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Foreword 
 This book will examine the foundations of automation engineering in a world increasingly 

focused on the development and implementation of automation. It will provide the reader with an 

understanding of the key principles and components of automation engineering and how these 

principles can then be combined and implemented in a real industrial system to provide safe, 

economically viable, and efficient systems. Application will focus on a wide range of different 

systems including chemical, electrical, and mechanical systems. 

 At the end of each chapter, questions testing the reader’s understanding of the material 

presented as well as providing places for extension and deeper understanding of the topics at hand 

are given. 

 In order to clearly differentiate between regular text and computer-related symbols, the font  

“Courier New” is used for all computer-related symbols. 

 This book is meant to be used as the course material for an introductory, bachelor’s-level 

course in automation engineering. It is possible to present different permutations and combinations 

of the material depending on what topics are of interest to the particular students.  

 Computer files and related material can be downloaded from the book website (please 

insert the appropriate book website once the book has been published). 

 The authors would like to thank Ying Deng and M.P. for their help in preparing some of 

the material used in this book. 
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Chapter 1: Introduction to Automation 

Engineering 
 Automation engineering is an important component of modern industrial systems that 

focuses on the development, analysis, optimisation, and implementation of complex systems to 

provide safe, economically viable, and efficient processes. Automation engineering seeks to 

eliminate as much as possible human intervention into the process. However, it should be noted 

that this does not mean that humans are not required to monitor and assist with the running of the 

process; it simply implies that the mundane, often repetitive, tasks are delegated to computer 

systems that are better suited for performing such work. 

 In order to understand automation engineering, it is important to briefly review its long 

history, its main principles, and its foundations. 

Section 1.1: The History of Automation Engineering 
 Ever since humans developed the need to implement complex tasks, the desire for making 

them faster and easier was also present. All such endeavours have sought to harness the power of 

nature using ingenious methods to provide the desired outcomes. Often, these devices have had 

practical or military implications. 

 One of the first to develop an interest in automating processes were the ancient Greeks, 

who developed a wide range of devices. Since these devices acted on their own, they were often 

called automata (singular: automaton; from the Greek αὐτόματον1, which means acting of one’s 

own will). These automata performed a wide variety of tasks and were first described by Homer 

(gr: Ὅμηρος, c. 8th century BC) to describe such devices as automated moving temple doors or 

tripods. The first known device with feedback control is the water clock developed by Ctesibius 

(gr: Κτησίβιος; fl. 285 to 222 BC) that was able to accurately maintain the time. In fact, this water 

clock remained the most accurate time-keeping device until the invention of the pendulum clock 

 

 
1 This word is ultimately derived from the Greek word αὐτός, meaning self, and an unattested root, which comes from 
the proto-Indo-European word *méntis ~ mn̥téis, meaning thought (which in turn gave us such words as mind in 
English) 
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in AD 1656 by Christiaan Huygens. Later, a primitive steam engine, called an æolipile, was 

developed by Hero of Alexandria (gr: Ἥρων ὁ Ἀλεξανδρεύς, c. AD 10 to 70). Examples of these 

devices are shown in Figure 1. As well, objects that assisted in the computation of heavenly bodies 

(essentially the first computers) were also developed. The most famous is the Antikythera 

mechanism, a type of astronomical clock based on a gear-driven apparatus. This tradition of 

developing mechanical automated objects was continued long into the Middle Ages both in Europe 

and in the Middle East, with such work as the Book of Ingenious Devices (ar: كتاب الحیل (Kitab al-

Hiyal) or pe:  ترفندھا  ,by the brothers Banu Musa published in A.D. 850 ((Ketab tarfandha) كتاب 

which describe various automata, including primitive control methods, automatic fountains, 

mechanical music machines, and water dispensers. Similarly, in the court rooms around the world, 

various automata in the shape of singing animals were being developed and maintained. Famous 

examples can be found in the (now destroyed) palaces of the Khanbaliq of the Chinese Yuan 

dynasty and the court of Robert II, Count of Artois. 

 The interest in the development of automata continued into the Renaissance with the 

development of life-size automata, such as The Flute Player by the French engineer Jacques de 

Vaucanson (1709 – 1782) in 1737. 

 With the rediscovery of steam engines, the ability to develop large and complex automated 

system become a reality sparking the first Industrial Revolution (1760 to 1840). One of the first 

such examples was the Jacquard loom that could be programmed to automatically weave different 

designs using punch cards. The development of advanced systems required methods of controlling 

them, so that explosions and damage were minimised. The first dedicated device for controlling a 

steam engine, called the Watt governor, was developed by James Watt (1736 – 1819). The Watt 

governor, shown in Figure 2, regulates the amount of fuel entering the system so that the speed of 

the engine remains in a desired range. The development of the first Watt governor was followed 

by a rash of patents trying to improve various aspects, including one by William Siemens 

(1823 – 1883). It was not until 1868, when James Clerk Maxwell (1831 – 1879) provided a 

mathematical description of the governor in his aptly named paper On Governors that a rigorous 

mathematical foundation for the development of methods for controlling a process was available. 

As the systems became more complex in the succeeding decades and centuries, there came an 

ever-increasing need for understanding these intricate systems in order that they be properly run 

so as to avoid unsafe operating conditions. 
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Figure 1: Automation engineering in the time of the ancient Greeks: (left) Æolipile (steam engine) and (right) Automated temple 
door opening device 

 

Figure 2: Watt governor (a: fly ball, b: arms, c: spindle, d: sleeve, e: ball crank lever, and f: throttle) 
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 The demand for automation continued with the onset of the second Industrial Revolution 

(1870 – 1915), which focused on the development of efficient manufacturing methods (production 

lines, Taylorism, and similar ideas) coupled with the development of electricity and the first 

electrical devices. 

 By the 1950s, a new industrial revolution, often called the third Industrial Revolution or 

the Digital Revolution, had started. This revolution focused on the implementation and use of 

complex electrical circuits that can be used to quickly and efficiently perform complex processes. 

With the development of these circuits, it became easy and cost-effective to implement automation 

in a wide range of different fields. From the perspective of automation engineering, the key event 

was the development of programmable logic controller (PLCs) that could be used to implement 

advanced control methods in an industrial setting. The first PLCs were developed by Bedford 

Associates from Bedford, Massachusetts, USA based on a white paper written by the engineer 

Edward R. Clark in 1968 for General Motors (GM). One of the key people working on this project 

was Richard E. “Dick” Morley (1932 – 2017), who is often considered the father of the PLC. Other 

important work was performed by Odo Josef Struger (1931 − 1998) of Allen-Bradley in the period 

1958 – 1960. At the same time, there was an explosion of interest in a theoretical perspective on 

automation engineering, especially in the areas of control and process optimisation. This research 

by such people as Andrei Kolmagorov (ru: Андре́й Никола́евич Колмого́ров, 1903 − 1987), 

Rudolf Kálmán (hu: Kálmán Rudolf Emil, 1930 − 2016), Richard E. Bellman (1920 – 1984) and 

others lead to a strong foundation for the subsequent development and implementation of advanced 

control methods in industry. 

 Within the context of the third Industrial Revolution, the concept of robots was also 

considered. The word robot itself was first used by the Czech author Karel Čapek (1890 – 1938) 

in his 1920 drama R.U.R. (cz: Rossumovi Univerzální Roboti or en: Rossum’s Universal Robots) 

as a word for artificial humanoid servants that provided cheap labour. Karel credited his brother 

painter Josef Čapek (1887 – 1945) with inventing this word. The word robot stems from the Czech 

root robota, that means serfdom, which ultimately comes from the proto-Indo-European word, 

*h₃erbʰ−, that means “to change or evolve status” from which the English word arbitrate is also 

derived. 

 More recently, with the growth of interconnectedness and the development of smart 

technologies, some have proposed that a new industrial revolution is dawning. This revolution has 
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been called the fourth Industrial Revolution, or Industry 4.0, which focuses on the development of 

self-functioning, interconnected systems in an increasingly globalised world. Its main drivers are 

ever increasing automation and digitalisation of the industrial plant combined with globalisation 

and customisation of the supply chains.  

Section 1.2: The Key Concepts in Automation Engineering 
 Automation engineering can be applied to a wide range of different cases. Instead of 

considering each situation separately, automation engineering has developed a set of abstract 

concepts that allow the ideas to be applied to any relevant situation.  

 The basic concept in automation engineering is a process or system.2 Figure 3 shows a 

typical system with some important components. In automation engineering, as shown in Figure 

3, a system consists of inputs, denoted by u, and outputs, y. Inputs represent those variables, 

whose change will lead to a change in the system. Inputs can be divided into two types: 

manipulative and disturbance. A manipulative input is an input, whose value can be changed 

through some device, for example, the flow rate in a valve can be manipulated by opening or 

closing a valve. A disturbance input is an input, whose value cannot be changed (at least in 

context of the given situation), for example, the ambient temperature cannot be readily modified. 

Similarly, outputs can be divided into two categories: observable or measurable and 

unobservable or unmeasurable. Observable or measurable outputs are those variables whose value 

can be measured or inferred using some device, for example, the temperature of a fluid can be 

measured or determined using a thermometer. Unobservable or unmeasurable outputs are those 

variables that cannot be measured (at least in context of the given situation), for example, the 

density of a complex mixture consisting of multiple phases and components may not be easy to 

measure. Finally, we can consider the states of the system, which are the internal variables that 

describe the behaviour of the system. In many cases, the states of a system are equivalent to the 

outputs and can be categorised using a similar terminology. Often, not all the states can be observed. 

 

 
2 In this textbook, the two words will not be distinguished. Some authors consider the process to be the overall way 
something is done, while a system represents the actual physical realisation of the process. Since in many cases, these 
words are used interchangeably, the textbook will primarily use system. 
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Figure 3: A system in automation engineering 

 It goes without saying that if we wish to understand the system, we require a model of the 

system. A model of the system is a mathematical representation of the relationship between the 

inputs, outputs, and states. The complexity of the required model depends on the purposes that the 

model will be used. Modelling a process is a complex endeavour that requires insight into the 

process and the ability to handle large data sets quickly and effortlessly. 

 In order to complete the picture regarding the system, it is necessary to extend our view to 

include parts that allow us to interact with the system or influence its behaviour. Such a view is 

provided in Figure 4, which shows the key components and their interactions. It is important to 

briefly consider the impact of these in order to understand how the system can be influenced and 

how it will react. In this view, the eight key components can be described as (the number is the 

same as in Figure 4): 

1) Actual Process: This represents the process under consideration. Normally, the actual 

process is unknown. Instead, a model of the actual process is used. 

2) Sensors: The sensors provide the ability to measure the process and understand how the 

variables are changing. 

3) Actuators: The actuators allow the value of a variable to be changed. If we cannot change 

the value of a variable, then it is hard to use it in an automation strategy. When deciding 

on which actuators to use, it is important to consider such factors as the variable being 

manipulated, the automation requirements (e.g. required accuracy, tolerance, or precision), 

and the type of service required (e.g. continuous, discrete, or emergency). 

4) Automation Devices: The automation devices are the controllers and related components 

that are used to automate the process. Most of the time the automation hardware consists 

of computers and other digital devices, such as programmable logic controllers (PLCs), 

that implement the required functions. The design of the automation hardware (and 

software) requires knowledge of the limitations and requirements of the system. 

5) Environment: The environment represents everything that surrounds the system to be 

automated that can have an impact on the overall performance of the system. This influence 

can be caused either by changes in other processes that interact with the system of interest 
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or by direct environmental changes, such as for example, changes in the ambient 

temperature. The system will exchange mass, energy, and information with its environment. 

6) Automation Objectives: The automation objectives play a very important role in the 

development and implementation of the final automation system. Poorly defined or unclear 

objectives can make achieving the project difficult if not impossible. Furthermore, the 

objectives often need to be translated from the language of business into actually 

implementable objectives on a system. This translation can cause additional uncertainties 

and lack of clarity. 

7) Operators: Although the human component is often minimised or ignored when designing 

automation systems, it is in fact very important. Many complicated automation systems 

have failed due to a lack of proper consideration of the operators. In general, the operators 

need to have the required information easily available (no fancy graphics are needed) and 

they can enter the required information into the system quickly and efficiently. Appropriate 

feedback and safety checking of the entered values must be performed to avoid confusion. 

The operators interact with the process using a human-machine interface (HMI). An 

HMI provides two key functions. It allows the operators to see the important process values 

and to manipulate as necessary the process values. Manipulating the values implies that the 

operators can change at what value the process operates, for example, changing the flow 

rate in a pipe. Finally, when designing the HMI, it is important to consider any safety 

features, such as logic, that limits which values can be entered by the operators. This 

prevents mistakes both accidental, such as mistyped numbers or the wrong information in 

a given field, and malicious, such as changes introduced by illegal access to the system, 

from having an impact on the process. 

8) Disturbances: Disturbances are everything that can impact the system, but whose presence 

cannot be directly controlled. Disturbances can originate in the environment (for example, 

the ambient temperature) or in the devices themselves (for example, measurement noise in 

sensors). One of the objectives of the automation system is to minimise, as much as 

possible, the impact of these disturbances on the process. 

The final aspect that needs to be considered is safety. The automation system that has been 

designed should allow the process to operate in a safe manner without any unexpected behaviour, 

from serious errors to a system failure. The system should also be robust, that is, minor changes 
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in the process should not cause the whole system to fail catastrophically. A robust system can 

handle small changes in the process conditions and still attain the required goals. 

 

Figure 4: General structure of an automated system 

Section 1.3: Automation-Engineering Framework 
 When solving an automation engineering problem, the following steps should be 

considered: 

1) Modelling of the Process, which involves developing an appropriate model of the process. 

2) Analysis of the Process, which involves using the model to analyse how the process will 

behave under different conditions. This can be performed using either mathematical 

analysis or simulations. 

3) Design of the Automation Strategy, which based on the process properties and required 

behaviour, provides an appropriate automation strategy that attains the required automation 

objectives. 
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4) Validation of the Proposed Automation Strategy, which validates the proposed 

automation strategy using the process model. This determines if the proposed strategy can, 

in fact, achieve all the desired automation objectives. Should it be found that the proposed 

strategy is lacking, then the strategy needs to be refined and retested. This implies that there 

may need to iterate until the final automation strategy is found. 

5) Implementation and Commissioning of the Proposed Automation Strategy, which 

involves the implementation of the strategy in the real process. Naturally, the 

implementation on the real system may lead to changes in the strategy. This implies that 

before commissioning, the automation strategy should be tested on the actual process in as 

realistic conditions as possible. In certain cases, this may not be feasible and advanced 

simulations, using hardware-in-the-loop methods can be implemented to provide a 

realistic simulation of the system. 

Section 1.4: The Automation-Engineering Pyramid 
 The automation-engineering pyramid is an overall description of the way in which 

different automation strategies can be organised and structured. It examines two key components: 

speed of response, or how often the system is expected to respond to changes, and process details. 

Figure 5 shows the general pyramid that consists of 6 different levels (from top to bottom): 

• Level 5 – Enterprise Resource Planning (ERP) level: This level focuses on the abstract 

analysis of the overall company strategies for dealing with the current market conditions. 

This level runs at a very long-time horizon, often in terms of years. At this level, the focus 

is on market analysis, strategic investment and personnel planning, and corporate 

governance. 

• Level 4 – Manufacturing Execution Level: This level considers the specific strategies 

that allow for the overall plant/process to run. This includes such details as production 

planning, production data acquisition, organisation of delivery orders, and deadline 

monitoring. The time horizon for actions can reach into months. Often, at this level, various 

software systems, such as a manufacturing execution system (MES) or a management 

information system (MIS), are used. 

• Level 3 – Process Control Level: This level focuses on short-term production planning, 

quality control, and maintenance planning with an action horizon of at most days. Often, 
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software, such as a supervisory control and data acquisition (SCADA) programme, will be 

used. 

• Level 2 – Control Level: This level considers how to run the algorithms for controlling 

the process using the available process information on the time horizon of minutes or even 

seconds. Various hardware, such as programmable logic controllers (PLCs) or industrial 

PCs (IPCs) are used to compute the required actions. It is on this level that this book focuses. 

• Level 1 – Field Level: This level focuses on the sensors and actuators. Information is 

actively exchanged with Level 2, often using fieldbuses. The time horizon is often in the 

range of seconds or faster. 

• Level 0 – Process Level: This level represents the actual process that is running in real 

time. 

It can be noted that the process description becomes more abstract as we go from bottom to top. 

While Level 0 is very concrete and describes everything in great detail, Level 5 is very abstract 

and only focuses on describing the process inputs and outputs to give an overall picture of the 

process. 

 

Figure 5: A description of the components of the automation-engineering pyramid 
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Section 1.5: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 1.5.1: Basic Concepts 
 Determine if the following statements are true or false and state why this is the case. 

1) A system consists of inputs, outputs, and states. 

2) Inputs are variables that influence the system. 

3) All outputs can always be measured. 

4) A disturbance is a variable whose value can be easily changed as desired. 

5) The state of a system describes the internal behaviour of the system. 

6) Actuators are used to manipulate disturbances. 

7) PLCs are commonly used to automate the process. 

8) The environment has minimal impact on an automation system. 

9) HMIs should be easy to read and understand. 

10) An automation system that explodes periodically is a well-designed system. 

11) An automation system should fail the second the system deviates from the expected 

conditions. 

12) A system exchanges mass, energy, and information with the environment. 

13) Disturbances can affect sensors, actuators, and control devices. 

14) Validating a proposed automation strategy using appropriate models of the system is a good 

strategy to consider. 

15) Before commissioning of the automation strategy, it should be tested on the actual system 

in as real conditions as possible. 

16) The enterprise resource planning level focuses on controlling the process in fine detail and 

making decisions every millisecond. 

17) The process control level often uses SCADA systems to implement its tasks. 
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18) In the field level, sensors gather the information and transfer it using fieldbuses to the 

control level. 

19) A process variable that cannot be measured should be used to control the process. 

20) Safety is always an unimportant topic in automation engineering. 

Section 1.5.2: Short Exercises 
 These questions should be solved using only a simple, nonprogrammable, nongraphical 

calculator combined with pen and paper. 

21) How is that information can be created and destroyed, but matter and energy cannot be? 

Provide some examples of such cases. 

22) You have been assigned the task of designing an automation system for a traffic light 

system. Explain how you would apply the automation engineering framework to this 

problem. 

23) You have been given the task of designing a large, multi-unit chemical plant. Explain how 

the automation-engineering pyramid could apply to this problem. 

24) You have been given the task of designing a self-driving car. Explain how you would 

implement the automation engineering framework to this problem. Would you consider 

safety and robustness to be significant factors?  
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Chapter 2: Instrumentation and Signals 
 The foundational component of any automation system is the instrumentation, that is, the 

sensors, actuators, and the computer hardware which together produce a stream of values, often 

called a signal, that can be used for subsequent processing. Before we can look at the sensors, 

actuators, and control concepts, it is helpful to understand the types of signals and how they can 

be generated. 

Section 2.1: Types of Signals 
 In automation engineering, signals can be classified using two domains: time and value. 

Each domain has two options: continuous and discrete. In general, a continuous signal can take 

any value within the set of (positive) real numbers, while a discrete signal can only take certain, 

specified values (for example, only natural numbers). 

 In the time domain, a signal is said to be continuous, if there exists a signal value for any 

time t, that is, the signal can be written as a continuous function of t. An example of a continuous-

time signal would be the outdoor temperature, which contains a value for each possible time 

instance. 

 A signal is said to be discrete in the time domain, if it is only defined at certain values tk, 

where k ∊ ℤ (or ℕ). Normally, it is assumed that the values are available with a specified constant 

sampling rate, ts, so that tk = kts. Obviously, as the sampling time decreases, then the signal 

approaches that of a continuous signal. 

 Similar to the time domain, the value domain of the signal can be classified into continuous 

or discrete. A continuous value for a signal implies that the signal can take any real number (subject 

to any physical constraints, for example, always positive or in the range [0, 1]). A continuous 

valued signal can be written as a continuous function that in general depends on time and any 

additional variables. 

 A discrete-valued signal can only take specific values. Often the discrete values are 

partitioned into equidistant bands. In automation systems, a common discrete-valued signal is a 

binary signal that can only take two values (conventionally denoted by 0 or 1). Such a signal is 

common when dealing with alarms that are triggered when a certain condition occurs, for example, 

if the pressure in the reactor surpasses a given value, then the signal value is set to 1 and the alarm 
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is triggered. Such signals work by assigning one value (say 0) to the normal state and the other 

value to the alarm state (say 1). Binary signals are often displayed using what is called a timing 

diagram. In a timing diagram, the binary signal is plotted as a function of time. Multiple different 

binary signals are normally placed on separate y-axis, but a common time x-axis. Figure 6 shows 

such a typical timing diagram. 

 

Figure 6: A timing diagram for two binary signals A and B 

 Based on the classification in the time and value domains, it is possible to have four 

different types of signals, which are shown in Figure 7. By convention, a signal that is continuous 

in both the time and value domains is called an analogue signal, while a signal that is discrete in 

both the time and value domains is called a digital signal. 

 Since most real processes require and produce continuous, analogue signals, but computers 

perform their computations using discrete, digital signals, there is a need to understand how signals 

can be converted between the two forms. Converting from analogue to digital signals is shown in 

Figure 8, and consists of three components: sampler, quantiser, and encoder. The sampler 

measures (samples) the value of the analogue signal on a fixed frequency to convert the signal into 

the discrete time domain. Next, the quantiser coverts this sampled signal into the available closest 

value (quantum) to create a digital signal. The encoder simply encodes the digital signal into a 
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given digital representation that can be used by the computer. This process is often denoted as an 

analogue-to-digital (A/D) converter. 
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Figure 7: Continuous and discrete signals 

 

Figure 8: Analogue-to-digital conversion 

 When quantising a continuous signal, its values are compared against fixed (equidistant) 

quantisation levels. If the value of the continuous signal is between two decision thresholds, the 

lower value is usually selected. For example, if a continuous signal has a value of 0.44 with 

quantisation levels at 0.25 and 0.5, the quantised (sampled) signal will be set to 0.25. The selection 

of appropriate quantization levels is important, since this selection affects the accuracy of the 

mapping of the process, for example, if the steps are too far apart, important information can be 

lost. 

 When going in the other direction, it is normal to assume that the value of the signal will 

not be changed and only the time component needs to be made analogue. This is normally 

accomplished using a hold, which holds the value of signal until a new value is received. The most 



   31  

common hold is the zero-order hold, which simply holds the last value received until a new value 

is received. A more accurate hold is the first-order or linear hold, which uses an interpolation 

between the previous two data points to obtain a linearly varying value over the sampling period. 

This process is called digital-to-analogue (D/A) conversion. 

Section 2.2: Sensors 
 A sensor is a device that can detect changes in a variable and upon calibration display these 

changes in a manner that can be understood by others, often with reference to some absolute scale. 

 A sensor is characterised by two properties: accuracy and precision or reproducibility. 

Accuracy measures the ability of a sensor to give the “true” value, which is usually determined 

based on some standard. The difference between the true and measured values is often called bias. 

Precision or reproducibility measures the variability of the sensor when measuring the same value. 

Ideally, it is desired that the values reported by a sensor be tightly located about the mean value, 

that is, the variance of the sensor values should be small. It should be noted that an inaccurate 

sensor may be very precise with a tight distribution about an incorrect value. Another issue to 

consider is the range of the sensor. The range of a sensor is defined as the difference between the 

largest and smallest values that the sensor can measure. The accuracy and precision of a sensor is 

often a function of the range of values that the sensor is meant to measure. The larger the range 

the less precise the values will be. Similarly, the smaller the range, the more precise the values will 

be. This implies that when dealing with processes that have values covering a large range it may 

be necessary to install multiple sensors which are accurate in a limited region and then using only 

the appropriate sensor value. 

 Sensors need to be calibrated before being used or to check that they are behaving as 

expected. Calibration involves using standards with accurate and well-defined values to compare 

against the measured value given by the sensor. Plotting the measured and true values against each 

other will allow the calibration of the sensor to be determined. A typical calibration curve is shown 

in Figure 9. There are two parameters of interest here: the y-intercept, which gives the bias, and 

the slope of the line (or lack of linearity). The slope of the line and the general distribution of the 

points suggest whether or not an appropriate calibration curve was used. Ideally, the line should 

be linear and the slope equal to exactly one. 
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Figure 9: Typical Calibration Curve 

 A single sensor depending on its calibration and physical arrangement can be used to 

measure different physical variables, for example, a differential pressure cell can measure both 

flow rates and level. 

 Selecting an appropriate sensor depends on the following criteria: 

1) Measurement Range (Span): The required measurement range for the process variable 

should lie within the instrument’s range. 

2) Performance: Depending on the specific application, different factors, such as accuracy, 

precision, and speed of response, will need to be considered. 

3) Reliability: How well does the sensor work in the given operating conditions, for example, 

if the sensor must be placed in harsh operating conditions, can it handle them and for how 

long? 

4) Materials of Construction: Depending on the application, the required materials of 

construction for the sensor may be different, for example, a temperature sensor in a blast 

furnace will require a different material than a temperature sensor in the living room of a 

house. 

5) Invasive or Noninvasive: An invasive sensor comes in direct contact with the object being 

measured, for example, inserting a probe into a liquid to measure the temperature. If an 

invasive sensor comes into contact with the process, it can influence the process or be 

influenced by the process itself. Thus, invasive methods can have issues with long-term 

accuracy due to fouling or corrosion of the probe surface. On the other hand, noninvasive 

sensors do not come in contact with the process. In such cases, the process is not disturbed, 
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but the measurement may be less accurate. However, noninvasive sensors are generally 

easier to use and can be easily retrofitted into an already built environment. 

Section 2.2.1: Pressure Sensor 
 In general, most industrial pressure sensors are constructed using a transducer that can 

convert the force per given area (pressure) into an electric signal. Nonelectronic pressure sensors, 

often called manometers, do not produce an electric signal and often have a calibrated faceplate 

that allows the value to be read. For this reason, the signals produced cannot, in most cases, be 

used for industrial automation. A pressure sensor can either measure an absolute pressure or a 

pressure difference. A simplified schematic of these two possibilities is shown in Figure 10. Most 

pressure sensors measure a pressure difference, which is often expressed as deviations from 

atmospheric pressure. As shown in Figure 10 (a), this is accomplished by leaving one of the two 

taps or sides of a pressure sensor open to the atmosphere. Such a reading is often called gauge 

pressure. A negative gauge pressure is expressed by using the term vacuum, for example, a 

reading of 10 kPa vacuum, would imply that the pressure of 10 kPa below atmospheric pressure 

has been achieved. Instead of using the varying atmospheric pressure, it is possible to fix the 

pressure value on one side of the sesnsor and use the resulting system to measure the system 

pressure. As shown in Figure 10 (b), such a set up will allow the measurement of absolute pressure 

to be achieved. 

 

Figure 10: Measurement set-up for pressure sensors: (a) Measuring differential pressure and (b) Measuring absolute pressure (a: 
flexible membrane, Pa: ambient pressure, Pm: to-be-measured pressure, and Pf: fixed pressure) 

 Most transducer-based pressure sensors use some type of electric circuit (for example, a 

Wien bridge) to measure the strain induced by the pressure on the system. Common strain gauges 

include piezoresistive, capacitive, electromagnetic, piezoelectric, and optical. Figure 11 shows a 

typical high-pressure transducer-based pressure sensor. Similarly, manometers are also based on 

the effect of pressure on some system property. They include the common hydrostatic manometers, 
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which basically measure the difference in pressure between the two taps, and mechanical 

manometers, which measure the effect of pressure on the strain of the material. Mechanical 

manometers have the advantage that they do not interact strongly with the fluid and can provide 

very sensitive readings. On the other hand, compared to the hydrostatic manometers, they can be 

more expensive. 

 

Figure 11: High-pressure transducer-based pressure sensor (a: measuring diaphragm, b: strain gauge, c: reference hole to the 
atmosphere, d: true gauge diaphragm, and e: area for the resistor for temperature correction and internal electronic amplifiers) 

Section 2.2.2: Liquid-Level Sensors 
 Determining the liquid level in tanks or other similar containers is a very common need in 

many chemical plants. Liquid level can be determined using many different methods, including 

differential pressure cells, floats, and various radio-based methods. Of these, the most common 

approach is to use a differential pressure cell, which measures the pressure gradient between the 

top of the liquid and the bottom of the liquid. Since pressure is proportional to the height of the 

liquid in the tank, it is relatively easy to calibrate and determine the height. On the other hand, 

since density depends on the temperature, this approach will not work in cases where there can be 

wide fluctuations in temperature (for example, a boiling liquid). A float measurement device works 

on a similar principle, of pressure difference, but records the values differently. Figure 12 shows 

an example of float to measure the level in a toilet for controlling the flow of water into the toilet 

tank. This shows a relatively simple example of automation that can be implemented with an 

appropriately selected sensor. Finally, various radio-based methods, for example, ultrasonic pulse 
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generating devices, can be used to determine the surface level. However, in order to get an accurate 

estimate, it is required that the surface be relatively flat and consistent. Froths and other particles 

can impact the accuracy and precision of the measurements. 

 

Figure 12: Level measurement and control using a float (a: trip lever, b: refill tube, c: float, d: overflow tube, e: ballcock, f: lift 
chain, and g: flush valve) 

Section 2.2.3: Flow Sensors 
 Flow sensors are used to measure the speed at which a liquid or gas is moving. There are 

three main types of flow sensors: mechanical flow sensors, pressure-based flow sensors, and 

electromagnetic flow sensors (including optical and ultrasonic flow sensors). Depending on the 

fluid present, each of the three types will have different accuracies and characteristics. 

 Mechanical flow sensors are based on the idea of timing how long it takes the liquid or gas 

to fill some known unit of volume. Most mechanical flow sensors have some type of wheel or 

paddle that is turned by the flowing medium inducing an electric signal, which is then calibrated 

to give a flow rate. In general, mechanical flow sensors are good with simple fluids, for example, 

water, in a single phase over a limited range of flow rates. Suspended particles in the fluid as well 

as multiple phases can cause the mechanical flow sensor to give incorrect readings. 



   36  

 Pressure-based flow sensors measure the pressure difference caused by some constriction 

in flow to determine the flow rate. Common pressure-based flow sensors include Venturi tubes, 

orifice-plate differential pressure cells, and Pitot tubes. As with mechanical flow sensors, these 

flow sensors tend to work best with uniphase flow of simple fluids without any suspended particles. 

Figure 13 shows the basic operating principles of a Venturi tube. 

 

Figure 13: Venturi tube (a: datum, b: U-tube manometer, c: manometer fluid, d: inlet, e: outlet, f: main pipe, g: converging cone; 
h: throat, i: diverging cone, D1: diameter of the main pipe, D2: diameter of the throat, Z1: reference height 1, Z2: reference height 

2, and h: height difference in the manometer) 

 Electromagnetic flow sensors use various electromagnetic waves (including light) to 

measure the flow of the fluid. Although not strictly speaking an electromagnetic flow sensor, 

ultrasonic flow sensors are based on a similar principle and can be included here. Magnetic flow 

sensors measure the changes induced by a flowing fluid in a local electric field. In many cases, the 

flowing fluid should be conductive and the surrounding pipe a nonconductor. Optical flow sensors 

use the time it takes for small, suspended particles inside a flowing gas to cross two laser beams. 

Based on this time, the bulk flow rate can be computed. Finally, ultrasonic flow sensors use the 

Doppler effect to measure the flow rate. An advantage of the ultrasonic flow sensors is that they 

can be nonintrusive, that is, the measurement can be done without coming in contact with either 

the pipe or the fluid. On the other hand, these sensors require the speed of sound for the flowing 

fluid to be known in order to calibrate the results correctly. 
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 In most industrial cases, pressure-based flow meters are used, since they are simple to use, 

robust, and easy to maintain. On the other hand, when dealing with exotic or extreme fluids, then 

more complex methods may be required. 

Section 2.2.4: Temperature Sensors 
 Temperature sensors are used to measure the temperature of a stream, be it liquid or gas. 

The most common industrial temperature sensor is a thermocouple, where temperature changes 

induce a voltage (called the Seebeck effect) in the two different touching conductors. It is possible 

to calibrate this change with temperature and hence use it. The construction of the thermocouple 

is shown in Figure 14. Determining an appropriate span and calibration for a thermocouple is very 

important in order to allow for maximal benefit. Inappropriate calibration can lead to accuracy 

issues with the sensor. The most common types of thermocouples are shown in Table 1. 

 

Figure 14: Thermocouple (a: metal 1, b: metal 2, c: measurement point, d: reference location, T1: to-be-measured temperature, T2: 
reference temperature, and V: voltmeter) 

Table 1: Thermocouple Types 

Thermocouple 

Type 

Temperature Range 

(°C) 

Material of 

Construction 
Comments 

K −200 to 1350 chromel−alumel Cheap, not too precise 

E −110 to 140 (narrow) 

−50 to 740 (wide) 

chromel−constantan Good for cryogenic use 

J −40 to 750 iron-constantan More sensitive than K 

B and R 50 to 1800 platinum-rhodium 

alloys 

Good for high temperature 

use, expensive 
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Thermocouple 

Type 

Temperature Range 

(°C) 

Material of 

Construction 
Comments 

C, D, and G 0 to 2320 tungsten/rhenium 

alloys 

Cannot be used in 

presence of oxygen, 

expensive. 

Chromel-

gold/iron 

−273.15 to 25 chromel-gold−iron Cryogenic applications 

Section 2.2.5: Concentration, Density, Moisture, and Other Physical 

Property Sensors 
 There exist various online sensors that can quickly provide readings for many different 

types of physical properties. Unfortunately, most of these sensors are relatively limited in their 

accuracy or precision. This often results from the extreme or nonideal conditions in which such 

systems are used. Often the laboratory measurements are more accurate and trusted. Most of these 

sensors use various photonic, magnetic, or sonic pulse methods to determine concentrations or 

densities. Consider, for example, a moisture sensor for water in soil. At present, there are 4 main 

ways to measure the moisture: tensiometers, which measure the water tension in the soil; electrical 

resistance blocks, which measure the resistance of a ceramic block in contact with the soil; 

electrical conductivity probes, which measure the conductivity of the soil between 2 plates; and 

dielectric sensors, which measure the dielectric constant of the soil. All methods require regular 

maintenance and are sensitive to ambient conditions, for example, placing more fertiliser will 

change the electrical conductivity of the moisture and hence disrupt the sensor. 

Section 2.3: Actuators 
 An actuator is a device that can change the amount of some variable that enters a system.  

An actuator is characterised by three properties: accuracy, precision or reproducibility, and 

performance. Accuracy measures the ability of an actuator to give the “true” value, which is 

usually determined based on some standard. The difference between the true and measured values 

is often called bias. Precision or reproducibility measures the variability of the actuator when 

delivering the same value. Ideally, it is desired that the value delivered by an actuator be close to 

the desired true value. The final issue to consider is the performance or how long does it take for 
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the actuator to respond to a change. In general, it is desired that an actuator respond quickly to 

changes and deliver the final desired value in a short period of time. Most actuators are designed 

so that 0% corresponds to no value and 100% corresponds to the maximal value. A common 

problem with actuators is that their response is nonlinear. One way to resolve this problem is to 

use a characterisation function that will convert the desired linear values into the actuator’s 

nonlinear values. 

 Actuators need to be calibrated before being used or to check that they are behaving as 

expected. Calibration involves using standards with accurate and well-defined values to compare 

against the measured value by the sensor. However, the exact relationships and behaviour of the 

calibration will depend on the specific actuator. 

 There are three common actuators: valves, pumps, and variable current actuators. 

Section 2.3.1: Valves 
 Valves are one of the most common actuators seen in a plant. They allow the flow rate of 

a liquid or gas to be controlled. Since valves are so ubiquitous in plants, there is a vast amount of 

work done on understanding valves and how they impact the performance of automation. The most 

common type of control valve is a pneumatic control valve that uses air to change the flow rate. A 

typical control valve is shown in Figure 15. A pneumatic control valve consists of three 

components: the current-to-pressure converter (I/P converter), the valve itself, and a positioner. 

The I/P converter takes the electric 4-20 mA signal and converts it to an appropriate pressure signal 

that can provide the motive force required to move the piston. There exist two types of control 

valves: air-to-close and air-to-open. Air-to-open valves are also called fail close valves because 

in the event of a loss of air pressure, the valve will close. Similarly, air-to-close valves are called 

fail open valves because in the event of a loss of air pressure, the valve will remain open. The 

choice of air-to-open or air-to-close valves is based on the outcome of a process hazard review. 

 For an air-to-close valve as shown in Figure 15, the compressed air enters the top of the 

valve actuator, exerts force against the diaphragm, and moves the diaphragm until the resistance 

force from the spring is equal to the force on the diaphragm from the compressed air. An increase 

in air pressure will tend to push the diaphragm down, while a decrease in air pressure will result 

in the spring forcing the diaphragm up to a new equilibrium point. The valve stem is attached to 

the diaphragm, and as the stem moves up and down it changes the position of a tapered plug (or 
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“trim”) relative to a seat. As the stem moves, it changes the cross-sectional area available for flow, 

and thus the resistance to flow. For an air-to-close valve, an increase in air pressure will push the 

plug towards the seat, thus reducing the area available for flow, increasing the resistance to flow, 

and reducing the flow rate though the valve. For an air-to-open valve, the air enters on the bottom 

of the diaphragm, so an increase in air pressure will raise the diaphragm, thus opening the valve. 

  

Figure 15: Pneumatically Actuated Control Valve (air-to-close) (a: supply air connection, b: mechanical stop, c: diaphragm, d: 
upper chamber, d: lower chamber, f: spring, g: housing, h: local position indicator, i: stem, j: flow direction, and k: transducer) 

 Many modern valves have an additional element called a positioner that seeks to overcome 

any potential errors in the valve. A positioner basically compares the current valve location against 

the reference value and will change the air supply to allow for the difference to be zero. 

 The behaviour of a valve is normally specified based on the percentage of the total distance 

that the valve is opened or closed. This eliminates the need to know the exact flow rates. Therefore, 

the flow rates of a valve are often stated in terms of percent open (often abbreviated as %open). 
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 Properly selecting a valve for automation (or control) is very important. There are two 

variables to consider: sizing and dynamic performance. 

Section 2.3.1.1: Valve Sizing  
 Control valves must be specified, just like piping, heat exchangers, and other process 

equipment.  The sizing of a control valve determines the range of flow rates over which the valve 

can produce a hydrodynamically stable flow.  

 A valve that is too small will not permit enough flow when it is fully open, which is defined 

in terms of the needs for process regulation. A control valve must permit significantly greater flow 

than the steady-state requirement in order to be able to provide reasonable performance. A valve 

that is too large will have a sufficiently high maximum flow but will provide poor regulation when 

the flow is low. For a number of reasons, valves are not very precise instruments, and the relative 

errors tend to be greatest when the valve is almost closed.  

 A valve that is open by less than 10% is generally considered effectively closed, and a 

valve that is more than 90% open is generally considered effectively fully open. 

 To determine whether a control valve is undersized or oversized, examine the range of 

controller output values used when the valve is in service. If the valve spends a significant fraction 

of the time fully open, then it can be considered undersized. If it spends a significant fraction of 

the time less than 10% open, or if the flow through the valve reaches a maximum before the valve 

is fully open, then the valve is oversized. 

Section 2.3.1.2: Dynamic Performance of Valves 
 In most flow control applications, it is desirable for the flow through the valve to be a linear 

function of valve position. If a plot of valve %open as a function of steady-state flow rate produces 

a straight line, then the valve is said to be linear. There exist two types of valves which will give a 

nonlinear plot: quick-opening valves and equal-percentage valves, whose plots are shown in 

Figure 16. A quick-opening valve, as its name suggests, will quickly open and reach the maximal 

flow rate, while an equal-percentage valve will reach the maximal flow rate more slowly. Since 

this behaviour of the valve is determined by the manufacturer, it is often called the inherent valve 

characteristic. If the valve is nonlinear, then the control performance can be improved by 

including a characterisation block that converts the linear flow rates desired into the corresponding 

percentage, rather than assuming a linear relationship. 
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 Furthermore, since a valve is a mechanical system, friction will cause two additional types 

of nonlinearities to be present in the system: static and dynamic. Static nonlinearity refers to the 

nonlinearity introduced by static friction when initiating changes in the valve position, while 

dynamic nonlinearity results from the dynamic friction in the valve, usually between the valve 

stem and the seal. Static friction between the stem and seal results in the valve not moving when 

there is a small change in the control signal (air pressure) input to the valve. Static friction, or 

“stiction,” can significantly affect controller performance. 

 To find static and dynamic nonlinearities in a control valve, step the valve from 0% open 

to 100% open and then back to 0% in small steps and record the steady-state flow at each step. 

Plot the data points on a graph of steady-state flow versus %open, and use different lines for 

opening and closing. The resulting graph will be similar to that shown in Figure 17, where the 

ideal valve behaviour is shown as a dashed line.  Static nonlinearity consists of the deadband 

region over which the flow rate does not change even though the signal to the valve increases and 

the slip-jump behaviour, while dynamic nonlinearity consists of hysteresis, which is the gap 

between the two lines. Slip-jump behaviour is caused by the static friction that must first be 

overcome before the valve changes its position. Since the dynamic friction is much smaller than 

the static friction, the valve will overshoot the position defined by the force as soon as it starts to 

move. This will make the curve look like a staircase. Hysteresis arises from the difference between 

the measured flow rate when opening and closing a valve. This effect can be explained by the 

different effect of dynamic friction on the moving valve. When the valve is being opened, due to 

dynamic friction, it will open less than desired. On the other hand, when it is being closed, the 

valve will be more open than specified, that is, it will close less than desired. 
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Figure 16: Inherent valve characteristics 

 

 

Figure 17: Phase plot for the typical behaviour of a valve with stiction (after (Shoukat Choudhury, Thornhill, & Shah, 2005)). 
The arrows show the direction in which the values were changed. 
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Section 2.3.2: Pumps 
 Another actuator that can control the flow rate in a stream is a pump. A pump is a 

mechanical device that takes a fluid, most often a liquid, from a storage tank and moves it to some 

other location. The main types of pumps are centrifugal pumps, positive-displacement pumps, and 

axial-flow pumps. In centrifugal pumps, the flow direction changes by 90° as it moves over the 

impeller, while in an axial-flow pump the flow direction is not changed. In positive-displacement 

pumps, the fluid is trapped in a fixed volume and forced (or displaced) into the discharge pipe. 

The traditional hand pump is a good example of a positive-displacement pump. Of these three 

types, the most common type is a centrifugal pump. A positive-displacement pump is often used 

if flows are small or extreme precision is required. Figure 18 shows a schematic diagram of a 

centrifugal pump, while Figure 19 shows a positive-displacement pump.  

 Compared to valves, pumps tend to provide better control of the flow rate and have fewer 

nonlinear characteristics. However, they have much higher energy consumption than valves. The 

main considerations for a pump, as for valves, are sizing and performance. 

 

Figure 18: Centrifugal Pump (a: inflow, b: impeller, c: shaft, and d: outflow) 



   45  

 

Figure 19: Positive-Displacement Pump (a: inflow, b: packing, c: piston rod, d: stuffing-box bushing, e: liner, f: piston, 
g: working fluid, h: valve, and i: outflow) 

Section 2.3.2.1: Pump Sizing 
 Control pumps must be specified, just like piping, heat exchangers, and other process 

equipment.  The sizing of a control pump determines the range of flow rates over which the pump 

can produce a hydrodynamically stable flow.  

 An undersized pump will not permit enough flow when it is fully operating, which is 

defined in terms of the needs for process regulation. A control pump must permit significantly 

greater flow than the steady-state requirement in order to be able to provide reasonable 

performance. An oversized pump will have a sufficiently high maximum flow, but will provide 

poor regulation when the flow is low.  

 Pumps operating for most of the time at less than about 10% are said to be oversized, while 

those operating at more than 90% are said to be undersized. 

Section 2.3.2.2: Dynamic Performance of Pumps 
 Unlike for a valve, the performance of a control pump is easier to quantify. In general, 

pumps are linear. The only significant issue is that with certain types of pumps a deadband may 

be present at low flow rates, that is, there may be no observed flow. This can be attributed to the 

fact that the pump cannot overcome the effects of gravity and friction, and hence, produce a flow. 

 The behaviour of a pump is characterised by its pump characteristic curve, which is often 

supplied by the manufacturer of the pump. A typical pump characteristic curve for a centrifugal 



   46  

pump is shown in Figure 20. The head, H, normally expressed in units of length, such as metres 

or feet, shows how high a given column of liquid could be lifted by a pump. It represents the 

effective pressure gradient that the pump can overcome. The efficiency, η, represents how much 

work put into the pump is converted into lifting the liquid. As in many engineering applications, 

the higher the efficiency, the better it is. For centrifugal pumps, the net positive suction head 

(NPSH) is the minimum head (pressure) at the inlet before cavitation occurs. Cavitation is defined 

as the boiling of a liquid in a pump, which is evidently a very undesirable event. Therefore, the 

head at the inlet must be greater than the specified value.   

 

Figure 20: Typical pump characteristic curve for a centrifugal pump 

Section 2.3.3: Variable Current Devices 
 The final actuator of interest is a variable current device that can modulate (vary) the 

current entering a device. Since these devices are mechanical, they tend not to have any issues 

with nonlinearities or undesired behaviour. As with all equipment, sizing can be a problem that 

needs to be appropriate resolved. 
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Section 2.4: Programmable Logic Computer (PLCs) 
 Programmable logic computers (PLCs) are small computers that have been made robust 

and rugged. They are often used in industry for controlling processes, such as assembly lines, 

robots, or complex chemical processes. PLCs allow the collection of the different signals and their 

subsequent processing to reach a decision or action that may need to be taken. Given the 

computational power, they can also perform relatively advanced logical and mathematical 

functions that can be used to control the process. 

 As shown in Figure 21, a typical PLC consists of 6 key components: 

1) Inputs: These allow information from outside the PLC to be incorporated and used. Most 

often, they are electrical signals coming from sensors or switches. 

2) Power Supply: This provides the power required to run the PLC and operate all the 

circuitry. Internally, most PLCs use a 5-V standard. However, the power supply most often 

provides 230 V AC, 120 V AC, or 24 V DC. Furthermore, the power supplies are often 

built as a replaceable module, so that depending on the application, the appropriate power 

can be provided, for example, in Europe one could use 230 V, but in North America 120 V. 

3) Central Processing Unit (CPU): The CPU is the brain of the PLC that performs all the 

required instructions, calculations, operations, and control functions.  

4) Memory: The PLC must also contain memory or the ability to store relevant information 

for future use. The amount of memory available depends on the PLC and the programming 

requirements. Some PLCs can have additional memory cards inserted, so that they have 

more available memory. There are two main types of memory: 

a. Read-Only Memory (ROM): ROM is the permanent storage for the operating 

system and system data. Since a true ROM cannot be changed, in practice, an 

erasable programmable ROM (EPROM) is used, so that it is possible to update 

the operating system for the PLC. 

b. Random-Access Memory (RAM): RAM is used to store all other information 

required by the PLC including any programmes and variables. Accessing RAM is 

very fast. However, when power is lost, the information in RAM is also lost. 

Therefore, a PLC will always have an additional battery to maintain power to the 

RAM, so that the information that is contained in the RAM is not lost during a 

power outage. 
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5) Communications Unit: The communications unit allows for the PLC to interact with other 

devices to exchange information using different types of protocols. Often, this exchange of 

information involves sending new or updated programmes to the PLC. In general, the 

communications unit will often include the ability to communicate with an operator panel, 

printers, networks, or other computers. 

6) Outputs: These allow the PLC to exchange information with other devices to cause them 

to take an action. Such devices include motors, valves, pumps, and alarms. 

In a PLC, communication between the components occurs using groups of copper wires called 

buses. A bus consists of a bundle of wires that allow for the transmission of binary information, 

for example, if the bus contains eight wires, then it is possible to transmit up to 8 bits of information 

per bus. A typical PLC consists of four buses: 

1) Data Bus: The data bus is used to transfer information between the CPU, memory, and I/O. 

2) Address Bus: The address bus is used to transfer the memory addresses from which the 

data will be fetched or to which data will be written. 

3) Control Bus: The control bus is used to synchronise and control the traffic circuits. 

4) System Bus: The system bus is used for input-output communications.  

 

Figure 21: Layout of a PLC 

 Since a PLC operates more or less similarly to that of a computer, this means that in order 

for a PLC to do anything useful, it must be programmed. The basic idea for a PLC is to monitor 

and control a process. A process in this context is anything that requires monitoring and control 

and can range from a simple unit that requires its output to be maintained at a prespecified value 

to a complex, highly interacting system like a room with multiple heating ovens, lights, ventilations 

systems, and windows, wherein the temperature, carbon-monoxide levels, and humidity must be 

monitored and maintained at safe levels. In PLC terms, a process is said to be in a given operating 
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mode3, when the process is operating in some specified mode, for example, when the pump is on, 

off, or operating. Finally, the PLC requires a user programme that takes the inputs, outputs, and 

internal information to make decisions about the process. 

 Before we look at how a PLC operates, it can be useful to note the different operating 

modes (states) that a PLC itself can be in. In general, the operating modes for a PLC are 

programming, stop, error, diagnostic, and run. In programming mode, a PLC is being 

programmed, usually using an external device. In stop mode, the PLC is stopped and will only 

perform some basic operations. In error mode, the PLC has encountered some sort of problem and 

has stopped working. In diagnostic mode, the PLC runs without necessarily activating any inputs 

or outputs, allowing for the validity of the programme to be determined. Often, test signals are 

used in place of the real inputs and outputs. In run mode, a PLC is actively working and performing 

the requested actions. Each PLC manufacturer may call these operating modes different names 

and not all of them may be present for a given PLC. 

 Naturally, the most important mode from the perspective of automation is the run mode. 

Thus, its behaviour will be examined in greater detail. In run mode, the PLC performs the same 

four operations in a repeating cycle: 

1) Internal Processing, where the PLC checks its own state and determines if it is ready for 

operation. Should the response from hardware or communication units be lacking, the PLC 

can give notice of these events by setting a flag, which is an internal Boolean address (or 

visual indicator) that can be checked by the user to determine the presence of an error state. 

Normally, the PLC will continue operation, unless the error is serious, in which case, it 

will suspend operation. In this step, software-related events are also performed. These 

include such things as updating clocks, changing PLC modes, and setting watchdog times 

to zero. A watchdog is a timer that is used to prevent a programme from taking too long to 

execute, for example, it could be stated that if a programme does not terminate in one 

second, then it could be stuck inside an unending while-loop and an error state will be 

returned. 

 

 
3 Often also called a state, but this term is avoided since it has another meaning in control and process analysis. 
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2) Reading Inputs: Next, all the input statuses are copied into memory. This means that the 

PLC will only use the values from memory rather than checking to make sure that the most 

recent value is available. This means that at any given point the programme will use the 

same values during the same scan time. Furthermore, reading values from memory is faster 

than reading them each and every time from the input. 

3) Executing Programmes: After the inputs have been read, the programmes are executed in 

the order in which the code has been written. The order of execution can be changed by 

changing the associated priority of the given code or using conditional statements and 

subroutines. It should be noted that at this point only internal variables and output addresses 

are updated in memory; the physical outputs are not changed at this point. 

4) Updating Outputs: Once the programmes have been finished, the output memory is 

written so that the state and values of the outputs can be updated. This will then complete 

a single cycle and the PLC will return to the first step, that is, internal processing. 

Since it can be seen that the PLC in run mode performs these four operations repeatedly, the 

question becomes what is the best approach for how the PLC should repeat these operations. By 

convention, a single pass through the four operations is called a scan and the scan time or cycle 

time is the amount of time required to perform a single scan. In practice, the scan time can vary 

between scans due to the presence of different events or conditions requiring the execution of more 

or less code. In order to accomplish the repetitions effectively, a programme can be associated 

with a task, whose execution type can be specified. There are three common execution types: 

1) Cyclic Execution: In cyclic execution, the time between scans is fixed. Obviously, the time 

must be set so that the PLC has the time to complete all the required code. Naturally, certain 

tasks, such as counting or timing, should always be run on cyclic execution. 

2) Freewheeling Execution: In freewheeling execution, as soon as one scan has been 

completed, then the next scan is started. This is the fastest way of running a task, since 

there is no waiting between scans. 

3) Event-Driven Execution: In event-driven execution, a task is only executed when a given 

Boolean condition is fulfilled. Event-driven execution is useful for emergency stop routines, 

start-up routines, and other extraordinary events. 

Furthermore, the nature of the task must be specified: can the task be interrupted by another task? 

If the task can be interrupted, then it is called pre-emptive; if it cannot be, nonpre-emptive. The 
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difference between these two types of tasks is shown in Figure 22. Finally, the priority of a task 

must be specified ranging from high to low (the exact details depend on the specific PLC and 

standard used). 

 

 

Figure 22: Pre-emptive and nonpre-emptive tasks  

Section 2.5: Communication Devices 
 The last type of instrumentation is the communication devices which allow all the 

actuators, sensors, and control logic to communicate with each other. The following equipment is 

often found: 

1) Analogue-to-Digital Converters (A/D Converter), which convert the analogue signal 

received from the sensor into a digital signal. At this point, quantisation (or resolution) 

can be an issue. If an insufficient number of levels (decimals) are present, then the 

resulting data may not carry as much information as before. 

2) Digital-to-Analogue Converters (D/A Converter), which convert a digital signal 

received from the computer/software into an analogue signal that can be used by the 

actuator. Different methods exist for implementing this conversion including a zero-order 

hold, where the previous value is maintained until a change occurs, or a first-order hold, 

where some average of the previous values is used until a new value is available. In most 

implementations, a zero-order hold is used due to its simplicity and sufficiency. 

3) Control Software, which can reside either on the programmable logic computer or as a 

separate software programme on a computer. 
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4) Data Historian, which stores all the values for future retrieval. Selecting an appropriate 

sampling time, or how fast the data are recorded, can determine the usefulness of the 

stored data for future applications. 

5) Network Cables, Switches, and Accessories, which physically connect all the 

equipment and allow for the strategy to be implemented. 

The main issue with the design of the communication units is the available bandwidth. The faster 

the data is sampled and the more computations that need to be performed, the larger the bandwidth 

and computational power that will be needed. 

 In automation, signals can be encoded using many different standards. The two most 

common standards are the current-based standard of 4 to 20 mA and the pressure-based standard 

of 3 to 15 psig.4 It should be noted that both of these standards do not start at zero, since a value 

of zero is ambiguous: is the device not working properly or is the value actually zero. By using a 

live zero, that is, the value of zero corresponds to some nonzero current or pressure means that it 

is possible to distinguish between the case of a zero value and a faulty device. Furthermore, a live 

zero allows part of the remaining current or pressure to be used for operating the device without 

needing additional power supply. This means that the device can be used in remote areas without 

its own power supply. The lower limit for the live zero was historically determined as the smallest 

measurable value. In most cases, the upper limit was chosen so that the lower and upper limits are 

in the ratio 1:5. 

Section 2.6: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

 

 
4 A psi is a unit of pressure in the imperial system of measurement. It is an abbreviation for pounds (force) per square 
inch. The conversion factor is 1 psi = 6.894 757 kPa. The g represents gauge or the value above atmospheric pressure. 
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Section 2.6.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) An analogue signal is continuous in both the time and value domains. 

2) A binary signal is an example of a digital signal. 

3) A signal can only be discretised in the value domain. 

4) A precise sensor will always give a value close to the true value. 

5) If the observer sensor value is 3 kg with a standard deviation of 0.5 kg and the true value 

is 10 kg, then we can say that the sensor is precise and accurate. 

6) A manometer measures the pressure difference using a transducer. 

7) A differential pressure cell can measure the level of a liquid in a tank. 

8) Venturi tubes are an example of a pressure-based flow sensor. 

9) The Doppler effect can be used to measure flow rates. 

10) The Seebeck effect allows us to measure pressure changes. 

11) A J-type thermocouple can be used to measure the temperature of molten silica which is at 

least 1000°C. 

12) It is not possible to use thermocouples to measure temperatures below 0°C. 

13) Actuators should be selected so that they are used in the range 20 to 60%. 

14) Valves are a type of actuator that restricts flows. 

15) An air-to-close valve will remain open should the air supply fail. 

16) A quick-opening valve is useful for rapid dosing of a liquid. 

17) Slip-jump in valves results from dynamic friction of the moving parts. 

18) The efficiency of a pump represents the pressure gradient that it can produce at a given 

flow rate. 

19) A PLC consists of inputs, power supply, CPU, memory, outputs, and communication 

devices. 

20) A bus in a PLC is a location in memory used to store information about where different 

variables are stored. 

21) A PLC in programming mode is being programmed from an external device. 

22) A flag in a PLC is a Boolean variable that shows the presence of an error state. 

23) A watchdog in a PLC is a variable that prevents the PLC from being interrupted by external 

users as it is running. 
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24) A PLC scan is the amount of time it takes for the PLC to read the inputs. 

25) Freewheeling execution occurs when the PLC executes a task solely on demand from an 

external event. 

26) A pre-emptive task can never be interrupted. 

27) An analogue-to-digital converter is found in all computer-based automation solutions. 

28) A data historian stores the data collected from a process. 

29) Live zero implies that when the signal value is zero then the current has a value of 4 mA. 

30) A PLC normally has a battery to provide power in case of a power failure.  

Section 2.6.2: Short Questions 
31) Consider that you have been assigned the task of designing an automation system for a 

door to monitor who is present at the door and allow the occupant of the house to open the 

door if necessary. List what sensors, actuators, and other devices would be needed to 

accomplish this task. 

32) Consider the task of monitoring the temperature of a glass furnace. What considerations 

should you take into account? Which sensors would you use? 

33) Consider the task of pumping a mixture of sand, water, oil, air, and various particles. What 

would you need to consider when designing the pump? What kind of sensors would you 

consider? Do you think you can achieve highly accurate results? 

34) Consider the data shown in Table 2. Create the valve characterisation curve using the data. 

Determine what type of valve this is and how reproducible the values are. Are there any 

static or dynamic nonlinearities present? How can you determine this? 

Table 2: Data for creating the valve characterisation curve for Question 34) 

%open 
Flow Rate, ṁ (kg/min) 

Run 1 Run 2 Run 3 

0 0 0 0 

10 0.5 0.5 0.4 

20 2.3 2.3 2.3 

30 4 4 4 

40 5.6 5.5 5.5 

%open 
Flow Rate, ṁ (kg/min) 

Run 1 Run 2 Run 3 

50 6.8 6.8 6.8 

60 8 8 7.9 

70 8.9 8.9 8.9 

80 9.7 9.7 9.7 

90 10.4 10.5 10.5 
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%open 
Flow Rate, ṁ (kg/min) 

Run 1 Run 2 Run 3 

100 11 11 11 

90 10.7 10.7 10.7 

80 10 10 10 

70 9.2 9.2 9.2 

60 8.3 8.3 8.4 

50 7.2 7.2 7.2 

%open 
Flow Rate, ṁ (kg/min) 

Run 1 Run 2 Run 3 

40 6 6 6 

30 4.6 4.6 4.6 

20 3 3 3 

10 1.2 1.2 1.2 

0 0 0 0 

35) Consider the sensor data shown in Table 3. It is desired to determine if the sensor values 

are properly calibrated against the measured values. Determine if the calibration is correct. 

Are the values reliable? 

Table 3:  Sensor Calibration Data for Question 35) 

Measured Height 

(m) 

Sensor Value (m) 

Run 1 Run 2 

0.00 0.02 0.03 

0.10 0.115 0.105 

0.15 0.149 0.152 

0.20 0.229 0.215 

0.25 0.248 0.251 

Measured Height 

(m) 

Sensor Value (m) 

Run 1 Run 2 

0.30 0.321 0.312 

0.35 0.348 0.349 

0.40 0.412 0.392 

0.45 0.452 0.457 

0.50 0.512 0.493 
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Chapter 3: Mathematical Representation of a 

Process 
 In order to understand and provide useful information about a process, it is necessary to 

understand how different processes and systems can be represented. In practice, there exist two 

main types of representations: mathematical and schematic. A mathematical representation 

focuses on providing an abstract description of the process that provides information about the 

process. A good mathematical representation of the system can provide a deep understanding of 

how the system works and how it will behave in the future. On the other hand, a schematic 

representation focuses on the relationships between the different components and how they relate 

to each other. It is primarily a visual approach that allows the actual process to be represented on 

a piece of paper.  

 Common mathematical representations include state-space models, transfer function 

models, and automata. 

Section 3.1: Laplace and Z-Transforms 
 Before considering the mathematical models themselves, it is helpful to review two very 

common transformations between the time and frequency domains: the Laplace and z-transforms. 

If the time domain is continuous, then the Laplace transform is used, while if the time domain is 

discrete, then the z-transform is used. 

Section 3.1.1: Laplace Transform 
 The Laplace transform converts a function from the time domain into the frequency 

domain. This transform allows for a simple algebraic solution of complex differential equations. 

Due to this feature, Laplace transforms are widely used in automation engineering to understand 

process behaviour and obtain solutions to various control problems. 

 The Laplace transform is defined as 

  ( ) ( )
0

stF s f t e dt
∞

−= ∫   (1) 
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where F is the Laplace transformed function, f the original function, and s the Laplace variable. 

Conventionally, the Laplace transform is denoted by a Faktur L, 𝔏𝔏 (U+1D50F), that is, 

F(s) = 𝔏𝔏(f(t)). Converting from the frequency domain to the time domain is conventionally shown 

using the inverse of the Laplace transform, 𝔏𝔏−1. Table 4 presents a summary of the most common 

Laplace transforms. The following are some useful properties of the Laplace transform: 

1) Linearity: 𝔏𝔏(f + g) = 𝔏𝔏(f) + 𝔏𝔏(g). 

2) Superposition: 𝔏𝔏(αf) = α𝔏𝔏(f). 

3) Convolution: 𝔏𝔏(f ⁎g) = 𝔏𝔏 ( ) ( )
0

t

f g t dτ τ τ
 

− 
 
∫  = F(s)G(s). 

4) Shifting Properties: The following rules can be useful in solving problems involving 

Laplace transforms: 

  𝔏𝔏(f(t − a)u(t – a)) = e−asF(s) (2) 

  𝔏𝔏 (g(t)u(t – a)) = e−as𝔏𝔏(g(t + a)) (3) 

  𝔏𝔏(δ(t – a)) = e−as  (4) 

  𝔏𝔏(f(t)δ(t – a)) = f(a)e−as  (5) 

5) Final Value Theorem: Assuming that the poles (roots of the denominator) lie in the left-

hand plane5, then 

  
0

lim ( ) lim ( )
t s

f t sF s
→∞ →

=  (6) 

6) Initial Value Theorem: The value in the time domain at the starting point t = 0 is given 

by  

  
0

lim ( ) lim ( )
t s

f t sF s
→ →∞

=  (7) 

Table 4:  Table of Common Laplace Transforms 

Case 
Time Domain 

f(t) 

Frequency Domain 

F(s) 

Dirac Delta or Impulse 

Function, δ 

0
( )

t a
t a

t a
δ

≠
− = ∞ =

 e−as 

 

 
5 Equivalently, the real component of all the poles must be less than 0 or the system is stable. 
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Case 
Time Domain 

f(t) 

Frequency Domain 

F(s) 

Unit Step Function, u ( )
0 0
1 0

t
u t

t
≤

=  >
 s−1 

Polynomials ( )
1

1 !

nt
n

−

−
 1

ns
 

Exponential e−at (s + a)−1 

Cosine e−atcos(ωt) ( )2 2

s a
s a ω

+

+ +
 

Sine e−atsin(ωt) ( )2 2s a
ω

ω+ +
 

Derivative ( )
n

n
n

d f f
dt

=  ( ) ( ) ( )1

1
0

n
n kn k

k
s F s s f −−

=

−∑  6 

Integration ( )f t dt∫  ( )1 F s
s

 

Time Shift (or Time Delay) f(t − a)u(t − a) e−asF(s) 

  

 Often, when we are given an equation in the Laplace domain, it may be necessary to convert 

it into the time domain. This can be performed by using the inverse Laplace transform, 𝔏𝔏−1, such 

that 𝔏𝔏−1(𝔏𝔏(f(t)) = f(t). In most automation-engineering problems, the general case reduces to 

finding the time-domain function corresponding to some rational function of s. In such cases, 

partial fractioning (see Appendix I for the details) is required to break up the original fraction into 

its constituent parts so that the known functions given in Table 5 can be used. 

Table 5: Useful Inverse Laplace Table 

𝔏𝔏(f(t)) f(t) 

A
Cs D+

 
Dt

CA e
C

−

 

 

 
6 If it is assumed that the system is initial at steady-state and using deviational variables, then all derivatives will be 
zero and this equation will reduce to the first term snF(s). 
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𝔏𝔏(f(t)) f(t) 

( )n
A

Cs D+
 

( )
1

1 !

Dtn C
n

A t e
n C

−
−

−
 

2

Cs E
s sα β γ

+
+ +

 

(irreducible 

quadratic) 

2 22 sin cos
t t

CE Ce t e t
β β
α α

β
ρ ρα
α α ααρ

− −
 −      +              
 

 

with 
2

0
4
βρ γ
α

= − ≥  

( )2 n
Cs D

s sα β γ

+

+ +
 

(irreducible 

quadratic) 

2 2 2

/2

2
1

cos
( 2)!

2 sin
2

n
t tn

n

nn
t

n

C t e e t
n

D C e t

β β
α α

β
α

ρ
α α

α β α ρ
α ρ α

⊗
− −

−

⊗
−

+

       ⊗ +       −         

    −
             

 

with n ≠ 1, 
2

0
4
βρ γ
α

= − ≥ , ⊗ is convolution, and (f)⊗n is defined as the 

convolution of f, n times, i.e. 
 timesn

f f f f⊗ ⊗ ⋅⋅⋅


. 

Example 1: Laplace Transform 

 Compute the Laplace transform for the function 

  yt = t5 + e−5tcos(7t) (8) 

Solution 

 Since the Laplace transform is linear, we can determine the Laplace forms of each part 

separately and then combine them together. From Table 4, we see that 

  
( )

1 1
1 !

n

n

t
n s

− 
=  − 

L   (9) 

Setting n – 1 = 5, which is the exponent of t5 and noting that we will need to multiply both sides 

by the factorial (n – 1)!, will give a Laplace form of 

  6

5!
s

 (10) 

Similarly, for the second term, from Table 4, we have that 
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  ( )( )
( )2 2

cosate t s a
s a

ω
ω

− +
=

+ +
L   (11) 

Comparing with the form that we have, we see that a = 5 and ω = 7. Thus, the Laplace transform 

is 

  
( )2 2

5
5 7
s

s
+

+ +
 (12) 

Combining the two parts together gives 

  ( )( )
( )2 2

5
6

5 5!7 5cos
5 7

tt e
s

t s
s

−+
+

= +
+ +

L  (13) 

which is the Laplace transform of yt. 

Example 2: Inverse Laplace Transform 

 Compute the time-domain representation of the following partial-fractioned Laplace 

function 

  
( )5

5 8
10 1 2 1s s

+
+ +

 (14) 

Solution 

 The solution will be found by treating each fraction separately and using the information 

in Table 5. For the first term, the general form of the transform can be found from Table 5 as 

  1
Dt

CA A e
Cs D C

−
−   = + 
L  (15) 

Comparing the general form with our first term, we see that A = 5, C = 10, and D = 1, which 

implies that the inverse Laplace form will be 

  
1

1 0.1105 5 0.5
10 1 10

t te e
s

−
− −  = = + 
L  (16) 

For the second term, the general form can be written as 

  
( ) ( )

1 1

1 !

Dtn C
n n

A A t e
n CCs D

−
− −
 

= 
  −+ 

L  (17) 

Comparing the general form with our second term, we see that A = 8, C = 2, D = 1, and n = 5, 

which implies that the inverse Laplace form will be 
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( ) ( )

1
1 5 1 4 0.52

5 5

8 8 1
5 1 !2 962 1

t tt e t e
s

−
− − −
 

= = 
  −+ 

L  (18) 

Combining the two terms together gives 

  
( )

1 0.1 4 0.5
5

5 8 10.5
10 1 962 1

t te t e
s s

− − −
 

+ = + 
 + + 

L  (19) 

This gives us the time-domain representation of the original Laplace function. 

Section 3.1.2: Z-Transform 
 The z-transform converts a discrete function from the time domain into the frequency 

domain. This transform allows for a simple algebraic solution of complex difference equations. 

Due to this feature, z-transforms are widely used in automation engineering to understand process 

behaviour and obtain solutions to various control problems. 

 The z-transform is defined as 

  ( )
0

n
n

n
F z f z

∞
−

=

=∑   (20) 

where F is the transformed function and f the original discrete function. Conventionally, the z-

transform is denoted by a script 𝒵𝒵, (U+1D4B5). Table 6 presents a summary of the most common 

z-transforms. The following are some useful properties: 

1) Linearity: 𝒵𝒵(f + g) = 𝒵𝒵(f) + 𝒵𝒵(g). 

2) Superposition: 𝒵𝒵(αf) = α𝒵𝒵(f). 

3) Final Value Theorem: Assuming that the poles (roots of the denominator) lie inside the 

unit circle, then7 

  ( )
1

lim lim 1 ( )kk z
f z F z

→∞ →
= −  (21) 

4) Initial Value Theorem: The value in the time domain at the starting point k = 0 is given 

by  

  ( )
0

lim limkk z
f zF z

→ →∞
=  (22) 

 

 
7 The roots are expressed in terms of z. Equivalently, the system is stable. 
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Table 6:  Table of Common z-Transforms (Ts is the sampling time) 

Case 

Continuous Time 

Domain 

f(t) 

Discrete-Time 

Domain (f(kTs)) 

Frequency Domain 

F(s) 

Dirac Delta, δ 
0

( )
t a

t a
t a

δ
≠

− = ∞ =
 

0
k a

k a
k a

δ −

≠
= ∞ =

 z−a 

Step Function, 

u 
( )

0 0
1 0

t
u t

t
≤

=  >
 

0 0
1 0k

k
u

k
≤

=  >
 1

1
1 z−−

 

Exponential eat sakTe  1

1
1 saTe z−−

 

Exponential + 

Cosine 
eatcos(ωt) ( )cossakT

se kTω  ( )
( )

1

21 2

1 cos
1 2 cos

s

s s

aT
s

aT aT
s

e T z
e T z e z

ω
ω

−

− −

−
− +

 

Exponential + 

Sine 
eatsin(ωt) ( )sinsakT

se kTω  ( )
( )

1

21 2

sin
1 2 cos

s

s s

aT
s

aT aT
s

e T z
e T z e z

ω
ω

−

− −− +
 

General Power 

Series 
 ak 1

1
1 az−−

 

First 

Difference 

(Derivative) 

df
dt

 fk – fk – 1 (1 – z−1)F(z) 

Time Shift 

(Delay) 
f(t − a)u(t − a) fk − auk − a z−aF(z) 

 

 As can be seen from Table 6, many of the forms involve z−1. For this reason, automation 

engineering, it is common to treat z−1 as the variable, which is called the backshift operator. 

Converting between the two representations is rather easy as it involves multiplying by the highest 

power present in the equation. 

 The inverse operation of finding the time-domain representation given the z-transform is 

performed using the inverse z-transform. Since most automation-engineering examples consider 

rational functions of z, this will require partial fractioning in order to split the rational function into 

its constituent parts (see Appendix I for details). Once the constituent parts have been obtained, 

we can then use Table 7 to find the corresponding time-domain representation. Instead of partial-
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fractioning, it may be possible to perform long division to obtain the individual values. However, 

this can be quite long and difficult to do. 

Table 7: Useful Inverse Z-Transform Table (A and D can be complex) 

𝒵𝒵(f(k)) yk 

1

Az

Cz D

A
C Dz−+

=
+

 
k

k
A Dy
C C
 = − 
 

 

( )n

Az

Cz D+
 

( )

( )

1

1
1

1
,

1 !

n

j k
k n n

k j
A Dy

C n C
α α

α

−

=
−

 
− + 

 = = −
 −
 
 

∏
 

( )1 n

A

C Dz−+
 , n ∊ ℤ 1

,
1

k
k n

k nA Dy
nC C

α α
+ − 

= = − − 
 

Example 3: Z-Transform 

 Compute the z-transform of the following function 

  25 , 2k
ky k−= ≥  (23) 

Solution 

 From Table 6, we see that an exponential function ak has the z-transform 

  1

1
1 az−−

 (24) 

In our case, this implies that a = 5. However, we can note that the values are delayed by 2 samples. 

Therefore, we will need to also use the delay formula from Table 6 to obtain the final result. Thus, 

the z-transform is 

  ( )
2

2
15

1 5
k z

z

−
−

−=
−

  (25) 

 

Example 4: Inverse z-Transform 

 Compute for the following frequency-domain function 

  1

2
1 5z−+

 (26) 

the corresponding time-domain representation. 
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Solution 

 From Table 7, we can see that this represents the first case with A = 2, C = 1, and D = 5. 

This implies that the time-domain representation is 

  ( )1
1

2 2 5 2 5
1 5 1 1

k k
kA D

z C C
−

−

     = − = − = −     +     
  (27) 

 

 Finally, we can note that there is a relationship between the Laplace transform of the 

continuous time domain and the z-transform of the discrete time domain. If we set 

  z = esT (28) 

This means that results obtained in the continuous domain will have a transformed representation 

in the discrete domain. Of note, the imaginary axis of the continuous domain is mapped onto the 

boundary of the unit circle. This relationship will appear in our further analysis.   

Section 3.2: Time- and Frequency-Based Models 
 Time- and frequency-based models are one of the most commonly encountered 

mathematical representations of a process. Time-based models focus on the behaviour of the 

system with respect to time, that is, how the system evolves or changes over time given specific 

inputs and states. However, since solutions can only often be obtained by integrating the complex 

differential equations, recourse is often made to frequency-based models where it can be easier to 

understand how the process will behave when the inputs change. 

 Before looking into the different types of time- and frequency-based models, it can be 

useful to consider some of the terms that can be used to classify the different types of models: 

1) Linear versus nonlinear: A model f(t) is said to be linear with respect to t if the 

following two statements hold: 

a. Principle of Superposition or additivity: f(t1 + t2) = f(t1) + f(t2), and 

b. Principle of Homogeneity: f(αt1) = αf(t1). 

If these two statements do not hold, then the model is said to be nonlinear. Linearity is a 

very useful property that allows for a system to be easily analysed using known, well-

established theoretical methods. Nonlinear models can be linearised, so that in a given 

region they are well described by the linear equivalent model. A model can be linear with 

respect to one variable, but not another. 
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2) Time-invariant versus time-variant: A model is said to be time-invariant if the 

parameters in the model are constant with respect to time. In a time-varying system, the 

model parameters can depend on the time period. 

3) Lumped parameter versus distributed parameter: A model is said to be a lumped 

parameter system if the model does not depend on the location, that is, there are no space 

derivatives present. A model that depends on the location, that is, it contains space 

derivatives, is called a distributed parameter system. For example, if the temperature T is 

a function of the x- or y-direction, that is, we have a derivative of the form  
2

2

T
x

∂
∂

in the 

model, then the model is a distributed-parameter system. If the temperature only depends 

on the time, then we have a lumped-parameter system. The analysis of distributed-

parameter systems is often much more difficult than that of a lumped-parameter system. 

A distributed-parameter system can be reduced to a lumped-parameter model if it is 

assumed that the variables are homogenously distributed within the space, and hence, all 

the space derivatives are zero. 

4) Causal versus noncausal: A system is said to be causal if the future values only depend 

on the current and past values. In a noncausal system, the future values depend on the 

current, past, and future values. A noncausal system is not physically realisable, since the 

future values will never be known. 

5) System with memory (dynamic) versus system without memory (static): A system is 

said to have memory if the future values depend on both the past and present. On the 

other hand, a system is said to be without memory or memoryless if future values only 

depend on the current value.  

Section 3.2.1: Time- and Frequency-Domain Representations 
 In automation engineering, there are two common representations of a system: state-space 

and transfer-function models.  

 The state-space model focuses on the relationship between states, inputs, and outputs in 

the time domain. The general state-space model is given as 

  ( )

( )

,

,

dx f x u
dt

y g x u

=

=





 

   

 (29) 
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where x is the state variable, u is the input variable, t is the time, y is an output, f and g are some 

functions, and an arrow above denotes a vector. The state variable is a variable that describes the 

current location of the system from which the system’s future behaviour can be determined. A 

state variable will often appear in some equation as a derivative with respect to time. The input 

variable, u, is a variable that describes the properties of a stream entering a system. Traditionally, 

the number of inputs is denoted by m, the number of states by n, and the number of outputs by p. 

A system where p = m = 1 is said to be univariate or single-input, single-output (SISO). If p and 

m are greater than 1, then the system is said to be multivariate or multi-input, multi-output 

(MIMO). A system is said to be multi-input, single-output (MISO) if p = 1 and m > 1. 

  The general state-space model is often reduced to a linear form 

  
dx x u
dt

y x u

= +

= +



 

  

 

 
 (30) 

where 𝒜𝒜 is the n×n state matrix, ℬ is the n×m input matrix, 𝒞𝒞 is the p×n output matrix, and 𝒟𝒟 is 

the p×m feed-through matrix.  

 On the other hand, the transfer-function representation focuses solely on the relationship 

between the inputs and outputs in the Laplace domain and allows easier analysis of the system 

than for a state-space model. The general transfer function representation can be written as 

  ( ) ( ) ( )Y s s U s=
 

  (31) 

where G is a matrix containing the transfer function representation of the model, that is 

 ( )
( )

( )
( )

( )

( )
( )

( ) ( )

( ) ( )

1 1 11 1

1

,  ,  
m

p m p pm

Y s U s G s G s
Y s U s s

Y s U s G s G s

    
    = = =    
        



 

   



   (32) 

It is often assumed that each transfer function can be written as 

  ( ) ( )
( )

sN s
G s e

D s
θ−=  (33) 

where N and D are polynomials of s and θ is the deadtime or time delay in the system. Time delay 

arises in real systems due to the transport phenomena, measurement delays, and approximations 

introduced when linearising a system. The order of a transfer function is equal to the highest 

power of the D-polynomial. 
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 Given the simple form of a transfer-function representation, much of the analysis in control 

is performed using it. 

Section 3.2.2: Converting Between Representations 
 The state-space model can be converted to a transfer function model, by applying the 

Laplace transform to Equation (30) and re-arranging to give8 

  
sX X U

Y X U

= +

= +

  

  

 

 
 (34) 

  ( ) 1X s U

Y X U

−= −

= +

 

  

  

 
 (35)9 

  ( ) ( ) 1YG s C sI A B D
U

−= = − +




 (36) 

where ℐ is the n×n identity matrix and s is the Laplace transform variable. 

Example 5: Numeric Example of Obtaining a Transfer Function 

 Consider the example 

  
5 3dx x u

dt
y x

 + =

 =

 (37) 

Taking the Laplace transform of Equation (37) gives 

  
( ) ( ) ( )

( ) ( )
5 3sX s X s U s

Y s X s

+ =


=
 (38) 

Substituting Y for X in the first equation of Equation (38) gives 

  ( ) ( ) ( )5 3sY s Y s U s+ =  (39) 

Solving for Y / U gives 

 

 
8 In automation engineering, we often deal with deviation variables that are defined as x̃ = x – xss, where xss is some 
steady-state value. Since we assume that the process is initially in steady state, this means that the initial conditions 
will always be zero. 
9 The inverse exists since the 𝒜𝒜-matrix only contains numeric entries. 
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( ) ( ) ( )

( )
( )

5 3

1
5 3

s Y s U s

Y s
U s s

+ =

=
+

 (40) 

Therefore, the transfer function is 

  ( ) ( )
( )

1
5 3

Y s
G s

U s s
= =

+
 (41) 

Example 6: General Univariate Case 

 Consider the following Nth-order ordinary differential equation 

  

1 1

1 0 1 01 1

n n n

n nn n n

d x d x d ua a x b b u
dt dt dt

y x

− −

− −− −


+ + + = + +


 =

  

 
 

 

 (42) 

such that at t = 0, all the derivatives are equal to zero and x̃ = ỹ = 0. Taking the Laplace transform 

of Equation (42) and simplifying gives 

  

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
1 0 1 0

1 1
1 0 1 0

n n n
n n

n n n
n n

s X s a s X s a X s b s U s b U s

Y s X s

s Y s a s Y s a Y s b s U s b U s

− −
− −

− −
− −

 + + + = + +


=
+ + + = + +

 

 

 (43) 

Collecting like terms and re-arranging gives 

  
( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

1 1
1 0 1 0

1
1 0

1
1 0

n n n
n n

n
n

n n
n

s a s a Y s b s b U s

b s bY s
G s

U s s a s a

− −
− −

−
−

−
−

+ + + = + +

+ +
= =

+ + +

 





 (44) 

Example 7: Multivariate Example 

 Consider the following differential equation 

  1 1 2 2
dx ax b u b u
dt
y x

 = − + +

 =



  

 

 (45) 

and determine the transfer functions for the system. Note that there are two inputs (m = 2) and one 

output (p = 1). 

Solution 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 2 2

1 1 2 2

1 1 2 2

1 2
1 2

sX s aX s bU s b U s

Y s X s

sY s aY s bU s b U s

s a Y s bU s b U s
b bY s U s U s

s a s a

= − + +


=
+ = +

+ = +

= +
+ +

 (46) 

Rewriting this into matrix form gives 

  ( ) ( )
( )

11 2

2

U sb bY s
U ss a s a
  =   + +   

 (47) 

Note that this can be written separately, since linear functions are being considered. As well, note 

that the principle of superposition holds, so that we can study each transfer function separately and 

then combine the results together. 

 The reverse operation of converting a transfer function into a state-space representation 

does not yield a unique solution or realisation. Consider the following transfer function, where 

p < n: 

   ( )
1

1 1 0
1

1 1 0

p p
p p

n n
n

s s s
G s

s s s
β β β β

α α α

−
−

−
−

+ + + +
=

+ + + +





 (48) 

then the controllable canonical realisation is 

  

1 2 1 0

1

1 1 0 1 11

1
1 0 0 0 0
0 1

0
0 0 1 0 0

0 0 0

n n

n n n

p p n

α α α α

β β β β

− −

× ×

− ××

− − − −   
   
   
   = =
   
   
      

 = = 





   

    



 

 

 

 (49) 

while the observable canonical realisation is 
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1 2 1 0

1

1 1 0 1 11

1
1 0 0 0 0
0 1

0
0 0 1 0 0

0 0 0

T T
n n

n n n
T

p p n

α α α α

β β β β

− −

× ×

− ××

− − − −   
   
   
   = =
   
   
      

 = = 





   

    



 

 

 

 (50) 

Note that for 𝒞𝒞 in the controllable canonical realisation and for ℬ in the observable canonical 

realisation, there will be n – p – 1 zeroes. The fact that the two forms are related by taking the 

transpose is not coincidental. 

Example 8: Converting a Transfer Function into its Controllable Canonical Realisation 

 Convert the transfer function 

  ( ) 2

2
4 1

sG s
s s

−
=

− +
 (51) 

into its controllable canonical realisation. 

Solution 

 First, we need to make sure that the transfer function is the form given by Equation (48) 

and determine the values of the parameters. Since the equations have the same form, we note that 

n = 2 (highest power in the denominator) and p = 1 (highest power in the numerator), which implies 

that the transfer function satisfies the requirements. Thus, we can simply compare the parameters 

and obtain their values, that is, α2 = 1, α1 = −4, α0 = 1, β1 = 1, and β0 = −2. Thus, using Equation 

(49), the controllable canonical realisation is 

  

[ ] 1 1

4 1 1
1 0 0

1 2 0 ×

−   
= =   
   

= − =

 

 

 (52) 

Thus, we have defined the four matrices for one of the state-space representations of the given 

transfer function. 

Section 3.2.3: Discrete-Domain Models 
 In the discrete domain, the form and types of available models is similar. The linearised 

state-space representation can be written as 



   71  

  1k d k d k

k d k d k

x x u
y x u
+ = +
= +

  

  

 
 

 (53) 

The subscript d in Equation (53) can be dropped if it is clear that a discrete state-space 

representation is being considered. The discrete transfer function is the same as the continuous 

version except that all s are replaced by either z or z−1. To convert between the discrete state-space 

and transfer function representations, Equation (36), can be used, mutatis mutandis. 

 With discrete transfer functions, it is common to explicitly include the unmeasured 

disturbance, denoted by et, in the final model. In such cases, the unmeasured disturbance signal is 

assumed to be a stochastic (random) Gaussian, white noise signal. A Gaussian, white noise signal 

implies that the values of this signal are normally distributed and independent of past or future 

values. The general discrete transfer function can be written as 

  ( ) ( )1 1, ,t p t l ty G z u G z eθ θ− −= +
 

 (54) 

where Gp is the process transfer function, θ the parameters, and Gl the disturbance transfer function. 

Since in most applications, it is assumed that the transfer functions are rational functions of z-1, the 

most common discrete transfer function equation can be written in a form called the prediction 

error model, which has the following form: 

  
1 1

1
1 1

( ) ( )( )
( ) ( )t t k t

B z C zA z y u e
F z D z

− −
−

−− −= +  (55) 

where A(z-1), C(z-1), D(z-1), and F(z-1) are polynomials in z-1 of the form 

  
1

1
an

i
i

i
zθ −

=

+∑  (56) 

where na is the order of the polynomial and θi are the parameters, B(z-1), is a polynomial in z-1 of 

the form 

   
1

bn
i

i
i

zθ −

=
∑  (57) 

where nb is the order of the polynomial, and k is the time delay in the system. In general, it is very 

rare for this system to be used directly. Instead, any of the following simplifications may be used: 

1) Box-Jenkins Model: In this model, the A(z-1) polynomial is ignored. Thus, this model 

is given as 
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1 1

1 1

( ) ( )
( ) ( )t t k t

B z C zy u e
F z D z

− −

−− −= +  (58) 

 In practice, this method is sufficient to fit an accurate model of the system. 

2) Autoregressive Moving-Average Exogenous Model (ARMAX): In this model, the 

D(z-1) and F(z-1) polynomials are ignored, which gives 

  1 1 1( ) ( ) ( )t t k tA z y B z u C z e− − −
−= +  (59) 

 This model assumes that the denominator for both the input and the error is the same. 

However, this model has the beneficial property that the estimation of its parameters 

can be performed using least-squares analysis. A further simplification is to ignore the 

C(z-1) term. This gives an autoregressive exogenous model (ARX). This model has 

the form given by: 

  1 1( ) ( )t t k tA z y B z u e− −
−= +  (60) 

3) Output-Error Model (OE): In this model, only the model for the input is fit to the 

data. The error terms are ignored. Thus, the model is given as 

  
1

1

( )
( )t t k t

B zy u e
F z

−

−−= +  (61) 

Section 3.2.4: Converting Between Discrete and Continuous Models 
 It is possible to convert between continuous and discrete forms of a model under certain 

assumption regarding the discretisation. The most common assumption is that the input stays 

constant between sampling instances, that is, a zero-order hold is used to convert from the 

continuous (analogue) to discrete (digital) domains. In such case, it can be shown that the 

continuous state-space representation can be converted into the discrete time using the following 

formulae: 

  
0

s

s

A
d

A
d

d

d

e

e d B

C
D

τ

τ τ
τ

τ

τ
=

=

=

 
=   
 

=
=

∫








 (62) 
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where τs is the sampling time. It should be noted that all exponentiation is matrixwise 

exponentiation. The corresponding transfer function can then be obtained using Equation (36). For 

a simple, first order, continuous transfer function given as 

  ( ) ( )
1p

KY s U s
sτ

=
+

 (63) 

the discrete, transfer function is given as 

  
( )
( ) 1

1 e

1 1 e

p

s

p

s

k k
Ky u

z

τ
τ

τ
τ

−

−
−

−
=

− −

 (64) 

If a system has time delay, then it can be converted using the following formula 

  
s

k θ
τ
 

=  
 

 (65) 

where θ is the continuous time delay and     is an appropriately selected rounding function 

converts to an integer value. 

 The general rule of thumb for selecting the sampling time is that 

  ( ) ( )min0.1 to 0.2s pτ τ=  (66) 

where ( )min
pτ  is the smallest time constant present in the system. 

Section 3.2.5: Impulse Response Model 
 In the discrete domain, the infinite impulse response model is defined as 

  
0 0

i
k i k i k i

i i
y h z u h u

∞ ∞
−

−
= =

= =∑ ∑  (67) 

where h are the impulse coefficients. The values of h can be obtained by either performing long 

division on the transfer function or partial fractioning the result to obtain the impulse coefficients. 

Since the values of h can often quickly taper off, it is possible to convert the infinite impulse 

response model into a finite impulse response (FIR) model, that is, 

  
0 0

n n
i

k i k i k i
i i

y h z u h u−
−

= =

= =∑ ∑  (68) 

where n is an integer representing the number of terms selected for the model. 
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Section 3.2.6: Compact State-Space Representation 
 In many theoretical applications, the state-space representation is often written in a compact 

manner that resembles a transfer-function formulism but using matrices. For the standard state-

space representation given by Equation (30), the compact or block state-space representation 

can be written as 

  G
 

=  
 

 
   (69) 

Using this representation, it is possible to easily partition the matrices and show this in a compact 

manner, for example, 

  
11 12 1

21 22 2

1 2

G
 
 =  
  

  
  
  

 (70) 

where the states have been split into four groups and the relationships between the different groups 

can easily be shown. 

 When using the compact representation, various short cuts can be used when combining 

two models. When adding two compact representations, that is the transfer functions are in parallel, 

  
1 1

2 21 2

1 2 1 2

0
0G G

 
 + =  
 + 

 
 

   
 (71) 

When multiplying two representations, that is the transfer functions are in series, 

  
1 1 2 1 2

2 21 2

1 1 2 1 2

0G G
 
 =  
  

  
 

  
 (72) 

The inverse of a compact state-space representation can be written as 

  
1 1

1
1 1G

− −
−

− −

 − −
=  
  

   
  

 (73) 

provided that D is invertible. Finally, the transpose of this representation can be written as 

  
T T

T
T TG

 
=  
  

 
 

 (74) 
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A common operation with state-space models is to transform the order or meaning of the states. In 

such cases, the compact representation can be derived as follows. Assume that 

  
x x
u u
y y

=
=
=











 (75) 

where T, R, and S are appropriately sized nonsingular (invertible) matrices. In this case, the 

transformed compact representation can be written as 

  
1 1

1 1G
− −

− −

 
=  
  



 
 

 (76) 

Section 3.3: Process Analysis 
 Having considered the different models, it would be useful to understand what information 

can be easily extracted from such models that would allow us to understand how the process 

behaves. Since it is easier to extract information from transfer functions, the focus will be on 

analysing them. It will be assumed that the transfer function can be written in the continuous 

domain as 

  ( ) ( )
( )

sN s
G s e

D s
θ−=   (77) 

or in the discrete domain as 

  ( ) ( )
( )

kN z
G z z

D z
−=   (78) 

The order of a polynomial, denoted by n, is defined as the highest power present in a given 

polynomial, for example, x4 + x2 is a fourth-order polynomial, since the highest power is 4. The 

order of a transfer function is equal to the order of the denominator polynomial, D. A transfer 

function is said to be proper if the order of the numerator is less than or equal to the order of the 

denominator, that is, nN ≤ nD. A transfer function is said to be strictly proper if the order of the 

numerator is less than the order of the denominator, that is, nN < nD. For most physical processes, 

a transfer function will be strictly proper. 

 A process is said to be causal if the time delay, θ (or k) is nonnegative; otherwise, the 

process is noncausal. In the discrete domain, causality is ensured by a proper transfer function. A 
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causal process does not depend on unknown future values. Again, all physical processes must be 

causal or else they would be able to predict the future. 

 The poles of a transfer function are defined as the roots of the denominator, D, that is, those 

values of s (or z) such that D = 0. The zeros of a transfer function are defined as the roots of the 

numerator, N. 

 A process is said to be at steady state if all derivatives are equal to zero, that is, 

  0dx
dt

=


 (79) 

If Equation (79) does not hold, then the process is said to be operating in transient mode. It should 

be noted that small deviations from zero do not necessarily mean that the process is now in a 

transient mode. In practice, it may not be possible to achieve an exact steady state, where all the 

derivatives are exactly equal to zero, both due to continual small fluctuations and measurement 

imprecisions. In such cases, it is common to define the settling time, ts, of a process as the time it 

takes for the process to reach and stay within an envelope centred on the new steady-state value 

and has bounds that are 5% of the change in the process variable. Figure 23 shows how the settling 

time is computed. 

 

Figure 23: Determining the Settling Time 
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 For a process modelled by a continuous transfer function, there are three key parameters of 

interest: gain, time constant, and time delay (deadtime or process delay). The gain, K, of the 

process represents the steady-state behaviour of the system for a unit change in the input. It is 

defined as 

  ( )
( )

y t
K

u t
→∞

=
→∞

  (80) 

where it is assumed that the input is bounded as t → ∞. The gain is the same irrespective of the 

bounded input used. Using the final value theorem for a general transfer function and a step change 

in the input, it can be seen that 

  

( ) ( ) ( )

( )
( )

0 0 0

1
1 0

10
1 0

0

0

lim lim lim

lim

s s s

n
n s

n ns
n

sG s
K sY s G s

s
b s b

e
s a s a

b
a

θ

→ → →

−
− −

−→
−

= = =

+ +
=

+ + +

=





  (81) 

The ratio b0 / a0 is called the gain, K, of the process. 

 The process time constant represents the transient or dynamic component of the system, 

that is, how quickly the system responds to changes in the input and reaches a new steady-state 

value. The larger the time constant the longer it takes to reach steady state. It can be obtained from 

the transfer function by factoring the denominator into the form 

  
( )

( )
( )

( )

1 1
1 0 1 0

1
1 0

1

1

n n
n n

nn n
n

i
i

b s b b s b

s a s a sτ

− −
− −

−
−

=

+ + + +
=

+ + + +∏

 



  (82) 

which gives the time constants, τ, of the process. If there are multiple time constants, then the 

largest time constant will determine the overall process response speed. 

 The final parameter of interest is the time delay, θ, which measures how long it takes 

before the system responds to a change in the input. Time delays can arise from two different 

sources: physical and measurement. Physically, time delays are perceived times at which a system 

is not responding to changes in the input. They can arise if it takes time for an observable change 

to be seen, for example, heating a large tank would take some time before the temperature rises by 

an appreciable amount that can be measured. On the other hand, measurement time delays arise 
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due to the placement of sensors. In many systems it may not be possible to measure the variable 

immediately where it will act on the process. In this case, it will take some time before the variable 

actually affects the system, for example, the flow rate in a pipe could be measured at the beginning 

of the pipe and it could take some time before it will reach the process. In the frequency domain, 

the time delay is found as 

  e−θs
 (83) 

where θ is the time delay. In many applications, it may be necessary to convert the exponential 

form of the time delay into a polynomial expansion. This conversion can be accomplished using 

the Padé approximation, denoted as the n/m Padé Approximation, where n is the order of the 

polynomial in the numerator and m is the order of the polynomial in the denominator. The 1/1 

Padé approximation is given as  

   
1

2
1

2

s
s

e
s

θ

θ

θ
−

−
=

+
 (84) 

The 2/2 Padé approximation is given as  

   
2

2

1
2 12

1
2 12

s
s s

e
s s

θ

θ θ

θ θ
−

− +
=

+ +
 (85) 

A table of the Padé Approximation for the exponential function up to 3/3 are given in Table 8, 

from which the Padé Approximation for the deadtime can be easily derived. 

Table 8: Padé Approximations for the Exponential Function, ez 

n
→ 
m↓ 

0 1 2 3 

0 1
1

  1
1 z−

 2

1
11
2

z z− +
 

2 3

1
1 11
2 6

z z z− + −
 

1 1
1

z+  
11
2
11
2

z

z

+

−
 

2

11
3

2 11
3 6

z

z z

+

− +
 

2 3

11
4

3 1 11
4 4 24

z

z z z

+

− + −
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n
→ 
m↓ 

0 1 2 3 

2 
211

2
1

z z+ +
 

22 11
3 6

11
3

z z

z

+ +

−
 

2

2

1 11
2 12
1 11
2 12

z z

z z

+ +

− +
 

2

2 3

2 11
5 20

3 3 11
5 20 60

z z

z z z

+ +

− + −
 

3 
2 31 11

2 6
1

z z z+ + +
 

2 33 1 11
4 4 24

11
4

z z z

z

+ + +

−
 

2 3

2

3 3 11
5 20 60

2 11
5 20

z z z

z z

+ + +

− +
 

2 3

2 3

1 1 11
2 10 120
1 1 11
2 10 120

z z z

z z z

+ + +

− + −
 

 

Example 9: Extracting Information from a Transfer Function 

 Determine the gain, time constant, and time delay for the following transfer function 

  ( ) ( )
( )

51
5 3

sY s
G s e

U s s
−= =

+
 (86) 

Solution 

 Re-arranging into the required form gives 

  ( ) ( )
( )

51/ 3
5 1
3

sY s
G s e

U s s

−= =
+

 (87) 

from which, by inspection, the gain is ⅓ and the time constant is 5 / 3. The time delay is 5. 

Section 3.3.1: Frequency-Domain Analysis 
 In frequency-domain analysis, the transfer function is solely used and analysed to 

determine its behaviour at different frequencies. Frequency-domain analysis is often presented 

graphically and was once used extensively before the advent of computers. Understanding the 

principles of frequency-domain analysis is still important, especially when designing various 

filters for electronic systems, such as microphones. 

 Frequency-domain methods are based on setting s = jω, where j is the imaginary number 

1  and ω is the frequency. This basically means that we are considering the response of the system 

to sinusoidal waves with different frequencies. The goal is to see how the process changes the 

amplitude or strength and the phase shift, that is, assuming that the original input has the form 

  sin ωt (88) 
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the response will have the form 

  Asin(ωt + ϕ) (89) 

where A is the amplitude and ϕ is the phase shift. Consider a general transfer function, G(s), then 

define the amplitude ratio, AR, (which corresponds to a normalised amplitude) as 

  ( ) ( )( ) ( )( )2 2
AR Re ImG j G j G jω ω ω= = +  (90) 

where Re is the real component of a complex number, Im is the imaginary component, and ||·|| is 

the modulus function. It should be noted that in many applications, the logarithm of the amplitude 

ratio is used. In most cases, a base-10 logarithm is used. Occasionally, a decibel logarithm will be 

used, that is, AR = 20 log ||G(jω)||. The phase angle, ϕ, conventionally expressed in degrees, is 

defined as 

  
( )( )
( )( )

Im
arctan

Re
G j
G j

ω
φ

ω

 
=   

 
 (91) 

where arctan is the standard inverse tangent function defined on ]−90°, 90°[. It should be noted 

that if the denominator is negative, then it is necessary to add 180° to the value obtained previously. 

This is because the arctan function does not work on the complete circle.10 

 It can be noted that if the original transfer function is a product of simpler transfer functions, 

that is, 

  ( ) ( )iG s G s=∏  (92) 

then the amplitude ratio can be computed as 

  ( )AR AR
iG s=∏  (93) 

which is the product of the individual amplitude ratios corresponding to each simpler transfer 

function. The phase angle can be computed as 

  ( )iG sφ φ=∑  (94) 

These two formulae can simplify the determination of the amplitude ratio and phase angles of 

complex transfer functions. This formulae result from the fact that all transfer functions can be 

 

 
10 In some programmes, an “astronomical” arctangent function is defined as arctan2(y, x), which will return the value 
in the correct quadrant based on the signs of y and x. If available, it should be used. 
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expressed in polar form as G(jω) = ||G(jω)||e−ϕj, from which it is easy to see that combining 

multiple transfer functions as given by Equation (92), the given formulae will result. 

 The amplitude ratio and phase angle can be graphically presented in two different forms, 

either as a Bode plot or as a Nyquist plot. In a Bode plot, the x-axis is the frequency, ω, and the 

y-axis is either the amplitude ratio or phase angle. A typical Bode plot is shown in Figure 24. 

 

Figure 24: Bode Plot: The Argument-Ratio and Phase-Angle Plots 

 In a Nyquist plot, the real component of G(jω) is plotted on the x-axis and the imaginary 

component of G(jω) is plotted on the y-axis. A typical Nyquist plot is shown in Figure 25. Both 

graphs give similar information. In most applications, Bode plots are used, but a Nyquist plot can 

be useful to analysis the interactions between different systems. 
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Figure 25: A Nyquist Plot (for the same process as given by Bode plot in Figure 24) 

Section 3.3.2: Stability 
 Stability of a model refers to the behaviour of the model as t → ∞ for the case where the 

input is bounded, that is, |ut| ≤ L, where L is a constant. A model is said to be stable if as t → ∞ 

for a bounded input, y∞ → K, where K is a constant. Otherwise, a model is said to be unstable. 

Determining the stability of a process depends on the type of representation used and nature of the 

time domain. Table 9 summarises the key results regarding stability. A detailed examination of 

how the different types of stability manifest themselves can be found in Section 3.3.4.6. 

 For a state-space representation, stability is determined by examining the eigenvalues of 

the state matrix, 𝒜𝒜. In the continuous time domain, the real part of all the eigenvalues must be less 

than zero, for the model to be stable; otherwise, the model is said to be unstable. In the discrete 

time domain, the magnitude of all the eigenvalues must be less than 1, that is, the eigenvalues must 

lie inside the unit circle, for the process to be stable; otherwise, the model is said to be unstable. 

 For a transfer-function representation, stability is determined by examining the poles, or 

roots of the denominator, D. In the continuous time domain, the real part of all the poles must be 

less than zero, for the model to be stable; otherwise, the model is unstable. In the discrete time 
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domain, the magnitude of all the poles must be less than 1, that is, the poles must lie inside the unit 

circle, for the process to be stable; otherwise, the process is unstable.11 

 Finally, it can be noted that if the state-space representation is stable, then so will the 

transfer function representation be. However, the converse is not true, since each transfer function 

does not have a unique state-space representation and it is possible to construct an unstable state-

space representation for a stable transfer function, by adding an unobservable unstable state. 

Table 9: Summary of the Stability Conditions for Different Representations and Time Domains 

Representation Analysis Metric, p Stable Unstable 

C
on

tin
uo

us
 T

im
e State-Space Eigenvalues of the state-

space matrix, 𝒜𝒜 
Re(p) < 0 Re(p) ≥ 0 

Transfer 

Function 
Poles of the transfer function 

(Roots of D) 
Re(p) < 0 Re(p) ≥ 0 

D
is

cr
et

e 
Ti

m
e State-Space Eigenvalues of the state-

space matrix, 𝒜𝒜 
||p|| < 1 ||p|| ≥ 1 

Transfer 

Function 

Poles of the transfer function 

(Roots of D) 
||p|| < 1 ||p|| ≥ 1 

 

Example 10: Determining the Stability of a Transfer Function 

 Determine if the following processes are stable: 

  ( ) 5
1

1
5 3

sG s e
s

−=
+

 (95) 

  ( )
( )( )

5
2 2

1
5 3 4

sG s e
s s

−=
+ +

 (96) 

  ( )
2

3 4 3 2 1
zG z

z z z z
=

+ + + −
 (97) 

 

 
11 In the discrete domain with a transfer function, it is very important to take into consideration what variable is being 
used and how the stability condition is being phrased. Often, especially in control, stability is discussed in terms of 
z−1, in which case the above rules need to be inverted, that is, stability implies poles outside the unit circle. For 
consistency, stability in this book will be discussed in terms of z. 
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Solution 

 For G1, setting 5s + 3 equal to zero and solving, gives a pole of −3/5. According to the 

results in Table 9 for a continuous transfer function, the system is stable, since the pole is less than 

zero. 

 For G2, setting the two terms to zero and solving, gives three poles of −3/5 and ±2i. From 

Table 9 for a continuous transfer function, we conclude that the system is unstable since the we 

have two poles with a real component equal to zero and one pole whose value is less than zero.  

 For G3, the setting the denominator equal to zero and solving, gives poles of −1.291, 

−0.1141±1.217i, and 0.519. For a discrete transfer function, Table 9 states that in order for the 

system to be stable, the magnitude of the roots must be less than one. We see that we have at least 

one pole (−1.291) whose magnitude will be greater than zero. This implies that the system will be 

unstable. 

Example 11: Determining the Stability of a State-Space Model 

 Determine if the given 𝒜𝒜-matrices represent stable continuous processes: 

  1

2 0
3 2
 

=  − 
  (98) 

  2

5 5 6
0 3 2
0 0 1

− 
 = − 
 − 

  (99) 

  3

2 1
1 2

 
=  − 

  (100) 

Solution 

 For 𝒜𝒜1, since it is a triangular matrix, the eigenvalues can be directly found by looking at 

the main diagonal entries. This implies that the eigenvalues are 2 and −2. According to the results 

in Table 9 for a continuous state-space model, the system is unstable, since one of the eigenvalues 

is greater than zero. 

 Likewise, for 𝒜𝒜2, we can find the eigenvalues by looking at the main diagonal entries. This 

gives −5, −3, and −1. Since all of the eigenvalues are less than zero, from Table 9 for a continuous 

state-space model, we conclude that the system is stable.  

 For 𝒜𝒜3, we need to compute the eigenvalues as follows 
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( ) ( ) ( )( )2
3

2

det 2 1 1

4 5
2

I

i

λ λ

λ λ

− = − − −

= − +
= ±



 (101) 

Since the real part of the eigenvalues is greater than zero, from Table 9 that states that in order for 

the system to be stable, the real part of roots must be less than zero, we conclude that the system 

is unstable. 

Section 3.3.2.1: Routh Stability Analysis 
 Although the results presented in Table 9 are very useful when a numerical transfer 

function is available, determining the roots algebraically can be difficult, if not impossible for 

higher-order systems. For this reason, there exist special tests for stability that do not require the 

roots of the polynomial to be determined. One of the most common tests for a continuous-time 

transfer function is the Routh stability analysis. By simply considering the coefficients of the 

denominator polynomial, the stability of the system can be determined. Consider the characteristic 

polynomial (the polynomial of the denominator) as 

  ansn + an – 1sn – 1 + an – 2sn – 2 +…+ a1s + a0 = 0   (102) 

There are two conditions for the Routh stability test: 

1) All coefficients must be present and have the same sign (either all strictly positive, that is, 

greater than zero or all strictly negative, that is less than zero). If this is not the case, the 

system is unstable. 

2) If condition 1 is satisfied, then create the table shown in Table 10. 

a) In the first row, place the coefficients corresponding to an, an – 2,… 

b) In the second row, place the coefficients corresponding to an − 1, an – 3,… 

c) Using the values from the rows above and the current column and the column to 

the right, compute a determinant-like number using the formula provided in the 

table. For the ith row in the jth column (i ∊ {1, 2, …, n + 1, j ∊ {1, 2, …, ⌈0.5n⌉}), 

the general formula is 

  ( )
( ) ( ) ( ) ( )2 1 2 1

1 1
1

1

j j j j
j i i i i

i j

λ λ λ λλ
λ

− − − −
+ +

−

−
=  (103) 

where ( )1
2 2i n iaλ − +=  and ( )2

2 1i n iaλ − +=  (the first two rows are the coefficients of the 

polynomial of interest). Any values that are not given are assumed to be zero. 
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d) Continue computing this value until the table has n + 1 rows. 

e) A polynomial is stable (all roots of the characteristics polynomial are negative) if 

all the values in the first column have the same sign, either strictly positive or 

strictly negative. 

Table 10: Routh Stability Analysis Table 

Row 1 2 3 … 

1 an an − 2 an − 4 … 

2 an − 1 an − 3 an − 5 … 

3 1 2 3
1

1

n n n n

n

a a a ab
a

− − −

−

−
=  1 4 5

2
1

n n n n

n

a a a ab
a

− − −

−

−
=  … 

 

4 1 3 2 1
1

1

n nb a b ac
b

− −−
=  …  

 

…
 

…
 

…
   

n + 1 z1    

 

Example 12: Example of Routh Stability Analysis 

 Using Routh stability, determine the stability of the following two transfer functions: 

1) ( ) 6 4 3 2

5
5 6 2 3 1

G s
s s s s s

=
+ − + + +

  

2) ( ) 4 3 2

4
3 2 1

G s
s s s s

=
+ + + +

  

Solution 

 For the first transfer function, we can determine the stability by inspection. Since we are 

missing one of the powers (s5) and the coefficients are both negative and positive, we can conclude 

on the basis of condition (1) of the Routh stability analysis that this transfer function is unstable. 

 For the second transfer function, we see that condition (1) is satisfied, as all the powers are 

present and the coefficients have the same sign. Therefore, we will need to check condition (2) by 

constructing the Routh array. There will be 3 (always n / 2, rounded up) columns in the array. In 

the first row (denoted as 1 in Table 11), we place the even coefficients ordered in decreasing 
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powers. In the second row, we place the odd coefficients. In Rows 3, 4, and 5, we compute the 

values using the formula: 

  ( ) ( )1 2 3
1

1

3 1 1 2 1
3 3

n n n n

n

a a a ab
a

− − −

−

−−
= = =  

  ( ) ( )1 4 5
2

1

3 1 1 0
1

3
n n n n

n

a a a ab
a

− − −

−

−−
= = =  

  
( ) ( )1

3
1 1

3

2 3 1
7c

−
= = −  

  
( ) ( )( )1

3
1

7 1 0
1

7
z

− −
= =

−
 

It can be noted that any values that do not exist (such as an – 5) are equal to zero. As stated by the 

definition of the condition, we will always have n + 1 rows. The formulae used to compute the 

subsequent values are essentially determinants with the sign in the numerator flipped. 

Table 11: Routh Array 

Row 1 2 3 

1 1 1 1 

2 3 2 
 

3 ⅓ 1  

4 −7   

5 1   

From Table 11, we see that there is a sign change in Column 1, row 4, which implies that the 

system is unstable. 

Section 3.3.2.2: Jury Stability Analysis 
 Although the results presented in Table 9 are very useful when a numerical transfer 

function is available, determining the roots algebraically can be difficult, if not impossible for 

higher-order systems. For this reason, there exist special tests for stability that do not require the 

roots of the polynomial to be determined. One of the most common tests for a discrete-time transfer 

function is the Jury Stability Analysis. By simply considering the coefficients of the denominator 
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polynomial, the stability of the system can be determined. Like with the Routh stability test, a table 

is constructed. Consider that the polynomial of interest is given as 

  ( ) 1
1 1 0

n n
n nD z a z a z a z a−

−= + + + +  (104) 

Construct the following table (similar to that shown in Table 12), where the first row contains all 

the coefficients starting from a0 and ending with an. The second row is the first row reversed, that 

is, the first column contains an, and the last column contains a0. The third row is computed using 

  0i i n n ib a a a a −= −  (105) 

while the fourth row is the third row reversed. Note that only the first n values are reversed. 

Effectively, we have now created a new reduced polynomial that needs to be analysed. Thus, the 

fifth row is computed using the same formula as for the third row given by Equation (105), but 

replacing n by n – 1 coefficients, that is, 

  0 1 1i i n n ic b b b b− − −= −  (106) 

This procedure is then repeated until there is row with only 3 elements left (denoted as q0, q1, and 

q2), that is, the table will have 2n – 3 rows. In general, for the (2j + 1)th row (j = 1, 2, …, n – 2), 

that is, each odd-numbered row, we can write the relationship as follows 

  ( ) ( ) ( ) ( ) ( )2 1 2 1 2 1 2 1 2 1
0 1 1

j j j j j
i i n j n j id d d d d+ − − − −

− + − − += −  (107) 

where ( )1
i id a=  , that is, the first row contains the actual polynomial coefficients. The (2j + 2)th 

row, that is, the even row, will then be the n – j + 1 coefficients written in reversed order. It can be 

noted that the odd rows are essentially a determinant of the above two rows. 

 The conditions for stability can then be stated as: 

1) D(1) > 0 

2) (−1)nD(−1) > 0 

3) |a0| > |an| 

4) |b0| > |bn − 1|, and continuing in this manner until the last row is reach, where |q0| > |q2|. 

If any of the above conditions fail, then the system will have at least one pole outside the unit circle 

and hence be unstable. 

Table 12: Table for the Jury Stability Analysis 

Row 0 1 … n − 1 n 
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1 a0 a1 … an − 1 an 

2 an an − 1 … a1 a0 

3 
0 0 0 n nb a a a a= −  1 0 1 1n nb a a a a −= −  … 1 0 1 1n n nb a a a a− −= −  0 

4 bn − 1 bn – 2 … b0 0 

5      

…
 

…
 

…
 …

 

…
 

…
 

2n − 3 q0 q1 … … 0 

Example 13: Example of Jury Stability Analysis 

 Using Jury stability, determine the stability of the following two discrete transfer functions: 

1) ( ) 6 4 3 2

5
5 6 2 3 1

G z
z z z z z

=
+ + + + +

  

2) ( ) 4 3 2

4
10 3 5 1

G z
z z z z

=
+ + + +

  

Solution 

 For the first transfer function, we need to test the initial constraints before we consider 

creating the table. For condition 1, D(1) > 0, we get 

  1 + 5 + 6 + 2 + 3 + 1 = 18 > 1 

which implies that this condition is satisfied. Condition 2, (−1)nD(−1) > 0, gives 

  (−1)6[1(−1)6 + 5(−1)4 + 6(−1)3 + 2(−1)2 + 3(−1)1 + 1] = 0 

which is not satisfied. This implies that the first transfer function is not stable. 

 For the second transfer function, testing the three initial conditions gives 

Condition (1): 10 + 3 + 1 + 5 + 1 = 20 > 0  (satisfied) 

Condition (2):  (−1)4[10(−1)4 + 3(−1)3 + (−1)2 + 5(−1)1 + 1] = 4 > 0 (satisfied) 

Condition (3): |an| > |a0| ⇒ |10| > |1| (satisfied) 

Since all the preliminary conditions have been satisfied, the Jury array can be constructed. This is 

shown in Table 13. The first row consists of the coefficients arranged in increasing powers, while 

the second row consists of the coefficients arranged in decreasing power. In Row 3, we compute 

the values using the formula 

  0i i n n ib a a a a −= −  (108) 
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which gives 

  ( ) ( )0 0 0 4 4 0 1 1 10 10 99b a a a a −= − = − = −  

  ( ) ( )1 0 1 4 4 1 1 5 10 3 25b a a a a −= − = − = −  

  ( ) ( )2 0 2 4 4 2 1 1 10 1 9b a a a a −= − = − = −   

  ( ) ( )3 0 3 4 4 3 3 1 10 5 47b a a a a −= − = − = −   

From here, we should check that the condition |b0| > |bn – 1| is satisfied. Since |−99| > |−47|, it holds 

and we proceed to the next step. We reverse the order of the remaining n – 1 coefficients and write 

them in Row 4. Effectively, we have created a new polynomial of order n – 1 that we need to test. 

Thus, in Row 5, we will use a modified form of Equation (108) to give 

  
0 1 1i i n n ic b b b b− − −= −   (109) 

Effectively, this is the same as Equation (108), but with the value of n reduced by 1. Evaluating 

Equation (109) for the n – 2 columns gives 

  ( ) ( )2 2
0 0 0 3 3 99 47 7592c b b b b= − = − − − =  

  ( ) ( )( )1 0 1 3 2 99 25 47 9 2052c b b b b= − = − − − − − =   

  ( ) ( )( )2 0 2 3 1 9 99 47 25 284c b b b b= − = − − − − − = −  

Since we are left with three columns, we simply need to determine |q0| > |q2|, which in our case 

becomes |7592| > |−284|. Since it holds, we can conclude that the system is stable. 

Table 13: Table for Jury stability 

Row 0 1 2 3 4 

1 1 5 1 3 10 

2 10 3 1 5 1 

3 −99 −25 −9 −47  

4 −47 −9 −25 −99  

5 7592 2052 −284   
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Section 3.3.2.3: Closed-Loop Stability Analysis 
 For closed-loop systems, stability can be analysed by considering the closed-loop transfer 

function, Gcl, 

  
1

c p
cl

c p

G G
G

G G
=

+
 (110) 

Since it has been shown that the poles of the system are the determining factor for stability, it 

therefore suffices to consider only the denominator of the closed-loop transfer function, that is, the 

term 1 + GcGp. It is possible to apply either the Routh or the Jury Stability Tests to determine under 

what conditions the system will be stable. 

 However, in some circumstances, it can be instructive to look at the frequency-domain 

plots, especially the Bode plot, to determine stability. In order to make the analysis simpler, we 

will rewrite the denominator to 

  GcGp = −1 (111) 

Taking the magnitude (or modulus) of Equation (111) gives 

  ||GcGp|| = ||−1|| (112) 

while the phase angle for −1 is −180°, since the imaginary component is 0 and the real component 

is −1, which after subtracting −180° gives the correct location. Therefore, plotting the Bode plot 

for the open-loop transfer function GcGp will allow the stability of the system to be determined by 

examining the critical frequency, ωc, which is the frequency corresponding to a phase angle of 

−180°. If the value of amplitude ratio at this point is greater than 1 (or 0 if a logarithmic basis is 

being used), then the process will be closed-loop unstable. An example is shown in Figure 26. 
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Figure 26: Bode Plot for Closed-Loop Stability Analysis 

 Furthermore, we can define two additional parameters of interest: the gain margin (GM) 

and the phase margin (PM). These two margins represent how much room we have before the 

system becomes unstable. On a Bode plot, instability implies an amplitude ratio above 1 (or 0 for 

the logarithmic case) or a phase angle below −180°. These parameters are shown in Figure 27 for 

the Bode plot and in Figure 28 for the Nyquist plot. The phase margin is defined by adding 180° 

to the phase angle when the gain crosses the value of 1, which is denoted by ωg and called the gain 

crossover, that is, 

  PM = ϕ(ωg) + 180° (113) 

The gain margin is defined as the difference between 1 (or 0 for a logarithmic case) and the value 

when the phase angle crosses the phase angle of −180°, which is denoted by ωp and called the 

phase crossover, that is, 

  GM = 1 – AR(ωp) (114) 

It is possible to design controllers by specifying the phase and gain margins. 
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Figure 27: Closed-loop stability using the Bode plot 

 

Figure 28: Closed-loop stability using the Nyquist plot 

Section 3.3.3: Controllability and Observability 
 Since we are ultimately interested in automating our process, it is important to understand 

if our process can in fact be automated. For state-space representations, it is very common to talk 

about the controllability and observability of the process. The state equation or the pair (𝒜𝒜, 𝒞𝒞) is 

observable if and only if for any unknown initial state, x0, there exists a finite time t (greater than 
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zero), such that the knowledge of the input, u(t), and output, y(t) in the interval [0, t] is sufficient 

to determine the initial state, x0. This can be accomplished if and only if 

1) 2

1n

nq n

−

×

=

 
 
 
 
 
 
  







 



has full rank n, where  is the observability matrix. 

2) The observability Grammian, ( )
0

T
t

T
o n n

t e e dτ τ τ
×
= ∫     is nonsingular for all t > 0. The 

energy of the output signal can be given as ( ) ( ) ( ) ( )0 0T
y cE t x t x=  . 

3) The n-by-n matrix 
iλ− 

 
 

 


 has rank n for all eigenvalues λi of 𝒜𝒜. This allows the 

individual states or eigenvalues of 𝒜𝒜 to be classified. 

A system is said to be detectable if all unstable states of a state-space representation can be 

observed. This can be determined by examining 
iλ− 

 
 

 


 for each of the unstable states and 

determining if it is full rank. 

 The state equation or the pair (𝒜𝒜, ℬ) are said to be controllable if and only if for any initial 

state, x0, and final state, x1, there exists an input, u(t), that transfers x0 to x1 in finite time. This can 

be accomplished if and only if: 

1) 2 1n
n np

−
×  =          has full rank n, where  is the controllability matrix. 

2) The controllability Grammian, ( )
0

T
t

T
c n n

t e e dτ τ τ
×
= ∫    ,  is nonsingular for all t > 0. 

1
c
−  is a measure of the energy required to control the process. A larger value implies that 

more energy (or effort) is required. 

3) The n-by-n matrix [𝒜𝒜 − λiℐ | ℬ] has rank n for all eigenvalues λi of 𝒜𝒜. This allows the 

individual states or eigenvalues of 𝒜𝒜 to be classified. 
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A system is said to be stabilisable if all unstable states of a state-space representation can be 

controlled. This can be determined by examining [𝒜𝒜 − λiℐ | ℬ] for each of the unstable states and 

determining if it is full rank. 

 It can be noted that controllability and observability are duals of each other, that is, if (𝒜𝒜, 

ℬ) is controllable, then (𝒜𝒜T, ℬT) is observable. Similarly, if (𝒜𝒜, 𝒞𝒞) is observable, then (𝒜𝒜T, 𝒞𝒞T) is 

controllable. 

Section 3.3.4: Analysis of Special Transfer Functions 
 In this section, the properties of different commonly encountered transfer functions will be 

considered. Since much of the analysis in automation focuses on using transfer functions, it is 

important to understand the behaviour of the common transfer functions. Time-domain responses 

of these transfer functions to a step input will also be considered, since it is important to recognise 

these transfer functions in their most common manifestations in a real process. Discrete time 

systems will only be briefly considered, since most discrete time analysis is still based on the 

underlying continuous-time systems. 

Section 3.3.4.1: Integrator 
 The integrator, as its name suggests, integrates a variable. It is a common model for level 

in a tank. Its Laplace transform is 

  I
I

MG
s

=  (115) 

where MI is the gain. It is an unstable system, which will always increase even if the input is 

bounded. The step response of the system can be determined as 

  

2

I

I

I

Y G U
M MY
s s

M M
s

=

=

=

 (116) 

From Table 4, the time domain representation for Equation (116) is 

  
t Iy M Mt=  (117) 

This shows that the integrator will continual increase even if the input is bounded. A representative 

plot is shown in Figure 29. Its Bode plot can be determined as 
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( )

2
2AR= 0

arctan 90
0

I I
I

II

I

M M jG j
j

MM

M

ω
ω ω

ω ω

ωφ

= = −

 ⇒ + − = 
 

 − 
= = − ° 

 
 

 (118) 

A representative Bode plot is shown in Figure 30. The key properties of the integrator are 

summarised in Table 14. 

 

Table 14: Basic Information About an Integrator 

Property Value 

Laplace Transform I
I

MG
s

=  

Step Response (Time Domain) yt = MIMt 

B
od

e 

Pl
ot

s AR |MI| / ω 

ϕ −90° 

Stable No 

 

Figure 29: Response of the Integrator 1 / s to a Unit-Step Input 
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Figure 30: Bode Plot for an Integrator 

Section 3.3.4.2: Lead Term 
 The lead term is a simple, first-order transfer function that is occasionally found in 

combination with other transfer function to model unusual or more complex initial dynamics in a 

process. Its Laplace transform is 

  ( )1L LG K sτ= +  (119) 

where K is the gain and τL is a time constant. The step response of the system can be determined 

as 
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In order to obtain a time-domain representation, it is necessary to perform a partial fraction 

decomposition of Equation (120) to give 
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( )1

1

L

L

s
Y KM

s

Y KM
s

τ

τ

+
=

 = + 
 

 (121) 

From Table 5, the time domain representation for Equation (121) is 

  ( )t L ty KM uτ δ= +  (122) 

where δ is the Dirac delta function and ut is the unit step function. This shows that the lead function 

is bounded. Its Bode plot can be determined as 
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1

AR= 1

arctan 0
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arctan 180 0
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τ ωτ ωφ
τ ω

= + = +

⇒ + = +

> = =   + ° <  

 (123) 

A representative Bode plot is shown in Figure 31 for all 4 possible combinations of K and τL. The 

key properties of the lead term are summarised in Table 15. 

Table 15: Basic Information About a Lead Term 

Property Value 

Laplace Transform ( )1L LG K sτ= +  

Step Response (Time Domain) yt = KM(τLδ + ut) 

B
od

e 
Pl

ot
s AR 2 21 LK τ ω+  

ϕ 
arctan 0

arctan 180 0
L

L

K
K

τ ω
τ ω

>
 + ° <

 

Stable Yes 

Comment 

Negative values of τL (positive zeros) can 

induce an inverse response in a system, that 

is, the variable first decreases in value and 

increases to reach its new steady-state value 

(or vice versa). 
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Figure 31: Bode Plot for a Lead Term (top row) K > 0, (bottom row) K < 0, (left) τL > 0, and (right) τL < 0 

Section 3.3.4.3: First-Order Transfer Function 
 A first-order system is one of the most common transfer functions encountered in 

automation engineering. It can be used to model any system ranging from simple heated tanks to 

complex multicomponent reactions. Its Laplace transform is 

  
( )1F

p

KG
sτ

=
+

 (124) 

where K is the gain and τp is the process time constant. It is often coupled with a deadtime term to 

give a first-order plus deadtime (FOPDT) process model, that is, 
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 (125) 

The step response of the pure, first-order system can be determined as 
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( )
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 (126) 

In order to obtain a time-domain representation, it is necessary to perform a partial fraction 

decomposition of Equation (126) to give 
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s s

τ

τ
τ

=
+

− = + + 

 (127) 

From Table 5, the time domain representation for Equation (127) is 

  ( ) 1
t

y t KM e τ
− 

= − 
 

 (128) 

The process is stable if τ > 0, but unstable if τ < 0. Assuming τ > 0, then using the final value 

theorem, it can be shown that the new steady-state value will be 
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F
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 (129) 

The time response of a stable first-order system is shown in Figure 32, as well as how to compute 

the key parameters from its graph. Its Bode plot can be determined as 
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 (130) 

In order to avoid a discontinuity when it pass through 0°, it is common to use negative angles when 

plotting this function, that is −45° rather than the equivalent 315°. A representative Bode plot is 
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shown in Figure 31 for all 4 possible combinations of K and τp. The key properties of the first-

order system are summarised in Table 16. 

Table 16: Basic Information About a First-Order System 

Property Value 

Laplace Transform ( )1F
p

KG
sτ

=
+

 

Step Response (Time Domain) ( ) 1
t

y t KM e τ
− 

= − 
 

 

B
od

e 
Pl

ot
s 

AR 2 21 p

K

τ ω+
 

ϕ 
arctan 0

180 arctan 0
p

p

K
K

τ ω
τ ω

− >
 °− <

 

Stable Yes, if τp > 0 

Comment 

This is one of the most common transfer 

functions encountered in process control and 

is used to model many different applications, 

often by including a time delay term. 

 

 

Figure 32: Step Response of a Stable, First-Order System to a Step Response 
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Figure 33: Bode Plot for a First-Order System (top row) K > 0, (bottom row) K < 0, (left) τp > 0, and (right) τp < 0 

Section 3.3.4.4: Second-Order System 
 A second-order system is another commonly encountered transfer function that is often 

used to model oscillations or periodic behaviour in a process. Its Laplace transform is 

  
( )2 2 2 1II

p p

KG
s sτ ζτ

=
+ +

 (131) 

where K is the gain, τp is the process time constant, and ζ is the damping coefficient. This basic 

transfer function can be augmented by adding a lead term to model various behaviours to give 
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 (132) 
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As well, it can be coupled with a deadtime term to give a second-order plus deadtime (SOPDT) 

process model, that is, 

  
( )2 2 2 1

s
IID

p p

KG e
s s

θ

τ ζτ
−=

+ +
 (133) 

The poles of the second-order transfer function can be written as 
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2 4 4
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τ

− ± −
=

− ± −
=

 (134) 

Depending on the value of ζ, three different cases can be determined: 

1) Case I: Underdamped System, where |ζ| < 1. In this case, the poles will contain an 

imaginary component. 

2) Case II: Critically Damped System, where |ζ| = 1. In this case, the poles will both be 

real and the same. 

3) Case III: Overdamped System, where |ζ| > 1. In this case, the poles will both be real. 

The behaviour and critical information depends on the particular case being considered. 

 For the underdamped case, where |ζ| < 1, the poles of Equation (131) will contain an 

imaginary component. The presence of an imaginary component will imply that there will be 

oscillations present in the time response. If ζ = 0, then the system will continuously oscillate about 

a mean value. In all other cases, stability will depend on the sign of ζτp: if positive, the system will 

be stable (decaying oscillations); if negative, the system will be unstable (increasing oscillations). 

The step response of this system can be written as 

  
2 22

2

1 1( ) 1 cos sin
1

p

t

p p

y t KM e t t
ζ
τ ζ ζζ

τ τζ

−     − −     = − +
     −     

 (135) 

A typical underdamped step response is shown in Figure 34. Some of the key parameters that can 

be extracted from a step response are: 

1) Time to First Peak: 
21pt πτ

ζ
=

−
 

2) Overshoot: 2
exp

1
aOS
b

πζ
ζ

 −= =  − 
.  



   104  

3) Decay Ratio: The decay ratio is the square of the overshoot ratio, i.e. 

2
2exp

1
cDR
a

πζ
ζ

 −= =  − 
. 

4) Period of Oscillation: This is the time between 2 oscillations. It is given by 

2

2
1

P πτ
ζ

=
−

.  

5) Settling Time, ts: The time required for the process to remain within 5% of the steady-

state value. The first time this occurs is called the settling time. 

6) Rise Time, tr: Time required to first reach the steady state value. 

 

Figure 34: Second-Order Underdamped Process 
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 For the critically damped system, where |ζ| = 1, the poles of Equation (131) will both be 

the same and contain no imaginary component. The system will be stable if the sign of ζτp is 

positive and unstable if ζτp is negative. The step response of this system can be written as 

  ( ) 1 1 p

t

p

ty t KM e
ζ
τ

τ

−  
= − +      

 (136) 

A typical stable, critically damped step response is shown in Figure 35. In general, such a system 

looks very similar to a first-order plus deadtime system and is often analysed as such. The biggest 

difference is the slightly slower initial response, which is often treated as a time delay. 

 

Figure 35: Step Response of a Critically Damped System (ζ = 1, τp = 10, and K = 1) 

 For the overdamped case, where |ζ| > 1, the poles of Equation (131) will only be real 

numbers. This implies that there will be no oscillations in the step response.  The system will be 

stable if the sign of ζτp is positive and unstable if ζτp is negative. The step response of this system 

can be written as12 
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ζ
τ ζ ζζ

τ τζ

−     − −     = − +
     −     

 (137) 

A typical overdamped step response is shown in Figure 36. In most cases, this system can be 

analysed as a first-order plus deadtime process. It can be noted that the overdamped case has the 

 

 
12 cosh is the hyperbolic cosine function defined as ½(ex + e−x) and sinh is the hyperbolic sine function defined as 
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slowest initial response of all second-order and first-order systems. This slow initial response is 

often treated as a deadtime when fitting a first-order system. 

 

Figure 36: Step Response of an Overdamped System (ζ = 2, τp = 5, and K = 1) 

 The Bode plot of a second-order system can be determined as 
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 (138) 

 When dealing with second-order systems, there is a potential that the amplitude ratio can 

be greater than the original starting value of |K|. Specifically, this occurs whenever the denominator 

is less than 1. Taking the denominator of the amplitude ratio for a second-order system and solving 

it gives 
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 (139) 

Since the frequency is only a positive real number, the term under the square root must also only 

be positive (since a negative would give a complex number), that is, 

  
22 4 0

0.5 0.707

ζ

ζ

− ≥

≥ ≈
 (140) 

If the damping coefficient lies within the region given by Equation (140), then there will be a hump 

in the Bode plot, as shown in Figure 37 (top). Since these frequencies magnify the system response, 

it is important that special care be taken when designing controllers for such systems. 

 If a lead term has been added to a second-order system, as given by Equation (132), then 

the system will display an inverse response if the zeros of the transfer function are positive, for 

example, as shown in Figure 38. The Bode plot for this composite system can be obtained by 

invoking the rules for combinations of transfer functions, that is, 
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 (141) 

An example is shown in Figure 39. 

 Representative Bode plots are shown in Figure 37 for different combinations of the 

parameters. The key properties of the second-order system are summarised in Table 17. 
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Table 17: Basic Information About a Secord-Order System 

Property Value 

Laplace Transform ( )2 2 2 1II
p p

KG
s sτ ζτ

=
+ +

 

Step Response (Time Domain) 

|ζ| < 1: Equation (135) 

|ζ| = 1: Equation (136) 

|ζ| > 1: Equation (137) 

B
od

e 
Pl

ot
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AR ( )22 2 2 2 21 4p p

K

τ ω ζ τ ω− +
 

ϕ 
2 2

2
arctan

1
p

p

ζτ ω
τ ω

−
−

, 

see Equation (138) for greater detail 

Stable Yes, if ζτp > 0 

Comment 

This transfer function is commonly used to 

describe oscillations and inverse responses in 

a system. 
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Figure 37: Bode Plots for τp = 5, (top) ζ = 0.5, (middle) ζ = 1, (bottom) ζ = 2; (left) K = 1 and (right) K = −1 
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Figure 38: Step Response of a Second-Order System with Inverse Response (τL = −25, ζ = 5/√7, τp = 10√7 and K = 1) 

 

Figure 39: Bode Plots for (left) τL = −5, (right) τL = 5, and (top) ζ = 0.5 and (bottom) ζ = 2 
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Section 3.3.4.5: Higher-Order Systems 
 Analysing higher-order systems is based on the results obtained from the analysis of the 

simpler systems. The following are some key points to consider for the analysis in the time domain: 

1) Poles: The poles of the process transfer function determine the stability of the system. If 

the poles are less than zero, then the system is stable; otherwise, it is unstable. If the poles 

contain an imaginary component, then there will be oscillations in the system. 

2) Zeros: If the zeros of the transfer function are positive, then there will be an inverse 

response in the system. 

3) Time Constant: The largest stable pole in absolute magnitude can be treated as the 

dominating time constant of the process.  

In the frequency domain, the Bode plots are obtained by combining the appropriate simple transfer 

functions, using the rules for composition of the amplitude ratio (multiplication) and phase angle 

(addition). 

Example 14: Sketching the Expected Time-Domain Response 

 For the following three transfer functions, sketch the expected time-domain response of the 

system when a positive step change is made: 

1) ( )
( )( )( )

10
1

1.54 5 1
5 1 4 2 2 1

ss
G e

s s s
−− +

=
+ + +

  

2) 
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2 2
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100 200 1

s
G

s s
+

=
− +

 

3) 
( )( )3 2

1.54
100 10 1 4 1

G
s s s

=
− + − +

 

Solution: 

First Transfer Function 

 For the first transfer function, the gain is 1.54 (by inspection), the zero is 0.2, and the poles 

are −0.2 (= −1/5), −0.5 (= −2/4), and −0.5 (= −1/2), and the time delay is 10. Since the zero is 

positive, we expect an inverse response, while all poles are negative, which implies that the system 

is stable. As well, none of the poles have an imaginary component and so there are no oscillations. 

The plot would therefore be as given in Figure 40 (left). 

Second Transfer Function 
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 For the second transfer function, the zero is −0.2. Instead of computing the poles directly, 

we can note that this is a second-order system. Therefore, writing it into the standard form for a 

second-order system, it can be seen that τp = 10 and ζ = −10. Since τpζ < 0, the system is unstable 

and without any oscillations (|ζ| > 1). The “gain” is positive, which implies that the function will 

go towards +∞. Thus, the plot would be as given in Figure 40 (middle). 

Third Transfer Function 

 For the third transfer function, there are no zeros or time delay. Similar to the second 

transfer function, let us rewrite the denominator into the required form to give 

  
( )( ) ( )( )3 2 2

1.54 1 1.54
1100 10 1 4 1 100 10 1 4 1

G
s s s s s s

− −
= =

−− + − + − + +
. 

By comparison, we can see that the second-order term has the following characteristics, τp = 10 

and ζ = −0.5. This implies that the poles are unstable and oscillatory. The second term will give a 

stable pole (−0.25 = −1/4). Therefore, the plot of this transfer function will be given as Figure 40 

(right). 

 
Figure 40: Sketch of the Transfer Function Step Responses: (left) first transfer function, (middle) second transfer 

function, and (right) third transfer function. 

It can be noted that when sketching the transfer function, it is important to only give the general 

characteristics, while the exact values can be ignored. 

Section 3.3.4.6: Summary of Functional Behaviour in Continuous- and 

Discrete-Time Domains 
 Table 18 summarises the relationship between the location of the poles of the transfer 

function and the generalised behaviour in both the continuous- and discrete-time domains. The 
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ringing cases can only occur in the discrete-time domain as a result of how the discretisation is 

taken. 

Table 18: Graphical Representation of the Different Types of Functions (The ringing cases can only occur in the discrete 
domain.) 

Case 
Location of the Poles Unit-Step Response 

Continuous Discrete Continuous Discrete 

Stable, 

exponential 

decay     

Stable, 

oscillatory 
    

Unstable, pure 

oscillatory 
    

Unstable, 

Integrator 
    

Unstable, 

exponential 

growth     

Unstable, 

oscillatory 
    

Ringing, stable  

 

 

 

Ringing, stable 

oscillatory 
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Case 
Location of the Poles Unit-Step Response 

Continuous Discrete Continuous Discrete 

Ringing, 

integrator 
 

 

 

 

Ringing, 

unstable 
 

 

 

 
Ringing, 

unstable, 

oscillatory 

 

 

 

 
 

Example 15: Origin of Ringing in Discrete-Time Systems 

 Consider the continuous exponential and cosine system 

  y(t) = eatcos(ωt) (142) 

that is sampled with a sampling time of Ts to give a discrete-time system of the form 

  ( )cossakT
k sy e kTω=   (143) 

which, from Table 6, has the z-transform of 

  ( )
( )

1

21 2

1 cos
1 2 cos

s
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aT aT
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e T z
e T z e z

ω
ω

−

− −

−
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  (144) 

We will assume that a ∊ ℝ so that values of α ≥ 0 will lead to an unstable system. It can be noted 

that the results for sine will be the same mutatis mutanda. Examine the impact of the sampling 

time on the resulting discrete-time function and its z-transform. 

Solution 

 The behaviour of the transfer function is determined by the values of its poles, that is, the 

roots of the denominator. Using the quadratic formula gives the general form of the poles as 

  
( ) ( ) ( ) ( )

2 2 2
22 cos 4 cos 4

cos cos 1
2

s s
s S

T T
z T T

ψ ω ψ ω ψ
ψ ω ψ ω

± −
= = ± −   (145) 

where to simplify notation saTeψ = . We can note that ψ will always be positive since the 

exponential of any real number is positive. 
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 In order to understand the behaviour of the discrete function, we will need to examine the 

determinant of the equation (the part inside the square root) and consider three cases: when the 

determinant is greater than zero, exactly zero, and less than zero. 

Case 1: Determinant greater than zero 

 For the determinant to be greater than zero, it follows that 

  ( ) ( )2 2cos 1 0 cos 1S sT Tω ω− > ⇒ >   (146) 

However, the cosine function is never greater than 1. Thus, this situation cannot occur and there 

will not be two distinct real roots. 

Case 2: Determinant equal to zero 

 For the determinant to be exactly zero, it follows that 

  ( ) ( )2 2cos 1 0 cos 1S sT Tω ω− = ⇒ =   (147) 

Taking the square root of the right-hand side and noting that there are two solutions gives 

  ( )cos 1sTω = ±   (148) 

which occurs when 

  ωTs = πn 

for n ∊ ℤ. If we restrict ourselves to the domain [0, 2π[, we see that we have two solutions: at n = 

0 with a value of 1 and n = 1 with a value of −1. In such a case, the double root will be located on 

the x-axis at the location of ψ for n even and at the location of −ψ for n odd. When n is odd, the 

poles will lie in the left-hand plane of the discrete domain, which implies that we will have ringing 

behaviour. Stability will be determined by the value of ψ. However, there will not be any 

oscillatory behaviour. The general form of the discrete function is then 

  ( )cosk
ky k nψ π=   (149) 

When n is odd, the value of cos(kπn) will oscillate between 1 and −1 which will give the 

characteristic ringing behaviour. 

Case 3: Determinant less than zero 

 For the determinant to be less than zero, it follows that 

  ( ) ( )2 2cos 1 0 cos 1S sT Tω ω− < ⇒ <   (150) 

In such cases, there will be two imaginary roots that are complements of each other, that is, ψ + γi 

and ψ – γi, where γ is equal to ( )21 cos STψ ω− . This implies that there will be a clear oscillatory 
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behaviour. If we restrict ourselves to the domain [0, 2π[, we can note that cos(ωTs) will be positive 

in the region [0, 0.5π[ ∪ ]1.5π, 2π[ and negative in the region ]0.5π, 1.5π[. The function will be 

exactly zero at 0.5π and 1.5π. In the positive region, this will place the poles in the right-hand side 

of the discrete system, while when negative it will place them in the left-hand side leading to 

ringing. When cos(ωTs) is exactly zero, we will have two roots at the origin of the system and we 

will have no information about the system. This brings us directly to the constraint given by the 

Shannon sampling theorem that the sampling time must lie be greater than 2/ω.  

Section 3.4: Event-Based Representations 
 In event-based systems, where the changes in events drive the process, a different type of 

model is required, where the impact of the events can be more clearly seen on the system. An 

automaton or, in the older literature machine, is a way of representing how a process changes 

from state to state based on discrete events. At each state, a series of inputs are recognised and 

cause the automaton to move to another (or perhaps even, the same) state. 

 Before considering a formal definition of an automaton, let us examine a simple case and 

how it could be modelled as an automaton. Consider a system that consists of only two inputs a 

and b. The objective of this system is to determine when the sequence of inputs is baba. In 

automaton theory, the acceptable inputs are called the alphabet, while the actual sequence of 

inputs is called a word. Thus, in this example, the alphabet is the set {a, b} and the word of interest 

is baba. A state is defined as an internal representation of the system and its expected behaviour. 

In this example, we can define 5 states: Z0 that represents the initial state, Z1 when we have 

received the first b, Z2, when we have received ba, Z3, when we have received bab, and Z4, when 

we have received baba. Based on the inputs and current state, a transition function shows how 

the system will move to the next state. For example, if we are in state Z0 and receive an a, then 

the system will transition to Z0 (remain in the same place), while if a b is received, the system will 

transition to Z1. States can be classified as either accepting (also called marked states) or 

rejecting. An accepting state is one that has the desired outcome. In this particular example, it 

would be state Z4. A rejecting state is one that does not have the desired outcome. In this particular 

example, it would be all the other states. When an automaton has finished reading a word, we can 

note the final state of the automaton. If it is an accepting state, then we can say that the automaton 
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accepts the word; otherwise it rejects the word. The set of all words accepted by the automaton is 

called the language recognised (or marked) by the automaton. 

 Mathematically, for a finite-state automaton A, we can write this as the quintuple 

  A ≡ (𝕏𝕏, Σ, f, x0, 𝕏𝕏m) (151) 

where 𝕏𝕏 is the finite set of states, Σ the finite set of symbols, called the alphabet of the automaton, 

x0 ∊ 𝕏𝕏 the initial state, 𝕏𝕏m ⊆ 𝕏𝕏 the set of all accepting states, and f the transition function defined 

as 

  f: 𝕏𝕏×Σ → 𝕏𝕏 (152) 

The alphabet represents all possible values that the automaton will recognise. It can consist of 

letters, values, or any other acceptable symbol. An automaton generates a language, L, which 

simply consists of all possible strings (irrespective of the final state) generated by the automaton. 

An automaton is said to recognise (or mark) a specific language Lm. 

 As well, it is possible to define an output function, g, that determines what the output from 

the automaton will be. In general, it is defined as 

  g: 𝕏𝕏×Σ → Y, (153) 

that is, the output function depends on the state and inputs. In such cases, this automaton is called 

a Mealy Automaton. On the other hand, when the output function, g, is defined as  

  g: 𝕏𝕏 → Y (154) 

that is, the output function only depends on the state, then we have a Moore Automaton. 

 It is also possible to provide a graphical representation of an automaton. Figure 41 shows 

a typical representation of an automaton. The most important components are: 

• The states are shown with “Z” followed by a number. 

o Normally, Z0 is the initial state. 

• Each state is enclosed by a circle. 

• The initial state is shown by an arrow pointing to the state and without any additional 

markings. 

• The transitions between the states are shown with arrows. 

• On the arrows, the combination of inputs and outputs that lead to the next state are 

shown. 

• Accepting states are enclosed by a double circle. 
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Figure 41: Graphical Representation of an Automaton 

 The sending and receiving of symbols for the inputs and outputs is assumed to be 

instantaneous. A finite-state automaton must allocate for each input symbol at each time point a 

valid transition. Often such a transition can be a self-loop, that is, a transition where the initial and 

final states are the same.  

Example 16: Automaton for a Process 

 Consider the previously mentioned process where it was desired to find the word baba. 

Draw the automaton for this process and define the all the components in the mathematical 

description of the automaton. 

Solution 

 The automaton is shown in Figure 42. 

 
Figure 42: Automaton for the example 

 The mathematical description can be stated as: 

  𝕏𝕏 = {Z0, Z1, Z2, Z3, Z4} 

  Σ = {a, b} 

  x0 = Z0 

  𝕏𝕏m = {Z4} 

The transition function, f, is defined as follows: 

  f(Z0, a) = Z0 (which is a self-loop) 

  f(Z0, b) = Z1 

  f(Z1, a) = Z2 
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  f(Z1, b) = Z1 

  f(Z2, a) = Z0 

  f(Z2, b) = Z3 

  f(Z3, a) = Z4 

  f(Z3, b) = Z1 

  f(Z4, a) = Z0 

  f(Z4, b) = Z1 

Note that the transition function should match the arrows drawn in the schematic for the 

automaton! 

 

 Transitions in an automaton can be spontaneous, that is, we do not know exactly when a 

given transition occurs, for example, the transition from filling a tank to full can be spontaneous 

(especially, if we do not know the height of the tank). Such a transition is denoted using the symbol 

“ε” on the arrow. Spontaneous transitions often arise when there is incomplete knowledge of the 

system. Automata containing spontaneous transitions are said to be nondeterministic, since it is 

not possible to know in which states the automaton currently is. Another form of nondeterminism 

is the presence of multiple transitions with the same label, for example, two transitions labelled a 

leading to two different states. In such cases, it is likewise impossible to know in which state the 

automaton is in. In all other cases, the automaton is said to be deterministic since it is possible to 

precisely determine the next state given all past information. 

 The states in an automaton can be classified as follows: 

1) Periodic States: Periodic states are a set of states between which the automaton can 

oscillate. Normally, one takes the largest set of states between which the automaton can 

oscillate. 

2) Ergodic States: Ergodic states are those states once reached the automaton cannot leave. 

3) Transient States: All states that are not ergodic are called transient states. 

Section 3.4.1.1: Analysis of Automata 
 With the above mathematical model of an automaton, it is possible to analyse and 

manipulate the automata. This section will briefly look at some of the ways in which we can 

manipulate and analyse automata. 
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 Deadlock is said to occur if an automaton ends up in a rejecting state from which it cannot 

leave. Such an automaton has come to a standstill and cannot take further action. Since automata 

represent real processes, this is an undesirable state of events and should be avoided. A similar 

concept is livelock which is said to occur if an automaton ends up in a periodic set that consists 

solely of rejecting states. This means that although the automaton can make a next move it can 

never reach an accepting state and terminate. Both such situations are highly undesired. Together 

deadlock and livelock are referred to as blocking, since the automaton is blocked from completing 

its task. 

Example 17: Blocking in an Automaton 

 Determine if the automaton shown in Figure 43, is blocking. If it is blocking, determine 

what types of blocking occur. 

 
Figure 43: Automaton 

 Solution 

 Looking at Figure 43, state Z3 is an ergodic state which is not accepting. Therefore, 

deadlock will occur in this state. Thus, the system is blocking. State Z3 is a deadlock. States Z5 

and Z6 form a periodic set from which there is no escape. However, neither state is accepting. 

Therefore, livelock will occur for these two states. 

 

 It is possible to manipulate automata. The following are some common manipulations and 

their definitions: 

1) Accessible Operator (Acc): This removes all unreachable states and their associated 

transitions. This operation is necessary when performing more advanced manipulations on 

automata to clean up the resulting automaton. This operation will not change the generated 
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or recognised languages. A state is defined as being unreachable if there exists no path 

from the initial state to the given state. 

2) Co-accessible Operator (CoAc): This removes any states and their associated transitions 

from which one cannot end up in an accepting state. An automaton where A = CoAc(A) is 

called a co-accessible automaton and is never blocking. This operation can change the 

generated language but not the recognised language. 

3) Trim Operator (Trim): This operation creates an automaton that is both co-accessible and 

accessible. The order of operation is immaterial, that is, Trim(A) = CoAc(Acc(A)) = 

Acc(CoAc(A)). 

Example 18: Trimming an Automaton 

 Apply the trim operation to the automaton shown in Figure 43. 

Solution 

 Quickly looking at the automaton in Figure 43, we that there are no states that cannot be 

accessed from the initial state. Thus, we need to consider the co-accessible operator. Here, we see 

that we need to remove states Z5, Z6, and Z3 since we know that they are blocking. However, by 

removing Z3, we now make Z2 blocking. Therefore, we must also remove it. In general, this 

process is iterative and continues until we have removed all states or there are no more states to 

remove. The final automation in shown in Figure 44. 

 
Figure 44: The Trimmed Automaton 

Section 3.4.1.2: Combining Automata 
 Having looked at various operations on single automata, it is worthwhile to consider 

manipulating two or more different automata. When we wish to combine two automata, we can 

perform two different operations: product, denoted by ×, and parallel composition, denoted by 

||. Parallel composition is often also called synchronous composition.  
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 Product composition is defined as combination of two automaton considering only the 

letters of the alphabet that the two automata have in common, that is, Σ1∪ Σ2. Formally, for two 

automata G1 and G2, their product can be written as 

  ( )( )1 2 1 21 2 1 2 1 2 0 0Acc , , , , , m mG G f x x× ≡ × Σ ∪Σ ×       (155) 

where 

 ( )( ) ( ) ( )( )1 1 2 2
1 2

, , , if  is a valid input at the given point
, ,

undefined otherwise

f x e f x e e
f x x e

≡ 


   (156) 

In product composition, the transitions of the two automata are always synchronised on a common 

event. This implies that a transition occurs only if the input is a valid input for both automata. The 

states of G1 × G2 are given as the pair (x1, x2), where x1 is the current state of G1 and x2 is the 

current state of G2. It follows from the definition of the product composition that 

  
( ) ( ) ( )
( ) ( ) ( )

1 2 1 2

1 2 1 2m m m

L G G L G L G

L G G L G L G

× = ∩

× = ∩
   (157) 

Product composition has the following properties: 

1) It is commutative up to a re-ordering of the state components in the composed states. 

2) It is associative. This implies that G1×G2×G3 ≡ (G1×G2)×G3 = G1×(G2×G3). 

Example 19: Product of Two Automata 

 Consider the automata shown in Figure 45 and Figure 46. Determine the product of these 

two automata. 

 
Figure 45: G1 
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Figure 46: G2 

Solution 

 Before we can start with drawing the final automaton, it makes sense to first consider which 

inputs are valid for the final automaton. From Figure 45, it can be seen that, for G1, the inputs are 

{a, b, g}. Similarly, from Figure 46, it can be seen that, for G2, the inputs are {a, b}. Therefore, 

the common set is {a, b}. 

 When drawing the final automaton, it helps to start from the initial states of both and work 

through all the possible transitions and draw the next state. Thus, starting from (x, 0), with an input 

of a, G1 remains in state x, but G2 goes to state 1. Therefore, the new state in the product automaton 

will be (x, 1). This is the only valid transition since from (x, 0), an input of b is not valid for G1. 

An input must be valid for both automata for it to occur in the product. Note that g will not occur 

since it is not a common input. We will then continue in the same fashion by looking at the possible 

states and how the inputs would affect them. A state will be marked if all the states in the original 

automaton are marked. The final automaton is shown in Figure 47. 

 
Figure 47: The product of G1 and G2 

 

 As can be seen, product composition is relatively restrictive in that a given input must be 

valid for both automata. One way to relax this constraint is to consider parallel composition. In 

parallel composition, the inputs are split into two parts: common inputs and private inputs. A 

private input only pertains to a given automaton, while common inputs are shared with other 

automata. Formally, the parallel composition of two automata G1 and G2, denoted as G1 || G2, is 

defined as 

  ( )( )1 2 1 21 2 1 2 1 2 0 0|| Acc , , , , , m mG G f x x≡ × Σ ∪Σ ×       (158) 
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where 

( )( )

( ) ( )( )
( )( )

( )( )

1 1 2 2

1 1 2 1
1 2

1 2 2 2

, , , if  is a valid common input for both automata

, , if  is a private event to 
, ,

, , if  is a private event to 

undefined otherwise

f x e f x e e

f x e x e G
f x x e

x f x e e G



≡ 




   (159) 

Note that the only difference between parallel and product composition is how the transition 

function is defined.  

 Product composition has the following properties: 

1) It is commutative up to a re-ordering of the state components in the composed states. 

2) It is associative. This implies that G1 || G2 || G3 ≡ (G1 || G2) || G3 = G1 || (G2 || G3). 

Example 20: Parallel Composition of Two Automata 

 Consider the same two automata as for Example 19. Determine the parallel composition of 

these two automata. 

Solution 

 The general procedure for solving such a problem is similar to that of the product 

composition. First, we need to determine which inputs belong to which categories. Since input g 

only affects G1, it is a private input for G1. The other two inputs {a, b} are the common inputs to 

both automata. 

 Again, we start with the initial states of both automata and work our way through. From 

the initial state of (x, 0), we have two valid inputs (the common input a and the private input g). 

The common input a will bring us as before to the state (x, 1), while the private input g will bring 

us to the state (z, 0). In the state (z, 0), there are three valid inputs (the common events a and b as 

well as the private input g). Input a will bring us to state (x, 1), while input b will be a self-loop. 

Private input g, which only affects G1, will bring us to state (y, 0). The final automaton is shown 

in Figure 48. 
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Figure 48: The parallel composition of G1 and G2 

Section 3.4.1.3: Timed Automata 
 A timed automaton is an automaton that is linked with a clock. A timed automaton has 

four components: the finite-state automaton, the clock, the invariants, and the guards. Such 

automata can model minimal and maximal times associated with a given action. Figure 49 shows 

part of a timed automaton. The clock variable c represents the elapsed time since the last reset, 

which is denoted as c ≡ 0. A guard shows when a transition is activated and can be implemented, 

for example, in Figure 49, we see that the transition Z0 → Z1 can only be considered once c ≥ 

180 s. An invariant shows how long the automaton can remain in a given state, for example, in 

Figure 49, we see that the process can remain in state Z0 until c = 240 s, at which point it must 

leave the state. The implies that a time automaton has an infinite number of possible realisations, 

since the system can switch states at any point between 180 and 240 s. Thus, a timed automaton 

has an infinite state space. 

 

Figure 49: Timed Automaton 

c ≥ 180 s

c ≡ 0

c ≤ 180 s

Condition for the
transition Z0 → Z1

Invariant for the 
state Z0

Reset of clock   c
Z1Z0
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 Mathematically, a timed automaton can be represented as 

  A ≡ (𝕏𝕏, Σ, f, ℂ, I, x0, 𝕏𝕏m) (160) 

where ℂ is a finite set of clock variables and I is the invariant function that links the states with the 

transition constraints, that is, 

  I: 𝕏𝕏 → Φ(ℂ) (161) 

where Φ(ℂ) is the set of transition constraints δ. The transition constraints δ are always either true 

or false based on the current clock variables. The allowed transition constraints are (where a ∊ ℝ): 

• δ ≡ (c ≤ a) 

• δ ≡ (c = a) 

• δ ≡ (c ≥ a) 

• δ ≡ (δ1 OR δ2) 

• δ ≡ ¬(δ) 

• δ ≡ ∅ or {} 

The transition function is defined as 

  f: 𝕏𝕏×U×Φ(ℂ) → 𝕏𝕏×2|ℂ| (162) 

where 2|ℂ| represents the power set of ℂ. 

 In certain formalisms, transitions can be specified as either urgent or nonurgent. Urgent 

transitions will always be taken as soon as possible, while nonurgent transitions can wait. Normally, 

spontaneous transitions are assumed to be nonurgent. 

Section 3.5: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 3.5.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) A process satisfying the principles of superposition and homogeneity is said to be linear. 
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2) In a time-variant model, the parameters themselves vary with respect to time. 

3) In a lumped-parameter model, there are space derivatives. 

4) A noncausal system depends on future values. 

5) A system with memory only cares about the current value of the process. 

6) A state-space representation provides a model linking states, inputs, and outputs. 

7) A transfer function can only be written for linear processes. 

8) Every transfer function has a unique state-space representation. 

9) Prediction error models are discrete-time models of the process. 

10) A white noise signal depends on past values of the noise. 

11) In a Box-Jenkins model, the order of the A-polynomial is fixed to zero. 

12) In an autoregressive exogenous model, the only orders of the C- and D-polynomials are 

zero. 

13) It is not possible to convert a continuous model into a discrete model. 

14) A process at steady state will experience wild, unpredictable swings in values. 

15) The gain of a process represents the transient behaviour of the process. 

16) The process time constant represents the delay before a process responds. 

17) A continuous transfer function with poles of −2, −1, and 0 is stable. 

18) A continuous transfer function with poles of 1, 2, and 5 is stable. 

19) A discrete transfer function with poles of 0.5, −0.5, and 1 is unstable. 

20) A discrete transfer function with poles of 0.25, 0.36, 0.25±0.5i is stable. 

21) A continuous state-space model with eigenvalues of 0.25±2i is stable. 

22) A discrete state-space model with eigenvalues of ±0.25i is stable. 

23) The alphabet of an automaton represents the allowed inputs into the process. 

24) An accepting state is a state that has the desired outcome. 

25) The language recognised by an automaton is the set of all words accepted by the automaton. 

26) In a Mealy automaton, the output function depends only on the states. 

27) Blocking occurs when an automaton cannot reach an accepting state. 

28) We denote spontaneous transitions by ε. 

29) An automaton with spontaneous transitions is called a deterministic automaton. 

30) The co-accessible operator removes all states and their associated transitions that are 

unreachable from the initial state. 
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31) In a timed automaton, a guard determines the maximal time in which we can remain in a 

given state. 

32) For a timed automaton, δ ≡ (c ≤ 1.000) is an acceptable time constraint. 

33) For a timed automation, δ ≡ (c = abcd) is an acceptable time constraint. 

34) There is no escape from an ergodic set. 

Section 3.5.2: Short Questions 
These questions should be solved using pen and paper. Appropriate software for drawing the 

required diagrams can also be used to assist with the design. 

35) For the following models, classify them based on the information in this chapter. Are the 

models linear, time-invariant, lumped parameter, memoryless, or causal? 

a. 1 54 7 5k k k ky y u e+ += + −  . 

b. ( )
2

2

T Tt
x t

α∂ ∂
= −

∂ ∂
 , where α is a parameter that depends on time. 

c. 1 4 3k k ky y e+ = − −   

d. ( ) ( )1T t u t
t

α∂
= − +

∂
, where α is a parameter that depends on time. 

36) For the following continuous-time transfer function, determine their stability. For the stable 

transfer functions, determine the gain, time constant, and time delay. 

a. ( ) ( ) 3
3 2

5 1
6 11 6 1

ss
G s e

s s s
−+

=
+ + +

  

b. ( ) 10
3 2

5
150 65 2 1

sG s e
s s s

−−
=

+ + −
  

c. ( ) 10
2

4.5
15 8 1

sG s e
s s

−=
+ +

 

d. ( ) 7
2

4.5
15 26 7

sG s e
s s

−=
+ +

 

37) For the following continuous-time state-space models, determine their stability. Convert 

the models to a transfer function. For the stable models, determine their gain and time 

constant. 
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a. 

5 0 2
0 2 1

1 0
0 1

dx x u
dt

y x

   
= +   −   
 

=  
 



 



  

b. 

5 0 2
0 2 1

2 0
0 1

dx x u
dt

y x

− −   
= +   −   
 

=  
 



 



 

c. 

2 1 2 1
0 3 2 0.5
0 0 1 2

2 0 0
0 1 0
0 0 1

dx x u
dt

y x

−   
   = − + −   
   −   
 
 = − 
  



 



 

38) For the following discrete-time models, determine their stability: 

a. 1 54 7 5k k k ky y u e+ += + −  

b. 
5

1 11 4k k
zy u

z

−

+ −=
−

 

c. 
5 4

1 6 5 4 3 2 1 1k k
z zy u

z z z z z z+

+
=

+ + + + + +
 

d. 

1

0.5 1 2 1
0 0.5 2 0.5
0 0 0.25 2

2 0 0
0 1 0
0 0 1

k k k

k k

x x u

y x

+

−   
   = + −   
      
 
 = − 
  

  

 
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e. 

1

1.5 0 0 1
3 1.5 0 0.5
1 2 2.25 3

1 0 0
0 1 0
0 0 1

k k k

k k

x x u

y x

+

− −   
   = +   
      
 
 =  
  

  

 

 

39) What is the relationship between the eigenvalues of the state-space model and the time 

constant (as determined from the transfer function)? 

40) For the automata shown in Figure 50, classify the states into marked, ergodic, periodic, and 

transient. Determine if there is blocking. If present, give the type of blocking encountered. 
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Figure 50: Automata for Questions 40 and 41 

41) Perform the trim operation on the automata in Figure 50 

42) Using the automata given in Figure 51, perform the following operations: K1×K2, K1||K2, 

K1×K3, K1||K2||K3, and K1×K2×K3. 
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Figure 51: Automata for Question 42 

43) Draw the automata for the following processes: 

a. Given the letters a and b, find the string abab. 

b. Given the letters c, d, and e, find the string decd. 

c. Given the letters g, h, and i, find the strings hig and high. 

Section 3.5.3: Computational Exercises 
The following problems should be solved with the help of a computer and appropriate software 

packages, such as MATLAB® or Excel®. 

44) Model a system that you are familiar with. Be sure to include all the differential equations 

required for the process. 
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Chapter 4: Schematic Representation of a 

Process 
 This section will describe the most common schematic methods for representing a process, 

including block diagrams, piping and instrumentation diagrams (P&IDs), process flow 

diagrams (PFDs), and electrical and logic circuit diagrams. 

Section 4.1: Block Diagrams 
 A block diagram is an abstract way of representing a system in the frequency domain that 

allows for all the messy details to be hidden and only the essential elements shown.13 The basic 

block diagram consists of three parts, as shown in Figure 52. On the left, entering the block 

diagram, is the input, denoted by U, while on the right, leaving the block diagram, is the output, 

denoted by Y. Inside the block, the process model, denoted by G, is shown. In most cases, the 

exact form of the process model will not be specified, but it can be any relationship between the 

input and output. 

 

Figure 52: The basic block diagram 

 Another common block is the summation block, which shows how two or more signals 

are to be combined. Figure 53 shows a typical summation block. The signs inside the circle show 

whether the signal coming in should be added or subtracted. Given the common nature of a 

summation block, two simplifications can be made. Rather than using a full circle, the signals are 

simply shown to connect and the signs are shown beside each signal. This is shown in the bottom 

part of Figure 53. A further simplification is to completely ignore any positive signs and only give 

the negative signs beside the appropriate signals. A commonly used standard is to place the 

summation signs on the left-hand side of the arrow. 

 

 
13 Often it will also be used for a time domain representation by ignoring the composition and summation rules and 
using slightly different models. In such cases, they are better called process flow diagrams, which are described in 
Section 4.2. 
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Figure 53: Summation block: (top) full form and (bottom) short-hand equivalent 

 One of the most useful features of block diagrams is the ability to easily compute the 

relationship between the different signals. For the basic block shown in Figure 52, the relationship 

between the input and output can be written as: 

  Y = GU  (163) 

while for the summation block, it can be written as 

  Y = U1 – U2 (164) 

Now, consider the process shown in Figure 54, where it is desired to determine the relationship 

between Y and U, where there are three blocks in series. The naïve approach would be to denoted 

each of the outputs from the two intermediate steps to be denoted as Y1 and Y2 and then write 

relationships between each of these variables to obtain the final result, that is, 

  Y1 = G1U (165) 

  Y2 = G2Y1 = G2G1U (166) 

  Y = G3Y2 = G3G2G1U (167) 

This shows that the final relationship can be written as Y = G3G2G1U. The easier approach is to 

note that since these process blocks are in series, the process models can be multiplied together to 

give the desired result (as the final result shows). However, the naïve approach is very useful if 

the system is very complex with many different summation blocks and functions. 

 

Figure 54: Block diagram algebra: In order to relate U and Y, the transfer functions between the two points need to be multiplied, 
thus, Y = G3G2G1U. 
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Example 21: Complex Block Diagrams 

 Consider the closed-loop system shown in Figure 55 and derive the expression for the 

relationship between R and Y. Assume that all signals are in the frequency domain. 

 
Figure 55: Generic closed-loop, feedback control system 

 

Solution: 

 Starting from the desired signal R and moving towards Y, the following relationships can 

be written 

  ε = R − GmY 

    U = Gcε 

  Y = GpGaU + GdD 

Substituting the first relationships into the second and then the combined into the third gives 

  Y = Gp GaGc(R − GmY) + GdD 

Re-arranging this equation gives 

  Y = Gp GaGcR − Gp GaGcGmY + GdD 

Solving this equation for Y gives  

  
  

1 1
p a c d

p a c m p a c m

G G G GY R D
G G G G G G G G

= +
+ +

  

Since we are only interested in the relationship between Y and R, we can set D = 0 to get 

   
1

p a c

p a c m

G G G
Y R

G G G G
=

+
  

These equations are commonly encountered in closed-loop control. 
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 The creation of block diagram for a given process can be quite a complex task, but it is 

worthwhile as it allows the essential features of the system to be abstracted out and understood. 

Section 4.2: Process Flow Diagrams 
 The process flow diagram is a simplified diagram of the process, where only the key 

components and connections are shown. For complex processes, the process flow diagram is often 

created using blocks, where the blocks show a subprocess. In such cases, they can approximate the 

block diagrams described in Section 4.1. 

 A process flow diagram for a single process normally contains the following elements: 

process piping, key components, key valves and control valves, connections to other systems, key 

bypass and recycle streams, and process flow names. 

 Figure 56 shows a typical process flow diagram. The rules for creating a process flow 

diagram are similar to the rules for creating a piping and instrumentation diagram, given in Section 

4.3. The only difference is the level of detail.  

 

Figure 56: Process Flow Diagram for Alkylate Splitter 
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Section 4.3: Piping and Instrumentation Diagrams (P&ID) 
 The piping and instrumentation diagram (P&ID) is a detailed description of the process, 

where all connections and components are shown. A P&ID contains, in addition to the information 

found in a process flow diagram, the following information: 

1) Type and Identification number for all components 

2) Piping, fittings with nominal diameters, pressure stages, and materials 

3) Drives 

4) All measurement and control devices 

Figure 57 shows a typical P&ID for part of a chemical plant. 

 

Figure 57: P&ID for a Gas Chilling and Separation Plant According to Canadian Design Standards (Note the engineering stamp 
in the bottom middle box.) 
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Section 4.3.1: P&ID Component Symbols According to the DIN EN 

62424 
 Table 19 shows the typical component symbols according to the DIN EN 62424 Standard.14 

Additional symbols can be found in the standard itself. 

Table 19: Component Symbols for P&IDs According to the DIN EN 62424 

Symbol Name 

 Pipe15 

 Insulated pipe 

 

Jacketed pipe 

 

 

Cooled or heated pipe 

 

 

Vessel (chemical reactor) 

with jacket 

 

 

Horizontal pressurised 

vessel 

 

 

Half-pipe reactor 

 

 

 
14 The older German standard DIN 19227 matches closely the ISA or North American standard. Differences include 
how the different sensors or functions are denoted and minor details regarding the proper location for various pieces 
of additional information. This book will follow the new standard without necessarily making any comments about 
the other possibilities in order to avoid confusion. 
15 This represents a general pipe. 

Symbol Name 

 

Fluid-contacting column 

 

 

Pump 

 

 

Vacuum pump or 

compressor 

 

Bag 

 

Column with trays 

 

Fan 
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Symbol Name 

 

Axial fan 

 

Radial fan 

 

Gas bottle 

 

 

Furnace 

 

Cooling tower 

 

Dryer 

 

Cooler 

 

Heat exchanger without 

cross of fluxes 

 

Heat exchanger with cross 

of fluxes 

Symbol Name 

 

Plate heat exchanger 

 

Spiral heat exchanger 

 

Double-pipe heat 

exchanger 

 

Fixed straight-tube heat 

exchanger 

 

U-shaped-tube heat 

exchanger 

 

Finned-tube heat 

exchanger with axial fan 

 
Covered gas vent 

 
Curved gas vent 

 

Dust or particle trap 

 
Funnel 

  
Steam trap 
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Symbol Name 

 

Viewing glass 

 
Pressure reducing valve 

 
Flexible pipe 

 
Valve 

 
Control valve 

 
Manual valve 

Symbol Name 

 
Back draft damper 

 
Needle valve 

 
Butterfly valve 

 
Diaphragm valve 

 
Ball valve 

 

 

Spring safety valve 

Section 4.3.2: Connections and Piping in P&IDs 
 The type of connection must be shown in a P&ID. Table 20 shows the most common 

possibilities for such connections.  

Table 20: Connections Types for P&IDs 

Symbol Name 

 Pipe (process flow) 

 Pneumatic signal 

 Electrical signal 

 Hydraulic signal 
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Symbol Name 

 Electromagnetic Signal 

Section 4.3.3: Labels in P&IDs 
 Another important feature of P&IDs is that the various components must be clearly 

identified. Sensors, valves, and other actuators should be named according to different guidelines. 

As well, the type and location of the components must be clearly shown. Table 21 and Table 22 

shows the symbols that are used to show the location of actuators and sensors.  

Table 21: Location Symbols 

Location Local/in the field In a central location In a local central point 

Symbol 
PI

123.4
 

PI
123.4

 

PI
123.4

 

Comments 

Component is found in 

the neighbourhood of 

the process itself. 

Component is found in 

some central location. 

Often, this central location 

is a computer. 

Component is found in 

some local central point, 

for example, a process 

control cabinet. 

Table 22: Type Symbols 

 General Process Control Function 

Symbol 
PI

123.4
  

  

 There are many different fields in the equipment label. These are shown in Figure 58. The 

left fields (#1 to 3) are only used if needed and there are no restrictions on what can be placed 

there. Field #1 often gives the supplier, while Field #2 gives the standard value of the component. 

The two central fields (#4 and 5) show the important information about the component. Field #4 

shows the PCE category 16  und the PCE processing category (see Table 23 for additional 

information). Field #5 shows the PCE tag that is arbitrary. The right fields (#6 to 12) show 

 

 
16 PCE is an abbreviation for “Process Control Engineering”. 
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additional information about the component. For example, Fields #6 to #8 show alarms and 

notifications related to upper limits, while Fields #10 to 12 contain alarms and notifications related 

to lower limits. The fields located furthest from the center contain the most important information. 

Field #9 shows the importance of the component. A triangle (▲) shows a safety-relevant 

component, while a circle (●) shows a component required for the good manufacturing process 

(GMP). A square (■) shows a quality relevant component.  

 

Figure 58: Fields in a P&ID Label 

 Table 23 shows the PCE categories, while Table 24 shows the PCE processing functions. 

For motorised drives (PCE category N), there are only two possibilities for the processing function: 

S, which implies an on/off motor, and C, which implies motor control. For valves (PCE category 

Y), there are also limitations: S implies an on/off valve, C implies a control valve, Z implies an 

on/off valve with safety relevance, and IC implies a control valve with a continuous position 

indicator. For process control functions, there are some very specific rules: 

1) The PCE category is always the same U. 

2) The following letters are often A, C, D, F, Q, S, Y, or Z. Combinations of these letters are 

possible. 

Table 23: PCE Categories 
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Letter Meaning 

A Analysis 
B Burner Combustion 

C17 Conductivity 
D Density 
E Voltage 
F Flow 
G Gap 
H Hand 
I Current 
J Power 
K Time Schedule 
L Level 
M Moisture 
N Motor 
O Free 
P Pressure 
Q Quantity/Event 
R Radiation 
S Speed, Frequency 
T Temperature 
U anticipated for PCE control functions 
V Vibration 
W Weight 
X Free 
Y Valve 
Z Free 

 Table 24: PCE Processing Categories 

Letter Meaning Comment 

A Alarming only in Fields #6,7, 8, 10, 11, and 12; in 
Field #4 for process control functions 

B Condition, Limitation only in Field 4 
C Control only in Field 4 
D Difference only in Field 4 
F Fraction only in Field 4 
H High, on, open only in Fields #6,7, 8, 10, 11, and 12 
I Indicator only in Field 4 
L Low, off, closed only in Fields #6,7, 8, 10, 11, and 12 
O Local or PCS status indictor from a 

binary signal 
only in Fields #6,7, 8, 10, 11, and 12 

 

 
17 Officially, this is a free variable to be set as needed. Practically, it is often used for conductivity. 
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Letter Meaning Comment 

Q Quantity only Field 4  
R Recording only Field 4 
S Switching only in Fields #6,7, 8, 10, 11, and 12; in 

Field #4 for process control functions 
Y Computation only in Field 4 
Z Emergency only in Fields #6,7, 8, 10, 11, and 12; in 

Field #4 for process control functions 
 

Example 22: P&ID Tags 

 What is the meaning of the following P&ID tags: PI-512, UZ-512 und MDI-512? 

Solution 

 For PI-512, the first letter is “P”. From Table 23, we can see that “P” represents pressure. 

The following letter is “I”. From Table 24, we can see that “I” represents indicator. Thus, “PI-512” 

represents a pressure indicator. 

 For UZ-512, the first letter is “U”. From Table 23, we can see that “U” represents a process 

control function. The following letter is “Z”. From Table 24, we can see that “Z” represents a 

safety-critical control function. Thus, “UZ-512” represents a safety-critical control function that is 

computed using a computer/PLC. 

 For MDI-512, the first letter is “M”.  From Table 23, we can see that “M” represents 

moisture. The following letters are “DI”. From Table 24, we can see that “D” represents difference 

and “I” represents indicator. Thus, “MDI-512” represents a moisture difference indicator. 

 

 The labels for the other fields are not standardised. However, in a P&ID, the same label 

should be used for the same component/idea. All P&IDs require a legend, where all the 

components are briefly described, including such information as their name, engineering data (size, 

material), and operating conditions. Appropriate stamps and signatures may need to be affixed 

depending on local laws, for example, in Canada, all engineering documents require a stamp and 

signature from a practising engineer.  
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Section 4.4: Electric and Logic Circuit Diagrams 
 Since much automation is implemented using electrical signals and logic statements, it is 

useful to understand the basics of how such circuit diagrams are constructed. As well, some of 

these symbols will re-appear when considering graphical programming languages. 

 There exist two main standards for drawing the shapes in electric and logic circuit 

diagrams: the official DIN EN 60617 (a.k.a. the IEC 617) standard and the nonpreferred, but 

commonly encountered, ANSI IEEE 91-1991 standard. The official standard, although not 

explicitly showing the nonpreferred symbols, states that it is permissive to use locally accepted 

national versions of the symbols. Common symbols for both standards are shown in Table 25. 

 Furthermore, when it comes to showing connections, for example, the splitting of a wire, 

different formats are possible. The recommended approach is to use T-junctions to show a split (as 

shown by Figure 59a). However, often, the split will be shown as in Figure 59b. A simple crossing 

of wires is shown by Figure 59c. 

Table 25: Common Symbols in Circuit Diagrams 

Item DIN-60617 Symbol ANSI Symbol Comments 

Resistor   
 

Inductor   
 

Direct-Current 

Voltage Source   
Essentially a battery 

Alternating-

Current Voltage 

Source 

 
 

 

Diode 
  

 

Capacitor 
  

 

AND Gate 
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Item DIN-60617 Symbol ANSI Symbol Comments 

OR Gate 

 
 

 

Inverter 

 
 

 

NAND Gate 

 
 

 

NOR Gate 

 
 

 

XOR Gate 

 
 

 

Ground    

Variable 
  

The arrow is placed 

over the element that 

is variable, for 

example, a variable 

resistor:  

General Negation   

Negation is placed 

where the signal 

enters or leaves a 

block (see, for 

example, the NAND 

or NOR gates above). 
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Figure 59: Connections: a) recommend form for contact; b) commonly encountered form for contact; and c) no contact 

Section 4.5: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 4.5.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) A block diagram is a frequency-domain representation of the process. 

2) A pneumatic signal is denoted using a line with sinusoids. 

3) An electric signal is denoted using a dashed line. 

4) A tag placed in a round symbol with a single line through the middle represents a 

component located in some central location. 

5) An instrument with the tag TIC is a density-indicator controller. 

6) An instrument with the tag PIC is a pressure-indicator controller. 

7) An instrument with the tag RI is a radiation indicator. 

8) An instrument with the tag TDI is a temperature-difference indicator. 

9) An instrument with the tag JI is a current indicator. 

10) A P&ID should contain a legend explaining the symbols and notation used. 

Section 4.5.2: Short Questions 
These questions should be solved using pen and paper. Appropriate software for drawing the 

required diagrams can also be used to assist with the design. 
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11) Write the process model between U and Y for the block diagrams shown in Figure 60. 

 

 

Figure 60: Block Diagrams for Question 11 

12) Draw the process flow diagrams for the following process descriptions. Hint: Knowledge 

of chemical engineering and physical behaviour of systems required. 

a. The DEA solution enters the treatment unit via a throttle valve and is heated in three 

consecutive heat exchangers. The heated solution enters the first evaporation 

column which is operated under vacuum at 80 kPa and a temperature of 150°C. 

Most of the water is evaporated here. The water vapour is used in the first heat 

exchanger to heat the incoming solution. The concentrated DEA solution is 

transferred from the first evaporator to a second evaporation column via a second 

throttle valve, so that the pressure can be lowered to 10 kPa. The second 

evaporation column is a thin film evaporator (similarly built to a scraped wall heat 

exchanger), which is heated by high pressure steam. Here most of the DEA is 

evaporated. The remaining HSS slurry is removed from the column by a positive 

displacement pump. The DEA vapour is used to heat the feed in the second heat 

exchanger. The third heat exchanger in the feed line is heated by medium pressure 

steam to achieve sufficient evaporation in the first evaporation column. After 

exchanging heat with the feed stream, the water vapour and DEA vapour streams 
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are completely liquefied in two condensers operated with cooling water, before 

being pumped to a T-junction and returned to the gas scrubbing process.  

b. A concentrated solution of 99% triethylene glycol (C6H14O4) and 1% water is 

commonly used to absorb moisture from natural gas at 4.1 MPa. Natural gas is 

mainly methane, with smaller amounts of ethane, propane, carbon dioxide and 

nitrogen. The water-saturated natural gas is contacted with the triethylene glycol at 

40°C in a trayed absorber column to remove the water. The dried gas in then ready 

for piping to market. The triethylene glycol solution leaving the absorber column 

is diluted by water, and must be regenerated for re-use. It first passes through a 

flash drum at a pressure of 110 kPa to release dissolved gases. Then, it is heated in 

a heat exchanger with the hot regenerated glycol. The dilute solution then enters 

the top of a packed regeneration column. As it flows downward over the packing, 

it passes steam flowing upwards which evaporates water from the glycol solution. 

The reboiler at the bottom of the regeneration column uses medium-pressure steam 

to heat the triethylene glycol solution to 200°C to generate the vapour that passes 

up the column. At the top of the column, the vapour (i.e. the water evaporated from 

the triethylene glycol solution) is vented to the atmosphere. The hot regenerated 

solution from the bottom of the regenerator column is cooled in a heat exchanger 

with the dilute solution from the absorber. It is then pumped through an air cooler 

and then back to the absorber column at approximately 45°C.  

13) Using the sketch of the process flow diagram in Figure 61 and the process description 

below, provide a properly formatted process flow diagram that includes all the required 

components and information. The process description is as follows. Ethyl chloride 

(C2H5Cl) is produced in a continuous, stirred tank reactor (CSTR) filled with a slurry of 

catalyst suspended in liquid ethyl chloride. Most of the heat of reaction is absorbed by 

vaporising 25 kmol/hr of the liquid ethyl chloride. This vapour leaves the reactor with the 

product stream. The reactor is jacketed to allow additional temperature control if required. 

All of the ethyl chloride in the product stream is condensed and enough ethyl chloride is 

returned to the reactor to maintain steady state. The waste gas is sent to the flare system.  
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Figure 61: Sketch of Process Flow Diagram for Question 13 

14) Evaluate the P&IDs shown in Figure 62. Have they been corrected drawn? Is there anything 

that is missing? Are all the streams correctly shown? 

 

  Figure 62: P&IDs for Question 14 

15) Given the P&ID in Figure 63, determine where the controller is located and what signals it 

requires. 
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Figure 63: P&ID for Question 15 

16) For the process shown in Figure 64, answer the following questions: 

a. What kind of alarm does the controller provide? 

b. How is the level measured? What kind of signal is produced? 

c. What kind of valve is used to control the level? 

d. What do the double lines for item LI-135 mean? 
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Figure 64: P&ID for Question 16 

17) Imagine that you producing maple syrup. The P&ID along with the current values is shown 

in Figure 65. Determine if there are any measurement errors. 
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Figure 65: Maple Syrup P&ID for Question 17 

 

Section 4.5.3: Computational Exercises 
The following problems should be solved with the help of a computer and appropriate software 

packages, such as MATLAB® or Excel®. 

18) Take a complex process and draw the P&ID for it. Make sure to include all the relevant 

sensors and controllers. 

19) Using the P&ID from Question 18, create a simplified process flow diagram for the process.  
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Chapter 5: Control and Automation 

Strategies 
 Having looked at the different instruments that can be used for automation and how to 

describe the process and its interconnections, it is now necessary to see how the desired automation 

can actually be implemented. The control or automation strategy is the method used to 

control/automate the process to achieve the desired objectives. Although two different words can 

be used here, the overall concepts are very similar: produce a system that can operate on its own 

with minimal human interference. Depending on the field and even industry, one of these two 

words may be more common. 

 There exist many different ways to classify the different types of strategies that can be 

implemented. Often, in practice, these strategies can be combined to produce a final overall control 

strategy. The following are the most common types of control strategies: 

1) Open-Loop Control (or steering, servo response): In open-loop control, the desired 

trajectory is set and implemented. The object follows this trajectory without taking into 

consideration any variations in the environment or surroundings. Clearly, if there are any 

changes in the environment, the object may not achieve its trajectory. 

2) Closed-Loop Control (or regulation, regulatory response): In closed-loop control, the 

actual value of the system is always compared against the setpoint value. Any deviations 

are then corrected using a controller. This allows for the system to make corrections based 

on imperfections in the original specifications, changes in the environment, or unexpected 

events. In most control strategies, some aspect of closed-loop control will be implemented. 

3) Feedforward Control: In feedforward control, known disturbances are measured and 

corrective action is taken so that the disturbance does not impact the plant. This is a way 

of taking into consideration future information about the process and taking action now. 

4) Discrete-Event Control: In discrete-event control, control only occurs, when some logic 

condition is triggered. This is often used in safety-relevant systems to trigger immediate 

action or raise an alarm, for example, if the pressure is above a certain threshold, then the 

pressure release valve should be opened. Often, such systems are modelled using automata. 
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5) Supervisory Control: In supervisory control, the control loop does not control a process, 

but it controls another control loop. Supervisory control loops are common in complex 

industrial systems, where there may be multiple objectives and variables to control. 

Section 5.1: Open- and Closed-Loop Control 
 Since the two control strategies are often combined together, it is useful to understand the 

difference between them. 

Section 5.1.1: Open-Loop Control 
 Consider a system as shown in  Figure 66, where the manipulated variable u(t) influences 

the output variable, y(t). The desired behaviour is specified by the setpoint r(t). The path from r(t) 

to u(t) to y(t) is called the open-loop control path. The objective here is to design a controller, Gc, 

such that given a setpoint trajectory, it can produce a sequence of value for the manipulated 

variable u(t), so that the output y(t) attains the values specified by r(t). The disturbance affecting 

the system is given as e(t). Often, it will be assumed that e(t) is a Gaussian, white noise signal. 

 

Figure 66: Open-Loop Control 

 In principle, if we are given a mathematical function that converts u(t) into y(t), more 

commonly called a plant model and denoted by Gp, then by taking the inverse of this model as the 

controller will allow us to attain the goal of making y(t) = r(t). However, in practice, the following 

issues arise: 

1. Unrealisability of the Model Inverse: Due to time delays and unstable zeros of the process, 

it may not be possible to obtain a realisable inverse model. 

2. Plant-Model Mismatch: It is very likely that the mode for Gp is not exact, which implies 

that the incorrect parameters are given to the controller leading to incorrect results. 

3. Disturbances: In reality, there will be disturbances that prevent y(t) from reaching the 

value specified by r(t). One solution to this problem is to implement feedforward control 
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that measures the disturbance and takes corrective action. However, this only solves the 

problem if the disturbance variable can be measured. 

Example 23: Heating the House: Part I: Open-Loop Control 

 
Figure 67: Open-Loop Control for the Temperature in the House  

 Figure 67 shows a schematic diagram for the open-loop control of the temperature in the 

house, where the radiator setting is used to determine the temperature in the room. However, once 

the radiator setting is set, no further actions are taken if a disturbance should occur, for example, 

the temperature outside changes, more people enter the room, the window is opened, or the sun 

starts shining. All of these disturbances will change the temperature in the room, but no automatic 

change will occur in radiator setting. Of the disturbances, the largest is probably the outside 

temperature. If, as shown in Figure 67, we can measure the outside temperature, then we can design 

a feedforward controller to correct for the disturbance caused by this variable. 

Section 5.1.2: Closed-Loop Control 
 In closed-loop control, information about the process is used to update the control action. 

Figure 68 shows the overall closed-loop control system, where the difference between the 

reference signal and the actual output is used as the input into the controller. The controller error, 

ε(t), is defined as the difference between the setpoint and the measured output. This error is then 
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the input into the controller. In order to emphasise that the output must be measurable in order for 

closed-loop control to occur, the measuring transfer function, Gm, is explicitly shown. In most 

applications, it will be assumed that Gm has a minimal impact on the overall system, and hence, it 

will be ignored. 

 

Figure 68: Closed-Loop Control 

 Closed-loop control provides the following advantages over open-loop control: 

1) Better accuracy, especially since it can compensate for unknown and unmeasurable 

disturbances or imprecise models of the system. 

2) Stability, since closed-loop control can stabilise unstable processes. 

On the other hand, closed-loop control requires the ability to measure the output variables, which 

can lead to a greater cost. As well, a poorly designed closed-loop controller can destabilise the 

system. 

Example 24: Temperature Control: Closed-Loop Case 

 Consider the same set-up as in Example 23, but modified as shown in Figure 69, so that 

the temperature in the room can now be measured and an appropriate controller designed. Based 

on the temperature in the room, the controller can set the valve opening which will determine the 

flow of heat into the room. Opening the valve more will cause more heat to enter the room; thus, 

increasing its temperature. Closing the valve will cause less heat to enter the room; thus, decreasing 

its temperature.  
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Figure 69: Closed-Loop Control of the House Temperature  

 Furthermore, other disturbances may occur that are not easily measured, but whose impact 

can be controlled by the closed-loop controller. Figure 69 shows people in the room (S1), an open 

window (S2) and direct sunlight (S3). Since these will influence the room temperature, their impact 

will be noticed by the room temperature sensor that will cause the controller to make appropriate 

changes to maintain the temperature at its desired value. 

 

 In closed-loop control, the following are the key ideas to consider (Seborg, Edgar, 

Mellichamp, & Doyle, 2011): 

1) The closed-loop system should be stable; otherwise, the system is worse than before. 

2) The impact of disturbances should be minimised. 

3) The controller should provide quick and effective change between different setpoints, that 

is, setpoint tracking should be good. 

4) There should not be any bias, that is, the output should reach the desired value. 

5) Large actuator values should be minimised. 

6) The controller should be robust, that is, small changes in the process characteristics should 

not make the overall system unstable. 
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When designing a closed-loop control strategy, there are two common approaches to take: 

1) State Feedback, where it is assumed that the controller is a constant K and all the states 

are measurable and available, that is, yt = xt. The control law is given as ut = −Kxt. 

2) Proportional, Integral, and Derivative (PID) Control, where the control law can be 

written as 

  ( ) ( )11c D
I

U s K s s
s

τ ε
τ

 
= + + 

 
 (168) 

where Kc, τI, and τD are parameters to be determined. There exist different forms of the PID 

control law depending on the industry, era, and implementation. It is common to drop the 

D term, that is, set τD = 0, and have a PI controller. 

In addition to these common methods, there also exist various nonlinear approaches that can be 

applied to improve overall control, such as deadbanding or squared-error control. 

Section 5.1.2.1: State Feedback 
 A state feedback controller is an effective manner for designing a controller when it is 

possible to determine the behaviour of the states. A state feedback controller consists of two parts: 

an observer and a controller. The observer uses the output from the process to estimate the states, 

while the controller uses the (estimated) states to determine the input. Figure 70 shows a diagram 

of such a state-feedback controller and observer.  

 

Figure 70: State-feedback control 
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 It is possible to design different types of observers, depending on the intended application. 

The most common observer is the Luenberger observer which seeks to minimise the error in the 

predicted and actual states. Assume that the Luenberger observer can be written as 

  ( )ˆ ˆ ˆ

ˆ ˆ

x x y y u

y x u

= + − +

= +

    


  

  

 
 (169) 

where ℒ, the observer gain, is an appropriately sized matrix that needs to be designed and ◌̂ 

represents an estimated value. Rewriting Equation (169) gives 

  ( ) ( )ˆ ˆ

ˆ ˆ
x x y u

y x u

= − + + −

= +

   


  
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 
 (170) 

Let the error be defined as 

  ˆe x x= −
    (171) 

Taking the derivative (or difference) of Equation (171) gives 

  ˆe x x= −
  



   (172) 

Substituting Equations (30) and (170) into Equation (172) gives 
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e

= + − − − + − −

= −
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 (173) 

From Equation (173), it can be seen that for the error to reach zero 𝒜𝒜 – ℒ𝒞𝒞 must be stable, that is, 

the eigenvalues of 𝒜𝒜 – ℒ𝒞𝒞 must lie to make the process stable.18 

 Now that we can estimate the state values, it makes sense to design a state controller. 

Assume that the state controller law can be written as 

  ˆu x= −
 

  (174)19 

Before examining the general case, let us consider the situation, where perfect information can be 

obtained about the states and there is no need to design an observer, that is, 𝒞𝒞 = ℐ, which implies 

that y x=
   . In this situation, we can use the basic state-space equations, given by Equation (30), 

to describe the system. Substituting Equation (174) into Equation (30) and re-arranging gives 

 

 
18  continuous domain: Re(λ) < 0; discrete domain: ||λ|| < 1 
19 Often, the estimated state is replaced by the true state value. As it will be shown, this makes sense in many cases 
since we have full information about the states by actually measuring them. 
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  ( ) ( )x x x x
y x u
= − = −

= +
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 (175) 

Thus, it can be seen that the stability of the controlled (overall, closed-loop) system is determined 

by the location of the eigenvalues of the 𝒜𝒜 – 𝒦𝒦𝒦𝒦 matrix.  

 Now consider the case, where we do not have full information about the process. In this 

case, we will need to consider two different equations: the observer equation and the true state-

space model. Substituting the control law given by Equation (174) into the observer equation, 

Equation (170), gives 

  ( )ˆ ˆ

ˆ ˆ ˆ
x x y

y x x

= − − + +

= −

  


  

    

 
 (176) 

The fact that both terms are present in this equation raises the question if the controller and 

observer must be designed simultaneously or could they be designed separately. 

 In fact, the linear, state-space law presented here coupled with the linear observer are fully 

separable and stability will be assured if both components are stable. In order to show this, rewrite 

the controller law as 

  ( )u x e= − −
  

  (177) 

From Equation (175), we can write the true state-space system as 

  ( ) ( )x x x e x e= − − = − +
     

       (178) 

Now, combining this equation with the error equation, given as Equation (173), into a single 

equation, we can see that the combined system consisting of the states and errors can be written as 
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 (179) 

Since the combined system matrix is triangular, the eigenvalues can be obtained by considering 

the eigenvalues of the diagonal elements, that is, the eigenvalues of the 𝒜𝒜 – ℬ𝒦𝒦 and 𝒜𝒜 – ℒ𝒦𝒦 

matrices. Furthermore, since neither of the two matrices interact with each other, it can be 

concluded that both can be designed separately and then combined. As long as each is stable, then 

the overall system will also be. This result is called the separation principle and is a very powerful 

result in designing state-feedback systems. 



   162  

Section 5.1.2.2: Proportional, Integral, and Derivative (PID) Control 
 Another class of common controllers is the proportional, integral, and derivative (PID) 

controllers. This class of controllers provides effective control for many industrial processes and 

can be configured to deal with a wide range of different situations. The general form of the PID 

controller can be written as 

  11c c D
I

G K s
s

τ
τ

 
= + + 

 
 (180) 

where Kc is the proportional term or controller (proportional) gain, τI is the integral term or 

the integral time constant in units of time, and τD is the derivative term or the derivative time 

constant in units of time. Another common representation is given as 

  1
c c I DG K K K s

s
= + +  (181) 

where KI is the integral gain and KD is the derivative gain. In many industrial plants, it is possible 

to find the terms reset for integral and rate for derivative, for example, τI would be called the reset 

time constant. 

 In industry, different combinations of this controller can be found including the rather 

common proportional and integral controller (PI), where τD = KD = 0, that is, the D-term is ignored. 

In order to understand the behaviour of this controller, each of the three terms (P, I, and D) will be 

investigated separately. As well, the two common configurations (PI and PID) will be considered 

in greater detail. 

Section 5.1.2.2.a: Proportional Term 

 The proportional term, Kc, has the greatest impact on the overall control performance. It 

represents the contribution of the current error to the overall controller action, and thus, controls 

two key aspects: stability and speed of response. The larger the absolute value of Kc is, the faster 

the system will response to changes, but the less stable the system will be. Furthermore, a controller 

containing only the proportional term will have bias or offset, that is, 

  
0 0

lim lim
1 1 1

c p c p c p rr
ss s

c p c p c p

sG G sK G K K MMR
G G K G s K K→ →

= =
+ + +

 (182) 

where Rs is the setpoint which gives a step change of Mr and Kp is the process gain. It is assumed 

that the overall closed-loop transfer function is stable. From Equation (182), it can be seen that the 
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steady-state value for the closed-loop transfer function is not 1. This implies that the final value 

will not be equal to the setpoint. For this reason, pure P-controllers are rarely used. 

Example 25: Investigation of the Proportional Term on Stability and Performance 

 Consider the following first-order system 

  101.5
20 1

s
pG e

s
−=

+
 (183) 

controlled with a proportional controller Gc = Kc. Setting Kc equal to −0.25, 0, 0.5, 1.0, and 2.0, 

show how the closed-loop response to a step change of 2 in the setpoint changes. 

Solution: 

Figure 71 shows the results for changing the Kc. It can be seen that for none of the cases is 

the setpoint attained. There is offset for all of the cases. Furthermore, for Kc = 0, the process 

remains at zero, since no control is being implemented. As Kc increases, the amount of oscillation 

and length of time required to attain a steady-state value increase. In fact, if Kc is increased further, 

the process will become unstable. Similarly, for Kc < 0, the process is initially stable. However, 

increasing the value will rapidly make the system unstable. 

 
Figure 71: Effect of Changing Kc for a P-Controller 
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Section 5.1.2.2.b: Integral Term 

 The integral term, τI, provides a measure of additional stability to the system as well as 

removing any bias present. It represents the contribution of past errors on the current controller 

action. In general, the integral term is always combined with a proportional term to give the 

proportional and integral controller. Furthermore, a controller containing only the integral term 

will have no bias or offset, that is, 

  
0 0 0
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s rs s s
c p I p
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s GsG G M Gs MR M
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τ

τ
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where Rs is the setpoint which makes a step change of Mr. It is assumed that the overall closed-

loop transfer function is stable. From Equation (184), it can be seen that the closed-loop gain is 

exactly equal to the step change in the setpoint, which implies that there will be no bias or offset. 

 Since the integral term represents the effect of past errors on the current controller action, 

it is possible that in a real implementation, integral (reset) wind-up can occur. This occurs when 

the controller output is above the physical limit of the actuator. Since the controller does not have 

a way of knowing that the physical limit has been reached, it continues to increase the desired 

controller output as the error keeps on increasing. This makes the integral term very large. When 

there is a need to now decrease this value, the controller decreases the output value from its large, 

unphysical value until it goes below the upper limit. The time delay between when the actuator 

should have started to respond and when it is observed to be responding is called integral wind-up. 

This is shown in Figure 72, where it can be seen that at 100 min, when the setpoint is changed, it 

takes the process another 20 minutes before it even starts changing, since the true actuator value 

remains saturated at its upper limit. Integral wind-up can be avoided by including the physical 

limits of the actuator in the controller, that is, by making values beyond the physical limits of the 

actuator equal to the physical limit. 
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Figure 72: Integral Wind-Up 

Example 26: Investigation of the Integral Term on Stability and Performance 

 Consider the following first-order system 

  101.5
20 1

s
pG e

s
−=

+
 (185) 

controlled with a proportional controller Gc = 1 / τIs. Varying the value of τI from 20 to 100 in 

increments of 10 show how the closed-loop response to a step change of 2 in the setpoint changes. 

Solution: 

 Figure 73 show the results. It can be seen that as τI increases the impact on the system 

decreases. Note that the system is originally stable so that without any control it will reach the 

desired setpoint. Furthermore, and unlike with only a P-term, there is no bias in the closed-loop 

system. 
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Figure 73: Effect of Changing τI for a I-Controller. The solid, black line is the setpoint. 

 

Section 5.1.2.2.c: Derivative Term 

 The derivative term, τD, provides a measure of additional stability to the system. The 

derivative term represents the contribution of future (estimated) errors on the controller action. In 

general, the derivative term is almost always combined with a proportional and integral terms. 

Furthermore, a controller containing only the derivative term will be unable to track the setpoint, 

that is, 
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where Rs is the setpoint which makes a step change of Mr. It is assumed that the overall closed-

loop transfer function is stable. From Equation (186), it can be seen that irrespective of the change 

in the setpoint, the system will return to zero, which implies that the derivative term cannot track 

the setpoint. Therefore, the main role of the derivative term is for disturbance rejection, since in 

that case, it is desired that the system return to the same initial value. 

 The derivative term as written cannot be physically realised, since the numerator is greater 

than the denominator. In order to avoid this problem, it is common to rewrite the derivative term 

into the following form: 

  
,

1
c real D
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τ=
 + 
 

 (187) 
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where N is a filter parameter to be selected. It can be noted that as N → ∞, this form will become 

equal to the original version. 

 Using a derivative term introduces two potential problems into the control strategy: jitter 

and derivative kick. Jitter occurs when error signal fluctuates greatly about some mean value 

causing the estimated value of the future error to also fluctuate greatly. This in turn causes 

unnecessary fluctuations in the controller output, which can lead to issues with the actuator. Figure 

74 shows the typical situation where jitter is present. Jitter can be mitigated by filtering the error 

signal used in computing the derivative term with a low-pass filter, which removes the high 

frequency component of the noise. Derivative kick occurs when the setpoint has a sudden change 

in value (for example, a step change) causing the instantaneous error to be practically speaking 

infinite. This causes the controller error to spike for a very short period of time after the change 

occurs. Figure 75 shows the typical situation when derivative kick occurs. When the setpoint 

changes at 10 s, there is a corresponding spike in the actuator value. Note that in practice, due to 

saturation in the actuator, the impact of the derivative kick will be less than shown. Nevertheless, 

it will be present. Derivative kick can be lessened by solely using the change in the output rather 

than the error when computing the derivative term, that is, 

  
t D tu syτ=  (188) 

Since it has been shown that the overall impact of the derivative term is primarily for disturbance 

rejection, that is, making yt ≈ 0, this approach is reasonable. 
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Figure 74: Jitter with a Derivative Term 

 

Figure 75: Derivative Kick 

Example 27: Investigation of the Derivative Term on Stability and Performance 

 Consider the following first-order system 

  101.5
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+
 (189) 
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controlled with a derivative controller Gc = τDs. Varying the value of τD from 1 to 11 in increments 

of 2 show the closed-loop response of the controller to a white-noise disturbance of magnitude 

0.05. 

Solution: 

 Figure 76 show the results. It can be seen that as the magnitude of the D-Term increases, 

so does the magnitude of the response. This implies that the D-Term only influences the magnitude 

of the response. 

 
Figure 76: Effect of Changing τD for a D-Controller 

 

 

Section 5.1.2.2.d: Proportional and Integral (PI) Controller 

 A proportional and integral (PI) controller is one of the most common industrial controllers 

found. It combines the proportional and integral terms to give 

  11c c
I

G K
sτ

 
= + 

 
 (190) 

The behaviour of a PI controller will be similar to that of each of the two separate terms, that is, 

the proportional term will influence the stability and overall performance, while the integral term 
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will provide a bias-free controller. This controller can be interpreted as only considering the current 

and past information about the process and how that impacts the overall control performance. 

 PI control can be used for both disturbance rejection and setpoint tracking in many different 

applications including flows, levels, and temperatures. Large time delays and highly nonlinear 

systems can limit its effectiveness. 

Section 5.1.2.2.e: Proportional, Integral, and Derivative (PID) Controller 

 A proportional, integral, and derivative (PID) controller can be tuned on the basis of the 

three previously considered terms. Such a controller takes all available information about the 

process and predicts the future trajectory of the system. It is commonly used in large complex 

systems where there is a need for an additional degree-of-freedom to stabilise the system. Systems 

which have a very jittery output or setpoint would need to be filtered before being used as the 

unfiltered signal can cause undesired behaviour. 

Section 5.1.2.2.f: Discretisation of the PID Controller 

 Since many control algorithms are implemented on a computer, it can often be helpful to 

implement the PID controller in the discrete domain. To discretise the PID controller, let s = 1 – z−1 

in Equation (180) to give 
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Re-arranging Equation (191) gives 
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Equation (192) is often called the positional form of the discretised PID controller. Re-arranging 

Equation (192) to give 

  ( ) ( ) ( )21 1 111 1 1k k c D k
I

z u u K z zτ ε
τ

− − − 
− = ∆ = − + + − 

 
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produces another common PID equation called the velocity form of the discretised PID controller. 

In industrial implementations, it is possible to encounter both forms. Although these forms do not 

have an impact on controller design, they will have an impact on understanding the values obtained. 
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Section 5.1.2.3: Controller Tuning 
 Having established the different types of controllers that can be used and understood some 

of behaviour of the parameters on the overall control system, the remaining question is how do we 

correlate a given set of performance criteria (for example, the objectives of control previously 

mentioned) and the different controller parameters. One easy approach would be to use some 

simulation software to obtain the desired parameter values using a trial-and-error method. As one 

can easily see, this approach could take very long and not necessarily provide the optimal 

parameter values. Instead, various correlations or approaches have been developed that will allow 

for the performance of a controller to be specified. In this section, we will consider the methods 

for tuning state-space controllers and PID controllers. Irrespective of the approach used, there will 

always be a need to simulate the resulting control system to make sure that there are no issues with 

the performance. Furthermore, it should be noted that for certain applications, there exist, specific 

controller tuning rules that provide optimal performance for the problem at hand, for example, 

level controllers are often tuned using special rules that seek to minimise large deviations from the 

setpoint. 

 The general approach to controller tuning can be summarised by Figure 77. Before starting 

the tuning procedure, it is required that the process be understood or modelled, that the 

performance criteria be clearly specified, and that the control strategies of interest be known. The 

first step will be to determine the initial controller parameters, followed by a simulation (or actual 

implementation, if the system can handle repeated perturbations). Based on the test and a 

comparison with the desired performance, new controller parameters can be obtained and new tests 

performed. This would be repeated until either the desired criteria are satisfied or the time available 

has run out. At this point, it may happen that the process understanding is found to be deficient 

and additional information would need to be sought. If the controller has not been implemented on 

the real system during the initial controller testing, then it will be necessary to repeat this procedure 

once more on the actual system. Very often, it will be found that the performance may not be as 

expected given the differences between the simulated and actual processes. However, following 

this procedure will minimise the risk of the occurrence of such a situation. 
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Figure 77: Controller Tuning Workflow 

Section 5.1.2.3.a: Tuning a State-Space Controller 

 A state-space controller is often tuned using pole placement, which involves selecting the 

desired poles of the closed-loop transfer function and designing a controller that can achieve this. 

 When placing the poles or eigenvalues of the closed-loop transfer function using a state-

space approach, both the controller and observer will need to have their poles placed. The general 

rule of thumb is that the poles of the observer should be 10 to 20 times faster than the poles of the 

controller. Pole placement can be achieved using two different methods: characteristic 

polynomial and Ackermann’s Formula. The approaches work for both continuous and discrete 

controllers. It should be noted that for multi-input systems, the computed value of 𝒦𝒦 is not 

necessarily unique. 

 The general problem statement is: given the desired eigenvalues {λ1, λ2, …, λn} and the 

system {, , }, determine the state feedback controller gain . For the characteristic polynomial 

approach, perform the following steps: 

1) Compute ( ) 1
1 1

1

( )
n

n n
i n n

i

s s s s sλ α α α−
−

=

′ ′ ′∆ = − = + + + +∏ 

. 

2) Compute 1
1 1( ) n n

n ns s s sα α α−
−∆ = + + + + , which is the characteristic polynomial of . 



   173  

3) Compute 

1 1 1
1 0 0 0

,
0 0 0 0
0 0 1 0 0

n nα α α−′ ′ ′− − −   
   
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


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4) Compute 1n− =       and 1n− ′ =       . 

5) [ ] 1
1 1 n nα α α α −′ ′ ′= − −   . 

Similarly, Ackermann’s formula, uses the following steps to place the poles: 
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2) Compute 1
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n ns s s sα α α−
−∆ = + + + + , which is the characteristic polynomial of . 
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
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4) Compute 1n− =       and 1n− ′ =       . 

5) [ ] ( )1
1

0 0 1
n

−
×

= ∆   . 

It is also possible to design the observer using Ackermann’s formula which gives 

  ( ) [ ]1
1

0 0 1 T

n
−

×
= ∆     (194) 

When using pole placement, the following points should be borne in mind: 

1) The magnitude of 𝒦𝒦 gives the amount of effort required to control the process. The 

further the desired poles are from the actual poles of the system, the larger the controller 

gain 𝒦𝒦. 

2) For multi-input systems, 𝒦𝒦 is not unique. 

3)  (𝒜𝒜, ℬ) and (𝒜𝒜 − ℬ𝒦𝒦, ℬ) are controllable. However, due to pole-zero cancellations, the 

resulting system may not be observable. 

4) Discrete systems can be controlled in the same manner, mutatis mutandi. 

Section 5.1.2.3.b: Tuning a PID Controller 

 When designing a PID controller, there exist various different approaches that can be taken 

to specifying the initial controller parameters. In practice, once these initial parameters have been 
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obtained, they will be fine-tuned to obtain the desired performance. There are two main approaches 

to controller tuning: model-based and structure-based. 

  In model-based controller tuning, a model of the process is required and the closed-loop 

behaviour of the resulting system is specified. Using this information, it is possible to obtain the 

resulting form of the controller transfer function. Comparing the resulting controller transfer 

function with the standard PID controller allows equations for the constants to be determined. The 

most common model-based approach is the internal model control (IMC) framework. The main 

advantage of this approach is that it allows the engineer to specify the desired closed-loop 

behaviour of the system, while the main disadvantage of this approach is that a relatively accurate 

model of the system is required. Note that the specification of the closed-loop transfer function 

can be used to add robustness to the system by changing the speed (time constant) of the response. 

The faster the system responds to changes the less robust is the resulting closed-loop system. In 

many cases, the simplified IMC (SIMC) rules provide better control performance for industrial 

systems. The SIMC rules take into consideration additional factors, such as disturbances in the 

input and faster response for systems with large time constants. SIMC rules recommend PI 

controllers for first-order systems and PID controllers for second-order systems. 

 In structure-based controller tuning, the structure (or type) of a controller, the objective 

(disturbance rejection or setpoint tracking), and metric for measuring good control are specified. 

Minimising this metric allows the values of the parameters to be determined. The most common 

structure-based approach is using the integrated time-averaged error (ITAE) as the metric. Using 

the ITAE metric penalises persistent errors, which can be small errors that last for a long period of 

time, and provides a conservative approach to control. The main advantage of this method is that 

a model of the system need not be provided, while the main disadvantages are that the engineer 

has no control over the closed-loop response of the system and that the resulting system is not very 

robust to changes in the process. 

 Table 26 and Table 27 present some common tuning methods for first-order transfer 

functions. Table 28 presents the SIMC tuning method for a second-order transfer function. It 

should be noted that the PID controller has the following series form: 

  ( )11 1c c D
I

G K s
s

τ
τ

 
= + + 

 






 (195) 
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where the controller parameters with the tilde (◌̃) have the same meaning as the corresponding 

controller parameters without a tilde. 

Table 26: PI controller constants for first-order-plus-deadtime models 
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Table 27: PID controller constants for first-order-plus-deadtime models 
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Table 28: PID controller constants for a second-order-plus-deadtime models 

Controller Method K̃c
 τ̃I τ̃D 
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Example 28: Designing a PI Controller 

 Consider the following first-order system 

  101.5
20 1

s
pG e

s
−=

+
 (196) 

Determine the controller parameters for a PI controller using the IMC method. 

Solution 

 Before solving the problem, it is helpful to determine the values of the various constants 

  Gain: K = 1.5 

  Time Constant: τ = 20 

  Time Delay: θ = 10 

For the IMC method, there is a need to also specify the value of τc, which is essentially the closed-

loop time constant. The smaller the value, the faster the response is, but less robust is the overall 

system. The constraints given with this method imply that τc > 0.8θ = 8 and τc > 0.1τ = 2. For the 

purposes of this example, set the value of τc to be 10, which satisfies both constraints. 

 Therefore, the controller parameters can be computed from Table 26 as follows: 

  1 1 20 2
1.5 10 10 3c

c

K
K

τ
θ τ

 = = = + + 
 (197) 

  20Iτ τ= =  (198) 

The resulting behaviour of the closed-loop system is shown in Figure 78. It can be seen that the 

process responds almost exactly as expected. 

 
Figure 78: Closed-Loop Performance of the PI Controller 

0 50 100 150 200 250 300 350 400 450

Time (s)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Pr
oc

es
s 

Va
lu

e

Setpoint

Actual Value



   177  

 

Section 5.1.2.4: Controller Performance  
 Once a controller has been designed, it is often necessary to measure its performance and 

determine if the controller is attaining its objectives. As with any such measurements, performance 

is measured against some (engineering-related) specification. Unlike most other equipment, the 

specification for a controller involves time, either explicitly when speed of response is a criterion, 

or implicitly, for statistics such as standard deviation. The performance of a controller can be 

measured based on two different sets of criteria: how the controller responds to a change in setpoint, 

that is, the servo response, and how the controller responds to disturbances, that is, the regulatory 

response. 

 Since the objective in servo response performance is how well the controller responds to a 

setpoint change, it is easy to determine an appropriate measure for performance assessment. For 

this reason, servo response is often used to design a controller.  As a first approximation, a closed-

loop system can be considered to be a second-order system with time delay. Therefore, the 

response of the closed loop to a step change in setpoint would be the step response of a second-

order system. The most common servo control performance measures are just characteristics of a 

second-order system responding to a step input, that is, rise time, overshoot, and settling time of 

the controlled variable, as shown in Figure 79. The rise time, τr, is defined as the first time the 

process reaches the setpoint value. The overshoot is defined as the ratio of how much the process 

goes over (or under) the setpoint divided by the magnitude of the step change. Note that if the step 

change is negative, then the overshoot will also be negative (that is, it is really an undershoot) so 

that the ratio remains positive. The settling time, τs, is defined as the last time for which the process 

lies outside the 5% bounds. The 5% bounds are defined as a boundary on either side of the new 

setpoint that is defined as 2.5% of the difference (yss, 2 – yss, 1), where yss is the steady-state value 

and the numeric subscripts represent the initial and final values. The settling time is roughly three 

times the closed-loop time constant. 
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Figure 79: Measures of Servo Control Performance 

 On the other hand, for performance assessment of regulatory response, the objective is less 

certain. Instead, various quantitative measures are used to quantify performance assessment, 

including: 

1) Standard deviation of manipulated variable: This is the simplest and most important 

measure of control performance. However, it is difficult to specify the desired value a 

priori since it depends on the nature and magnitude of disturbances affecting the process. 

What can be specified, or at least described qualitatively, is the trade-off between control 

error and control action. One way of thinking of a controller is that it moves variation 

from one variable (usually the controlled variable) to another (usually the manipulated 

variable). As disturbances affect the process, the controller will respond by changing the 

0 50 100 150 200 250 300 350

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
Pr

oc
es

s 
Va

lu
e

Setpoint

Actual Value

a 

b 

Settling time, 
τs 

Rise time, τr 

Overshoot = a/b 

0.05b 



   179  

manipulated variable. The response will then mitigate the effect of the disturbances. 

Larger disturbances will require greater control action than small disturbances.  

2) Mean of the output variable: This can be used to assess how well the controller 

maintains the given setpoint in the presence of disturbances. 

3) Advanced performance assessment: More advanced performance assessment methods 

are available, such as the minimum variance controller and the Harris Index, which can 

provide appropriate benchmarks for determining good performance. 

Section 5.2: Feedforward Control 
 In feedforward control, a measurable disturbance is used as the input to a controller, so as 

to take corrective action before the disturbance impacts the process. The goal when using 

feedforward control is to design a controller that can correct the disturbance at the same time as 

the disturbance affects the process. In practice, such a controller can rarely be designed, since there 

will be time delay in the system, that is, there is some time period between when the variable is 

measured and it impacts the system. If the time delay between the disturbance and the process is 

smaller than the time delay between the input and the process, then it is not possible to compensate 

the disturbance before it has impacted the system. Figure 80 shows a typical feedforward control 

loop. 

 

Figure 80: Block Diagram for Feedforward Control 

 A special type of feedforward controller is a decoupler, which seeks to separate two or 

more interacting processes so that they can be treated as independent systems controlled by their 
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own SISO control loops. A decoupler basically takes the controller output from the other 

controllers and treats them as a measurable disturbance that needs to be counteracted. Decouples 

can be very effective in controlling a multivariate system when the interactions are relatively 

straight forward and not too nonlinear. 

 In feedforward control design, the objective to design a controller that can compensate for 

a measured disturbance before it can affect the process. Assume that the process model is Gp and 

the disturbance model is Gd, then for the feedforward controller shown in Figure 80, the basic form 

of the feedforward controller can be written as 

  d
ff

p

GG
G

= −  (199) 

In the ideal situation, this will exactly cancel out the effect of the measured disturbance. However, 

in practice, such a controller cannot be implemented for the following two reasons: 

1) Time Delay: If the time delay in the process response is larger than the time delay in the 

disturbance response, then the overall time delay for the process will be negative 

requiring knowledge of future information about the process. Since such a situation is 

impossible, the general solution is to drop the unrealisable time delay from the final 

controller. 

2) Unstable Zeroes in Gp: If the process contains unstable zeroes, then the resulting transfer 

function will also be unstable. In such a case, it will not be possible to realise the 

controller. A common solution in this case is to drop the offending zeroes from the final 

representation. 

There are two common feedforward controllers that can be designed: 

1) Static controllers where only the gains of the process are considered, that is, 

  d
ff

p

KG
K

= −  (200) 

where Kd is the disturbance gain and Kp is the process gain. 

2) Dynamic controllers where the process and disturbance dynamics are included in the 

final control law. Very often, the controller takes the form of a lead-lag controller, that is, 

  ( )
( )

1
1

ffd p s
ff

p d

K s
G e

K s
θτ

τ
−+

= −
+

 (201) 
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where τp is the process time constant, τd is the disturbance time constant, and θff = θd – θp. 

If θff is negative, then the term is often ignored. Ideally, |τp / τd| < 1, which avoids large 

spikes when this controller is used. 

 

Example 29: Designing a Feedforward Controller 

 Given the following system, design both a dynamic and a static feedforward controller. 

Compare the performance of both. The system parameters are: 

  ( )
( )( )
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s s
−− −

=
+ +

 (202) 
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  2 11
3 20cG

s
 = + 
 

 (204) 

For the simulation, assume that the measured disturbance is driven by Gaussian white noise with 

a magnitude of 0.5 and there is a step change in the setpoint of 2 units after 100 s. 

Solution 

 Using Equation (200), the static feedforward controller can be computed as 

  
,

0.5 1
1.5 3

d
ff s

p

KG
K

−
= − = − =  (205) 

Note that the gain can be obtained by setting s = 0 and evaluating the resulting value. 

 When creating the dynamic feedforward controller, it is important that the transfer 

functions be written in their standard form, that is, all roots are of the form τs + 1. In this particular 

example, the zero of the process transfer function needs to be written into this form to give 
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The dynamic feedforward controller can be designed using Equation (199). This gives 
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However, this controller as written cannot be realised since there is an unstable pole and the time 

delay requires future values. In order to obtain a realisable dynamic feedforward controller, both 



   182  

the unstable pole and time delay terms will be dropped. This gives the following form for the 

controller 

  ( )( )
( )( ),

1 10 11
3 5 1 7 1ff d

s s
G

s s
+ +

=
+ +

 (208) 

 Figure 81 shows the effects of both feedforward controllers on the process. It can be seen 

that without the feedforward controller the process has greater oscillations. Adding the static 

feedforward controller tends to decrease the impact of the oscillations. However, the behaviour is 

still rather jittery. The dynamic feedforward controller has smoothed out the jitter and the 

behaviour is cleaner. 

 
Figure 81: Effect of Feedforward Control on a Process 
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example, a pressure relief valve will only open if the pressure is above a certain value and will 

close once the pressure falls below the threshold. 

 Another type of discrete event control is interlocking, where a specified set of 

circumstances must hold before a given action can occur, for example, a microwave cannot be 

started until the microwave door has been closed, which minimises the impact of the radiation on 

the user. Interlocking is an important component of safety considerations in order to prevent 

operators from taking inappropriate action. Designing the correct interlocks can be a challenging 

proposition. 

 A special type of discrete-event control occurs when binary signals are used, for example, 

a sensor will report when the elevator has reached the correct floor, and then the motor of the drive 

will be switched off. The exact height of the elevator above the ground is not continuously 

measured and monitored. When dealing with binary signals, there are two possible types of 

controllers: logic control and sequential control. 

 In logic controllers, also called combinatorial controllers, one obtains the control variable 

as a combination, that is, a logical operation, of signals, for example, system output signals (sensor 

values such as door open or closed) or user inputs (e.g emergency button pressed or not pressed). 

Consider a simple example of a lathe. A lathe is turned on when the user presses the power button 

and the chuck is closed. The lathe is switched off when an end position is reached or the emergency 

stop button is pressed. 

 In sequential control, individual control operations are performed in certain steps. The 

advancement to the next step occurs either after a certain time has passed (time-dependent 

sequence control), for example, a simple traffic light, or in the presence of a specific event 

(process-dependent sequence control), for example, traffic lights that change their signal when a 

pedestrian presses the button. In contrast to the logic controllers, it is therefore not possible to 

clearly determine the manipulated variable even if all signal values are known, since one also has 

to know at which point in the process one is currently located. 

Section 5.4: Supervisory Control 
 Supervisory control focuses on designing controllers that can deal with complex, 

interacting systems incorporating physical, process, and economic constraints, as well as dealing 

with changing economic circumstances. Supervisory control systems will often set the setpoint for 
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subsidiary (or slave) controllers. They can be used to control large systems containing many 

different variables and even locations. A supervisory control system can range from a simple 

nested control loop system to complex model predictive control systems. There are two primary 

control systems cascade control and model predictive control (MPC), which is often called 

advanced process control (APC) in the petrochemical industry. 

Section 5.4.1: Cascade Control 
 In cascade control, at least two control loops are nested within each other. A typical cascade 

control strategy is shown in Figure 82, where it is desired to ensure that the flow rate controlled 

by the valve is as accurate as possible, so that the process experiences the tightest control possible. 

The primary or master control loop is the outer control loop, which sets the setpoint for the 

secondary or slave control loop. The general procedure for tuning a cascade control loop is to first 

tune the innermost loop and then work up towards the uppermost loop, treating all tuned controllers 

as part of the process. The closed-loop time constant of the inner loop should be smaller (faster) 

than the closed-loop time constant of the outer loop. A common rule of thumb is that the ratio of 

closed-loop time constant of the primary loop and that of the secondary loop (τc, p / τc, s) should be 

between 4 and 10. Too small a ratio implies that the secondary loop will not have reached steady 

state and there will be interactions between the two loops leading to a loss of overall performance. 

Too large a ratio implies that the advantages of cascade control will be lost as it will slow down 

the overall response of the system. However, it will make it more robust to changes in the 

underlying process models.   
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Figure 82: Block Diagram for Cascade Control 

Section 5.4.2: Model Predictive Control 
 Model predictive control is an advanced control strategy that can take into consideration 

not only the deviations from the setpoint, but also various economic and physical constraints, for 

example, it can explicitly handle the situation where the water in the tank should not go above a 

given value. In order to accurately handle these constraints, this approach requires a good model 

and proper engineering design. Model predictive control works by optimising the control actions 

over a period of time, often called the control horizon, using the predicted values from the model. 

Any constraints are then implemented as necessary on the predicted results. The controller then 

implements the next control action and repeats the optimisation procedure again. This ensures that 

the impact of disturbances, plant-model mismatches, and other imperfections in the system do not 

have a too large impact on the overall performance. 

 Model predictive control is effective in handling complex process with multiple inputs and 

outputs that interact strongly. Although the original version was designed for linear systems, 

variants exist for nonlinear systems. 

 One of the key disadvantages of model predictive control is that it requires a good model 

that must be updated as necessary. A poor model can cause the control system to degrade and forgo 

the benefits of the approach. 
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 There are many different implementations of model predictive control. The most popular 

implementation in the industry is the dynamic-matrix controller (DMC) approach, which is 

detailed here. The objective function for model predictive control is 
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where r  is the reference vector, ŷ the vector of the predicted process values with control, 𝒬𝒬 the 

process scaling matrix, u∆  the vector of the changes in the controller action, ℛ the input scaling 

matrix, *y the vector of the process values without control, and 𝒜𝒜 the dynamic matrix. 

Furthermore, let m be the control horizon, p the prediction horizon, d the process deadtime, and n 

the settling time. It should be noted that 1 ≤ m ≤ p – d and p > d. 

 The solution requires the step response of the process, that is, 
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where ai is the step-response coefficient. The step-response coefficient can be calculated either by 

polynomial division of the transfer function model or using the coefficients of the impulse response. 

The coefficients ai of the step response have the following relationship to the coefficients of the 

impulse response hj 
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Furthermore, the settling time is defined as the time at which the first coefficient an is within a 

range of between 0.975 and 1.025 times the value of a∞, where a∞ is the steady-state value. All 

step response coefficients after the settling time n can be assumed to be equal to an + 1. The p × m 

dynamic matrix 𝒜𝒜 can written as 
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For a univariate system with only one input variable and one output variable, the solution for 

Equation (209) is 
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  ( ) ( )1 *T T T
Cu K e r y

−
∆ = = + −



   

      (213) 

where 

  ( )*

1

n

t l t i l i t i
i

y y a a u+ + −
=

= − − ∆∑  (214) 

Once the solution has been implemented, then the first control action Δu1 will be implemented by 

the controller. At the next sampling time, the above optimisation procedure is repeated, a new 

optimal value is calculated, and the first control action is implemented. This allows the system to 

take unexpected process changes into consideration. 

Example 30: Design of a Model Predictive Controller 

 Design a model predictive controller for the following SISO system: 

  
1

1

2
1 0,75p

zG
z

−

−=
−

 (215) 

Set up the required matrices and perform the first step of the iteration. For this, assume that m = p 

= 3. Let 𝒬𝒬 = ℐp and ℛ = ℐ3, where ℐn is the n×n identity matrix. Furthermore, a step change occurs 

at t = 0, with the process having previously been in steady state. 

Solution 

 To determine the required model predictive controller, we must first determine the step-

response model. This can be determined using long division, which gives the impulse response 

coefficients from which the step response coefficients can be easily calculated. Thus, 

  
1 2 3

1 1

1 2

2

2 3

3

2 1.5 1.125       
1 0.75 2                              

2 1.5
             1.5
         1.5 1.125
                         1.125

z z z
z z

z z
z

z z
z

− − −

− −

− −

−

− −

−

+ +
−

− +

− +



 (216) 

It can be seen that hi = 2(0.75)i – 1 for i ≥ 1. In general, for a transfer function of the form 

  
11

d

p
zG

z
β
α

−

−=
−

 (217) 

the coefficients of the impulse response can be given as  

  
0

i d

i
i d

h
i d

βα − ≥
= 

<
 (218) 

The required step response coefficients can be found using Equation (211) 
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  ( )1

0 1
2 0.75

i i
j

i j
j j

a h −

= =

= =∑ ∑  (219) 

Equation (219) gives a geometric series that can be written as 

  ( )1 1 0.751 2
1 1 0.75

ii d

ia αβ
α

− + − −
= = − − 

 (220) 

It follows that 

  

( )

( )

( )

1

2

2

3

3

1 0.75
2 2

1 0.75
1 0.75

2 3.5
1 0.75
1 0.75

2 4.625
1 0.75

a

a

a

−
= =

−
−

= =
−
−

= =
−

 (221) 

Incidentally, since d = 1 for this example, the step response coefficients with a smaller d have a 

value of zero and can thus be ignored in the summation.  

 In the next step, the settling time is calculated. For a converging geometric series (implies 

that the process of interest is stable), the value to which the series converges is given by 

  2 8
1 1 0.75pK a β

α∞= = = =
− −

 (222) 

This gives the settling time for the first value for which the process lies in the interval 0.975×8 and 

1.025×8. Since the process under consideration has no oscillations, only the lower limit is of 

interest to us. Given that the settling time is equal to the value of i in Equation (220), we get 

  
11 0.975

1 1

n dα ββ
α α

− + −
= − − 

, (223) 

which can be solved for n to give 

  ln 0,025 1
ln

n d
α

= + −  (224) 

In our case, we obtain 

  ln 0,025 1 1 12,8 13
ln 0,75

n = + − = =  (225) 

Note that n is always an integer, so we need to round the resulting value up to the nearest integer 

value. 

 The 3×3 dynamic matrix 𝒜𝒜 is then 
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1

2 1

1

1 1

0 0
2 0 0

0 3.5 2 0
4.625 3.5 2

p p p m

a
a a

a
a a a− − +

 
       = =       
  



 

  

 



  (226) 

This gives 

  

2 0 0 1 0 0 2 0 0 1 0 0
3.5 2 0 0 1 0 3.5 2 0 0 1 0

4.625 3.5 2 0 0 1 4.625 3.5 2 0 0 1

38.640 625 23.1875 9.25
23.1875 17.25 7

9.25 7 5

T

T

       
       + = +       
              
 
 =  
  

  

 (227) 

The required inverse is then 

 

( )
1

1
38.640 625 23.1875 9.25

23.1875 17.25 7
9.25 7 5

0.134 046 0.184 200 0.009 896
0.184 200 0.387 349 0.201518

0.009 896 0.201 518 0.463 818

T

−

−
 
 + =  
  

− 
 = − − 
 − 

  

 (228) 

For the controller gain, we obtain the result 

 

( ) 1

0.134 046 0.184 200 0.009 896 2 0 0 1 0 0
0.184 200 0.387 349 0.201518 3.5 2 0 0 1 0

0.009 896 0.201 518 0.463 818 4.625 3.5 2 0 0 1

0.268 091 0.100 759 0.004 948
0.368 400 0.129 

T T T
C

T

K
−

= +

−     
     = − −     
     −     

−
= −



    

997 0.100 759
0.019 792 0.368 400 0.268 091

 
 
 
 − 

 (229) 

The reference signal for the next three sample periods is 

  
1
1
1

r
 
 =  
  



 (230) 
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The predicted uncontrolled position will be equal to the steady state value, i.e. zero since no control 

has been made. This implies that 

  *

0
0
0

y
 
 =  
  



 (231) 

The controller action is then 

 

( )*

0.268 091 0.100 759 0.004 948 1 0
0.368 400 0.129 997 0.00 759 1 0

0.019 792 0.368 400 0.268 091 1 0

0.363 902
0.137 644
0.080 517

C Cu K e K r y∆ = = −

− −   
   = − −   
   − −   
 
 = − 
 − 

 

   

 (232) 

Only the first controller action Δu1 = 0.363 902 will be implemented. At the next time point, 

Equation (232) will be recomputed using the new values for r and y*. 

 For a multivariate system, the vectors and matrices become “supervectors” and 

“supermatrices”, meaning that a vector consists of many vectors, for example 

  
1

h

u
u

u

∆ 
 ∆ =  
 ∆ 









 (233) 

where iu∆   is the input vector for the ith input. Let us consider a MIMO System with s outputs and 

h inputs. This gives a dynamic matrix 𝒜𝒜 with the following form 

  
11 1

1

h

s sh

 
 =  
  



 



 


 
 (234) 

where 𝒜𝒜ij is the dynamic matrix between the jth input and ith output. From Equation (213), it 

follows that 

  ( )*
, , , , ,

1 1

h n

i t l i t ij k ij l k j t k
j k

y y a a u+ + −
= =

= − − ∆∑∑  (235) 

and 
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  ( )*

1
,     1, 0,1,..., 1

ps

j ji i i
i

u k r y j km k h
=

∆ = − = + = −∑  (236) 

where aij, k is the kth coefficient of the step response for the process between the jth input and ith 

output and Δuj, t – k is the change in the control action for the jth input at time point t − k. 

Section 5.5: Advanced Control Strategies 
 In addition to the control strategies mentioned so far, there exist various useful strategies 

that can be combined with the aforementioned approach to obtain a better result. Such methods 

include the Smith predictor, deadbanding, squared control, ratio control, input position 

control, and characterisation of nonlinearities. 

Section 5.5.1: Smith Predictor 
 The Smith predictor is an approach that seeks to minimise the effect of time delay on the 

control strategy. It is useful when there is a larger time delay in the system that needs to be dealt 

with. The control strategy for this approach is shown in Figure 83. 

 

Figure 83: Block Diagram for Smith Predictor Control 

Section 5.5.2: Deadbanding and Gain Scheduling 
 Deadbanding refers to the idea that when the control error is within some band of the 

reference point, then there is no need to perform additional control. Deadbanding means that as 

long the value is within the band then no control action will be made. In turn, once the error strays 

outside the deadband, then control will be performed. Mathematically, this can be written as 

  0
otherwise

t db
t

c

K
u

G
ε <

= 


 (237) 
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where Kdb is the deadband constant. The deadband can be specified as either some fixed value of 

the setpoint (for example, within 5°C of the setpoint) or as a percentage (within 5% of the setpoint). 

Deadbanding is useful when tight control is not desired, that is, small deviations are permissible. 

It is often used with level control for surge tanks as these will often need to maintain a general 

level rather than a specific value. Furthermore, the controller can be made more aggressive outside 

the band to quickly drive the system to the desired value. 

 A more generalised approach to deadbanding is called gain scheduling, where the 

controller gain changes depending on the value of the scheduling variable. Most often, the domain 

of the scheduling variable is partitioned into different regions. For each region, a different 

controller gain may be assigned. Mathematically, this can be written as 

   

,1 ,1

,2 ,1 ,2

, ,n

c t gs

c gs t gs
t c

c n gs t

K s K
K K s K

u G

K K s

<
 ≤ <= 

 <

 

 (238) 

where Kc, i is the controller gain for the ith region, Kgs, i is the ith scheduling limit, and st is the 

scheduling variable. This approach allows for a nonlinear process to be controller with a series of 

linear controllers, which would not be possible with a single controller. 

Section 5.5.3: Squared Control 
 Squared control is useful if it is desired to penalise large deviation from the setpoint more 

strongly than those close to the setpoint. This control law can be written as 

  ( ) 2signt c t tu K e e=  (239) 

where sign is the sign function that returns −1 if et is negative, 0 if the value is zero, and 1 otherwise. 

Section 5.5.4: Ratio Control 
 In certain systems, it may be desirable to keep two variables in a constant ratio, for example, 

in a mixing process, to keep the composition of the mixture constant, the ratio between the 

flowrates of the two inlets should be maintained constant. In such cases, we can implement ratio 

control to make sure that the ratio, R, is maintained at the desired value. A schematic for ratio 

control is shown in Figure 84. The ratio control is implemented by the multiplication block that 

takes the measured value of the solids and multiplies it by the desired ratio set by the VC controller. 
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 When implementing ratio control, the ratio itself should not be controlled, but rather the 

ratio controller should set the setpoint for one of the variables using the ratio, for example, if R = 

u1 / u2, then we could set u2 = Ru1 and use this u2 as the setpoint to the u2 controller. In all cases, 

division should be avoided since if one of the variables becomes zero, this will then cause an error. 

As well, it should be noted that ratio control is implemented using the absolute values of the 

variables and not their deviational values as is common with other forms of control. 

 

Figure 84: Ratio Control with Trim Feedback Control 

 Ratio control is useful when it is desired to control some intensive (amount-invariant) 

variable, such as composition, density, viscosity, or temperature, using extensive (amount-

varying) variables, such as flowrates. Note that when implementing ratio control, we need to be 

able to scale all extensive variables by the same amount and keep all independent intensive 

variables constant. Thus, for example, a heat exchanger cannot be effectively controlled by ratio 

control, since it is not feasible to change the surface area during operation. One solution to the 

problem of keeping all independent intensive variables constant is to implement a form of feedback 

control on the ratio itself. Such control is often called feedback trim control. It shown using dashed 

lines in Figure 84, where the ratio is set based on the measured and desired values for y. Another 

advantage of ratio control is that it does not require a model to implement meaning that we can 

obtain feedforward-like control without requiring any models of the system. 
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Section 5.5.5: Input-Position Control 
 Input-position control, also called valve-position control, allows controlling multi-input, 

single-output systems using more advanced methods. In this control strategy, it is normally 

assumed that there are two inputs: a fast-acting but expensive (or otherwise restricted) input, u1, 

and a slow-acting but cheap (or otherwise abundant) input, u2. An example would be cooling an 

exothermic reactor using both coolant (expensive, but fast) and cooling water (abundant, but slow). 

In general, the cheap input is used for controlling the process, but the expensive input can be used 

to improve the speed of response. Basically, at steady state, it is assumed that the expensive input 

will attain some steady-state value u1s, so that the overall process will be controlled by u2. A 

schematic of this control strategy is shown in Figure 85. 

 

Figure 85: Input-Position Control 

 Since input-position control can be treated as a modification of cascade control, the fast 

loop given by u1 is tuned first and then the slower loop given by u2. This also implies that the rule 

regarding time constants between the loops for cascade control should hold, that is, τc2 / τc1 should 

be between 4 and 10. In general, both controllers are designed as simple PI controllers without any 

anti-windup features. 
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Section 5.5.6: Nonlinear Characterisation 
 Nonlinear characterisation allows nonlinearities present in actuators to be dealt with 

separately from the controller itself. The nonlinear characterisation block converts the linear 

controller output into the nonlinear actuator output, for example, if the controller gives a flow rate, 

then this block can convert the flow rate into the corresponding value. Very often, this block is a 

look-up table with interpolation between the given data points. Such an approach can allow for the 

system to be focused on those areas that are highly nonlinear. 

Section 5.5.7: Bumpless Transfer 
 Bumpless transfer is the smooth transfer from one control mode or strategy to another 

without causing any visible, undesirable changes (bumps) in the process variables. This often 

arises from a mismatch between the requested input values in the two modes. In general, bumpless 

transfer is ensured using an appropriate anti-wind-up method. However, there is one case, where 

it may be necessary to take special action and that is when transferring from manual to automatic 

mode. In these cases, the automatic input value will not be exactly equal to the manual value 

meaning that it can lead to a bump in the output. The solution is to match the current manual value 

with the expected automatic value. As well, it may be helpful to reset the integration so that it 

equals zero at the moment of the switch. 

Section 5.6: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 5.6.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) In open-loop control, the controller uses the measured output to determine how to control 

the process. 
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2) In closed-loop control, it is important to be able to measure the output. 

3) Plant-model mismatch can derail open-loop control. 

4) Closed-loop control should provide stable, biasfree, and robust control. 

5) A state-space controller requires measurement of the states. 

6) In state-space control, the separation principle implies that we can separate the design of 

the observer and controller. 

7) A proportional-only controller will always provide biasfree control. 

8) The integral term considers the effect of future values on the system. 

9) Integral wind-up occurs when the disturbance changes a lot causing the manipulated 

variable to fluctuate. 

10) Derivative kick occurs in PID controllers when there is a step change in the setpoint. 

11) Increasing the absolute value of Kc in a PI controller will cause the system to become more 

stable. 

12) The proportional term in a PID controller considers the current values of the error. 

13)  A PI controller can be tuned using the IMC method. 

14) The rise time of a closed-loop system can be used to determine how well a controller 

regulates the disturbance. 

15) The settling time is defined as three times the closed-loop time constant. 

16) For regulatory controller performance, it is easy to specify the desired values. 

17) Feedforward control seeks to minimise the effects of unmeasurable disturbances on the 

process. 

18) A decoupler is a type of feedforward control. 

19) In feedforward control, it may be necessary to remove terms such as time delay or unstable 

zeros from the final controller. 

20) Interlocking occurs when a series of discrete events must be fulfilled before some action 

can occur. 

21) Batch control is an example of sequential control. 

22) Supervisory control allows us to create a network of controllers each of which can be 

controlling another controller. 

23) In cascade control, the master controller should always be faster than the slave controller. 
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24) Model predictive control allows constraints and economic conditions to be considered in 

controlling the process. 

25) Model predictive control requires good models. 

Section 5.6.2: Short Questions 
26) Describe in words how the following control works. What kind of methods are being used? 

What are the objectives and what are some potential disturbances? 

a. An elevator reaching a given floor. 

b. Temperature control in a home oven. 

c. Temperature control in a fridge/freezer. 

d. Driving a car on the highway. 

e. Driving a car on the highway using cruise control. 

27) Design PI controllers using the formulae in Table 26 for the following processes: 

a. 152
30 1

s
pG e

s
−=

+
  

b. 152
30 1

s
pG e

s
−−

=
+

 

c. 1502
3 1

s
pG e

s
−=

+
 

d. 155
0.5

s
pG e

s
−−

=
−

 

You should use the smallest τc possible. 

28) Design PID controllers using the formulae in Table 27 for the same processes as in 

Question 27). You should use the smallest τc possible. 

29) Simulate the controllers from Questions 27) and 28) for a setpoint change of +2 and −2. 

You can assume that there is no disturbance affecting the process. Explain what you see. 

Which controller would you recommend for each process? Why? 

30) Design dynamic feedforward controllers for the following processes. 

a. 15 52 2,  
30 1 15 1

s s
p dG e G e

s s
− −−

= =
+ +

  

b. ( )
( )( )

15 202 5 1 2,  
30 1 25 1 5 1

s s
p d

s
G e G e

s s s
− −− −

= =
+ + +
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c. 
( )( )

52 2,  
3 1 10 1 15 1

s s
p dG e G e

s s s
− −−

= =
+ + +

 

31) Design static feedforward controllers for the processes in Question 31). Simulate and 

compare the performance of the two types of feedforward controllers for a setpoint change 

of +2. You can assume that the disturbance is driven by Gaussian, white noise. 

32) Consider a cascade loop with the following two transfer functions: 

  20
, slave , master

2 2,  
3 1 30 1

s s
p pG e G e

s s
− −−

= =
+ +

   (240) 

Design appropriate PI controllers for this cascade loop. What aspects should you take into 

consideration when designing this controller? Simulate the system. 

33) Consider the same situation as in Question 32), but now you also wish to ensure that the 

slave loop does not have any oscillations and reaches the setpoint as fast as possible. Using 

simulations, design appropriate controllers for this system.  

34) You need to design a controller for a process whose model has been determined 

experimental to be 

 101ˆ
15 1

s
pG e

s
−=

+
   (241) 

However, you do not know how well the experimental model reflects the true process. 

Using the IMC tuning method, design a PID controller assuming that the experimental 

model is correct. Knowing that the model may be incorrect, do not pick a too small τc. 

Simulate your model assuming Equation (241) is correct. If your controller is satisfactory, 

then try simulating the closed-loop assuming that the true process model is given by 

a. Small Mismatch: 111.1
16 1

s
pG e

s
−=

+
  

b. Large Mismatch in Gain: 92
14 1

s
pG e

s
−=

+
 

c. Large Mismatch in the Time Constant: 101.05
4 1

s
pG e

s
−=

+
 

d. Large Mismatch in Time Delay: 251
14 1

s
pG e

s
−=

+
 

If your system is unstable, design a new controller that makes your system stable using 

both the experimental model and the true model. What conclusions can you draw about 

the controller design? 
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35) For the following two-input, two-output system, design a decoupler between u2 and y1. The 

PID couplings are y1 with u1 and y2 with u2. 

 ( ) ( )( )
( )

( )( ) ( )

15 10

1 1

2 225 30
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10 1 15 1 10 1

5 10 1 5
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s s
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 (242) 

36) Simulate the system given by Equation (242) with and without the decoupler. What is the 

effect of the decoupler? The PI controllers are given as 
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 (243) 

37) Using the DMC method, design a model predictive controller for the following system: 
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11 0.25t t
zy u
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−

−=
−

 (244) 

38) Using the DMC method, design a model predictive controller for the following system:

 
5 15

1 1

10 102 2

2 2
10 1 5 1

5 4
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 (245) 

Assume that the sampling time is 1 s. 
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Chapter 6: Boolean Algebra 
 Boolean algebra is the algebra of binary variables that can only take two values, for 

example, true and false or 1 and 0. It is very useful for solving problems in logic and is a 

requirement for good programming. George Boole (1815 – 1864) is the discoverer of Boolean 

algebra. 

 A Boolean expression is a group of elementary terms that are linked with connectors 

(operators). The mathematical space in which a Boolean algebra is defined will be denoted using 

a double-struck B (𝔹𝔹, U+1D539). 

Section 6.1: Boolean Operators 
 In Boolean algebra, there are 5 operators: conjunction, disjunction, negation, implication, 

and equivalency. These 5 operators are described in Table 29. It should be noted that negation is 

a unary operator, that is, it only requires a single variable. All other operators are binary 

operators, that is, they require two variables. When we write a Boolean expression, it is common 

to write conjunction as multiplication and disjunction as addition, that is, a ∧ b is written as ab 

and a ∨ b as a + b. 

Table 29: Boolean operators, where a, b ∊ 𝔹𝔹 

Operator Symbol Statement 
Other 

Representations 

Word 

Representation 

Conjunction ∧ (U+2227) a ∧ b a·b, ab, 

a AND b, 

a & b 

AND 

Disjunction ∨ (U+2228) a ∨ b a + b, a OR 

b, a || b 

OR 

Negation ¬ (U+00AC) ¬b, b′ b̄ NOT b, !b NOT 

Implication → (U+2192) a → b — IF-THEN 

Equivalence ↔ (U+2194) a ↔ b — IF-&ONLY-IF 
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 All Boolean expressions can be written using ∧, ∨, ¬, 0 and 1. The precedence of the 

operators is such that ∧ has a higher precedence than ∨, for example, a ∨ b ∧ c = a ∨ (b 

∧ c). 

Section 6.2: Boolean Axioms and Theorems 
 For the Boolean space 𝔹𝔹 = {0, 1} with variables a, b, and c and operators ∧ und ∨, the 

following axioms hold: 

1) Closure 

a. a ∨ b ∊ 𝔹𝔹  

b. a ∧ b ∊ 𝔹𝔹 

2) Commutativity 

a. a ∨ b = b ∨ a  

b. a ∧ b = b ∧ a 

3) Distributivity 

a. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) 

b. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

4) Identity 

a. a ∨ 0 = a 

b. a ∧ 1 = a 

5) Complementation 

a. a ∧ ¬a = 0 

b. a ∨ ¬a = 1 

6) Annihilator 

a. a ∨ 1 = 1 

b. a ∧ 0 = 0 

7) Associativity 

a. (a ∧ b) ∧ c = a ∧ (b ∧ c) 

b. (a ∨ b) ∨ c = a ∨ (b ∨ c) 

8) Idempotence 

a. a ∨ a = a 
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b. a ∧ a = a 

9) Involution 

a. ¬¬a = a 

10) Absorption 

a. a ∧ (a ∨ c) = a 

b. a ∨ (a ∧ c) = a 

With these axioms, it is possible to define a complete Boolean algebra. 

 An important law is De Morgan’s Law: 

  ¬(a ∨ b) = ¬a ∧ ¬b (246) 

  ¬(a ∧ b) = ¬a ∨ ¬b (247) 

This law can be used to simplify many complex Boolean expressions or convert between two 

representations. 

Section 6.3: Boolean Functions 
 A Boolean function is a function where all variables are Boolean variables, for example, 

  F = f(X1, X2), where X1, X2 ∊ 𝔹𝔹 (248) 

Typically, a Boolean variable is shown using a capital letter. 

 A truth table shows the values of the expression for each combination of values of the 

variables, that is, each possible input value. This implies that a truth table will have 2N rows, where 

N is the number of variables (input variables), for example, for two variables, we will have 22 = 4 

rows and for four variables 24 = 16 rows. 

 The truth table for the Boolean AND operator is shown in Table 30 (left). Since the AND 

operator requires that both inputs be TRUE, there is only a single row that evaluates to TRUE. For 

the Boolean OR operator, the truth table is shown in Table 30 (right). Since the OR operator requires 

that at least one of the inputs be TRUE, there are three rows that evaluate to TRUE and one, where 

both inputs are FALSE, that evaluates to FALSE. 
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Table 30: Truth table for the Boolean Operators (left) AND and (right) OR 

AND  OR 

A B AB  A B A+B 

0 0 0  0 0 0 

0 1 0  0 1 1 

1 0 0  1 0 1 

1 1 1  1 1 1 

 

Example 31: Truth Table 

 What is the truth table for the Boolean function F = AB′? 

Solution 

 Since we have two variables (A and B), N = 2. This means that there will be 22 = 4 rows in 

the truth table. 

A B B′ F 

0 0 1 0 

0 1 0 0 

1 0 1 1 

1 1 0 0 

 

  

 There are two common representations for Boolean functions: the sum-of-products (SOP) 

form and the product-of-sums (POS) form. 

Section 6.3.1: Sum-of-Products Form and Minterms 
 The sum-of-products form is a representation of a Boolean function where all products (or 

terms) are products of single variable, for example, F = ABC + B′CDE′ + A′B′ or 

F = BCDE + AB′E + HI′ + C. Using the axioms, it is possible to convert all functions to a 

sum-of-products form. 

Example 32: Sum-of-Products Form 

 Which of the following functions are in the sum-of-product form: 

1) F = ABC + B′CDE′ 
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2) F = (A + B)C 

3) F = ABC + B′(D + E) 

4) F = BC + DE′? 

Solution 

 Only 1) and 4) are in the sum-of-product form, since these representations are a sum of the 

products of individual variables. In 2) and 3), we have a product of many variables (A and B) in 2) 

and (D and E) in 3). 

 

Example 33: Converting into the Sum-of-Products Form 

 Convert this function into the sum-of-products form: F = (A + B)C. 

Solution 

 Using the distributive property, we can obtain the sum-of-products form, that is, 
  F = (A + B)C = AC + BC 

 

 

 A minterm is a row in the truth table where the value is “1”. The symbol for a minterm is 

mi, where i is the decimal row number. The compact sum-of-products form is Σm(i,…), where i is 

the row number of the minterms. When the minterms are converted into a functional representation, 

each variable, whose value is 1, will be written in its plain form, while each variable, whose value 

is 0 will be written in its negated form, for example, for m2, the minterm with the value 0102, the 

term will be given as A′BC’. 

 

Example 34: Compact Sum-of-Products Form 

 What is the compact sum-of-products form for the function F = (A + B)C. 

Solution 

 First, we require a truth table. Then, we can simply find the rows with a value of 1. 

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 0 
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A B C F 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 The rows in red are the rows, where the function has a value of 1. We can find the decimal 

row number simply by converting the binary representation into a decimal value, that is, for the 

first red row (011) 

  0112 = 2 + 1 = 3 

and 

  1012 = 22 + 1 = 5 

   1112 = 22 + 2 + 1 = 7 

Thus, the compact sum-of-products form is 

  Σm(3, 5, 7). 

It should be noted that the ordering of the Boolean variables is important. When the ordering is 

changed, then the compact sum-of-products form will also change. 

Section 6.3.2: Product-of-Sums Form and Maxterms 
 The product-of-sums form is a representation of a Boolean function, where all the factors 

are sums of individual variables, for example, F = (A + B + C)(B′ + C + D)E′ or 

F = (A + B)C. Using the axioms, it is possible to convert all functions into a product-of-sums 

form. 

 

Example 35: Product-of-Sums Form 

 Which of the following Boolean functions are in the product-of-sums form: 

1) F = ABC + B′CDE′ 

2) F = (A + B)C 

3) F = (A + B + C)B′(D + E) 

4) F = BC + DE′? 



   206  

Solution 

 Only 2) and 3) are in the product-of-sums form, since these representations are products of 

sums with individual variables. In 1) and 4), we have a sum of many variables (A, B, and C) in 1) 

and (B, C,  D, and E) in 4).  

 

Example 36: Converting into the Product-of-Sums Form 

 Convert the function F = AC + BC into its product-of-sums form. 

Solution 

 Using the distributive property, we can obtain the product-of-sums form, that is, 
  F = AC + BC = (A + B)C 

 

 

 A maxterm is a row in the truth table with the value of 0. The symbol for a maxterm is Mi, 

where i is the decimal value of the row. The compact product-of-sums form is ΠM(i,…), where i 

is the decimal row value of the corresponding maxterm. When maxterms are converted into a 

functional representation, then each variable with the value of 0 is converted as written, while each 

variable with a value of 1 is written in its negated form, for example, M2, the maxterm with the 

value 0102, would be written a A + B’ + C. 

Example 37: Compact Product-of-Sums Form 

 What is the compact product-of-sums form for the function F = (A + B)C. 

Solution 

 First, we require the truth table for the function. Then, we can easily find the rows with a 

value of 0. 

 

A B C F 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 0 
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A B C F 

1 0 1 1 

1 1 0 0 

1 1 1 1 

 The rows in red are the rows where the function has a value of 0. We can obtain the row 

number by converting the binary values into a decimal representation, for example, for the first 

row (000) 

  0002 = 0 + 0 + 0 = 0 

and 

  0012 = 0 + 0 + 1 = 1 

  0102 = 0 + 2 + 0 = 2 

  1002 = 22 + 0 + 0 = 4 

  1102 = 22 + 2 + 0 = 6 

Therefore, the compact product-of-sums form is 

  ΠM(0, 1, 2, 4, 6). 

It is important to note that the order of Boolean variables is important. When the order is changed, 

then the compact product-of-sums form will also change. Also, it is obvious that any terms in the 

sum-of-products form are not in the product-of-sums form! 

Section 6.3.3: Don’t-Care Values 
 It can happen that a given logical situation cannot occur. Such cases are often denoted using 

* or × in the truth table. It is then up to the engineer to determine which value (0 or 1) is best. 

Such cases are called don’t-care values. 

Example 38: Don’t Cares 

 What is the truth table for the Boolean function F = AB, when the case A = B = 0 is 

not possible? 

Solution 

 The truth table is 

A B F 

0 0 × 
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A B F 

0 1 0 

1 0 0 

1 1 1 

 

Section 6.3.4: Duality 
 Duality in Boolean algebra has the following definition: 

• Replace all AND by OR. 

• Replace all OR by AND. 

• Replace 0 by 1. 

• Replace 1 by 0. 

Duality is an important property when we are simplifying or minimising an expression. Often the 

dual of the representation can be easier to work with. 

Example 39: Dual of a Function 

 What is the dual of the function F = (A + B)C? 

Solution 
  F = (A + B)C 

  FD = [(A + B)C]D 

  FD = [(A + B)]D + C D 

  FD = AB + C 

The dual of a function is often represented by a superscript D. 

 

Section 6.4: Minimising a Boolean Function 
 When a logical expression is to be implemented using electronic gates, it is often important 

to minimise the expression, that means, that the number of required gates is minimised. Often, 

each Boolean operation requires a separate logic gate. There are three ways to minimise a Boolean 

function: 

1) Manually using the axioms and theorems of Boolean algebra; 

2) Using a Karnaugh map; and 



   209  

3) Using the Quine-McCluskey algorithm, which is often used for large (greater than 10 

variables) Boolean functions. 

In general, the Karnaugh map is the best method for minimising a Boolean function. 

Section 6.4.1: Karnaugh Map 
 A Karnaugh map is a visual algorithm that minimises a Boolean function so that the largest 

number of groups of 0 and 1 are found. We search for groups of 0 to find the minimal product-

of-sums representation and groups for 1 to find the minimal sum-of-products representation. The 

0’s and 1’s can only be arranged in groups of 2n, where n ∊ ℕ. There are simple Karnaugh maps 

for 2, 3, 4, and 5 variables. 

 The Karnaugh map for two variables is shown in Figure 86. The diagram is created so that 

on one axis lies one variable and on the other axis the other variable. Then, for the minimal sum-

of-products representation, we circle the largest group with a size that is a power of 2 that covers 

as many of the 1 as possible. 

 

Figure 86: Karnaugh map for the function F = B′ 

 The Karnaugh map for three variables is shown in Figure 87. The diagram is created so 

that on one axis lies one variable and on the other axis the remaining two variables. Each row and 

column has one of the two possible values (0 or 1) so that each adjacent row or column only differs 

by one entry, for example, when the row is 01, then the next row must be 11, since only one entry 

should be changed. 
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Figure 87: Karnaugh map for the function F = Σm(0, 3, 5) 

 The Karnaugh map for four variables is shown in Figure 88. Each row and column has two 

variables. The Karnaugh map for five variables is shown in Figure 89. When we are looking for 1, 

it is common to not bother with writing the 0. 

 

Figure 88: Karnaugh map for the function F = A′BD + B′C′D′ + C 

 

Figure 89: Karnaugh map for the function F = ΠM(2, 5, 7, 9, 13, 15, 16, 17, 18, 20, 24, 25, 27) 
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 The general procedure for finding the minimal sum-of-products form is: 

1) Construct the Karnaugh map. 

2) Circle the 1 into the largest groups possible. 

3) Write the corresponding sum-of-product form based on the circled groups. For each group, 

we only write the variables whose value is not changed. Variables with a value of 0 are 

negated, for example, in Figure 88, for the loop in the first row, A varies between 0 and 1, 

which means that it is ignored. The other variables remain constant and have a value of 0. 

Thus, we write the negated forms of these variables, that is, B′C′D′. 

 The general procedure for finding the minimal product-of-sums form is: 

1) Construct the Karnaugh map. 

2) Circle the 0 into the largest groups possible. 

3) Write the corresponding sum-of-product form for F′ based on the circled groups. For each 

group, we only write the variables whose value is not changed. Variables with a value of 

0 are negated, for example, in Figure 88, for the loop in the first row, A varies between 0 

and 1, which means that it is ignored. The other variables remain constant and have a value 

of 0. Thus, we write the negated forms of these variables, that is, B′C′D′. 

4) Convert F′ to F. 

Of course, we can look for the loops using trial and error, but we have no guarantee that we will 

find the best loops. Therefore, we wish to find a procedure that we can always find the best loops. 

 Before we can describe such a procedure, we need to define certain words. An implicant 

is a single 1 or group of 1’s. A prime implicant is an implicant that cannot be further combined, 

that means, that a single 1 creates a prime implicant if there are not adjacent 1. Two adjacent 1’s 

create a prime implicant if they cannot be combined into a group of four 1’s, while four adjacent 

1’s create a prime implicant if they cannot be combined into a group of eight 1’s. Figure 90 shows 

the difference between an implicant and a prime implicant. We can state that a sum-of-products 

form with nonprime implicants is not a minimal form, but not all prime implicants will necessarily 

be required for the minimal sum-of-products form. An essential prime implicant is a minterm 

that is covered only by a single prime implicant. All essential prime implicants must be in the 

minimal sum-of-products form. Thus, we can say that the objective is to find all the essential prime 

terms. Figure 92 shows the procedure for minimising a Karnaugh map. 
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Figure 90: Prime implicant and implicant 

 

Example 40: Karnaugh map 

 For the Karnaugh map shown in Figure 91, find the minimal sum-of-products form.  

 
Figure 91: Karnaugh map for Example 40 

 

Solution

1) We start with the first 1 (cell: 0000). The largest group that we can 

find is four 1. This group is an essential prime implicant. 

2) The next unlooped 1 is in the cell 0010. This 1 can only be combined 

with the 1 in cell 0000. This group is also an essential prime implicant. 
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3) The next free 1 is in cell 0111. Here we have two possibilities. We 

could make the loop with either cell 0101 or cell 1111. This implies that 

we have a prime implicant. 
 

4) The next free 1 is in cell 1011, which we can combine with cell 1111. 

This is the only possibility for combining this cell. Therefore, this group 

is also an essential prime implicant.  
 

5) The last step is to write the minimal sum-of-product form. First, we will write all the essential 

prime implicants, that is, A′B′D′, A′C′ and ACD. Then, we must select one of the remaining 

prime implicants (A′BD or BCD). There is no difference between which of these two prime 

implicants we select. The minimal sum-of-products form is then 

  F = A′B′D′ + A′C′ + ACD + {A′BD or BCD} 

 

 

Figure 92: Procedure for minimising a Karnaugh map 
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Section 6.5: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 6.5.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) In Boolean algebra, there are three possibilities: −1, 0, and 1. 

2) In Boolean algebra, conjunction is denoted using ∧. 

3) In Boolean algebra, negation is denoted using ∨. 

4) The Boolean statements ¬b and b′ have the same meaning. 

5) The Boolean operator ∧ is a unary operator. 

6) If a = 1, b = 0, and c = 1, then the Boolean statement a ∨ b ∧ c evaluates to 

“false”. 

7) Boolean algebra does not obey the law of associativity. 

8) Boolean algebra obeys the law of distributivity. 

9) De Morgan’s Law states that (A + B)′ ≡ A′B′. 

10) The function F = (A + B)C is in a sum-of-products form. 

11) The function F = ABC + A′B′C′ is in a sum-of-products form. 

12) The function F = (A + B)C is in a product-of-sums form. 

13) The function F = ABC + A′B′C′ is in a product-of-sums form. 

14) For a function with the representation F = Σm(1, 3, 5), the minterm m2 is equal to 1. 

15) For the function with the representation F = ΠM(1, 3, 5), the maxterm M3 is equal 

to 0. 

16) The dual of F = A + BC is FD = A(B + C). 

17) We must always assign a “don’t care” a value of 1. 

18) All prime implicants are in the minimal sum-of-products form. 
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19) All essential prime implicants are in the minimal sum-of-products form. 

20) A Karnaugh map can be used to determine the minimal product-of-sums form.  

Section 6.5.2: Short Questions 
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator 

combined with pen and paper. 

21) Simplify the following function Z = (A + B)(A + BC)(B + BC). Using a truth 

table, show that the original and simplified functions are the same. 

22) Convert the following functions into the sum-of-products form: 

a. Z = (A + B)(A + C)(A + D)(BDC + E) 

b. Z = (A + B + C)(B + C + D)(A + C) 

23) Convert the following functions into a product-of-sums form: 

a. Z = W + XYZ 

b. Z = ABC + ADE + ABF 

24) Find the compact product-of-sums form for the following functions: 

a. F(A, B, C) = A′. 

b. F(A, B, C, D) = A′B′ + A′B′(CD + CD′).  

25) Find the compact sum-of-products form for the following functions: 

a. F(A, B, C) = (A′ + B + C)(A + C).  

b. F(A, B, C, D) = A′B′ + A′B(CD + CD′). 

26) Using a Karnaugh map, find the minimal sum-of-products form for the following functions: 

a. F(A, B, C, D) = A′B′ + A′B(CD + CD′). 

b. F(A, B, C, D) = Σm(0, 1, 2, 3, 6, 7). 

c. F(A, B, C, D) = Σm(0, 4, 5, 6, 8, 9, 10, 11).   

d. F(A, B, C, D) = Σm(10, 12, 14) .  

27) For the Karnaugh map shown in Figure 93, find all prime implicants and essential prime 

implicants. 
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Figure 93: Karnaugh map for Question 27 
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Chapter 7: PLC Programming 
 When using a PLC, it is necessary to transfer the required information to the PLC using 

some methods. There are two possible approaches. We could use an ad-hoc approach that depends 

on the PLC or situation or we could use some type of standard. It is obvious that using standards 

is better since we can re-use the information, for example, the same code can be re-used for 

different cases without having to worry about compatibility problems. The IEC/EC 61131 is the 

standard for PLC programming and will be described in the following sections. This standard 

consists of five different programming languages and a common set of rules that apply to all the 

programming languages. 

Section 7.1: The Common IEC-Standard Hierarchy 
 The foundational component of the IEC 61131-3 standard is the programme organisation 

unit (POU). The POU is the smallest self-standing component of a PLC programme. There are 

three types of POUs: 

1) Function (FUN): A function is a parametrisable POU without any static variables or state 

information (memory) that given the same input parameters will give the same output. 

2) Function Block (FB): A function block is a parametrisable POU with static variables (that 

is, memory). Given the same input values, a function block can give different values that 

depend on the internal function block values, as well as external values. 

3) Programme (PROG): A programme represents the “main programme.” All the variables 

for the programme and their physical addresses must be specified. Otherwise, a programme 

is like a function block. 

Programmes and function blocks can have input and output parameters, while functions only have 

input parameters and the function value as the return value. A POU consists of three parts: 

1) Declaration of the POU type with POU name (and data type for functions). The 

possibilities are: 

a. Function: FUNCTION Name DataType … END_FUNCTION 

b. Function block: FUNCTION_BLOCK Name … END_FUNCTION_BLOCK 

c. Programme: PROGRAM Name … END_PROGRAM 

2) Declaration of variables 
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3) Remainder of the POU with the instructions. 

Before a POU can be used, each programme must be associated with a task. Before we can load a 

task into the PLC, we must first define: 

1) Which resources do we need? In the standard, a resource is defined as either a CPU (central 

processing unit) or a special processor. 

2) How is the program executed and with what priority? 

3) Do variables have to be assigned to physical PLC addresses? 

4) Do references to other programs have to be made using global or external variables? 

The priority of a task shows how the given task should be executed. There two important parts to 

define the priority: 

1) Scheduling: Scheduling focuses on how the programme is executed. There are two 

possibilities: cyclically, that is, the programme will be continually executed; and on 

demand, that is, the programme will only be executed as need.  

2) Priority Type: The priority type represents whether the programme can be interrupted. 

Again, there are two possibilities: nonpre-emptive and pre-emptive. A nonpre-emptive 

task must always be completed before another task can be started. A pre-emptive task can 

be stopped if a task higher priority occurs. Figure 95 shows the two possibilities. As well, 

the priority level needs to be set. This ranges from 0 for the highest priority to 3 for the 

lowest priority. 

Defining the above components creates a configuration. Figure 94 shows a visual representation 

of the components of a configuration and how these are combined together. 

 The call hierarchy is defined as follows: a programme can only call function blocks and 

functions. A function block can only call other function blocks and functions, while a function can 

only call other functions. Recursion cannot be implemented in this standard. POUs cannot call 

themselves nor can they be called as a result of a chain of POUs.  
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Figure 94: Visual representation of a configuration 

 

Figure 95: Pre-emptive and nonpre-emptive tasks 

Section 7.2: Types of Variables 
 In the IEC standard, there are many different types of variables: 

1) Variables (VAR): These are general variables that can be used by all POUs. 

2) Input Variables (VAR_INPUT): The actual parameter will be transferred by value to the 

POU, that is, the variable itself is not passed to the POU, but only a copy. This ensures that 
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the input variable outside of the POU cannot be changed. This concept is also often called 

call by value. All POUs can use this type. 

3) Output Variables (VAR_OUTPUT): The output variable will be returned to the calling 

POU as a value. This concept is also called return by value. All POUs can use this type. 

4) Input-and-Output Variables (VAR_IN_OUT): The actual parameter will be transferred 

to the called POU as a pointer, that is, the location of the variable will be given so that any 

changes made to the variable are directly stored. The concept is also called call by reference. 

For variables with complex data structures, this can lead to efficient programming. 

However, since the variable location is passed, this means that (undesired) changes will 

impact the variable even outside the calling function. All POUs can use this type. 

5) External Variables (VAR_EXTERNAL): This variable can be changed outside of the POU 

using the variable. An external variable is required to have read and write access to a global 

variable of another POU within a given POU. It is only visible for POUs that list this global 

variable under VAR_EXTERNAL, all others have no access to this global variable. The 

identifier and type of a variable under VAR_EXTERNAL must match the corresponding 

VAR_GLOBAL declaration in the program. Only programs and function blocks can use this 

type. 

6) Global Variables (VAR_GLOBAL): A globally declared variable can be read and written 

to by several POUs. To do this, the variable must be specified in the other POUs under the 

VAR_EXTERNAL with the same name and type. 

7) Access Variables (VAR_ACCESS): Access variables are global variables for the 

configurations that act as a communication channel between components (resources) of the 

configurations. It can be used like a global variable within the POU. 

Section 7.3: Variables, Data Types, and Other Common 

Elements 
 The IEC standard defines common elements that apply to all programmes. These elements 

are not only components, but also rules that determine how the elements can be used. 
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Section 7.3.1: Simple Elements 
 Each PLC programme consists of basic elements that are defined as the smallest unit that, 

when combined together, build declarations and instructions, which form a complete programme. 

These simple elements can be classified into delimiters, keywords, literals, and identifiers. 

Section 7.3.1.1: Delimiters 
 Delimiters are symbols that separate the individual components from one another. Typical 

delimiters include the space, +, the comma (, ), and *.  Table 31 shows all the delimiters in the IEC 

standard. 

Table 31: Delimiters in the IEC IEC 61131-3 standard 

Delimiter Meaning, Clarification 

Space Can be inserted anywhere, except within keywords, literals, 

identifiers, directly represented variables, or combinations 

of delimiters, such as (* or *). IEC 61131-3 does not 

specifically make any statements about tabs and, hence, they 

are usually treated as spaces. 

End-of-Line At the end of an instruction line in instruction list, in 

structured text also permitted within an instruction. Not 

permitted within comments in instruction list. 

Start of Comment (* Starts a comment (not nestable) 

End of Comment *) Ends a comment 

Plus + 1. Leading sign of a decimal literal 
2. In the exponent of a floating-point literal 
3. Addition operator in expressions 

Minus - 1. Leading sign of a decimal literal 
2. In the exponent of a floating-point literal 
3. Negation operator in expressions 
4. Year-month-day separator in time literals 

Octothorpe # 1. Base-number separator in literals 
2. Time-literal separator 

Period . 1. Integer / fraction separator 
2. Separator within hierarchical addresses of directly 

represented and symbolic variables 
3. Separator between components of a data structure 

(when accessing it) 
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Delimiter Meaning, Clarification 

4. Separator for components of a FB instance (when 
accessing it) 

e, E Leading character for exponents of floating-point literals 

Quotation Mark ' Start and end of strings 

Dollar sign $ Start of a special symbol in a string 

Prefix for Time literal 
t#,T#; d#, D#; 

d, D; h, H; m, M; 

s, S; ms, MS; 

date#, DATE#; 

time#, TIME#; 

time_of_day#; 

TIME_OF_DAY#; 

tod#, TOD#; 

date_and_time#; 

DATE_AND_TIME#; 

dt#, DT# 

Introductory characters for time literals, combinations of 
lowercase and uppercase letters are permitted 

Colon : Separator for: 
1. Time within time literals 
2. Definition of the data type for variable declaration 
3. Definition of a data-type name 
4. Step names 
5. PROGRAM ... WITH ... 
6. Function name / data type 
7. Access path: data / type 
8. Jump label before the next instruction 
9. Network name before the next instruction 

Assignment (Walrus) 

Operator := 

1. Operator for initial value assignment 
2. Input connection operator (assignment of actual 

parameters to formal parameters when calling the POU) 
3. Assignment operator 

(Round) Brackets (…) Start and end of: 
1. Initial value list, also: multiple initial values (with 

repetition number) 
2. Range specification 
3. Field index 
4. Sequence length 
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Delimiter Meaning, Clarification 

5. Operator in instruction list (calculation level) 
6. Parameter list when calling the POU 
7. Subexpression hierarchy 

Square Brackets […] Start and end of: 
1. Array index (access to an array) 
2. String length (when declaring a string) 

Comma , Separator for: 
1. Lists 
2. Initial-value lists 
3. Array indices  
4. Variable names (when there are multiple variables with 

the same data type) 
5. Parameter list when calling a POU 
6. Operator in instruction list 
7. CASE list 

Semicolon ; End of: 
1. Definition of a (data) type 
2. Declaration (of a variable) 
3. Structured text command 

Period-Period .. Separator for: 
1. Range specifications 
2. CASE branches 

Percent % Introductory character for hierarchical addresses for directly 
represented and symbolic variables 

Assignment Operator => Output binding operator (assignment of formal parameters 
to actual parameter when calling a PROGRAM) 

Comparison >,<; >=, <=; 

=, <> 

Comparison operators in expressions 

Exponent ** An operator in expressions 

Multiplication * Multiplication in expressions 

Division / Division in expressions 

Ampersand & AND operator in expressions 

Section 7.3.1.2: Keywords 
 In the IEC 61131-3 standard, keywords are the elementary “word”. Normally, keywords 

are written in bold. They are standard identifiers that are clearly specified in the IEC 61131-3 

standard in terms of spelling and purpose. Therefore, they cannot be used in a user-defined manner 

for variable or other names. Capitalisation is not significant for keywords, i.e. they can be written 
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using all lowercase, all uppercase, or a mixture of the two. In this book, all keywords are shown 

in capitals. The keywords include the following possibilities: 

1) Names of elementary data types 

2) Names of standard functions 

3) Names of standard function blocks 

4) Names of the input variables for the standard functions 

5) Names of the input and output variables of the standard function blocks 

6) The variables EN und ENO in the graphical programming languages 

7) The operators of the instruction list language 

8) The elements of the structure text language and 

9) The elements of sequential charts 

Table 32 shows all the keywords in the IEC standard. 

Table 32: All Keywords in the IEC standard 

A 

ABS  

ACOS 

ACTION  

ADD 

AND 

ANDN  

ANY 

ANY_BIT 

ANY_DATE 

ANY_DERIVED 

ANY_ELEMENTARY 

ANY_INT 

ANY_MAGNITUDE 

ANY_NUM 

ANY_REAL ARRAY 

ASIN 

AT 

ATAN  

B 

BOOL BY BYTE  

C 

CAL 

CALC 

CALCN 

CASE 

CD 

CDT 

CLK 

CONCAT 

CONFIGURATION 

CONSTANT 

COS 

CTD 

CTU 

CTUD 

CU 

CV 

D 
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D 

DATE 

DATE_AND_TIME 

DELETE 

DINT 

DIV 

DO 

DS 

DT 

DWORD 

 

 

E 

ELSE 

ESIF 

END_ACTION 

END_CASE 

END_CONFIGURATION 

END_FOR 

END_FUNCTION 

END_FUNCTION_BLOCK 

END_IF 

END_PROGRAM 

END_REPEAT 

END_RESOURCE 

END_STEP 

END_STRUCT 

END_TRANSITION 

END_TYPE 

END_VAR 

END_WHILE 

EN 

ENO 

EQ 

ET 

EXIT 

EXP 

EXPT 

 

 

F 

FALSE 

F_EDGE 

F_TRIG 

FIND 

FOR 

FROM 

FUNCTION 

FUNCTION_BLOCK 

 

G 

GE GT  

I 

IF 

IN 

INITIAL_STEP 

INSERT 

INT 

INTERVAL 

J 

JMP JMPC JMPCN  

L 

L 

LD 

LDN 

LE 

LEFT 

LEN 

LIMIT 

LINT 

LN 

LOG 

LREAL 

LT 



   226  

LWORD   

M 

MAX 

MID 

MIN 

MOD 

MOVE 

MUL 

MUX 

 

 

N 

N 

NE 

NEG 

NON_RETAIN 

NOT 

 

O 

OF 

ON 

OR 

ORN 

 

 

P 

P 

PRIORITY 

PROGRAM 

PT 

PV 

  

Q 

Q 

Q1 

QU 

QD 

 

 

R 

R 

R1 

R_EDGE 

R_TRIG 

READ_ONLY 

READ_WRITE 

REAL 

RELEASE 

REPEAT 

REPLACE 

RESOURCE 

RET 

RETAIN 

RETC 

RETCN 

RETURN 

RIGHT 

ROL 

ROR 

RS 

 

S 

S 

S1 

SD 

SEL 

SEMA 

SHL 

SHR 

SIN 

SINGLE 

SINT 

SL 

SQRT 
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SR 

ST 

STEP 

STN 

STRING 

STRUCT 

SUB  

 

 

T 

T 

TAN 

TASK 

THEN 

TIME 

TIME_OF_DAY 

TO 

TOD 

TOF 

TON 

TP 

TRANSITION 

TRUE 

TYPE 

 

U 

UDINT 

UINT 

ULINT 

UNTIL 

USINT 

 

V 

VAR 

VAR_ACCESS 

VAR_CONFIG 

VAR_EXTERNAL 

VAR_GLOBAL 

VAR_INPUT 

VAR_IN_OUT 

VAR_OUTPUT 

VAR_TEMP 

W 

WHILE 

WITH 

WORD 

WSTRING 

 

 

X 

XOR XORN  

Section 7.3.1.3: Literals 
 Literals are used to represent the value of a variable (constant). They depend on the data 

types of these variables. A distinction is made between the following three basic types: 

1) Numerical Literals, that give the numeric value of a number as a bit sequence, as well as 

integer and floating-point numbers. 

2) String Literals, that give the value of a string in either single- or double-byte 

representation. A string literal is delimited by single straight quotation marks ('; U+0027), 

for example, '' is the empty string literal and 'Automation Engineering!'. If 
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we wish to use a reserved symbol in a string literal, we must place a dollar sign before the 

reserved symbol, for example, '$$45' will give “$45”. As well, there are various 

nonprintable special characters that can be represented using the dollar sign. Table 33 lists 

some of the more common special characters. 

3) Time Literals, that give the value for time points, durations, and dates. 

Table 33: Special Strings 

Dollar-Sign Representation Representation on the Screen or Printer 

$nn Shows “nn” in hexadecimal in ASCII 
$$ $ 

$', $" ', " 

$L, $l Line feed ($0A) 

$N, $n New line 
$P, $p New page 

$R, $r Carriage return20 ($0D) 

$T, $t Tab 

 

The octothorpe is used to give additional information about the literal, for example, 2# implies a 

binary representation. The additional information always comes before the octothorpe. Common 

representations are: 

1) Binary Representation: 2# 

2) Hexadecimal Representation: 16# 

3) Duration Representation: T# or TIME# 

4) Date Representation: D# or DATE# 

5) Time-of-Day Representation: TOD# or TIME_OF_DAY# 

6) Date-and-Time Representation: DT# or DATE_AND_TIME# 

 

 
20 This term comes from the days of typewriters, where the writing head with the ink ribbon was attached to a carriage 
that had to be pushed at the end of each line to the beginning of the new line. 
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It is possible to use any defined data structure with the octothorpe. Numerical and time literals may 

also contain underscores in order to make the presentation more legible. Capitalisation is not 

important. 

 Time literals have some special properties. There are multiple different types of time 

literals: duration, date, time of day, and date and time. For each case, there is a special 

representation with its own rules.  

 Duration is represented by T#. After the octothorpe, the duration is given using the 

following units: 

1) d: Day 

2) h: Hours 

3) m: Minutes 

4) s: Seconds 

5) ms: Milliseconds 

Each unit is separated by an underscore.21 The units must be placed from largest to smallest. The 

smallest unit can have a decimal value, for example, T#1m_10s_100.7ms. The highest value 

can “overflow”, for example, the time duration T#127m_19s is valid and will be automatically 

converted into the proper representation of T#2h_7m_19s. A negative value is also possible, for 

example, T#-22s_150ms. 

 Dates are represented using D#. After the octothorpe comes the date in scientific notation, 

that is, year-month-day, for example, D#2017-02-28. 

 The time of day is represented using TOD#. After the octothorpe comes the time in the 

format Hours:Minutes:Seconds.Decimal Part, for example, TOD#12:45:25.21. Note that the 

24-hour clock is used. 

 The date and time is shown using DT#. After the octothorpe comes the date in scientific 

notation followed by a dash and the time in the time-of-day format, for example, DT#2017-05-

30-2:30:12. 

 

 
21 The underscore is not obligatory to separate the units, but it does help readability of the text. 
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Section 7.3.1.4: Identifiers 
 Identifiers are alphanumeric strings that allow the PLC programmer to give individual 

names to the variables, programmes, and related elements. These include jump and network names, 

configurations, resources, tasks, runtime programmes, functions, function blocks, access paths, 

variables, derived data types, structures, transitions, steps, and action blocks. The identifiers must 

satisfy the following rules: 

1) The first element cannot be a number (✗ 1Prog). 

2) No more than one underscore can be used together (✗ A__B [with two underscores]). 

3) No delimiters can be used (✗ w34$23). 

Only the first six characters are considered when comparing two identifiers, that is, both TUI_123 

and TUI_125 are equivalent. Capitalisation also plays no role, that is, TUI, tui, and TuI are all 

equivalent. 

Section 7.3.2: Variables 
 A variable is a representation of a physical memory location on a PLC to which a meaning 

has been assigned. The variable declaration block is bracketed with VAR_type and VAR_END. It 

is possible to specify the type of variable. Each variable is declared on its own line with the 

following key components: 
  Variable_name : Data_type := Initial_value; 

The components in bold must always be given, while the values of components in cursive are 

specified by the programmer. The initial value need not be given, but it is always better to do so. 

Section 7.3.3: Data Types 
 There are two data types: elementary and derived data types.  

Section 7.3.3.1: Elementary Data Type 
 An elementary data type is defined as a simple data type that is predefined in the IEC 

standard. The elementary data types are characterised by their data size (number of bits) and the 

data range. Both values are defined by the standard, except for dates, times, and strings, whose 

data size and range depend on the implementation. Table 34 shows the elementary data types with 

their properties (data range and default initial value). The IEC 61131-3 standard defines five 
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groups of elementary data types that can be referenced by the given general data type given in 

brackets: 

1) Bit Sequence and Boolean (ANY_BIT) 

2) Signed and Unsigned Integers (ANY_INT) 

3) Floating-Point Numbers (ANY_REAL) 

4) Dates and Times (ANY_DATE) 

5) Strings and Durations (ANYSTRING, TIME) 

The general data types ANY_INT and ANY_REAL can be represented together by the group name 

ANY_NUM. 

Table 34: The elementary data types in the IEC 61131-3 Standard. The initial letters in the data types represent: D = double, L = 
long, S= short, and U = unsigned. 

Data Type Keyword Bits Range Initial Value 

BOOL Boolean 1 {0, 1} 0 
BYTE Bit sequence 8 8 [0, 16#FF] 0 
WORD Bit sequence 16 16 [0, 16#FFFF] 0 
DWORD Bit sequence 32 32 [0, 16#FFFF FFFF] 0 
LWORD Bit sequence 64 64 [0, 16#FFFF FFFF FFFF FFFF] 0 

SINT Short Integer 8 [−128, +127] 0 
INT Integer 16 [−32 768, +32 767] 0 
DINT Double Integer 32 [−231, +231  − 1]  0 
LINT Long Integer 64 [−263, +263  − 1]  0 

USINT Short Integer 8 [0, +255] 0 
UINT Integer 16 [0, +65 535] 0 
UDINT Double Integer 32 [0, +232  − 1]  0 
ULINT Long Integer 64 [0, +264  − 1]  0 

REAL Floating-Point 8 see IEC 60559 0 
LREAL Long Floating-

Point 

16 see IEC 60559 0 

DATE Date — — d#0001-01-01 
TOD Time of Day — — tod#00:00:00 
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Data Type Keyword Bits Range Initial Value 
DT Date with Time 

of Day 

  dt#0001-01-01-

00:00:00 

TIME Duration — — t#0s 
STRING (Single) String — — '' 
WSTRING Double (String) — — "" 

 

 For an elementary data type, it is possible to define the initial value and range. The initial 

value is defined as the value of the variable when it is first used. The range defines what the 

possible values for the variable are. 

Section 7.3.3.2: Arrays 
 Arrays are data elements of identical type that are sequentially stored in memory. An array 

element can be accessed with the help of an array index that lies within the array boundaries. The 

value of the index indicates which array element is to be accessed. Most PLC systems ensure that 

array access with an array index outside the array limits results in an error message during runtime. 

The array is defined using square brackets ([]). The dimensions are separated by commas, e.g. 
  ARRAY [1…45] OF INT 

is a one-dimensional array with 45 elements of data type INT, while 

  ARRAY [1…50,1…200] OF INT 

is a two-dimensional array of data type INT with 50 elements in one dimension and 200 elements 

in the other dimension. 

 The elements of an array are accessed using square brackets, for example, TEST[3] takes 

the third element in the array TEST. The dimensions are separated using commas. 

 The initial values in the array can be defined using square brackets. When values are 

repeated, then we can use the format Repeats(Values), to simplify matters, for example, 

2(4) means that we will write the value 4 twice. Thus, the following two array definitions are 

equivalent: 
  TEST1 : ARRAY [1…5] OF INT := [1, 1, 1, 3, 3]; 

  TEST1 : ARRAY[1…5] OF INT := [3(1), 2(3)]; 
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Section 7.3.3.3: Data Structures 
 Using the keywords STRUCT and END_STRUCT, it is possible to define new hierarchical 

data structures that contain arbitrary elementary or other already defined derived data types as 

subelements. If a subelement is in turn a structure, a hierarchy of structures is created, for which 

the lowest structure level is formed of elementary or derived data types. 

 As in many other programming languages, the components of a data structure are accessed 

using a period and the component name, for example, VAR.TEST[3], where the component 

TEST is an array. 

Section 7.3.3.4: Derived Data Types 
 A derived data type is a user-defined data type that consists of elementary data types, 

arrays, and data structures. This procedure is called derivation or type definition. In this way, a 

programmer can define the best data model for the problem at hand. A derived data type is defined 

by TYPE and END_TYPE. The initial values for the elements of a derived data type is given by := , 

for example, 

TYPE 

 COLOUR : (red, yellow, green); 

 SENSOR : INT; 

 MOTOR : 

  STRUCT 

   REVOLUTIONS : INT := 0; 

   LEVEL : REAL := 0; 

   MAX : BOOL := FALSE; 

   FAILURE : BOOL := FALSE; 

   BRAKE : BYTE := 16#FF; 

  END_STRUCT; 

END_TYPE; 

where the element COLOUR is an enumeration that can only take the values red, green, and 

yellow; SENSOR is an INT; MOTOR is a data structure that contains the following elements: 

REVOLUTION with an initial value of 0, LEVEL with an initial value of 0, MAX with an initial 
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value of FALSE, FAILURE with an initial value of FALSE, and BRAKE with a hexadecimal 

initial value of FF. 

Section 7.4: Ladder Logic (LL) 
 The programming language ladder logic (LL) comes from the domain of 

electromechanical relay systems and describes the flow of electricity through a single network 

representing the POU. This programming language is primarily used for working with Boolean 

signals. 

 The ladder network or diagram consists of two vertical tracks and horizontal rungs 

connecting the vertical tracks. It is assumed that “electricity” flows from the left-hand track to the 

right-hand track following the rungs. Thus, the ladder network is always read rung by rung from 

top to bottom and in a given row from left to right, as long as no other order is provided. It is 

traditional to label all the left-hand rungs with a number. Normally, the numbers are not sequential 

but increase in units of 5 or 10 in order that additional future rungs can be easily added. Finally, 

the ladder network is often visually split into two parts: a left-hand part that shows the 

computations and a right-hand part that shows the storing or using of the variables. This convention 

makes reading the ladder network easier.  

Section 7.4.1: Components of Ladder Logic 
 Table 35 shows the components of ladder logic. 

Table 35: Components of Ladder Logic 

Name Symbol Commentary 

Rung  Read from left to right 

Open contact 
 

Copies the value from left to right, when the 

value of the variable VarName is TRUE; 

otherwise, FALSE is copied. 

Closed contact 
 

Copies the value from left to right, when the 

value of the variable VarName is FALSE; 

otherwise, TRUE is copied. 
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Name Symbol Commentary 

Positive-transition 

sensing contact  

Copies the value from left to right if and only if 

a FALSE → TRUE transition in the variable 

VarName is detected; otherwise, FALSE is 

copied. 

Negative-transition 

sensing contact  

Copies the value from left to right if and only if 

a TRUE → FALSE transition in the variable 

VarName is detected; otherwise, FALSE is 

copied. 

Coil22 
 

Copies the value on the left into the variable 

VarName. 

Negated coil22 
 

Copies the negated value of the left into the 

variable VarName. 

Set coil22 
 

Copies TRUE to variable VarName, if the left 

link is TRUE; otherwise, no change. 

Reset coil22 
 

Copies FALSE to variable VarName, if the left 

link is TRUE; otherwise, no change. 

Positive-transition 

sensing coil22  

Saves TRUE to the variable VarName if and 

only if a FALSE → TRUE transition is detected 

on the left link; otherwise, no change in the 

variable. 

Negative-transition 

sensing coil22  

Saves TRUE to the variable VarName if and 

only if a TRUE → FALSE transition is detected 

on the left link; otherwise, no change in the 

variable. 

 

 
22 The value on the left is always transferred to the right-hand side. 
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Name Symbol Commentary 

Set-Reset Block 

 

This block combines the functions of the set and 

reset coils. 

Return 
 

Exits the POU and returns to the calling POU. 

Conditional return  

If the left link tnw23 is TRUE, exit the POU und 

return to the calling POU; otherwise, no 

meaning. 

Jump 
 

Jump to the network with the given NAME. 

Conditional jump 
 

If the left link tnw23 is TRUE, jump to the 

network with the given NAME. 

Label 
 

Shows the name for part of a network. 

 Figure 96 shows how the typical Boolean operators can be implemented in ladder logic. 

The AND operator is implemented by placing the two contacts in series, while the OR operator 

places the two contacts in parallel. This follows from the observation that the electricity flows 

from left to right. For an AND operation, we need both contacts to be true for the electricity to flow. 

This implies that both need to be in series. On the other hand, for the OR operation, electricity can 

flow through either of the two paths. Therefore, the contacts should be placed in parallel. 

 

 
23 tnw represents a Boolean variable that determines if the given link should be performed. 
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Figure 96: (top) AND and (bottom) OR in ladder logic 

Section 7.4.2: Functions and Ladder Logic 
 Since ladder logic was originally developed for logical (or Boolean) systems, the 

implementation and running of complex functions using the simple ladder logic components can 

be difficult. For this reason, it is possible to define a function block that is programmed using 

another programming language. This function block always contains two Boolean variables (EN 

and ENO), as well as all the other required parameters. The Boolean input variable EN (enable in) 

determines if the function will be called. If EN is TRUE, then the function is called. The Boolean 

output variable ENO (enable out) determines if the programme completed successfully. It takes the 

value TRUE, if no errors occurred. Figure 97 shows such an implementation using ladder logic. 

 

Figure 97: Calling a function in ladder logic 
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Section 7.4.3: Examples of Using Ladder Logic 
Example 41: Ladder Logic for a Boolean Function 

 Please write the corresponding ladder diagram for the following Boolean function:  
  Q = XY + XZ + YZ 

Solution 

 When we want to create the ladder logic diagram, we should first convert the Boolean 

function into a minimal form. In our case, we can easily convert it to 
  Q = XY + (X + Y)Z 

In the ladder logic diagram, we will require (at least) one row for each term that is separated by a 

“+”, since each row corresponds to an AND Term. Thus, in our example, we will require 3 rows. 

All the values are not negated. Thus, the open contact will be used for all values. In order to save 

the resulting function value in Q, we require a coil. Figure 98 shows the ladder logic diagram for 

this example. 

 

Figure 98: Ladder Logic for Example 41 

  

Example 42: Ladder Logic for a Recipe 

 Consider a tank that needs to be filled with two components and then mixed before being 

sent on its merry way. The recipe is: 

1. Once the start button is pressed and both level sensors (L1 and L2) read FALSE, turn on 

Valves 1 and 2 (V1 and V2). Go to Step 2. 
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2. Once the fluid reach level sensor 2 (L2), that is, it reads TRUE, close both valves and turn 

on the mixer (M1) for five minutes. Go to Step 3. 

3. Turn off the mixer and wait one minute. Go to Step 4. 

4. Open the bottom valve (V3) and let the fluid drain. Go to Step 5. 

5. Once the bottom level sensor 1 (L1) reads FALSE, that is, the tank is empty, close the 

bottom value. Go to Step 1. 
 

Implement this recipe using ladder logic. 

Solution 

 In order to implement a recipe in ladder logic, we will need to define Boolean variables 

that keep track of in which step we are. In this example, since we have five steps, it makes sense 

to define the Boolean step variables as S1, S2, S3, S4, and S5. S1 will be initialised as TRUE, 

while all other variables will be initialised as FALSE. At the end of each step, the current step 

variable will be reset (to zero) and the next step variable will be set (to one). Turning on and off 

valves will be implemented using the set and reset coils, while the delay and timer will be 

implemented using the built-in time function (TON). Rung numbers have been added in multiples 

of 5. Finally, it can be noted that in this particular recipe each set has a corresponding reset. This 

is a feature of many recipes that will be made explicit in the PLC programming language sequential 

function charts. The final programme in ladder logic is shown in Figure 99. 
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Figure 99: Ladder Logic for Example 42 

  

 

Section 7.4.4: Comments 
 Ladder logic is perfect for large Boolean networks. However, it is not appropriate for 

sequence or recipe programming. In ladder logic, it is not recommended to use jumps, since these 

can lead to inconsistencies during runtime. 

Section 7.5: Instruction List (IL) 
 Instruction list (IL) is a language similar to assembly language. This language is a simple 

list of instructions, each of which is placed on a separate line. Each instruction has the following 

form: 
 Label: Operator/Function Operand(list) Comments 
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where Label names a given row of instructions and along with the colon can be ignored; the 

Operator or Function is an operator in instruction list or a function, Operand is zero, one, 

or more constants or variables for the operator or input parameters for the functions that are 

separated by commas; and Comments is an optional field that provides additional information 

about what the given instruction row does. All fields in italics are optional. 

Section 7.5.1: Universal Accumulator 
 Most assembly languages have a physical accumulator in the processor, that is, a value is 

loaded into this accumulator, additional values are added, subtracted and then stored. Instruction 

list also has such an accumulator that is often called the “current result.” However, it is not a 

memory area with permanently defined register lengths. Instead, the statement list compiler 

ensures that an abstract accumulator of any memory width is available that depends on the data 

type to be processed. In contrast to other assembly languages, there are no special processor status 

bits. The result of comparisons is written as a Boolean 0 or 1 in this accumulator. Conditional 

jumps and calls use the current value stored in the accumulator to evaluate the jump requirements. 

The current result can be of any general data type, derived data type or function-block type. The 

data width of the current result (number of bits) does not matter. Instruction list requires that two 

consecutive operations be type compatible, which means that the data type of the current result 

must be compatible with the following statement. 

 Table 36 shows the modifications of the current result by different operator groups. 

Unchanged means that an instruction passes the result of the previous instruction on to the 

following one without having made any changes to the value and type. Undefined means that the 

subsequent operation cannot use the current result. The first command of a function block (which 

is called using CAL) may only be a load LD, jump JMP, function block call CAL or return RET, 

since these commands do not require a current result. 

 The IEC 61131-3 standard itself does not define any operator groups. In fact, the behaviour 

and evaluation of the current result is only partially described in the standard. With operations such 

as AND, the type and content of the current result is intuitively clear both before and after execution. 

However, the standard leaves open the question of how the current result is defined after an 

unconditional jump. 

Table 36: Changes in the Current Result for Different Operator Groups 
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Impact of the Operator Group 

on the Current Result 
Abbreviation Example Operators 

Create C LD 

Process P GT 

Unchanged U ST; JMPC 

Undefined − 

Unconditional CAL block call, since the 

following instruction must reload the current 

result, because it does not have a clearly defined 

value after the function block has been returned. 

Section 7.5.2: Operators 
 Table 37 shows the defined operators in instruction list. The modifiers are defined as 

follows: 

• N: Negation, 

• (: Nesting levels using brackets, 

• C: Conditional performance of an operator when the current result equals TRUE. 

The modifiers are written together with the operator, for example, ANDN is a negated AND. 

Table 37: Operators in Instruction List 

Operator Acceptable Modifiers Operand Definition 

LD N ANY Load 
ST N ANY Save 
S  BOOL Set 
R  BOOL Reset 

AND / & N, ( ANY Boolean AND 
OR N, ( ANY Boolean OR 
XOR N, ( ANY Boolean Exclusive OR 
ADD ( ANY Addition 
SUB ( ANY Subtraction 
MUL ( ANY Multiplication 
DIV ( ANY Division 
GT ( ANY > 
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Operator Acceptable Modifiers Operand Definition 

GE ( ANY ≥ 
EQ ( ANY = 
NE ( ANY ≠ 
LT ( ANY < 
LE ( ANY ≤ 
JMP C, ( LABEL Jump to LABEL 
CAL C, ( NAME Call function NAME. 
RET C, (  Return from a function call 
)   Take the last deferred instruction 

 

 The current result can be linked with the result of an instruction sequence using the bracket 

operators. When the modifier “(” appears, the associated operator, the value of the current result 

and the data type of the current result are cached. The data type and value of the following line are 

loaded into the current result. When the “)” operator appears, the cached values and data type 

based on the operator and modifiers are linked with the current result. The result is then stored as 

the current result. Expressions in brackets can be nested.   

Section 7.5.3: Functions in Instruction List 
 In instruction list, functions are called by giving their name. The parameters can be passed 

using two different approaches: actual parameters or formal parameters. With actual parameters, 

the first parameter of a function is the current result that was previously loaded. Therefore, the first 

operand after the function name is the second function parameter in this variant. With formal 

parameters, all parameters are explicitly defined. Table 38 shows the two possibilities. 

Table 38: Two Possibilities for Calling the Function LIMIT(MN, IN, MX) 

Possibility 1: Actual Parameters Possibility 2: Formal Parameters 

LD        1 

LIMIT     2, 3 

LIMIT( 

      MN := 1, 

      IN := 2, 

      MX := 3 

      ) 
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 A function has at least one output parameter (function value) that is returned using the 

current result. Should the function have additional output parameters, these can be returned using 

parameter assignments. A call without formal parameters takes place in one line. The original order 

of the output declarations must be observed. In the case of formal parameter assignments, this is 

done line by line, followed by bracket line. With formal parameter assignment, the output 

parameters are marked with =>, e.g., ENO => ErrorOut means that ENO is an output value 

and is saved in the ErrorOut variable. The programming system assigns the function value to a 

variable with the function name. This name is declared automatically and does not have to be 

specified separately by the user in the declaration section of the calling block. 

Section 7.5.4: Calling Function Blocks in Instruction List 
 Function blocks are called using the CAL operator. The IEC 61131-3 standard provides 

three methods for calling function blocks: 

1) Calling a function block with a bracketed list of input and output parameters, 

2) Calling a function block with previously loaded and saved input parameters, and 

3) Calling a function block implicitly by using the inputs as operators. 

Method 3 can only be used for standard function blocks, since the programming system must use 

the name of the function block inputs as operators. This method cannot be used for the output 

parameters. Table 39 shows the three methods for calling the function block ZEIT1(IN, PT) 

with output variables Q and ET. 

Table 39: Three Methods for Calling the Function Block ZEIT1(IN, PT) with output variables Q and ET. 

Method 1 Method 2 Method 3 

CAL  ZEIT1( 

     IN := Frei, 

     PT := t#500_ms, 

     Q => Aus, 

     ET => WERT 

     ) 

LD t#500_ms 

ST ZEIT1.PT 

LD Frei 

ST ZEIT1.IN 

CAL ZEIT1 

 

LD ZEIT1.Q 

LD t#500_ms 

ST ZEIT1.PT 

LD Frei 

IN ZEIT1 

 

 

LD ZEIT1.Q 
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Method 1 Method 2 Method 3 

ST Aus 

LD ZEIT1.ET 

ST WERT 

ST Aus 

LD ZEIT1.ET 

ST WERT 

Section 7.5.5: Examples 
Example 43: Example of the Computation of the Current Result 

 For the given instructions, follow how instruction list uses and updates the different 

registers. Values in grey are the default initial values. 

Instruction (* Comments *) CR X1 X2 W1 FB1.i1 FB1.o1 
        

 Initial values: “STR” 0 1 10 1 103 

LDN X1 Load the 
negated value 
in X1 

1 0 1 10 1 103 

AND X2 CR AND X2 → 
CR 

1 0 1 10 1 103 

S X1 If CR = 1 
then: 1 → X1 

1 1 1 10 1 103 

R X2 If CR = 1 
then: 0 → X2  

1 1 0 10 1 103 

JMPCN 
Lab1 

Jump to Lab1 
if CR = 0 

1 1 0 10 1 103 

LD W1 Load the 
value in W1 → 
CR 

10 1 0 10 1 103 

MUL W1 CR * W1 → CR 100 1 0 10 1 103  

SQRT Function: 
sqrt(CR) → CR 

10 1 0 10 1 103  

ST 
FB1.il 

Save CR → 
FB1.i1 

10 1 0 10 10 103  

CAL FB1 FB1: internal 
computation 

10 1 0 10 10 112 
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Instruction (* Comments *) CR X1 X2 W1 FB1.i1 FB1.o1 
LD 
FB1.o1 

Load the 
output o1 
from FB1 → CR 

112 1 0 10 10 112 

ST W1 Save CR → W1 112 1 0 112 10 112 

GT 90 (CR > 90)? → 
CR 

1 1 0 112 10 112 

 

Example 44: Writing the Instruction List Programme 

 Please write the instruction list programme for the following function:  
  Q = XY + XZ + YZ 

Solution 

 The simplest approach to writing the instruction list programme is to go from left to write 

and write the corresponding instruction. The programme is then 
 LD X 

 AND Y 

 OR( X 

 AND Z 

 ) 

 OR( Y 

 AND Z 

 ) 

 ST Q 

 

Section 7.5.6: Comments 
  Instruction list is perfect for large Boolean networks. However, like with ladder logic, it is 

inappropriate for sequence or recipe programming. Instruction list has no complex programming 

flow concepts, such as loops. Finally, in instruction list, jumps should be avoided as they can lead 

to inconsistencies during runtime. 
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Section 7.6: Function-Block Language (FB) 
 The function-block language is a graphical model with Boolean operators and complex 

functionality represented using blocks. Motivated by electronic circuits, the signals flow between 

the blocks and are converted from Boolean inputs into Boolean outputs. Although this language is 

based on electrical circuits, the current standard has adopted different representations for the 

blocks symbolising AND and OR.  

Section 7.6.1: Blocks used in the Function-Block Language 
 Table 40 shows the blocks used in the function-block language. 

Table 40: Blocks used in the function-block language 

Name Symbol Comments 

AND 

 

 

OR 

 

 

Negation  
Negation is placed where the signal 

enters or leaves a block. 

Link  
When two connections coincide and 

the value is to be transferred. 

General 

Block  

There are as many input and output 

ports as required by the block. 

Rising Edge 
 

This is placed within the function 

block next to the corresponding 

variable in order to show a rising edge 

transition. 
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Name Symbol Comments 

Falling 

Edge  

This is placed within the function 

block next to the corresponding 

variable in order to show a falling 

edge transition. 

Return 
 

Leaves a POU and returns to the 

calling POU. 

Conditional 

Return  

If the left connection snw24 is TRUE, 

then exit the POU and return to the 

calling POU; otherwise ignored. 

Jump  
Jump to the network with the given 

identifier NAME. 

Conditional 

Jump  

If the left connection snw24 is TRUE, 

jump to the network with the given 

identifier NAME; otherwise ignored. 

 

 Inputs and outputs are defined upon first use. Figure 100 shows an example of a function 

block diagram with common components. The exact method for labelling the variables is not 

specified in the standard; any reasonable method can be used. 

 

 
24 snw represents a subnetwork that returns a Boolean value. 
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Figure 100: Diagram using the Function-Block Language 

Section 7.6.2: Feedback Variable 
 Function block language allows an output to be used as the new input of a network. Such 

a variable is called a feedback variable. The first time such a situation is encountered the initial 

value is used; afterwards, the last value is used. Figure 101 shows an example with feedback. 

 

Figure 101: Feedback in the Function-Block Language 

Section 7.6.3: Example 
Example 45: Creating the Diagram using the Function-Block Language 

 Please create the diagram using the function-block language for the following Boolean 

function:  
  Q = XY + XZ + YZ 

Solution 

 Figure 102 shows the solution. 
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Figure 102: The Function Q in the Function-Block Language 

Section 7.6.4: Comments 
 Function block language should be used in cases where there is signal flow between 

different components, for example, in closed-loop control. This language contains no complex 

programme flow concepts, such as loops. 

Section 7.7: Structured Text (ST) 
 Structured text (ST) is a further text-based programming language in the IEC 61131-3 

standard. It is referred to as a high-level programming language, since assembly-language 

commands are not used in structured text, but powerful constructs are built using more abstract 

commands. In structured text, the solution to a particular programming task is broken down into 

individual steps (instructions). An instruction is used to calculate and assign values, control the 

flow of commands, or to call or exit a POU. 

Section 7.7.1: Commands in Structured Text 
 Table 41 shows the commands in structured text. Each command must be separated by a 

semicolon, that is, unlike previous text-based languages, multiple commands can be placed on a 

single line. 
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 The IF command has many different forms. The obligatory components are the IF, THEN, 

and END_IF commands. The IF command opens the IF block, while the END_IF closes it. The 

other possibilities are the ELSE and ELSIF commands. The ELSE block is only performed if all 

previous expressions have been evaluated as FALSE. The ELSIF block is only performed if all 

previous expressions have been evaluated as FALSE and the corresponding Boolean expression is 

TRUE. This command can be repeated as often as desired. This gives the following possibilities: 

1) IF expression THEN code block; END_IF; 

2) IF expression THEN code block; ELSE code block; END_IF; 

3) IF expression THEN code block; ELSIF expression THEN code block; ELSIF expression 

THEN code block; ELSE code block; END_IF; 

 The FOR command also has many different possibilities. The obligatory parts are FOR, 

TO, DO, and END_FOR. The FOR command opens this code block and the END_FOR command 

closes it. The TO command specifies the end value and the DO command closes the declaration 

line of the FOR command. The optional part is the BY command that gives the step value. If no 

step value is given using the BY command, then it is assumed that the step is one. The two 

possibilities for the FOR command are: 

1) FOR Counter := expression TO expression BY expression DO code block; 

END_FOR; 

2) FOR Counter := expression TO expression DO code block; END_FOR; 

Table 41: Commands in Structured Text 

Keyword Description Example Comments 

:= Assignment d := 10; 
Assigns the value on the right to 

the variable on the left. 

:=, => 
Calling and Using 

Function Blocks 

FBNAME( 

 Part1:=10, 

Part3=>20); 

Calls another POU of type 

function block and assigns the 

required parameters: := for 

inputs and => for outputs. 

RETURN Return RETURN; Returns to the calling POU. 
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Keyword Description Example Comments 

IF … THEN 

ELSE, 

ELSIF 

END_IF 

Branching 

IF A>100 THEN 

f:=1; 

ELSIF d=e THEN 

f:=2; 

ELSE 

f:=4; 

END_IF 

Selection of alternatives using 

Boolean logic. 

CASE … OF 

ELSE 

END_CASE 

Multiple Selection 

CASE f OF 

1: f:=11; 

2: f:=14; 

ELSE f:=-1; 

END_CASE; 

Selects a code block based on the 

value of the expression f. 

FOR … TO … 

BY … DO 

END_FOR 

FOR Loop 

FOR h:=1 TO 10 

BY 2 DO 

f[h/2]:=h; 

END_FOR; 

Repeated running of a code block 

with start and end conditions. 

WHILE … DO 

END_DO 
WHILE Loop 

WHILE m>1 DO 

n:=n/2; 

END_WHILE; 

Repeated running of a code block 

with end conditions. 

REPEAT … 

UNTIL 

END_REPEAT 

REPEAT Loop 

REPEAT 

i:=i*j; 

UNTIL i>10000 

END_REPEAT; 

Repeated running of a code block 

with end conditions. 

EXIT Breaking a loop EXIT; Immediate exit from a loop 

; 
Command 

delimiter 
 Shows the end of a command. 

Section 7.7.2: Operators in Structured Text 
 Table 42 shows the priority of the operators in structured text. 

Table 42: Operators and their Priority in Structured Text 
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Operator Description Priority 
(…) Brackets Highest 

Function(…) Function Evaluation  
** Exponentiation  

-, NOT Negation, Boolean Complement  
*, / Multiplication, Division  
MOD Modulo  
+, - Addition, Subtraction  

>, <, ≤, ≥ Comparison Operators  
= Equality  
<> Inequality (≠)  

AND, & Boolean AND  
XOR Boolean exclusive OR  
OR Boolean OR Lowest 

Section 7.7.3: Calling Function Blocks in Structured Text 
 In structured text, function blocks are called by their name with the required parameters 

placed in brackets. The := is used to assign the value of the actual parameters, while => is used 

to assign any output variables. Since the assignments must be explicit, the order of the assignments 

is irrelevant. If a parameter is not initialised during the call, then the initial value or the last value 

will be used.  

Section 7.7.4: Example 
Example 46: Structured Text 

 Please write the structured text programme for the following system. As shown in Figure 

103, a tank can be filled using valves.  The weight of the tank is determined using a scale. The 

function block monitors the tank weight to determine if the tank is full, empty, or in between the 

two states. The block gives a single command that can have four values: 

1: Fill the tank; 

2: Stop filling the tank; 

3: Start the stirrer; 

4: Empty the tank. 
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As necessary, the appropriate values are opened or closed to control the tank level. The stirrer can 

only work if the tank is full; otherwise, the command is ignored. 

 

Figure 103: Tank System for the Structured-Text Example 

Solution 
(*Tank States*) 

TYPE T_STATE:(FULL,NOT_EMPTY,EMPTY); END_TYPE; 

(*Valve States*) 

TYPE T_VALVE:(ON,OFF); END_TYPE; 

  

FUNCTION_BLOCK Weightcontrol 

VAR_IN 

     Command: INT; 

     Weight:  Real; 

     Full_weight,Empty_weight: Real; (*Same data type declared on 

one line*) 

END_VAR 

VAR_OUTPUT 

      V1: T_VALVE := OFF; 

      V2: T_VALVE := OFF; 

     Speed: REAL := 0.0; 
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END_VAR 

VAR        (*Internal Variables*) 

     State: T_STATE := EMPTY; 

END_VAR 

(*Determine the Tank State: Compare the full and empty weights *) 

IF Weight >= Full_weight THEN 

    State := FULL; 

ELSIF Weight <= Empty_weight THEN 

    State := EMPTY; 

ELSE 

    State := NOT_EMPTY; 

END_IF 

(*Implementation of Commands: 1-Fill, 2-Stop, 3-Stir,  4-Empty*) 

CASE Command OF 

 1: V2 := OFF; 

    V1 := SELECT(G := State=FULL,IN0 := ON,IN1 := OFF);  

 (*ON only if G is false*) 

 2: V2 := OFF; 

    V1 := OFF; 

 4: V1 := OFF; 

    V2 := ON; 

END_CASE; 

(*Stirrer Speed*) 

Speed  := SELECT(G := Command=3; IN0 := 0.0; IN1 := 100.0); 

END_FUNCTION_BLOCK 

 

Section 7.7.5: Comments 
 Structured text has the following advantages (especially in comparison with instruction list) 

are: 

• Compact formulation of the programming tasks, 

• Clear programme structure, and 
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• Powerful constructs to control the flow of commands. 

However, it has the following disadvantages: 

• The conversion of the programme into machine code cannot be directly influenced 

since it is performed using a compiler. 

• The higher abstraction level brings with it a loss of efficiency, that is, the translated 

programme is longer and slower. 

Section 7.8: Sequential-Function-Chart Language (SFC) 
 The sequential-function-chart language (SFC) is the second graphical method for 

programming a PLC. It consists of a sequence of steps and transitions that implement predefined 

tasks and provide a visual overview of the process.  

Section 7.8.1: Steps and Transitions 
 A step is either active or inactive. It consists of a number of instructions that are performed 

as long as the given step is active. A transition using a Boolean expression determines when a 

step becomes inactive. Connections with a predefined direction describe which step or steps should 

be activated next. 

 Steps are shown using a rectangle. Figure 104 shows two possible forms for showing a step. 

The general step block, which is shown in Figure 104 (left), is a simple rectangle with a single 

border. The initial step block, which is shown in Figure 104 (right), is a simple rectangle with 

double border. 

 

Figure 104: Steps in Sequential Function Charts: (left) general step and (right) initial step 

 The transition conditions are marked with a horizontal line with identifiers. The Boolean 

description, often called a guard, shows the requirements for a transition to occur. The guard can 

be written in any of the other PLC languages. Figure 105 shows some possibilities. The most 

frequently used PLC languages for describing transitions is structured text, function block 

language, or ladder logic. Often, the guard is ignored. 
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Figure 105: Transitions Conditions in Different PLC Languages 

  When the POU is called, the specially marked initialisation step is made active. All the 

assigned instructions will be performed. When the transition conditions become TRUE, the 

initialisation step will be made inactive and the next step will be activated. When a transition 
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occurs, the active attribute (often called a token) is passed from the current active step to its 

successor. This active attribute wanders through the individual steps, multiplying for parallel 

branches, and coming together again. It may not be completely lost nor is uncontrolled distribution, 

which occurs when multiple tokens are present in a single step, possible. 

Section 7.8.2: Action Blocks 
 An action block shows the details of what must be accomplished in a given step. Each 

action block is always assigned to a particular step. It is not necessary to include the action block. 

No more than two action blocks can be associated with a given step. 

 Each action block has four components, which are shown in Figure 106:  

a) Qualifier, that consists of an acceptable tag. 

b) Action Name, that briefly describes the action. 

c) Indicator Variable, that provides which PLC variable is to be used. 

d) Process Description, that describes in an appropriate language the action (optional). 

Each component has a specified location in the action block. The qualifier must be selected from 

a small group of abbreviations that describe how the step is to be performed. Table 43 shows the 

possible qualifiers. 

 

Figure 106: Components of an Action Block: a: Qualifier; b: Action Name; c: Indicator Variable; d: Process Description 

Table 43: Qualifiers in Sequential Function Charts 

Qualifier Short Name Description 

N not saved Means that as soon as the step has ended, the action is 

stopped. 
S saved Means that the action continues with the given values 

until it is stopped. 
R reset Means that a saved action is stopped. 
L (time) length Means that the action lasts for the specified time T. 
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Qualifier Short Name Description 
D delay Means that the action is delayed by the specified time 

before being implemented. 
P pulse Means that the action occurs for a very short period of 

time. 
DS delayed and saved Means that the action is first delayed and then saved. 
SD saved and delayed Means that the action is first saved and, then after the 

delay, if the step is still active, implemented. 
SL saved and time 

limited 

Means that a time-limited action is saved. 

Section 7.8.3: Sequential Function Charts 
 As the name suggests, in the sequential-function-chart language, a chart is designed to show 

how the individual components are linked together. This chart is built using the following rules:  

1) A vertical link connects two steps.  

2) An arrow is used to clarify the direction in which steps occur.  

3) An action block is connected with the step block using a straight horizontal line. 

 There are two special types of connections: alternative and parallel paths. An alternative 

path is shown using a single horizontal line across all possible alternative ways. This horizontal 

line is placed at the beginning and end of the region corresponding to the alternative paths. Only 

one of the paths must end at which point all the other paths will be stopped. Figure 107 shows an 

alternative path. Alternative paths are normally selected from left to right. This is shown in Figure 

108. In this case, the paths will be selected in order from S_2a, S_2b, and then S_2c. This means 

that first the transition condition for S_2a will be tested. If it is TRUE, this path will be taken and 

all other paths ignored. If it is FALSE, then S_2b and S_2c (in this order) will be tested. When a 

user defined order is provided, as, for example, in Figure 109, then this order is followed. In this 

example, it means that first S_2b will be tested, followed by S_2c and finally S_2a. 

 Parallel paths are shown by a doubled horizontal line across all possible parallel paths. 

This horizontal line is placed at the beginning and end of the region corresponding to the parallel 

paths. All parallel paths must end before the process can continue. Figure 110 shows an example 

of a parallel path. 
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Figure 107: Alternative Paths in Sequential Function Charts 

 

 

Figure 108: Usual Decision Order for Alternative Paths in Sequential Function Charts  

 

Figure 109: User-Defined Decision Order for Alternative Paths in Sequential Function Charts 
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Figure 110: Parallel Paths in Sequential Function Charts 

Section 7.8.4: Example 
Example 47: Creating a Sequential Function Chart 

 Consider a chemical reactor as shown in Figure 111. It is desired to design a PLC to control 

the process. The objective is to draw the sequential function chart for the process. The desired 

process can be described as follows: 

 When the START button has been pressed, the reactor status sensor S1 confirms that the 

reactor is empty and that the temperature sensor S4 and the pressure sensor S5 give no error 

messages, then valve Y1 should be opened until level sensor S2 reaches the desired value, that is, 

it returns a 1. Then, the motor for agitator M should be turned on and valve Y2 opened. When the 

level sensor S3 reaches the desired value, valve Y2 should be closed. After waiting 5 s, heater H 

is turned on until the temperature sensor S4 reaches the desired value. During the heating 

procedure, should the pressure sensor S5 return a high-pressure alarm in the reactor, then the 

pressure release valve Y4 should be opened until the alarm is lowered. After the heating procedure 

has been completed, the agitator runs for 10 more seconds at which point the valve Y3 is opened. 

Once the reactor is empty, that is, the reactor status given by S1 returns 1, valve Y3 is closed and 

the process can be restarted. 
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Figure 111: Schematic of the Reactor 

Solution 

 Before the solution to the problem is provided, it is useful to consider the general procedure 

for solving such problems. This procedure can be written as 

1. Define all the variables and their values, especially for the Boolean variables. 

2. Write the process description as a series of steps. Note that a single sentence can be 

associated with multiple steps or multiple sentences can be combined into a single step. 

3. Draw the sequential function chart. 

Defining the Variables 

 The variables are defined as follows. 

Input Variable Symbol Data Type Logical Values Address 

Start Button START BOOL Pressed START = 1 E 0.0 
Reactor Status S1 BOOL Tank empty S1 = 1 E 0.1 
Level Sensor 1 S2 BOOL Level 1 reached S2 = 1 E 0.2 
Level Sensor 2 S3 BOOL Level 2 reached S3 = 1 E 0.3 
Temperature 

Sensor 
S4 BOOL Temperature 

reached 
S4 = 1 E 0.4 
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Pressure Sensor S5 BOOL High-Pressure 
Alarm 

S5 = 1 E 0.5 

Valve 1 Y1 BOOL Valve open Y1 = 1 A 4.1 
Valve 2 Y2 BOOL Valve open Y2 = 1 A 4.2 

Release Valve Y3 BOOL Valve open Y3 = 1 A 4.3 
Pressure Release 

Valve 
Y4 BOOL Valve open Y4 = 1 A 4.4 

Heater H BOOL Heater on H = 1 A 4.5 
Agitator Motor M BOOL Motor on M = 1 A 4.6 

 

Figure 112 shows the sequential function chart along with the corresponding text, so that is clear 

how each of the components were created. 

 

Figure 112: Sequential Function Chart 
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Section 7.8.5: Validity of a Sequential Function Chart 
 With sequential function charts, it is easy to create complex networks. However, the 

question remains if these networks are truly valid and result in proper operation. 

 Although there exists a method to determine the validity of a sequential function chart, it 

not guaranteed that it will find all valid networks. The proposed method only determines if the 

network is valid. If the method fails, there is no guarantee that the chart is truly invalid. The 

procedure is: 

1) Replace all step-transition-step by a 

single step. 

 
2) Replace all transition-step-transition 

by a single transition. 

3) Replace two parallel transitions by a 

single transition. 

4) Replace two parallel steps by a single 

step. 

5) Remove any self-transitions.  

 
 



  265 

The validity is then determined using the following rule. A sequential function chart is valid when 

the chart can be reduced to an implementable single step.  

Example 48: Determining the Validity of a Network 

 Determine the validity of the following sequential function chart shown in Figure 113. 

 

Figure 113: Sequential Function Chart for Checking Its Validity 

Solution 

 The method is followed until no further reductions can be produced. The first step is to 

apply Rule #1 to give Figure 114. 
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Figure 114: First Reduction 

Then, Rules #4 and 5 can be applied to give Figure 115. 

 

Figure 115: Second Reduction 

Then Rule #2 is applied twice to give Figure 116. 

 

Figure 116: Third Reduction 

The last step involves applying Rule #3 to give Figure 117. 
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Figure 117: Fourth and Final Reduction 

The reduced chart is obviously valid, since it contains only a single step and a single transition. 

Thus, we can conclude that the proposed sequential function chart is in fact valid. 

 

Section 7.9: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 7.9.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1)  Global variables can only be used in a single resource. 

2) A nonpre-emptive task must always be completed before another task can be started. 

3) 1Prog12 is a valid function name. 

4) TUI_124 and TUI_12456 are equal. 

5) T#4d4.2h represents 4 days and 4.2 hours. 
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6) LE means less than. 

7) A task with a priority value of 3 has the highest priority. 

8) In the function-block language, a double arrow denotes a jump between two parts of the 

function-block network. 

9) In the function-block language, we can use &. 

10) In ladder logic, a coil can be used to save a value. 

11) In ladder logic, we can create feedback loops. 

12) In instruction list, the statement SN HIPPO is a valid one. 

13) In instruction list, the brackets () delay the implementation of an instruction. 

14) In structured text OR has a higher priority compared to AND. 

15) In structured text, we can use the CASE command. 

16) In sequential function charts, N means that as soon as the step is ended, the action is stopped. 

17) In sequential function charts, R means that an action is delayed by the given time. 

18) In sequential function charts, it is possible to easily determine the validity of the result chart. 

19) Ladder logic is a great idea to create complex, high-level PLC programmes. 

20) Instruction list is designed for simple, optimised PLC programmes. 

Section 7.9.2: Short Questions 
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator 

combined with pen and paper. 

21) Is the sequential function chart in Figure 118 valid? 
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Figure 118: Validity of Sequential Function Charts 

22) Give the sequential function charts for the controlling the following systems: 

a. Stirring process: Figure 119 shows the P&ID diagram of a stirred tank B with flow 

controller US2. The binary input signals to US2 are the high-level alarm L, the start 

signal S and the end signal E. The binary output signals from US2 are V1 for 

switching the input valve, V2 for switching the drain valve, and R for switching the 

stirrer motor. The following sequence is required: After the start signal reaches 1 

(S = 1), a liquid is to be dosed by opening the input valve (with V1 = 1) and turning 

the stirrer on (R = 1) until the level L reaches its upper limit (L = 1). Then, valves 

are closed and the stirrer should alternately between being switched on for 1 min 

and switched off for 1 min. This switching on and off should, regardless of the 

current cycle, be ended immediately when the end button is pressed (E = 1). Then 

the drain valve should be opened for 5 minutes. Then everything should be switched 

into the idle state, that is, V1 = V2 = R = 0. When S = 1, the process is started from 

the beginning. 

 

Figure 119: Stirring Process 
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b. Washing Machine: The control for a simple washing machine, shown in Figure 

120 with an explanation of the variables in Table 44, should implement the 

following sequence. After the input signal START has a value of 1, valve V1 should 

be opened until the binary level sensor L1 reports that the desired water level has 

been reached. Then, the MOTOR of the washing drum should be switched on 

alternately for a period of time T_on and switched off for a period of time T_off. 

During this alternating switching on and off, the electrical HEATING is first 

switched on until the water temperature has reached a certain value, which is 

reported by the binary sensor T2. Then, the process should wait a certain minimum 

waiting time T_wait before any further heating occurs. Once the motor has 

stopped running, the alternative switching of the motor is also stopped. Then, the 

PUMP is switched on and valve V2 is opened at the same time. Once the level sensor 

L0 reports an empty drum, the initial state is reached, and the process can be 

repeated. 

 

Figure 120: Washing Machine 
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Table 44: I/O for the Washing Machine 

I/O Name Description for a Boolean Value 1 

Output V1 Valve V1 is open. 

Output V2 Valve V2 is open. 

Output HEATING Heating is on. 

Output MOTOR Motor is on. 

Output PUMP Pump is on. 

Input START Start button has been pressed. 

Input L0 Level L ≤ Lmin 

Input L1 Level L ≥ Lmax 

Input T2 Temperature T ≥ Tdesired 

 

23) In the examples below, various Boolean functions of the form Q = f(X, Y, Z) are given. 

For each, please provide a) the function in its sum-of-products and product-of-sums forms, 

b) the reduced function found using a Karnaugh diagram; and c) the PLC programme using 

instruction list, ladder logic, and function-block language for the minimised function. 

a. The function shown using ladder logic in Figure 121. 

b. The function that implements a majority decision rule for a 2-out-of-3 redundancy 

system, that is, the output Q is 1 if and only if at least two of the inputs are 1.  

c. The function shown by the truth table in Table 45. 

d. The function shown by the truth table in Table 46. 

e. The function Q = f(B, G, M) is described as follows: 

i. Three sensors in a sorting system measure the properties of parts and deliver 

the following binary signals to the inputs of a PLC: 

1. B, where B = 1 means a hole is present, 

2. G, where G = 1 means green paint is present, and 

3. M, where M = 1 means a metallic material is present. 

ii. Parts produced without errors have the following properties: 

1. Either metallic and green (with or without a hole) 

2. Nonmetallic, not green, and with a hole. 
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iii. The output Q of the PLC should be 1 when the part is to be rejected, i.e., if 

it does not have the above properties of a faultlessly produced part. 

 

Figure 121: Ladder Logic 

Table 45: Truth Table I 

X 0 0 0 0 1 1 1 1 

Y 0 0 1 1 0 0 1 1 

Z 0 1 0 1 0 1 0 1 

Q 0 1 1 0 1 1 1 1 

Table 46: Truth Table II 

X 0 0 0 0 1 1 1 1 

Y 0 0 1 1 0 0 1 1 

Z 0 1 0 1 0 1 0 1 

Q 0 0 1 1 1 0 1 1 

Section 7.9.3: Computational Exercises 
The following problems should be solved with the help of a computer and appropriate software 

packages, such as CodeSys. 

24) Using CodeSys, write the PLC programme to control a filling station. 
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Chapter 8: Safety in the Automation 

Industry 
 As automation becomes more widespread, there is a corresponding need to consider the 

safety of those who come in contact with the automated systems. Furthermore, automated systems 

need to take into consideration safety constraints themselves when they implement various actions. 

For these reasons, it is helpful to briefly review the different safety regulations. Obviously, it is 

always your engineering obligation to make sure that you have checked the most recent and most 

relevant regulations and laws applying to your specific situation. 

 In general, safety can be divided into two parts: physical and digital. Physical safety 

considers the steps and regulations required to ensure that the plant and its surroundings are safe 

for the workers, visitors, and the environment. Environmental protection considers not only 

hazardous substances, but also the emission of electromagnetic radiation or noise. Digital safety 

considers the steps required to ensure that the communication networks and the associated devices 

cannot be hacked and used to create an unsafe physical situation. Furthermore, digital safety must 

ensure that no sensitive information can be stolen or used in an inappropriate manner. This aspect 

is very important given the increasing legislative interest in making sure that confidential personal 

information remains confidential. 

Section 8.1: Safety of the Physical System 
 Before delving into the specifics of physical safety, it is useful to consider some basic 

principles. A hazard is a source of danger, while a risk is the degree or extent of peril that a hazard 

could create. Hazards arise from such things as moving objects, stored energy, and explosions. 

Essentially, hazards primarily arise from the release of latent (or hidden) energy. These include: 

1) Kinetic Energy, which is the energy resulting from moving objects, can present hazards 

in any rotating equipment, such as pumps and turbines, vehicles, and conveyor belts. 

2) Potential Energy, which is the energy resulting when an object unexpectedly falls. Such 

releases of energy are common in structural failures, such as building collapses. 
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3) Work, which is energy stored in springs, electrical circuits, and other devices. When 

released, this can lead to catastrophic failure and impressive damage. A common electrical 

example is a short circuit. 

4) Heat, which is energy crossing a boundary. Heat exchange is always based on a 

temperature difference between two points in space. Since heat always influences the 

environment, touching hot surfaces, for example, can lead to burns. The same situation 

applies to touching very cold surfaces, which can also lead to burns or frostbite. 

In order to increase the safety of a physical system, it can be useful to consider the following steps 

when designing the overall system: 

1) Minimise: Avoid using (or use as little as possible) any hazardous substances. 

2) Substitute: Replace hazardous substances by ones that are less hazardous but with similar 

properties. 

3) Moderate: Replace extreme operating conditions by ones that are less severe. 

4) Simplify: Create designs or processes that are less complex and simpler. 

5) Isolate: Create situations where the effect of a hazard has minimal impact on the overall 

system, for example, physically separating the office space from the production area. 

The above ideas can be framed within the inherently safer predesign (ISPD) approach, which 

consists of the following 4 steps: 

1) Identify: Determine what the hazards are and how they can impact the process. 

2) Eradicate: Remove the effects of as many of the hazards as possible, for example, by 

designing fail-safe systems, that is, should a system encounter a failure it ends up in an 

inherently safe mode that cannot cause further problems. A common example of this is the 

design of control valves to fail open or closed depending on the process conditions, for 

example, a control valve for a critical cooling jacket should fail open so that the system 

remains cooled even if the valve has failed.  

3) Minimise, simplify, and moderate: If a hazard cannot be eradicated, then try and limit its 

effects on the system. 

4) Isolate: Create structures that will limit the amount of damage that can occur, for example, 

by segregating hazardous operations. 

Another approach to this situation is to perform a hazard-and-operability study (HAZOP) to 

determine where the given hazards lie and how best to mitigate them. The HAZOP procedure 
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consists of the following four steps: determine, using a systematic search, possible faults; find the 

causes for the faults; estimate the effects of the faults on the system; and suggest appropriate 

countermeasures. A HAZOP requires that a detailed plan of the process be available. Thus, such 

analysis is often performed at a later stage of design after the overall process design has already 

been completed. This implies that, due to the high cost or structural changes required, it could be 

too late to make substantive changes at this point. Thus, HAZOPs are often used to provide an 

understanding of the hazards present and their risk.  

 Finally, it can be mentioned that when designing safety systems, it is useful to consider 

redundancy, that is, having more than one channel or way to achieve a given task. As well, this 

implies that different channels should be used for different tasks (control, alarm, and monitoring), 

so that there is less risk of catastrophic failure. Thus, for example, alarms and monitoring should 

not occur on the same channel. If it should fail, alarm signals can no longer be transmitted in 

addition to the less important monitoring signals. There are two main ways to implement 

redundancy. In the first approach, often called homogeneous redundancy, the same task is 

implemented by multiple (identical or similar) devices, for example, the temperature is measured 

using three temperature sensors at the same point. However, this approach carries the risk that 

systematic errors in the sensors or devices are propagated into the system. In the second approach, 

often called heterogeneous redundancy or redundancy by diversity, the same task is 

implemented using different devices, for example, three separate path-planning computer systems 

that use different computational algorithms could be implemented and the decision taken by 

majority vote, that is, if two or more algorithms give the same result it is followed. Selecting the 

appropriate approach depends on the requirements and standards of the process. 

Section 8.1.1: Quantifying Risk and the Safety Integrity Level 
 In order to properly understand and implement a safety system, it is necessary to quantify 

the risk in some manner. One approach is to define the risk R as 

  R = CD (249) 

where C is the impact of the hazard and D is the frequency of the hazard. The frequency of the 

hazard is defined as 

  D = FPW (250) 
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where F is the occurrence frequency, P is the probability that the hazard cannot be mitigated, and 

W is the probability that without any safety system in place an undesired state will be reached. 

Since it makes little sense to define the risk with an exact value, it is common to instead associate 

a given level to the individual variables and look at the combination of levels. 

 For C, the following levels are defined: 

• C1: Minor injuries 

• C2: Major or permanent injuries of one or more people or a single death 

• C3: Up to 5 deaths 

• C4: More than 5 deaths. 

For F, two levels are defined: 

• F1: During the course of the day, people are in the danger zone less than or equal to 

10% of the time. 

• F2: During the course of the day, people are in the danger zone more than 10% of the 

time. 

For P, two levels are defined: 

• P1: It is possible to mitigate the hazard (one should provide the appropriate steps to do 

so). 

• P2: It is not possible to mitigate the hazard. 

For W, three levels are defined: 

• W1: The undesired state will occur less than once every 10 years. 

• W2: The undesired state will occur less than once per year. 

• W3: The undesired state will occur more often than once per year. 

The above levels are then combined to give an overall safety integrity level (SIL). There are four 

safety integrity levels labelled SIL1 to SIL4, where the larger number reflects a more hazardous 

level. The relationship between the different parameters is shown in Figure 122. 
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Figure 122: Relationship between the parameters and the safety integrity levels 

Section 8.2: Safety Regulations 
 Safety regulations in Germany (and most of Europe and even the world) come in many 

different flavours and legal force. In Germany, standards are developed by the German Institute 

for Standardisation (DE: Deutsches Institute für Normung, commonly abbreviated as DIN). DIN 

publishes standards not only for safety but for all sorts of other aspects, such as formatting of 

letters, transliteration, and engineering. All standards developed or accepted by DIN are prefixed 

by the letters DIN followed by a number. Additional letters can be added to show the general 

applicability of the standards. Using DIN EN implies that we are dealing with a German edition of 

a European standard, while DIN ISO implies that we are dealing with a German edition of an 

international standard developed by the International Standards Organisation (ISO). Obviously, it 

is possible to have a DIN EN ISO label which would denote a German edition of a European and 

international standard. In general, when there are multiple prefixes, this implies that we are dealing 

with the same standard under different guises, for example, a DIN ISO #### standard would be 

the same as the corresponding ISO ####. Examples of different DIN standards are: 
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1) DIN 31635 which standardises the transliteration of the Arabic script used to write Arabic, 

Ottoman Turkish, Iranian, Kurdish, Urdu, and Pasto 

2) DIN EN ISO 216 which standardises writing paper and certain classes of printed matter, 

trimmed sizes, A and B series, and indication of machine direction 

3) DIN ISO 509 which covers the production of technical drawings, relief grooves, and types 

and dimensions of them. 

4) DIN EN 772-7 which covers clay masonry units, namely the determination of water 

absorption of clay masonry damp proof course units by boiling water. 

 Other countries use similar systems, for example, Austria prefixes its codes with ÖNORM 

while the United States of America uses the ANSI system.  

 Safety regulations in Germany (and most of Europe) for machines can be split into three 

types: 

• Type A Regulations: These regulations cover the basic safety concepts, design 

principles, and general aspects of machines. An example of a Type A regulation is the 

EN ISO 12100 standard that provides the general principles of design. 

• Type B Regulations: These regulations are baseline safety standards and requirements 

for protective equipment. There are two subtypes: B1-Regulations that cover specific 

safety aspects and B2-Regulations that cover the standards for protective equipment 

required for machines. An example of a Type B1 regulation is the EN ISO 13855 

standard that provides the guidelines for the arrangement of protective devices, while a 

Type B2 regulation would be the EN 953 standard that considers fixed guards for 

machines. 

• Type C Regulations: These regulations are the specific safety standards for a particular 

machine or group of machines. An example of a Type C regulation would be the EN 

693 standard that provides the standards for hydraulic presses.  

Section 8.3: Digital Safety 
 In today’s world, where many components of a plant are now linked digitally using 

networks, it is imperative that the digital system be secured. The main topic in digital safety focuses 

on preventing intruders from entering the digital system and making unauthorised changes to the 

system, that is, digital safety must prevent hacking from occurring. Hacking can expose a 
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company to various threats including loss of proprietary information, damage to the process by 

illegal changing of process operating conditions, and legal issues due to distribution of confidential 

personal information.   

 Digital security can be achieved by creating strong passwords, changing the passwords on 

a regular basis, and checking for any intruders. Strong antivirus software should also be 

implemented. Multiple interacting networks should be considered to provide additional levels of 

security. Finally, the workers should be educated in proper digital safety, as the digital system is 

only as strong as its weakest link. People placing unknown USB-drivers into work computers can 

easily introduce unwanted viruses into the company network.  

Section 8.4: Chapter Problems 
 Problems at the end of the chapter consist of three different types: (a) Basic Concepts 

(True/False), which seek to test the reader’s comprehension of the key concepts in the chapter; (b) 

Short Exercises, which seek to test the reader’s ability to compute the required parameters for a 

simple data set using simple or no technological aids. This section also includes proofs of theorems; 

and (c) Computational Exercises, which require not only a solid comprehension of the basic 

material, but also the use of appropriate software to easily manipulate the given data sets. 

Section 8.4.1: Basic Concepts 
Determine if the following statements are true or false and state why this is the case. 

1) Process safety is never a topic of concern. 

2) A hazard is something that has a high likelihood of causing harm. 

3) A short circuit is an example of a hazard caused by the release of stored energy or work. 

4) Collapsing buildings are an example of hazards posed by kinetic energy. 

5) Hazards that cannot be eliminated should be isolated. 

6) Designing complex processes is a good risk mitigation strategy. 

7) The fail-safe principle states that a failing system should always end up in a safe mode. 

8) Using the fail-safe principle, valves should always fail closed. 

9) A HAZOP seeks to identify the risks and how best to mitigate them. 

10) Redundancy means that a single temperature sensor is used for process monitoring and 

process control. 



  280 

11) Selecting a course of action based on two-out-of-three voting is an example of redundancy 

by diversity. 

12) A risk with an occurrence frequency greater than 10% is always an SIL 4 risk. 

13) A risk with a hazard impact level of C3 implies that it can cause only minor injuries. 

14) A risk with a mitigation level of P2 implies that it cannot be mitigated. 

15) A risk with a W level of W3 implies that the undesired state will occur more often than 

once per year. 

16) In Germany, Type A regulations cover the detailed requirements for the safety of a specific 

machine. 

17) An example of a B2 regulation would be the design of protective guards for machines. 

18) An example of a C regulation would be the standards for the design of chemical reactors. 

19) Using simple passwords and minimal digital security is a good idea for a critical chemical 

process.  

Section 8.4.2: Short Questions 
These questions should be solved using only a simple, nonprogrammable, nongraphical calculator 

combined with pen and paper. 

20) Determine the safety integrity levels for the following risks: 

a. A risk evaluated as belonging to C2, F1, W2, and P2. 

b. A risk evaluated as belonging to C3, F2, P1, and W1. 

21) Determine some of the safety issues involved with the production of the following 

chemicals. Based on the principles of safety considered here, would you recommend that 

these chemicals be produced by a new start-up that has no chemical engineering 

background. 

a. Acrylonitrile (CH2CHCN), which is produced from propene, air, and ammonia. 

b. Propene (C3H6), which is produced from ethene and 2-butene. 

22) Perform a HAZOP on the compressor unit shown in Figure 123. 
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Appendix I: Partial Fractioning 
 When solving equations in the frequency domain and it is desired to convert them back 

into the time domain, it may be necessary to perform partial fractioning to obtain a solution. 

Although there exist many different approaches, the following is one simple method that will allow 

the final result to be obtained easily. Consider a rational function of the form: 

  
( )
( )

( )

( ) ( )2

1 1

ql
ji

nn nn
i i j j j

i j

N s N s
D s

s s sα β α β γ
= =

=
+ + +∏ ∏

  (251) 

where nl represents the number of distinct linear terms, nq the number of distinct irreducible 

quadratics (those that have imaginary roots as their solution), and α, β, and γ are known constants. 

Let n be the overall order of the system. In order to perform partial fractioning, write the following 

fraction depending on the form of the root: 

1) For each linear term (αs + β)n, put the term, 
( )1

k
n

k
k

B

sα β= +
∑ . 

2) For each irreducible quadratic term, (αs2 + βs + γ)m, put the term, 
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Once the form of the partial fractioning solution has been obtained, it is necessary to solve for the 

unknown parameters. First, cross-multiply, so that the denominators are the same. Then, it is 

necessary to solve for the unknown parameters by equating the unknown side with the known, 

N(s). The easiest way to solve this is using the following approach: 

1) For each linear term, set s = −β / α to obtain Bn of the linear terms. This will reduce the 

equation to the form ( ) ( ) ( )2

1 1

ql
ji

nn nn
n i i j j j

i j
i n

B s s s N sα β α β γ
= =
≠

+ + + =∏ ∏  evaluated at the 

given root. 

2) For each quadratic term, set s equal to the imaginary roots. This will also reduce the 

equation to a simpler form and allow for An and Bn to be solved. 

For the remaining terms, create a system of equations by selecting different values of s and 

evaluating the known values, so that the remaining unknowns can be solved. You will need n – 

nl – 2nq equations in order to find the remaining n – nl – 2nq terms. 
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Example 49: Partial Fractioning 

 Consider the following fraction 

  
( )( ) ( )2 2

3 1
2 1 1

s
s s s

+
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 (252) 

for which we wish to determine the partial fraction form. 

Solution 

 First, we need to write the general form, that is, for each of the terms in the denominator, 

we will write the corresponding partial fraction using the rules above. This will give 
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+ + ++
 (253) 

It can be noted that for the first term s + 2, as well as the last term s2 + 1, there will only be a single 

component, since its exponent is one. For the middle term, (s + 1)2, there will be two terms, since 

the exponent is two. For the linear terms, we set a simple constant term in the numerator, while for 

the quadratic term, we include a linear term in the numerator. 

 Next, we need to determine the values of the constants in the numerator. Before doing this, 

let us cross-multiply and determine the general form of the numerator 

( ) ( ) ( )( )( ) ( )( ) ( )( )( )2 22 2 21 1 2 1 1 2 1 2 1 3 1A s s B s s s C s s Ds E s s s+ + + + + + + + + + + + + = +  (254) 

As was previously mentioned, we can see that setting s = −1 or −2 will cancel every term but one, 

allowing us to effortless compute that term. This gives for s = −1 
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 (255) 

Similarly, for s = −2, we get 
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5 1
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− + − + = − +

−
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 (256) 

For the quadratic term, we can set s = ±j, which will give us a linear system of equations in two 

unknown (D and E) that we can then solve to obtain the value of D and E. This gives 
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Placing all the constant terms on the right gives 

  
0.5 0.5
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Dj E j
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 (258) 

Adding the two equations together gives that E = (0.5 + 0.5)/2 = 0.5. From this, it follows that D 

= −0.5. It can be noted that these two equations will always be complex conjugates of each other 

and one can use this fact to solve them without necessarily computing both components. 

 The remaining term B can be found by selecting an arbitrary value of s (that has not already 

been used) and solving Equation (254). The known constants are inserted as required. Setting s = 

0, we get 

  
( ) ( ) ( )( )( ) ( )( ) ( )( )( )2 21 1 1 2 1 1 1 2 1 0.5 2 1 1

3 1.5
2

B
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− + − + =

= =
 (259) 

Obviously, we have the correct answer if the numerator given by Equation (254) holds. This can 

be used to check the solution obtained. 
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