own rules.

 Duration is represented by T#. After the octothorpe, the duration is given using the

following units:

1) d: Day

2) h: Hours

3) m: Minutes

4) s: Seconds

5) ms: Milliseconds

Each unit is separated by an underscore.21 The units must be placed from largest to smallest. The

smallest unit can have a decimal value, for example, T#1m_10s_100.7ms. The highest value

can “overflow”, for example, the time duration T#127m_19s is valid and will be automatically

converted into the proper representation of T#2h_7m_19s. A negative value is also possible, for

example, T#-22s_150ms.

 Dates are represented using D#. After the octothorpe comes the date in scientific notation,

that is, year-month-day, for example, D#2017-02-28.

 The time of day is represented using TOD#. After the octothorpe comes the time in the

format Hours:Minutes:Seconds.Decimal Part, for example, TOD#12:45:25.21. Note that the

24-hour clock is used.

 The date and time is shown using DT#. After the octothorpe comes the date in scientific

notation followed by a dash and the time in the time-of-day format, for example, DT#2017-05-

30-2:30:12.

21 The underscore is not obligatory to separate the units, but it does help readability of the text.

 230

Section 7.3.1.4: Identifiers
 Identifiers are alphanumeric strings that allow the PLC programmer to give individual

names to the variables, programmes, and related elements. These include jump and network names,

configurations, resources, tasks, runtime programmes, functions, function blocks, access paths,

variables, derived data types, structures, transitions, steps, and action blocks. The identifiers must

satisfy the following rules:

1) The first element cannot be a number (✗ 1Prog).

2) No more than one underscore can be used together (✗ A__B [with two underscores]).

3) No delimiters can be used (✗ w34$23).

Only the first six characters are considered when comparing two identifiers, that is, both TUI_123

and TUI_125 are equivalent. Capitalisation also plays no role, that is, TUI, tui, and TuI are all

equivalent.

Section 7.3.2: Variables
 A variable is a representation of a physical memory location on a PLC to which a meaning

has been assigned. The variable declaration block is bracketed with VAR_type and VAR_END. It

is possible to specify the type of variable. Each variable is declared on its own line with the

following key components:
 Variable_name : Data_type := Initial_value;

The components in bold must always be given, while the values of components in cursive are

specified by the programmer. The initial value need not be given, but it is always better to do so.

Section 7.3.3: Data Types
 There are two data types: elementary and derived data types.

Section 7.3.3.1: Elementary Data Type
 An elementary data type is defined as a simple data type that is predefined in the IEC

standard. The elementary data types are characterised by their data size (number of bits) and the

data range. Both values are defined by the standard, except for dates, times, and strings, whose

data size and range depend on the implementation. Table 34 shows the elementary data types with

their properties (data range and default initial value). The IEC 61131-3 standard defines five

 231

groups of elementary data types that can be referenced by the given general data type given in

brackets:

1) Bit Sequence and Boolean (ANY_BIT)

2) Signed and Unsigned Integers (ANY_INT)

3) Floating-Point Numbers (ANY_REAL)

4) Dates and Times (ANY_DATE)

5) Strings and Durations (ANYSTRING, TIME)

The general data types ANY_INT and ANY_REAL can be represented together by the group name

ANY_NUM.

Table 34: The elementary data types in the IEC 61131-3 Standard. The initial letters in the data types represent: D = double, L =
long, S= short, and U = unsigned.

Data Type Keyword Bits Range Initial Value

BOOL Boolean 1 {0, 1} 0
BYTE Bit sequence 8 8 [0, 16#FF] 0
WORD Bit sequence 16 16 [0, 16#FFFF] 0
DWORD Bit sequence 32 32 [0, 16#FFFF FFFF] 0
LWORD Bit sequence 64 64 [0, 16#FFFF FFFF FFFF FFFF] 0

SINT Short Integer 8 [−128, +127] 0
INT Integer 16 [−32 768, +32 767] 0
DINT Double Integer 32 [−231, +231 − 1] 0
LINT Long Integer 64 [−263, +263 − 1] 0

USINT Short Integer 8 [0, +255] 0
UINT Integer 16 [0, +65 535] 0
UDINT Double Integer 32 [0, +232 − 1] 0
ULINT Long Integer 64 [0, +264 − 1] 0

REAL Floating-Point 8 see IEC 60559 0
LREAL Long Floating-

Point

16 see IEC 60559 0

DATE Date — — d#0001-01-01
TOD Time of Day — — tod#00:00:00

 232

Data Type Keyword Bits Range Initial Value
DT Date with Time

of Day

 dt#0001-01-01-

00:00:00

TIME Duration — — t#0s
STRING (Single) String — — ''
WSTRING Double (String) — — ""

 For an elementary data type, it is possible to define the initial value and range. The initial

value is defined as the value of the variable when it is first used. The range defines what the

possible values for the variable are.

Section 7.3.3.2: Arrays
 Arrays are data elements of identical type that are sequentially stored in memory. An array

element can be accessed with the help of an array index that lies within the array boundaries. The

value of the index indicates which array element is to be accessed. Most PLC systems ensure that

array access with an array index outside the array limits results in an error message during runtime.

The array is defined using square brackets ([]). The dimensions are separated by commas, e.g.
 ARRAY [1…45] OF INT

is a one-dimensional array with 45 elements of data type INT, while

 ARRAY [1…50,1…200] OF INT

is a two-dimensional array of data type INT with 50 elements in one dimension and 200 elements

in the other dimension.

 The elements of an array are accessed using square brackets, for example, TEST[3] takes

the third element in the array TEST. The dimensions are separated using commas.

 The initial values in the array can be defined using square brackets. When values are

repeated, then we can use the format Repeats(Values), to simplify matters, for example,

2(4) means that we will write the value 4 twice. Thus, the following two array definitions are

equivalent:
 TEST1 : ARRAY [1…5] OF INT := [1, 1, 1, 3, 3];

 TEST1 : ARRAY[1…5] OF INT := [3(1), 2(3)];

 233

Section 7.3.3.3: Data Structures
 Using the keywords STRUCT and END_STRUCT, it is possible to define new hierarchical

data structures that contain arbitrary elementary or other already defined derived data types as

subelements. If a subelement is in turn a structure, a hierarchy of structures is created, for which

the lowest structure level is formed of elementary or derived data types.

 As in many other programming languages, the components of a data structure are accessed

using a period and the component name, for example, VAR.TEST[3], where the component

TEST is an array.

Section 7.3.3.4: Derived Data Types
 A derived data type is a user-defined data type that consists of elementary data types,

arrays, and data structures. This procedure is called derivation or type definition. In this way, a

programmer can define the best data model for the problem at hand. A derived data type is defined

by TYPE and END_TYPE. The initial values for the elements of a derived data type is given by := ,

for example,

TYPE

 COLOUR : (red, yellow, green);

 SENSOR : INT;

 MOTOR :

 STRUCT

 REVOLUTIONS : INT := 0;

 LEVEL : REAL := 0;

 MAX : BOOL := FALSE;

 FAILURE : BOOL := FALSE;

 BRAKE : BYTE := 16#FF;

 END_STRUCT;

END_TYPE;

where the element COLOUR is an enumeration that can only take the values red, green, and

yellow; SENSOR is an INT; MOTOR is a data structure that contains the following elements:

REVOLUTION with an initial value of 0, LEVEL with an initial value of 0, MAX with an initial

 234

value of FALSE, FAILURE with an initial value of FALSE, and BRAKE with a hexadecimal

initial value of FF.

Section 7.4: Ladder Logic (LL)
 The programming language ladder logic (LL) comes from the domain of

electromechanical relay systems and describes the flow of electricity through a single network

representing the POU. This programming language is primarily used for working with Boolean

signals.

 The ladder network or diagram consists of two vertical tracks and horizontal rungs

connecting the vertical tracks. It is assumed that “electricity” flows from the left-hand track to the

right-hand track following the rungs. Thus, the ladder network is always read rung by rung from

top to bottom and in a given row from left to right, as long as no other order is provided. It is

traditional to label all the left-hand rungs with a number. Normally, the numbers are not sequential

but increase in units of 5 or 10 in order that additional future rungs can be easily added. Finally,

the ladder network is often visually split into two parts: a left-hand part that shows the

computations and a right-hand part that shows the storing or using of the variables. This convention

makes reading the ladder network easier.

Section 7.4.1: Components of Ladder Logic
 Table 35 shows the components of ladder logic.

Table 35: Components of Ladder Logic

Name Symbol Commentary

Rung Read from left to right

Open contact

Copies the value from left to right, when the

value of the variable VarName is TRUE;

otherwise, FALSE is copied.

Closed contact

Copies the value from left to right, when the

value of the variable VarName is FALSE;

otherwise, TRUE is copied.

 235

Name Symbol Commentary

Positive-transition

sensing contact

Copies the value from left to right if and only if

a FALSE → TRUE transition in the variable

VarName is detected; otherwise, FALSE is

copied.

Negative-transition

sensing contact

Copies the value from left to right if and only if

a TRUE → FALSE transition in the variable

VarName is detected; otherwise, FALSE is

copied.

Coil22

Copies the value on the left into the variable

VarName.

Negated coil22

Copies the negated value of the left into the

variable VarName.

Set coil22

Copies TRUE to variable VarName, if the left

link is TRUE; otherwise, no change.

Reset coil22

Copies FALSE to variable VarName, if the left

link is TRUE; otherwise, no change.

Positive-transition

sensing coil22

Saves TRUE to the variable VarName if and

only if a FALSE → TRUE transition is detected

on the left link; otherwise, no change in the

variable.

Negative-transition

sensing coil22

Saves TRUE to the variable VarName if and

only if a TRUE → FALSE transition is detected

on the left link; otherwise, no change in the

variable.

22 The value on the left is always transferred to the right-hand side.

 236

Name Symbol Commentary

Set-Reset Block

This block combines the functions of the set and

reset coils.

Return

Exits the POU and returns to the calling POU.

Conditional return

If the left link tnw23 is TRUE, exit the POU und

return to the calling POU; otherwise, no

meaning.

Jump

Jump to the network with the given NAME.

Conditional jump

If the left link tnw23 is TRUE, jump to the

network with the given NAME.

Label

Shows the name for part of a network.

 Figure 96 shows how the typical Boolean operators can be implemented in ladder logic.

The AND operator is implemented by placing the two contacts in series, while the OR operator

places the two contacts in parallel. This follows from the observation that the electricity flows

from left to right. For an AND operation, we need both contacts to be true for the electricity to flow.

This implies that both need to be in series. On the other hand, for the OR operation, electricity can

flow through either of the two paths. Therefore, the contacts should be placed in parallel.

23 tnw represents a Boolean variable that determines if the given link should be performed.

 237

Figure 96: (top) AND and (bottom) OR in ladder logic

Section 7.4.2: Functions and Ladder Logic
 Since ladder logic was originally developed for logical (or Boolean) systems, the

implementation and running of complex functions using the simple ladder logic components can

be difficult. For this reason, it is possible to define a function block that is programmed using

another programming language. This function block always contains two Boolean variables (EN

and ENO), as well as all the other required parameters. The Boolean input variable EN (enable in)

determines if the function will be called. If EN is TRUE, then the function is called. The Boolean

output variable ENO (enable out) determines if the programme completed successfully. It takes the

value TRUE, if no errors occurred. Figure 97 shows such an implementation using ladder logic.

Figure 97: Calling a function in ladder logic

 238

Section 7.4.3: Examples of Using Ladder Logic
Example 41: Ladder Logic for a Boolean Function

 Please write the corresponding ladder diagram for the following Boolean function:
 Q = XY + XZ + YZ

Solution

 When we want to create the ladder logic diagram, we should first convert the Boolean

function into a minimal form. In our case, we can easily convert it to
 Q = XY + (X + Y)Z

In the ladder logic diagram, we will require (at least) one row for each term that is separated by a

“+”, since each row corresponds to an AND Term. Thus, in our example, we will require 3 rows.

All the values are not negated. Thus, the open contact will be used for all values. In order to save

the resulting function value in Q, we require a coil. Figure 98 shows the ladder logic diagram for

this example.

Figure 98: Ladder Logic for Example 41

Example 42: Ladder Logic for a Recipe

 Consider a tank that needs to be filled with two components and then mixed before being

sent on its merry way. The recipe is:

1. Once the start button is pressed and both level sensors (L1 and L2) read FALSE, turn on

Valves 1 and 2 (V1 and V2). Go to Step 2.

 239

2. Once the fluid reach level sensor 2 (L2), that is, it reads TRUE, close both valves and turn

on the mixer (M1) for five minutes. Go to Step 3.

3. Turn off the mixer and wait one minute. Go to Step 4.

4. Open the bottom valve (V3) and let the fluid drain. Go to Step 5.

5. Once the bottom level sensor 1 (L1) reads FALSE, that is, the tank is empty, close the

bottom value. Go to Step 1.

Implement this recipe using ladder logic.

Solution

 In order to implement a recipe in ladder logic, we will need to define Boolean variables

that keep track of in which step we are. In this example, since we have five steps, it makes sense

to define the Boolean step variables as S1, S2, S3, S4, and S5. S1 will be initialised as TRUE,

while all other variables will be initialised as FALSE. At the end of each step, the current step

variable will be reset (to zero) and the next step variable will be set (to one). Turning on and off

valves will be implemented using the set and reset coils, while the delay and timer will be

implemented using the built-in time function (TON). Rung numbers have been added in multiples

of 5. Finally, it can be noted that in this particular recipe each set has a corresponding reset. This

is a feature of many recipes that will be made explicit in the PLC programming language sequential

function charts. The final programme in ladder logic is shown in Figure 99.

 240

Figure 99: Ladder Logic for Example 42

Section 7.4.4: Comments
 Ladder logic is perfect for large Boolean networks. However, it is not appropriate for

sequence or recipe programming. In ladder logic, it is not recommended to use jumps, since these

can lead to inconsistencies during runtime.

Section 7.5: Instruction List (IL)
 Instruction list (IL) is a language similar to assembly language. This language is a simple

list of instructions, each of which is placed on a separate line. Each instruction has the following

form:
 Label: Operator/Function Operand(list) Comments

 241

where Label names a given row of instructions and along with the colon can be ignored; the

Operator or Function is an operator in instruction list or a function, Operand is zero, one,

or more constants or variables for the operator or input parameters for the functions that are

separated by commas; and Comments is an optional field that provides additional information

about what the given instruction row does. All fields in italics are optional.

Section 7.5.1: Universal Accumulator
 Most assembly languages have a physical accumulator in the processor, that is, a value is

loaded into this accumulator, additional values are added, subtracted and then stored. Instruction

list also has such an accumulator that is often called the “current result.” However, it is not a

memory area with permanently defined register lengths. Instead, the statement list compiler

ensures that an abstract accumulator of any memory width is available that depends on the data

type to be processed. In contrast to other assembly languages, there are no special processor status

bits. The result of comparisons is written as a Boolean 0 or 1 in this accumulator. Conditional

jumps and calls use the current value stored in the accumulator to evaluate the jump requirements.

The current result can be of any general data type, derived data type or function-block type. The

data width of the current result (number of bits) does not matter. Instruction list requires that two

consecutive operations be type compatible, which means that the data type of the current result

must be compatible with the following statement.

 Table 36 shows the modifications of the current result by different operator groups.

Unchanged means that an instruction passes the result of the previous instruction on to the

following one without having made any changes to the value and type. Undefined means that the

subsequent operation cannot use the current result. The first command of a function block (which

is called using CAL) may only be a load LD, jump JMP, function block call CAL or return RET,

since these commands do not require a current result.

 The IEC 61131-3 standard itself does not define any operator groups. In fact, the behaviour

and evaluation of the current result is only partially described in the standard. With operations such

as AND, the type and content of the current result is intuitively clear both before and after execution.

However, the standard leaves open the question of how the current result is defined after an

unconditional jump.

Table 36: Changes in the Current Result for Different Operator Groups

 242

Impact of the Operator Group

on the Current Result
Abbreviation Example Operators

Create C LD

Process P GT

Unchanged U ST; JMPC

Undefined −

Unconditional CAL block call, since the

following instruction must reload the current

result, because it does not have a clearly defined

value after the function block has been returned.

Section 7.5.2: Operators
 Table 37 shows the defined operators in instruction list. The modifiers are defined as

follows:

• N: Negation,

• (: Nesting levels using brackets,

• C: Conditional performance of an operator when the current result equals TRUE.

The modifiers are written together with the operator, for example, ANDN is a negated AND.

Table 37: Operators in Instruction List

Operator Acceptable Modifiers Operand Definition

LD N ANY Load
ST N ANY Save
S BOOL Set
R BOOL Reset

AND / & N, (ANY Boolean AND
OR N, (ANY Boolean OR
XOR N, (ANY Boolean Exclusive OR
ADD (ANY Addition
SUB (ANY Subtraction
MUL (ANY Multiplication
DIV (ANY Division
GT (ANY >

 243

Operator Acceptable Modifiers Operand Definition

GE (ANY ≥
EQ (ANY =
NE (ANY ≠
LT (ANY <
LE (ANY ≤
JMP C, (LABEL Jump to LABEL
CAL C, (NAME Call function NAME.
RET C, (Return from a function call
) Take the last deferred instruction

 The current result can be linked with the result of an instruction sequence using the bracket

operators. When the modifier “(” appears, the associated operator, the value of the current result

and the data type of the current result are cached. The data type and value of the following line are

loaded into the current result. When the “)” operator appears, the cached values and data type

based on the operator and modifiers are linked with the current result. The result is then stored as

the current result. Expressions in brackets can be nested.

Section 7.5.3: Functions in Instruction List
 In instruction list, functions are called by giving their name. The parameters can be passed

using two different approaches: actual parameters or formal parameters. With actual parameters,

the first parameter of a function is the current result that was previously loaded. Therefore, the first

operand after the function name is the second function parameter in this variant. With formal

parameters, all parameters are explicitly defined. Table 38 shows the two possibilities.

Table 38: Two Possibilities for Calling the Function LIMIT(MN, IN, MX)

Possibility 1: Actual Parameters Possibility 2: Formal Parameters

LD 1

LIMIT 2, 3

LIMIT(

 MN := 1,

 IN := 2,

 MX := 3

)

 244

 A function has at least one output parameter (function value) that is returned using the

current result. Should the function have additional output parameters, these can be returned using

parameter assignments. A call without formal parameters takes place in one line. The original order

of the output declarations must be observed. In the case of formal parameter assignments, this is

done line by line, followed by bracket line. With formal parameter assignment, the output

parameters are marked with =>, e.g., ENO => ErrorOut means that ENO is an output value

and is saved in the ErrorOut variable. The programming system assigns the function value to a

variable with the function name. This name is declared automatically and does not have to be

specified separately by the user in the declaration section of the calling block.

Section 7.5.4: Calling Function Blocks in Instruction List
 Function blocks are called using the CAL operator. The IEC 61131-3 standard provides

three methods for calling function blocks:

1) Calling a function block with a bracketed list of input and output parameters,

2) Calling a function block with previously loaded and saved input parameters, and

3) Calling a function block implicitly by using the inputs as operators.

Method 3 can only be used for standard function blocks, since the programming system must use

the name of the function block inputs as operators. This method cannot be used for the output

parameters. Table 39 shows the three methods for calling the function block ZEIT1(IN, PT)

with output variables Q and ET.

Table 39: Three Methods for Calling the Function Block ZEIT1(IN, PT) with output variables Q and ET.

Method 1 Method 2 Method 3

CAL ZEIT1(

 IN := Frei,

 PT := t#500_ms,

 Q => Aus,

 ET => WERT

)

LD t#500_ms

ST ZEIT1.PT

LD Frei

ST ZEIT1.IN

CAL ZEIT1

LD ZEIT1.Q

LD t#500_ms

ST ZEIT1.PT

LD Frei

IN ZEIT1

LD ZEIT1.Q

 245

Method 1 Method 2 Method 3

ST Aus

LD ZEIT1.ET

ST WERT

ST Aus

LD ZEIT1.ET

ST WERT

Section 7.5.5: Examples
Example 43: Example of the Computation of the Current Result

 For the given instructions, follow how instruction list uses and updates the different

registers. Values in grey are the default initial values.

Instruction (* Comments *) CR X1 X2 W1 FB1.i1 FB1.o1

 Initial values: “STR” 0 1 10 1 103

LDN X1 Load the
negated value
in X1

1 0 1 10 1 103

AND X2 CR AND X2 →
CR

1 0 1 10 1 103

S X1 If CR = 1
then: 1 → X1

1 1 1 10 1 103

R X2 If CR = 1
then: 0 → X2

1 1 0 10 1 103

JMPCN
Lab1

Jump to Lab1
if CR = 0

1 1 0 10 1 103

LD W1 Load the
value in W1 →
CR

10 1 0 10 1 103

MUL W1 CR * W1 → CR 100 1 0 10 1 103

SQRT Function:
sqrt(CR) → CR

10 1 0 10 1 103

ST
FB1.il

Save CR →
FB1.i1

10 1 0 10 10 103

CAL FB1 FB1: internal
computation

10 1 0 10 10 112

 246

Instruction (* Comments *) CR X1 X2 W1 FB1.i1 FB1.o1
LD
FB1.o1

Load the
output o1
from FB1 → CR

112 1 0 10 10 112

ST W1 Save CR → W1 112 1 0 112 10 112

GT 90 (CR > 90)? →
CR

1 1 0 112 10 112

Example 44: Writing the Instruction List Programme

 Please write the instruction list programme for the following function:
 Q = XY + XZ + YZ

Solution

 The simplest approach to writing the instruction list programme is to go from left to write

and write the corresponding instruction. The programme is then
 LD X

 AND Y

 OR(X

 AND Z

)

 OR(Y

 AND Z

)

 ST Q

Section 7.5.6: Comments
 Instruction list is perfect for large Boolean networks. However, like with ladder logic, it is

inappropriate for sequence or recipe programming. Instruction list has no complex programming

flow concepts, such as loops. Finally, in instruction list, jumps should be avoided as they can lead

to inconsistencies during runtime.

 247

Section 7.6: Function-Block Language (FB)
 The function-block language is a graphical model with Boolean operators and complex

functionality represented using blocks. Motivated by electronic circuits, the signals flow between

the blocks and are converted from Boolean inputs into Boolean outputs. Although this language is

based on electrical circuits, the current standard has adopted different representations for the

blocks symbolising AND and OR.

Section 7.6.1: Blocks used in the Function-Block Language
 Table 40 shows the blocks used in the function-block language.

Table 40: Blocks used in the function-block language

Name Symbol Comments

AND

OR

Negation
Negation is placed where the signal

enters or leaves a block.

Link
When two connections coincide and

the value is to be transferred.

General

Block

There are as many input and output

ports as required by the block.

Rising Edge

This is placed within the function

block next to the corresponding

variable in order to show a rising edge

transition.

 248

Name Symbol Comments

Falling

Edge

This is placed within the function

block next to the corresponding

variable in order to show a falling

edge transition.

Return

Leaves a POU and returns to the

calling POU.

Conditional

Return

If the left connection snw24 is TRUE,

then exit the POU and return to the

calling POU; otherwise ignored.

Jump
Jump to the network with the given

identifier NAME.

Conditional

Jump

If the left connection snw24 is TRUE,

jump to the network with the given

identifier NAME; otherwise ignored.

 Inputs and outputs are defined upon first use. Figure 100 shows an example of a function

block diagram with common components. The exact method for labelling the variables is not

specified in the standard; any reasonable method can be used.

24 snw represents a subnetwork that returns a Boolean value.

 249

Figure 100: Diagram using the Function-Block Language

Section 7.6.2: Feedback Variable
 Function block language allows an output to be used as the new input of a network. Such

a variable is called a feedback variable. The first time such a situation is encountered the initial

value is used; afterwards, the last value is used. Figure 101 shows an example with feedback.

Figure 101: Feedback in the Function-Block Language

Section 7.6.3: Example
Example 45: Creating the Diagram using the Function-Block Language

 Please create the diagram using the function-block language for the following Boolean

function:
 Q = XY + XZ + YZ

Solution

 Figure 102 shows the solution.

 250

Figure 102: The Function Q in the Function-Block Language

Section 7.6.4: Comments
 Function block language should be used in cases where there is signal flow between

different components, for example, in closed-loop control. This language contains no complex

programme flow concepts, such as loops.

Section 7.7: Structured Text (ST)
 Structured text (ST) is a further text-based programming language in the IEC 61131-3

standard. It is referred to as a high-level programming language, since assembly-language

commands are not used in structured text, but powerful constructs are built using more abstract

commands. In structured text, the solution to a particular programming task is broken down into

individual steps (instructions). An instruction is used to calculate and assign values, control the

flow of commands, or to call or exit a POU.

Section 7.7.1: Commands in Structured Text
 Table 41 shows the commands in structured text. Each command must be separated by a

semicolon, that is, unlike previous text-based languages, multiple commands can be placed on a

single line.

 251

 The IF command has many different forms. The obligatory components are the IF, THEN,

and END_IF commands. The IF command opens the IF block, while the END_IF closes it. The

other possibilities are the ELSE and ELSIF commands. The ELSE block is only performed if all

previous expressions have been evaluated as FALSE. The ELSIF block is only performed if all

previous expressions have been evaluated as FALSE and the corresponding Boolean expression is

TRUE. This command can be repeated as often as desired. This gives the following possibilities:

1) IF expression THEN code block; END_IF;

2) IF expression THEN code block; ELSE code block; END_IF;

3) IF expression THEN code block; ELSIF expression THEN code block; ELSIF expression

THEN code block; ELSE code block; END_IF;

 The FOR command also has many different possibilities. The obligatory parts are FOR,

TO, DO, and END_FOR. The FOR command opens this code block and the END_FOR command

closes it. The TO command specifies the end value and the DO command closes the declaration

line of the FOR command. The optional part is the BY command that gives the step value. If no

step value is given using the BY command, then it is assumed that the step is one. The two

possibilities for the FOR command are:

1) FOR Counter := expression TO expression BY expression DO code block;

END_FOR;

2) FOR Counter := expression TO expression DO code block; END_FOR;

Table 41: Commands in Structured Text

Keyword Description Example Comments

:= Assignment d := 10;
Assigns the value on the right to

the variable on the left.

:=, =>
Calling and Using

Function Blocks

FBNAME(

 Part1:=10,

Part3=>20);

Calls another POU of type

function block and assigns the

required parameters: := for

inputs and => for outputs.

RETURN Return RETURN; Returns to the calling POU.

 252

Keyword Description Example Comments

IF … THEN

ELSE,

ELSIF

END_IF

Branching

IF A>100 THEN

f:=1;

ELSIF d=e THEN

f:=2;

ELSE

f:=4;

END_IF

Selection of alternatives using

Boolean logic.

CASE … OF

ELSE

END_CASE

Multiple Selection

CASE f OF

1: f:=11;

2: f:=14;

ELSE f:=-1;

END_CASE;

Selects a code block based on the

value of the expression f.

FOR … TO …

BY … DO

END_FOR

FOR Loop

FOR h:=1 TO 10

BY 2 DO

f[h/2]:=h;

END_FOR;

Repeated running of a code block

with start and end conditions.

WHILE … DO

END_DO
WHILE Loop

WHILE m>1 DO

n:=n/2;

END_WHILE;

Repeated running of a code block

with end conditions.

REPEAT …

UNTIL

END_REPEAT

REPEAT Loop

REPEAT

i:=i*j;

UNTIL i>10000

END_REPEAT;

Repeated running of a code block

with end conditions.

EXIT Breaking a loop EXIT; Immediate exit from a loop

;
Command

delimiter
 Shows the end of a command.

Section 7.7.2: Operators in Structured Text
 Table 42 shows the priority of the operators in structured text.

Table 42: Operators and their Priority in Structured Text

 253

Operator Description Priority
(…) Brackets Highest

Function(…) Function Evaluation
** Exponentiation

-, NOT Negation, Boolean Complement
*, / Multiplication, Division
MOD Modulo
+, - Addition, Subtraction

>, <, ≤, ≥ Comparison Operators
= Equality
<> Inequality (≠)

AND, & Boolean AND
XOR Boolean exclusive OR
OR Boolean OR Lowest

Section 7.7.3: Calling Function Blocks in Structured Text
 In structured text, function blocks are called by their name with the required parameters

placed in brackets. The := is used to assign the value of the actual parameters, while => is used

to assign any output variables. Since the assignments must be explicit, the order of the assignments

is irrelevant. If a parameter is not initialised during the call, then the initial value or the last value

will be used.

Section 7.7.4: Example
Example 46: Structured Text

 Please write the structured text programme for the following system. As shown in Figure

103, a tank can be filled using valves. The weight of the tank is determined using a scale. The

function block monitors the tank weight to determine if the tank is full, empty, or in between the

two states. The block gives a single command that can have four values:

1: Fill the tank;

2: Stop filling the tank;

3: Start the stirrer;

4: Empty the tank.

 254

As necessary, the appropriate values are opened or closed to control the tank level. The stirrer can

only work if the tank is full; otherwise, the command is ignored.

Figure 103: Tank System for the Structured-Text Example

Solution
(*Tank States*)

TYPE T_STATE:(FULL,NOT_EMPTY,EMPTY); END_TYPE;

(*Valve States*)

TYPE T_VALVE:(ON,OFF); END_TYPE;

FUNCTION_BLOCK Weightcontrol

VAR_IN

 Command: INT;

 Weight: Real;

 Full_weight,Empty_weight: Real; (*Same data type declared on

one line*)

END_VAR

VAR_OUTPUT

 V1: T_VALVE := OFF;

 V2: T_VALVE := OFF;

 Speed: REAL := 0.0;

 255

END_VAR

VAR (*Internal Variables*)

 State: T_STATE := EMPTY;

END_VAR

(*Determine the Tank State: Compare the full and empty weights *)

IF Weight >= Full_weight THEN

 State := FULL;

ELSIF Weight <= Empty_weight THEN

 State := EMPTY;

ELSE

 State := NOT_EMPTY;

END_IF

(*Implementation of Commands: 1-Fill, 2-Stop, 3-Stir, 4-Empty*)

CASE Command OF

 1: V2 := OFF;

 V1 := SELECT(G := State=FULL,IN0 := ON,IN1 := OFF);

 (*ON only if G is false*)

 2: V2 := OFF;

 V1 := OFF;

 4: V1 := OFF;

 V2 := ON;

END_CASE;

(*Stirrer Speed*)

Speed := SELECT(G := Command=3; IN0 := 0.0; IN1 := 100.0);

END_FUNCTION_BLOCK

Section 7.7.5: Comments
 Structured text has the following advantages (especially in comparison with instruction list)

are:

• Compact formulation of the programming tasks,

• Clear programme structure, and

 256

• Powerful constructs to control the flow of commands.

However, it has the following disadvantages:

• The conversion of the programme into machine code cannot be directly influenced

since it is performed using a compiler.

• The higher abstraction level brings with it a loss of efficiency, that is, the translated

programme is longer and slower.

Section 7.8: Sequential-Function-Chart Language (SFC)
 The sequential-function-chart language (SFC) is the second graphical method for

programming a PLC. It consists of a sequence of steps and transitions that implement predefined

tasks and provide a visual overview of the process.

Section 7.8.1: Steps and Transitions
 A step is either active or inactive. It consists of a number of instructions that are performed

as long as the given step is active. A transition using a Boolean expression determines when a

step becomes inactive. Connections with a predefined direction describe which step or steps should

be activated next.

 Steps are shown using a rectangle. Figure 104 shows two possible forms for showing a step.

The general step block, which is shown in Figure 104 (left), is a simple rectangle with a single

border. The initial step block, which is shown in Figure 104 (right), is a simple rectangle with

double border.

Figure 104: Steps in Sequential Function Charts: (left) general step and (right) initial step

 The transition conditions are marked with a horizontal line with identifiers. The Boolean

description, often called a guard, shows the requirements for a transition to occur. The guard can

be written in any of the other PLC languages. Figure 105 shows some possibilities. The most

frequently used PLC languages for describing transitions is structured text, function block

language, or ladder logic. Often, the guard is ignored.

 257

Figure 105: Transitions Conditions in Different PLC Languages

 When the POU is called, the specially marked initialisation step is made active. All the

assigned instructions will be performed. When the transition conditions become TRUE, the

initialisation step will be made inactive and the next step will be activated. When a transition

 258

occurs, the active attribute (often called a token) is passed from the current active step to its

successor. This active attribute wanders through the individual steps, multiplying for parallel

branches, and coming together again. It may not be completely lost nor is uncontrolled distribution,

which occurs when multiple tokens are present in a single step, possible.

Section 7.8.2: Action Blocks
 An action block shows the details of what must be accomplished in a given step. Each

action block is always assigned to a particular step. It is not necessary to include the action block.

No more than two action blocks can be associated with a given step.

 Each action block has four components, which are shown in Figure 106:

a) Qualifier, that consists of an acceptable tag.

b) Action Name, that briefly describes the action.

c) Indicator Variable, that provides which PLC variable is to be used.

d) Process Description, that describes in an appropriate language the action (optional).

Each component has a specified location in the action block. The qualifier must be selected from

a small group of abbreviations that describe how the step is to be performed. Table 43 shows the

possible qualifiers.

Figure 106: Components of an Action Block: a: Qualifier; b: Action Name; c: Indicator Variable; d: Process Description

Table 43: Qualifiers in Sequential Function Charts

Qualifier Short Name Description

N not saved Means that as soon as the step has ended, the action is

stopped.
S saved Means that the action continues with the given values

until it is stopped.
R reset Means that a saved action is stopped.
L (time) length Means that the action lasts for the specified time T.

 259

Qualifier Short Name Description
D delay Means that the action is delayed by the specified time

before being implemented.
P pulse Means that the action occurs for a very short period of

time.
DS delayed and saved Means that the action is first delayed and then saved.
SD saved and delayed Means that the action is first saved and, then after the

delay, if the step is still active, implemented.
SL saved and time

limited

Means that a time-limited action is saved.

Section 7.8.3: Sequential Function Charts
 As the name suggests, in the sequential-function-chart language, a chart is designed to show

how the individual components are linked together. This chart is built using the following rules:

1) A vertical link connects two steps.

2) An arrow is used to clarify the direction in which steps occur.

3) An action block is connected with the step block using a straight horizontal line.

 There are two special types of connections: alternative and parallel paths. An alternative

path is shown using a single horizontal line across all possible alternative ways. This horizontal

line is placed at the beginning and end of the region corresponding to the alternative paths. Only

one of the paths must end at which point all the other paths will be stopped. Figure 107 shows an

alternative path. Alternative paths are normally selected from left to right. This is shown in Figure

108. In this case, the paths will be selected in order from S_2a, S_2b, and then S_2c. This means

that first the transition condition for S_2a will be tested. If it is TRUE, this path will be taken and

all other paths ignored. If it is FALSE, then S_2b and S_2c (in this order) will be tested. When a

user defined order is provided, as, for example, in Figure 109, then this order is followed. In this

example, it means that first S_2b will be tested, followed by S_2c and finally S_2a.

 Parallel paths are shown by a doubled horizontal line across all possible parallel paths.

This horizontal line is placed at the beginning and end of the region corresponding to the parallel

paths. All parallel paths must end before the process can continue. Figure 110 shows an example

of a parallel path.

 260

Figure 107: Alternative Paths in Sequential Function Charts

Figure 108: Usual Decision Order for Alternative Paths in Sequential Function Charts

Figure 109: User-Defined Decision Order for Alternative Paths in Sequential Function Charts

 261

Figure 110: Parallel Paths in Sequential Function Charts

Section 7.8.4: Example
Example 47: Creating a Sequential Function Chart

 Consider a chemical reactor as shown in Figure 111. It is desired to design a PLC to control

the process. The objective is to draw the sequential function chart for the process. The desired

process can be described as follows:

 When the START button has been pressed, the reactor status sensor S1 confirms that the

reactor is empty and that the temperature sensor S4 and the pressure sensor S5 give no error

messages, then valve Y1 should be opened until level sensor S2 reaches the desired value, that is,

it returns a 1. Then, the motor for agitator M should be turned on and valve Y2 opened. When the

level sensor S3 reaches the desired value, valve Y2 should be closed. After waiting 5 s, heater H

is turned on until the temperature sensor S4 reaches the desired value. During the heating

procedure, should the pressure sensor S5 return a high-pressure alarm in the reactor, then the

pressure release valve Y4 should be opened until the alarm is lowered. After the heating procedure

has been completed, the agitator runs for 10 more seconds at which point the valve Y3 is opened.

Once the reactor is empty, that is, the reactor status given by S1 returns 1, valve Y3 is closed and

the process can be restarted.

 262

Figure 111: Schematic of the Reactor

Solution

 Before the solution to the problem is provided, it is useful to consider the general procedure

for solving such problems. This procedure can be written as

1. Define all the variables and their values, especially for the Boolean variables.

2. Write the process description as a series of steps. Note that a single sentence can be

associated with multiple steps or multiple sentences can be combined into a single step.

3. Draw the sequential function chart.

Defining the Variables

 The variables are defined as follows.

Input Variable Symbol Data Type Logical Values Address

Start Button START BOOL Pressed START = 1 E 0.0
Reactor Status S1 BOOL Tank empty S1 = 1 E 0.1
Level Sensor 1 S2 BOOL Level 1 reached S2 = 1 E 0.2
Level Sensor 2 S3 BOOL Level 2 reached S3 = 1 E 0.3
Temperature

Sensor
S4 BOOL Temperature

reached
S4 = 1 E 0.4

 263

Pressure Sensor S5 BOOL High-Pressure
Alarm

S5 = 1 E 0.5

Valve 1 Y1 BOOL Valve open Y1 = 1 A 4.1
Valve 2 Y2 BOOL Valve open Y2 = 1 A 4.2

Release Valve Y3 BOOL Valve open Y3 = 1 A 4.3
Pressure Release

Valve
Y4 BOOL Valve open Y4 = 1 A 4.4

Heater H BOOL Heater on H = 1 A 4.5
Agitator Motor M BOOL Motor on M = 1 A 4.6

Figure 112 shows the sequential function chart along with the corresponding text, so that is clear

how each of the components were created.

Figure 112: Sequential Function Chart

 264

Section 7.8.5: Validity of a Sequential Function Chart
 With sequential function charts, it is easy to create complex networks. However, the

question remains if these networks are truly valid and result in proper operation.

 Although there exists a method to determine the validity of a sequential function chart, it

not guaranteed that it will find all valid networks. The proposed method only determines if the

network is valid. If the method fails, there is no guarantee that the chart is truly invalid. The

procedure is:

1) Replace all step-transition-step by a

single step.

2) Replace all transition-step-transition

by a single transition.

3) Replace two parallel transitions by a

single transition.

4) Replace two parallel steps by a single

step.

5) Remove any self-transitions.

 265

The validity is then determined using the following rule. A sequential function chart is valid when

the chart can be reduced to an implementable single step.

Example 48: Determining the Validity of a Network

 Determine the validity of the following sequential function chart shown in Figure 113.

Figure 113: Sequential Function Chart for Checking Its Validity

Solution

 The method is followed until no further reductions can be produced. The first step is to

apply Rule #1 to give Figure 114.

 266

Figure 114: First Reduction

Then, Rules #4 and 5 can be applied to give Figure 115.

Figure 115: Second Reduction

Then Rule #2 is applied twice to give Figure 116.

Figure 116: Third Reduction

The last step involves applying Rule #3 to give Figure 117.

 267

Figure 117: Fourth and Final Reduction

The reduced chart is obviously valid, since it contains only a single step and a single transition.

Thus, we can conclude that the proposed sequential function chart is in fact valid.

Section 7.9: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 7.9.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) Global variables can only be used in a single resource.

2) A nonpre-emptive task must always be completed before another task can be started.

3) 1Prog12 is a valid function name.

4) TUI_124 and TUI_12456 are equal.

5) T#4d4.2h represents 4 days and 4.2 hours.

 268

6) LE means less than.

7) A task with a priority value of 3 has the highest priority.

8) In the function-block language, a double arrow denotes a jump between two parts of the

function-block network.

9) In the function-block language, we can use &.

10) In ladder logic, a coil can be used to save a value.

11) In ladder logic, we can create feedback loops.

12) In instruction list, the statement SN HIPPO is a valid one.

13) In instruction list, the brackets () delay the implementation of an instruction.

14) In structured text OR has a higher priority compared to AND.

15) In structured text, we can use the CASE command.

16) In sequential function charts, N means that as soon as the step is ended, the action is stopped.

17) In sequential function charts, R means that an action is delayed by the given time.

18) In sequential function charts, it is possible to easily determine the validity of the result chart.

19) Ladder logic is a great idea to create complex, high-level PLC programmes.

20) Instruction list is designed for simple, optimised PLC programmes.

Section 7.9.2: Short Questions
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator

combined with pen and paper.

21) Is the sequential function chart in Figure 118 valid?

 269

Figure 118: Validity of Sequential Function Charts

22) Give the sequential function charts for the controlling the following systems:

a. Stirring process: Figure 119 shows the P&ID diagram of a stirred tank B with flow

controller US2. The binary input signals to US2 are the high-level alarm L, the start

signal S and the end signal E. The binary output signals from US2 are V1 for

switching the input valve, V2 for switching the drain valve, and R for switching the

stirrer motor. The following sequence is required: After the start signal reaches 1

(S = 1), a liquid is to be dosed by opening the input valve (with V1 = 1) and turning

the stirrer on (R = 1) until the level L reaches its upper limit (L = 1). Then, valves

are closed and the stirrer should alternately between being switched on for 1 min

and switched off for 1 min. This switching on and off should, regardless of the

current cycle, be ended immediately when the end button is pressed (E = 1). Then

the drain valve should be opened for 5 minutes. Then everything should be switched

into the idle state, that is, V1 = V2 = R = 0. When S = 1, the process is started from

the beginning.

Figure 119: Stirring Process

 270

b. Washing Machine: The control for a simple washing machine, shown in Figure

120 with an explanation of the variables in Table 44, should implement the

following sequence. After the input signal START has a value of 1, valve V1 should

be opened until the binary level sensor L1 reports that the desired water level has

been reached. Then, the MOTOR of the washing drum should be switched on

alternately for a period of time T_on and switched off for a period of time T_off.

During this alternating switching on and off, the electrical HEATING is first

switched on until the water temperature has reached a certain value, which is

reported by the binary sensor T2. Then, the process should wait a certain minimum

waiting time T_wait before any further heating occurs. Once the motor has

stopped running, the alternative switching of the motor is also stopped. Then, the

PUMP is switched on and valve V2 is opened at the same time. Once the level sensor

L0 reports an empty drum, the initial state is reached, and the process can be

repeated.

Figure 120: Washing Machine

 271

Table 44: I/O for the Washing Machine

I/O Name Description for a Boolean Value 1

Output V1 Valve V1 is open.

Output V2 Valve V2 is open.

Output HEATING Heating is on.

Output MOTOR Motor is on.

Output PUMP Pump is on.

Input START Start button has been pressed.

Input L0 Level L ≤ Lmin

Input L1 Level L ≥ Lmax

Input T2 Temperature T ≥ Tdesired

23) In the examples below, various Boolean functions of the form Q = f(X, Y, Z) are given.

For each, please provide a) the function in its sum-of-products and product-of-sums forms,

b) the reduced function found using a Karnaugh diagram; and c) the PLC programme using

instruction list, ladder logic, and function-block language for the minimised function.

a. The function shown using ladder logic in Figure 121.

b. The function that implements a majority decision rule for a 2-out-of-3 redundancy

system, that is, the output Q is 1 if and only if at least two of the inputs are 1.

c. The function shown by the truth table in Table 45.

d. The function shown by the truth table in Table 46.

e. The function Q = f(B, G, M) is described as follows:

i. Three sensors in a sorting system measure the properties of parts and deliver

the following binary signals to the inputs of a PLC:

1. B, where B = 1 means a hole is present,

2. G, where G = 1 means green paint is present, and

3. M, where M = 1 means a metallic material is present.

ii. Parts produced without errors have the following properties:

1. Either metallic and green (with or without a hole)

2. Nonmetallic, not green, and with a hole.

 272

iii. The output Q of the PLC should be 1 when the part is to be rejected, i.e., if

it does not have the above properties of a faultlessly produced part.

Figure 121: Ladder Logic

Table 45: Truth Table I

X 0 0 0 0 1 1 1 1

Y 0 0 1 1 0 0 1 1

Z 0 1 0 1 0 1 0 1

Q 0 1 1 0 1 1 1 1

Table 46: Truth Table II

X 0 0 0 0 1 1 1 1

Y 0 0 1 1 0 0 1 1

Z 0 1 0 1 0 1 0 1

Q 0 0 1 1 1 0 1 1

Section 7.9.3: Computational Exercises
The following problems should be solved with the help of a computer and appropriate software

packages, such as CodeSys.

24) Using CodeSys, write the PLC programme to control a filling station.

 273

Chapter 8: Safety in the Automation

Industry
 As automation becomes more widespread, there is a corresponding need to consider the

safety of those who come in contact with the automated systems. Furthermore, automated systems

need to take into consideration safety constraints themselves when they implement various actions.

For these reasons, it is helpful to briefly review the different safety regulations. Obviously, it is

always your engineering obligation to make sure that you have checked the most recent and most

relevant regulations and laws applying to your specific situation.

 In general, safety can be divided into two parts: physical and digital. Physical safety

considers the steps and regulations required to ensure that the plant and its surroundings are safe

for the workers, visitors, and the environment. Environmental protection considers not only

hazardous substances, but also the emission of electromagnetic radiation or noise. Digital safety

considers the steps required to ensure that the communication networks and the associated devices

cannot be hacked and used to create an unsafe physical situation. Furthermore, digital safety must

ensure that no sensitive information can be stolen or used in an inappropriate manner. This aspect

is very important given the increasing legislative interest in making sure that confidential personal

information remains confidential.

Section 8.1: Safety of the Physical System
 Before delving into the specifics of physical safety, it is useful to consider some basic

principles. A hazard is a source of danger, while a risk is the degree or extent of peril that a hazard

could create. Hazards arise from such things as moving objects, stored energy, and explosions.

Essentially, hazards primarily arise from the release of latent (or hidden) energy. These include:

1) Kinetic Energy, which is the energy resulting from moving objects, can present hazards

in any rotating equipment, such as pumps and turbines, vehicles, and conveyor belts.

2) Potential Energy, which is the energy resulting when an object unexpectedly falls. Such

releases of energy are common in structural failures, such as building collapses.

 274

3) Work, which is energy stored in springs, electrical circuits, and other devices. When

released, this can lead to catastrophic failure and impressive damage. A common electrical

example is a short circuit.

4) Heat, which is energy crossing a boundary. Heat exchange is always based on a

temperature difference between two points in space. Since heat always influences the

environment, touching hot surfaces, for example, can lead to burns. The same situation

applies to touching very cold surfaces, which can also lead to burns or frostbite.

In order to increase the safety of a physical system, it can be useful to consider the following steps

when designing the overall system:

1) Minimise: Avoid using (or use as little as possible) any hazardous substances.

2) Substitute: Replace hazardous substances by ones that are less hazardous but with similar

properties.

3) Moderate: Replace extreme operating conditions by ones that are less severe.

4) Simplify: Create designs or processes that are less complex and simpler.

5) Isolate: Create situations where the effect of a hazard has minimal impact on the overall

system, for example, physically separating the office space from the production area.

The above ideas can be framed within the inherently safer predesign (ISPD) approach, which

consists of the following 4 steps:

1) Identify: Determine what the hazards are and how they can impact the process.

2) Eradicate: Remove the effects of as many of the hazards as possible, for example, by

designing fail-safe systems, that is, should a system encounter a failure it ends up in an

inherently safe mode that cannot cause further problems. A common example of this is the

design of control valves to fail open or closed depending on the process conditions, for

example, a control valve for a critical cooling jacket should fail open so that the system

remains cooled even if the valve has failed.

3) Minimise, simplify, and moderate: If a hazard cannot be eradicated, then try and limit its

effects on the system.

4) Isolate: Create structures that will limit the amount of damage that can occur, for example,

by segregating hazardous operations.

Another approach to this situation is to perform a hazard-and-operability study (HAZOP) to

determine where the given hazards lie and how best to mitigate them. The HAZOP procedure

 275

consists of the following four steps: determine, using a systematic search, possible faults; find the

causes for the faults; estimate the effects of the faults on the system; and suggest appropriate

countermeasures. A HAZOP requires that a detailed plan of the process be available. Thus, such

analysis is often performed at a later stage of design after the overall process design has already

been completed. This implies that, due to the high cost or structural changes required, it could be

too late to make substantive changes at this point. Thus, HAZOPs are often used to provide an

understanding of the hazards present and their risk.

 Finally, it can be mentioned that when designing safety systems, it is useful to consider

redundancy, that is, having more than one channel or way to achieve a given task. As well, this

implies that different channels should be used for different tasks (control, alarm, and monitoring),

so that there is less risk of catastrophic failure. Thus, for example, alarms and monitoring should

not occur on the same channel. If it should fail, alarm signals can no longer be transmitted in

addition to the less important monitoring signals. There are two main ways to implement

redundancy. In the first approach, often called homogeneous redundancy, the same task is

implemented by multiple (identical or similar) devices, for example, the temperature is measured

using three temperature sensors at the same point. However, this approach carries the risk that

systematic errors in the sensors or devices are propagated into the system. In the second approach,

often called heterogeneous redundancy or redundancy by diversity, the same task is

implemented using different devices, for example, three separate path-planning computer systems

that use different computational algorithms could be implemented and the decision taken by

majority vote, that is, if two or more algorithms give the same result it is followed. Selecting the

appropriate approach depends on the requirements and standards of the process.

Section 8.1.1: Quantifying Risk and the Safety Integrity Level
 In order to properly understand and implement a safety system, it is necessary to quantify

the risk in some manner. One approach is to define the risk R as

 R = CD (249)

where C is the impact of the hazard and D is the frequency of the hazard. The frequency of the

hazard is defined as

 D = FPW (250)

 276

where F is the occurrence frequency, P is the probability that the hazard cannot be mitigated, and

W is the probability that without any safety system in place an undesired state will be reached.

Since it makes little sense to define the risk with an exact value, it is common to instead associate

a given level to the individual variables and look at the combination of levels.

 For C, the following levels are defined:

• C1: Minor injuries

• C2: Major or permanent injuries of one or more people or a single death

• C3: Up to 5 deaths

• C4: More than 5 deaths.

For F, two levels are defined:

• F1: During the course of the day, people are in the danger zone less than or equal to

10% of the time.

• F2: During the course of the day, people are in the danger zone more than 10% of the

time.

For P, two levels are defined:

• P1: It is possible to mitigate the hazard (one should provide the appropriate steps to do

so).

• P2: It is not possible to mitigate the hazard.

For W, three levels are defined:

• W1: The undesired state will occur less than once every 10 years.

• W2: The undesired state will occur less than once per year.

• W3: The undesired state will occur more often than once per year.

The above levels are then combined to give an overall safety integrity level (SIL). There are four

safety integrity levels labelled SIL1 to SIL4, where the larger number reflects a more hazardous

level. The relationship between the different parameters is shown in Figure 122.

 277

Figure 122: Relationship between the parameters and the safety integrity levels

Section 8.2: Safety Regulations
 Safety regulations in Germany (and most of Europe and even the world) come in many

different flavours and legal force. In Germany, standards are developed by the German Institute

for Standardisation (DE: Deutsches Institute für Normung, commonly abbreviated as DIN). DIN

publishes standards not only for safety but for all sorts of other aspects, such as formatting of

letters, transliteration, and engineering. All standards developed or accepted by DIN are prefixed

by the letters DIN followed by a number. Additional letters can be added to show the general

applicability of the standards. Using DIN EN implies that we are dealing with a German edition of

a European standard, while DIN ISO implies that we are dealing with a German edition of an

international standard developed by the International Standards Organisation (ISO). Obviously, it

is possible to have a DIN EN ISO label which would denote a German edition of a European and

international standard. In general, when there are multiple prefixes, this implies that we are dealing

with the same standard under different guises, for example, a DIN ISO #### standard would be

the same as the corresponding ISO ####. Examples of different DIN standards are:

 278

1) DIN 31635 which standardises the transliteration of the Arabic script used to write Arabic,

Ottoman Turkish, Iranian, Kurdish, Urdu, and Pasto

2) DIN EN ISO 216 which standardises writing paper and certain classes of printed matter,

trimmed sizes, A and B series, and indication of machine direction

3) DIN ISO 509 which covers the production of technical drawings, relief grooves, and types

and dimensions of them.

4) DIN EN 772-7 which covers clay masonry units, namely the determination of water

absorption of clay masonry damp proof course units by boiling water.

 Other countries use similar systems, for example, Austria prefixes its codes with ÖNORM

while the United States of America uses the ANSI system.

 Safety regulations in Germany (and most of Europe) for machines can be split into three

types:

• Type A Regulations: These regulations cover the basic safety concepts, design

principles, and general aspects of machines. An example of a Type A regulation is the

EN ISO 12100 standard that provides the general principles of design.

• Type B Regulations: These regulations are baseline safety standards and requirements

for protective equipment. There are two subtypes: B1-Regulations that cover specific

safety aspects and B2-Regulations that cover the standards for protective equipment

required for machines. An example of a Type B1 regulation is the EN ISO 13855

standard that provides the guidelines for the arrangement of protective devices, while a

Type B2 regulation would be the EN 953 standard that considers fixed guards for

machines.

• Type C Regulations: These regulations are the specific safety standards for a particular

machine or group of machines. An example of a Type C regulation would be the EN

693 standard that provides the standards for hydraulic presses.

Section 8.3: Digital Safety
 In today’s world, where many components of a plant are now linked digitally using

networks, it is imperative that the digital system be secured. The main topic in digital safety focuses

on preventing intruders from entering the digital system and making unauthorised changes to the

system, that is, digital safety must prevent hacking from occurring. Hacking can expose a

 279

company to various threats including loss of proprietary information, damage to the process by

illegal changing of process operating conditions, and legal issues due to distribution of confidential

personal information.

 Digital security can be achieved by creating strong passwords, changing the passwords on

a regular basis, and checking for any intruders. Strong antivirus software should also be

implemented. Multiple interacting networks should be considered to provide additional levels of

security. Finally, the workers should be educated in proper digital safety, as the digital system is

only as strong as its weakest link. People placing unknown USB-drivers into work computers can

easily introduce unwanted viruses into the company network.

Section 8.4: Chapter Problems
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b)

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a

simple data set using simple or no technological aids. This section also includes proofs of theorems;

and (c) Computational Exercises, which require not only a solid comprehension of the basic

material, but also the use of appropriate software to easily manipulate the given data sets.

Section 8.4.1: Basic Concepts
Determine if the following statements are true or false and state why this is the case.

1) Process safety is never a topic of concern.

2) A hazard is something that has a high likelihood of causing harm.

3) A short circuit is an example of a hazard caused by the release of stored energy or work.

4) Collapsing buildings are an example of hazards posed by kinetic energy.

5) Hazards that cannot be eliminated should be isolated.

6) Designing complex processes is a good risk mitigation strategy.

7) The fail-safe principle states that a failing system should always end up in a safe mode.

8) Using the fail-safe principle, valves should always fail closed.

9) A HAZOP seeks to identify the risks and how best to mitigate them.

10) Redundancy means that a single temperature sensor is used for process monitoring and

process control.

 280

11) Selecting a course of action based on two-out-of-three voting is an example of redundancy

by diversity.

12) A risk with an occurrence frequency greater than 10% is always an SIL 4 risk.

13) A risk with a hazard impact level of C3 implies that it can cause only minor injuries.

14) A risk with a mitigation level of P2 implies that it cannot be mitigated.

15) A risk with a W level of W3 implies that the undesired state will occur more often than

once per year.

16) In Germany, Type A regulations cover the detailed requirements for the safety of a specific

machine.

17) An example of a B2 regulation would be the design of protective guards for machines.

18) An example of a C regulation would be the standards for the design of chemical reactors.

19) Using simple passwords and minimal digital security is a good idea for a critical chemical

process.

Section 8.4.2: Short Questions
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator

combined with pen and paper.

20) Determine the safety integrity levels for the following risks:

a. A risk evaluated as belonging to C2, F1, W2, and P2.

b. A risk evaluated as belonging to C3, F2, P1, and W1.

21) Determine some of the safety issues involved with the production of the following

chemicals. Based on the principles of safety considered here, would you recommend that

these chemicals be produced by a new start-up that has no chemical engineering

background.

a. Acrylonitrile (CH2CHCN), which is produced from propene, air, and ammonia.

b. Propene (C3H6), which is produced from ethene and 2-butene.

22) Perform a HAZOP on the compressor unit shown in Figure 123.

 281

PE
Spare

TE-5

Saturday, March 22, 2008

Q-SHOP ENGINEEERING

M
ot

or
M

-1

C-1

C-2TE-2

PE-2

FE-1

PE-
sparePE-3

Cooling water, out

C02, out

Cooling water, in

C02, in

TE-1

TI-1

PE-1

PT-1

TT-2

TE-3

V-3

TI-5

FT_1

TE-4

TI-4

PT-2

PT-3

TI-3

PE-2

PE-
Spare

PE-2PE-2

PE
Spare

V-2

V-1TIC

PIC

ESD

1

2

3

4

5

6 7

8

ESD-Bypass

V-4

H
EX

-1

P-179

Figure 123: P&ID for a Compressor Unit

 282

Bibliography
Seborg, D. E., Edgar, T. F., Mellichamp, D. A., & Doyle, F. J. (2011). Process Dyanamics and

Control (3rd ed.). Hoboken, New Jersey, United States of America: John Wiley & Sons,

Inc.

Shoukat Choudhury, M. A., Thornhill, N. F., & Shah, S. L. (2005). Modelling valve stiction.

Control Engineering Practice, 641-658.

 283

Appendix I: Partial Fractioning
 When solving equations in the frequency domain and it is desired to convert them back

into the time domain, it may be necessary to perform partial fractioning to obtain a solution.

Although there exist many different approaches, the following is one simple method that will allow

the final result to be obtained easily. Consider a rational function of the form:

()
()

()

() ()2

1 1

ql
ji

nn nn
i i j j j

i j

N s N s
D s

s s sα β α β γ
= =

=
+ + +∏ ∏

 (251)

where nl represents the number of distinct linear terms, nq the number of distinct irreducible

quadratics (those that have imaginary roots as their solution), and α, β, and γ are known constants.

Let n be the overall order of the system. In order to perform partial fractioning, write the following

fraction depending on the form of the root:

1) For each linear term (αs + β)n, put the term,
()1

k
n

k
k

B

sα β= +
∑ .

2) For each irreducible quadratic term, (αs2 + βs + γ)m, put the term,
()21

k
m

k
k

k

A B s

s sα β γ=

+

+ +
∑ .

Once the form of the partial fractioning solution has been obtained, it is necessary to solve for the

unknown parameters. First, cross-multiply, so that the denominators are the same. Then, it is

necessary to solve for the unknown parameters by equating the unknown side with the known,

N(s). The easiest way to solve this is using the following approach:

1) For each linear term, set s = −β / α to obtain Bn of the linear terms. This will reduce the

equation to the form () () ()2

1 1

ql
ji

nn nn
n i i j j j

i j
i n

B s s s N sα β α β γ
= =
≠

+ + + =∏ ∏ evaluated at the

given root.

2) For each quadratic term, set s equal to the imaginary roots. This will also reduce the

equation to a simpler form and allow for An and Bn to be solved.

For the remaining terms, create a system of equations by selecting different values of s and

evaluating the known values, so that the remaining unknowns can be solved. You will need n –

nl – 2nq equations in order to find the remaining n – nl – 2nq terms.

 284

Example 49: Partial Fractioning

 Consider the following fraction

()() ()2 2

3 1
2 1 1

s
s s s

+

+ + +
 (252)

for which we wish to determine the partial fraction form.

Solution

 First, we need to write the general form, that is, for each of the terms in the denominator,

we will write the corresponding partial fraction using the rules above. This will give

()2 22 1 11

A B C Ds E
s s ss

+
+ + +

+ + ++
 (253)

It can be noted that for the first term s + 2, as well as the last term s2 + 1, there will only be a single

component, since its exponent is one. For the middle term, (s + 1)2, there will be two terms, since

the exponent is two. For the linear terms, we set a simple constant term in the numerator, while for

the quadratic term, we include a linear term in the numerator.

 Next, we need to determine the values of the constants in the numerator. Before doing this,

let us cross-multiply and determine the general form of the numerator

() () ()()() ()() ()()()2 22 2 21 1 2 1 1 2 1 2 1 3 1A s s B s s s C s s Ds E s s s+ + + + + + + + + + + + + = + (254)

As was previously mentioned, we can see that setting s = −1 or −2 will cancel every term but one,

allowing us to effortless compute that term. This gives for s = −1

() ()() ()21 2 1 1 3 1 1

2 1
2

C

C

− + − + = − +

−
= = −

 (255)

Similarly, for s = −2, we get

() ()() ()2 22 1 2 1 3 2 1

5 1
5

A

A

− + − + = − +

−
= = −

 (256)

For the quadratic term, we can set s = ±j, which will give us a linear system of equations in two

unknown (D and E) that we can then solve to obtain the value of D and E. This gives

 285

()()()

()()()

2

2

2 1 3 1

2 1 3 1

Dj E j j j

Dj E j j j

 + + + = +

− + − + − + = − +

 (257)

Placing all the constant terms on the right gives

0.5 0.5
0.5 0.5

Dj E j
Dj E j

+ = −
− + = +

 (258)

Adding the two equations together gives that E = (0.5 + 0.5)/2 = 0.5. From this, it follows that D

= −0.5. It can be noted that these two equations will always be complex conjugates of each other

and one can use this fact to solve them without necessarily computing both components.

 The remaining term B can be found by selecting an arbitrary value of s (that has not already

been used) and solving Equation (254). The known constants are inserted as required. Setting s =

0, we get

() () ()()() ()() ()()()2 21 1 1 2 1 1 1 2 1 0.5 2 1 1

3 1.5
2

B

B

− + − + =

= =
 (259)

Obviously, we have the correct answer if the numerator given by Equation (254) holds. This can

be used to check the solution obtained.

	Foreword
	Chapter 1 : Introduction to Automation Engineering
	Section 1.1 : The History of Automation Engineering
	Section 1.2 : The Key Concepts in Automation Engineering
	Section 1.3 : Automation-Engineering Framework
	Section 1.4 : The Automation-Engineering Pyramid
	Section 1.5 : Chapter Problems
	Section 1.5.1 : Basic Concepts
	Section 1.5.2 : Short Exercises

	Chapter 2 : Instrumentation and Signals
	Section 2.1 : Types of Signals
	Section 2.2 : Sensors
	Section 2.2.1 : Pressure Sensor
	Section 2.2.2 : Liquid-Level Sensors
	Section 2.2.3 : Flow Sensors
	Section 2.2.4 : Temperature Sensors
	Section 2.2.5 : Concentration, Density, Moisture, and Other Physical Property Sensors

	Section 2.3 : Actuators
	Section 2.3.1 : Valves
	Section 2.3.1.1 : Valve Sizing
	Section 2.3.1.2 : Dynamic Performance of Valves

	Section 2.3.2 : Pumps
	Section 2.3.2.1 : Pump Sizing
	Section 2.3.2.2 : Dynamic Performance of Pumps

	Section 2.3.3 : Variable Current Devices

	Section 2.4 : Programmable Logic Computer (PLCs)
	Section 2.5 : Communication Devices
	Section 2.6 : Chapter Problems
	Section 2.6.1 : Basic Concepts
	Section 2.6.2 : Short Questions

	Chapter 3 : Mathematical Representation of a Process
	Section 3.1 : Laplace and Z-Transforms
	Section 3.1.1 : Laplace Transform
	Section 3.1.2 : Z-Transform

	Section 3.2 : Time- and Frequency-Based Models
	Section 3.2.1 : Time- and Frequency-Domain Representations
	Section 3.2.2 : Converting Between Representations
	Section 3.2.3 : Discrete-Domain Models
	Section 3.2.4 : Converting Between Discrete and Continuous Models
	Section 3.2.5 : Impulse Response Model
	Section 3.2.6 : Compact State-Space Representation

	Section 3.3 : Process Analysis
	Section 3.3.1 : Frequency-Domain Analysis
	Section 3.3.2 : Stability
	Section 3.3.2.1 : Routh Stability Analysis
	Section 3.3.2.2 : Jury Stability Analysis
	Section 3.3.2.3 : Closed-Loop Stability Analysis

	Section 3.3.3 : Controllability and Observability
	Section 3.3.4 : Analysis of Special Transfer Functions
	Section 3.3.4.1 : Integrator
	Section 3.3.4.2 : Lead Term
	Section 3.3.4.3 : First-Order Transfer Function
	Section 3.3.4.4 : Second-Order System
	Section 3.3.4.5 : Higher-Order Systems
	Section 3.3.4.6 : Summary of Functional Behaviour in Continuous- and Discrete-Time Domains

	Section 3.4 : Event-Based Representations
	Section 3.4.1.1 : Analysis of Automata
	Section 3.4.1.2 : Combining Automata
	Section 3.4.1.3 : Timed Automata

	Section 3.5 : Chapter Problems
	Section 3.5.1 : Basic Concepts
	Section 3.5.2 : Short Questions
	Section 3.5.3 : Computational Exercises

	Chapter 4 : Schematic Representation of a Process
	Section 4.1 : Block Diagrams
	Section 4.2 : Process Flow Diagrams
	Section 4.3 : Piping and Instrumentation Diagrams (P&ID)
	Section 4.3.1 : P&ID Component Symbols According to the DIN EN 62424
	Section 4.3.2 : Connections and Piping in P&IDs
	Section 4.3.3 : Labels in P&IDs

	Section 4.4 : Electric and Logic Circuit Diagrams
	Section 4.5 : Chapter Problems
	Section 4.5.1 : Basic Concepts
	Section 4.5.2 : Short Questions
	Section 4.5.3 : Computational Exercises

	Chapter 5 : Control and Automation Strategies
	Section 5.1 : Open- and Closed-Loop Control
	Section 5.1.1 : Open-Loop Control
	Section 5.1.2 : Closed-Loop Control
	Section 5.1.2.1 : State Feedback
	Section 5.1.2.2 : Proportional, Integral, and Derivative (PID) Control
	Section 5.1.2.2.a : Proportional Term
	Section 5.1.2.2.b : Integral Term
	Section 5.1.2.2.c : Derivative Term
	Section 5.1.2.2.d : Proportional and Integral (PI) Controller
	Section 5.1.2.2.e : Proportional, Integral, and Derivative (PID) Controller
	Section 5.1.2.2.f : Discretisation of the PID Controller

	Section 5.1.2.3 : Controller Tuning
	Section 5.1.2.3.a : Tuning a State-Space Controller
	Section 5.1.2.3.b : Tuning a PID Controller

	Section 5.1.2.4 : Controller Performance

	Section 5.2 : Feedforward Control
	Section 5.3 : Discrete-Event Control
	Section 5.4 : Supervisory Control
	Section 5.4.1 : Cascade Control
	Section 5.4.2 : Model Predictive Control

	Section 5.5 : Advanced Control Strategies
	Section 5.5.1 : Smith Predictor
	Section 5.5.2 : Deadbanding and Gain Scheduling
	Section 5.5.3 : Squared Control
	Section 5.5.4 : Ratio Control
	Section 5.5.5 : Input-Position Control
	Section 5.5.6 : Nonlinear Characterisation
	Section 5.5.7 : Bumpless Transfer

	Section 5.6 : Chapter Problems
	Section 5.6.1 : Basic Concepts
	Section 5.6.2 : Short Questions

	Chapter 6 : Boolean Algebra
	Section 6.1 : Boolean Operators
	Section 6.2 : Boolean Axioms and Theorems
	Section 6.3 : Boolean Functions
	Section 6.3.1 : Sum-of-Products Form and Minterms
	Section 6.3.2 : Product-of-Sums Form and Maxterms
	Section 6.3.3 : Don’t-Care Values
	Section 6.3.4 : Duality

	Section 6.4 : Minimising a Boolean Function
	Section 6.4.1 : Karnaugh Map

	Section 6.5 : Chapter Problems
	Section 6.5.1 : Basic Concepts
	Section 6.5.2 : Short Questions

	Chapter 7 : PLC Programming
	Section 7.1 : The Common IEC-Standard Hierarchy
	Section 7.2 : Types of Variables
	Section 7.3 : Variables, Data Types, and Other Common Elements
	Section 7.3.1 : Simple Elements
	Section 7.3.1.1 : Delimiters
	Section 7.3.1.2 : Keywords
	Section 7.3.1.3 : Literals
	Section 7.3.1.4 : Identifiers

	Section 7.3.2 : Variables
	Section 7.3.3 : Data Types
	Section 7.3.3.1 : Elementary Data Type
	Section 7.3.3.2 : Arrays
	Section 7.3.3.3 : Data Structures
	Section 7.3.3.4 : Derived Data Types

	Section 7.4 : Ladder Logic (LL)
	Section 7.4.1 : Components of Ladder Logic
	Section 7.4.2 : Functions and Ladder Logic
	Section 7.4.3 : Examples of Using Ladder Logic
	Section 7.4.4 : Comments

	Section 7.5 : Instruction List (IL)
	Section 7.5.1 : Universal Accumulator
	Section 7.5.2 : Operators
	Section 7.5.3 : Functions in Instruction List
	Section 7.5.4 : Calling Function Blocks in Instruction List
	Section 7.5.5 : Examples
	Section 7.5.6 : Comments

	Section 7.6 : Function-Block Language (FB)
	Section 7.6.1 : Blocks used in the Function-Block Language
	Section 7.6.2 : Feedback Variable
	Section 7.6.3 : Example
	Section 7.6.4 : Comments

	Section 7.7 : Structured Text (ST)
	Section 7.7.1 : Commands in Structured Text
	Section 7.7.2 : Operators in Structured Text
	Section 7.7.3 : Calling Function Blocks in Structured Text
	Section 7.7.4 : Example
	Section 7.7.5 : Comments

	Section 7.8 : Sequential-Function-Chart Language (SFC)
	Section 7.8.1 : Steps and Transitions
	Section 7.8.2 : Action Blocks
	Section 7.8.3 : Sequential Function Charts
	Section 7.8.4 : Example
	Section 7.8.5 : Validity of a Sequential Function Chart

	Section 7.9 : Chapter Problems
	Section 7.9.1 : Basic Concepts
	Section 7.9.2 : Short Questions
	Section 7.9.3 : Computational Exercises

	Chapter 8 : Safety in the Automation Industry
	Section 8.1 : Safety of the Physical System
	Section 8.1.1 : Quantifying Risk and the Safety Integrity Level

	Section 8.2 : Safety Regulations
	Section 8.3 : Digital Safety
	Section 8.4 : Chapter Problems
	Section 8.4.1 : Basic Concepts
	Section 8.4.2 : Short Questions

	Bibliography
	Appendix I : Partial Fractioning

