Highly stretchable and comformable conductors for on-skin multimodal sensing

H. Sun¹, P. Fiedler²

¹FG Funktionswerkstoffe, Faculty of Electrical Engineering und Information Technology

²FG Data analysis in life sciences, Faculty of Computer Science and Automation

Motivation

► Multimodal on-skin monitoring of physiological signals

- Applications in healthcare, human-machine interfacing, robotics, and prostheses
- Easy-to-apply, stretchable and skin-conforming sensor networks

▶ State of the art sensors

- Consumable sensors: limited signal quality, not medically certified
- Medical sensors: single use or expensive; inefficient production
- Lithography microfabrication, electrode sputtering or chemical

➤ We propose

- intelligent stretchable conductors exhibiting tunable electrical conductivities and surface morphologies
- considerably increased material and energy efficient production
- reusable, multimodal sensing
- using one sensor for multiple bio-signal acquisition tasks

Figure 1: a) mechanism of TEMs. b) SEM of TEMs in Ag-PDMS. c) comparison of electrical conductivities between Ag-PDMS with TEMs and without TEMs. d) sensitive region and high conductive region in percolation map. e) hierarchical design of multimodal sensors.

Aims

▶ 1) Develop 2 types of stretchable and conformable Ag-PDMS leveraging thermable exbandable microspheres (TEMs)

- Type A: highly conductive for dry electrodes (electrophysiology)
 high filler region (star sign in Figure 1d)
- Type B: highly sensitive for pressure / strain sensing (blood pressure, respiration effort above percolation threshold (sphere sign in Figure 1d)

▶ 2) Prototyping biosignal sensors for the 2 Ag-PDMS materials

- Multimodal sensors with hierarchical 3D semi-dome structure (Figure 1e)
- Exposed dome: electrophysiology (EEG, ECG, EMG) sensor + hierarchical semi-dome: responsive to pressure / strain (respiration effort)

► 3) On-skin testing, validation and multimodal data decomposition

- Sensor evaluation in real-world conditions (reliability, accuracy, long-term use)
- Sensor optimization (shape and mechanical conformability)
- Proof-of-principle decomposition of multimodal bio-signals

Green electronics

"Energy-efficient computing" + "Intelligent Materials"

▶ 1) Relevance & thematic coverage

- Material & energy saving (production, multimodal)
- Long-time stable & reusable intelligent materials
- Energy-efficient multimodal signal computing

Scientific excellence

- Novel concept of adopting microspheres to tune the conductor morphology
- Hierarchical structural design
- Multimodal mechanical and electrical sensing

▶ 3) Strategic perspective

- Initial project with planned follow-up DFG proposal
- Transfer projects with medical industry
- Potential for multiple technology patents

Work packages and interdisciplinary approach

FG Funktionswerkstoffe

Material science, chemical + mechanical + electrical characterization, prototyping and production considerations

WP1: Ink Formulation & Characterization

- Material selection and characterization
- Capillary suspension concept
- Ag and PDMS parameter optimization
- TEM concentration effect investigation

Year 1-2

WP2: Sensor prototyping

- 3D additive manufacturing
- Hierarchical foamy structure
- Self-adhesive stretchable circuits
- Lab tests and optimization

Year 2-3

WP3: On-skin testing and signal processing

- Validation and signal characterization
- Physical phantoms + on-skin testing
- Motion and long-term applicability
- Multimodal signal decomposition

Year 3-4

FG Funktionswerkstoffe

Application requirements, medical characteristics and durability, signal quality assessment, validation and signal processing

Prior work and references

- [1] Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, Z. L. Wang, Nature communications 2018, 9, 244
- [2] M. S. Rodrigues, P. Fiedler, N. Küchler, R. P. Domingues, C. Lopes, J. Borges, J. Haueisen, F. Vaz, Materials 2020, 13, 2135
- [3] A. R. Mota, L. Duarte, D. Rodrigues, A. Martins, A. Machado, F. Vaz, P. Fiedler, J. Haueisen, J. Nóbrega, C. Fonseca, Sensors and Actuators A: Physical 2013, 199, 310
- [4] B. Vasconcelos, P. Fiedler, R. Machts, J. Haueisen, C. Fonseca, Frontiers in neuroscience 2021, 15, 748100
- [5] I. H. Mulyadi, P. Fiedler, R. Eichardt, J. Haueisen, E. Supriyanto, Medical & Biological Engineering & Computing 2021, 59, 431
- [6] H. Sun, Z. Han, N. Willenbacher, ACS applied materials & interfaces 2019, 11, 38092
- [7] A. Hunold, D. Strohmeier, P. Fiedler, J. Haueisen, Biomedical Engineering/Biomedizinische Technik 2018, 63, 683