

Technical University of Ilmenau Department of Automation Engineering

AT.504.EN

Discrete Event Systems

Date: Monday, July 16 th , 2018	Duration : 2 nours		
Time : 10:00 am	Version: AT.504.EN.2018.SAMPLE		
Location: HU 211/12	Instructor: Prof. Yuri A.W. Shardt		
Student's Name:	SAMPLE FINAL		
Student's ID Number:			
Degree Programme:			
Student's Signature:			

General Instructions

- 1) Address all inquiries to the supervisor. Do not communicate with other candidates.
- 2) Please write your ID number on each page.
- 3) Please write all answers in the allocated space.
- 4) Should you need additional paper, please ask the invigilators for it. Please place your ID number on all pages.
- 5) Should you feel ill, please inform the supervisor **before the start of the examination** and leave the examination room immediately.
- 6) Please do not cheat.
- 7) A regular calculator is permitted. All other electronic devices (including cell phones, smart watches, and computers) are strictly forbidden.
- 8) The examination is open book, that means that you are permitted to use your own course notes, a dictionary, and a copy of the textbook.
- 9) The date and time when you can review your examination will be posted on the departmental website: http://tu-ilmenau.de/en/dept-automation/.

Total Pages: 4 (including this cover page)

Department of Automation Engineering

AT.504.EN Discrete Event Systems

ID Number: _	 	
Final Mark:	 	/## Marks

Question 1 (45 marks): True or False

Please write for each of the following statements "true" or "false" with justifications.

Please only use the words "true" or "false". (One point for true/false and 2 points for the justification.)

- a) The capital city of Canada is Montréal.
- b) In a time-invariant system, the values of the parameters can depend on the time.
- c) A SISO system has only one input and one output.
- d) In continuous-state systems, the state variable can take only discrete values, for example, only natural numbers.
- e) A clock-driven system is an example of a discrete event system.
- f) A nondeterministic automaton can be converted to a deterministic automaton.
- g) The empty set is denoted by ε .
- h) An automaton that is both accessible and co-accessible is called a trim automaton.
- i) $G_1 || G_2$ denotes composition by product.
- j) Livelocking occurs when a system is stuck switching between a series of states, none of which are marked.
- k) Blocking constraints cannot be enforced by a supervisor of a discrete event system.
- l) It is possible to design a supervisor that can handle a specified switching between 3 events.
- m) A supervisor can be realised as an automaton.
- n) If K_1 and K_2 are controllable, then $K_1 \cup K_2$ is controllable.
- o) If a prefix-closed language K is regular and M is regular, then $K^{\uparrow C}$ is not regular.

-1- Version: AT.504.EN.2018.SAMPLE

Department of Automation Engineering

AT.504.EN Discrete Event Systems

ID Number: _____

Question 2 (50 marks): Automata

- 2.19 A work cell consists of two machines M_1 and M_2 and an automated guided vehicle AGV.⁶ The automata modeling these three components are shown in Fig. 2.40. The complete system is $G = M_1 ||M_2||AGV$.
 - (a) Find G.
 - (b) Is G blocking or nonblocking?

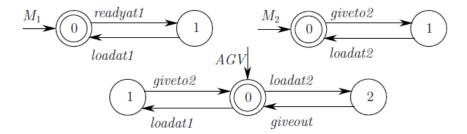


Figure 2.40: Problem 2.19.

-2-

Department of Automation Engineering

AT.504.EN Discrete Event Systems

ID Number:			
·			

Question 3: Supervisors

You are given an automaton G with event set $E = \{a_1, a_2, b_1, b_2, g_1, g_2\}$. Build another automaton that will generate the sublanguage of $\mathcal{L}(G)$, where all the strings in $\mathcal{L}(G)$ that contain the substrings $a_1a_2b_2$ or $a_1a_2g_2$ have been removed.

-3- Version: AT.504.EN.2018.SAMPLE