http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe
Analysis und Systemtheorie


Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Abschlussarbeiten

Studienabschlussarbeiten seit 1990

Anzahl der Treffer: 29
Erstellt: Wed, 18 Oct 2017 23:03:29 +0200 in 0.0134 sec


Höhler, Karen
Optimal control of differential-algebraic systems via Lur'e equations. - Ilmenau. - 107 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Diese Arbeit ist eine ausführliche Aufbereitung des Papers "The Kalman-Yakubovich-Popov inequality for differential-algebraic systems" von Timo Reis, Olaf Rendel und Matthias Voigt aus dem Jahre 2015. Mit diesen Resultaten ist es unser Ziel, das linear-quadratische Optimalsteuerungsproblem mit differentiell-algebraischen Nebenbedingungen handhabbar zu machen. Dem Vorgehen liegt das Kalman-Yakubovich-Popov Lemma zugrunde, welches die positive Semidefinitheit der Popov-Funktion auf der Imaginärachse mit der Lösbarkeit einer linearen Matrixungleichung verknüpft. Das Auffinden spezieller Lösungen führt zum Konzept der Lur'e Gleichung, welche wiederum mithilfe von abnehmenden Unterräumen gewisser Matrixbüschel gelöst werden kann. Diese Lösungen ermöglichen es, sowohl den optimalen Kostenwert zu bestimmen als auch die Lösung des Optimalsteuerungsproblems zu charakterisieren.


http://www.gbv.de/dms/ilmenau/abs/898802679hoehl.txt
Ehrlich, Daniel
Variationsprinzipien in der Mechanik. - Ilmenau. - 41 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2017

Diese Arbeit beschäftigt sich mit dem sogenannten Variationsproblem. Dies ist ein unendlich dimensionales Optimierungsproblem, welches in der theoretischen Mechanik von großer Relevanz ist. Die zentralen Aussagen dieser Arbeit besagen, dass eine Lösung des Variationsproblems notwendigerweise die Euler-Lagrange-Gleichung sowie die Hamilton-Gleichung erfüllen muss. Dazu wird das Variationsproblem als Verallgemeinerung eines endlich dimensionalen Optimierungsproblems betrachtet. Das Verschwinden der sogenannten ersten Variation einer Lösung des Variationsproblems stellt, ähnlich dem Verschwinden der Richtungsableitung im endlich Dimensionalen, ein notwendiges Optimalitätskriterium dar. Zusammen mit einer Variante des Fundamentallemmas der Variationsrechnung wird damit die Euler-Lagrange-Gleichung hergeleitet. Mithilfe der Legendre-Transformation wird die Äquivalenz von Euler-Lagrange- und Hamilton-Gleichung gezeigt, unter entsprechenden Voraussetzungen, die die Wohldefiniertheit der Legendre-Transformation gewährleisten. Ein weiterer Bestandteil der Arbeit ist die Lösung des Kettenproblems, eines klassischen Problems der Variationsrechnung, unter Zuhilfenahme der Euler-Lagrange-Gleichung und der ihr verwandten Dubois-Reymond-Gleichung.


http://www.gbv.de/dms/ilmenau/abs/898725348ehrli.txt
Witschel, Jonas
Optimal control of linear differential-algebraic equations. - Ilmenau. - 47 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Das Thema der Masterarbeit ist die linear-quadratische Optimalsteuerung zeitvarianter und zeitinvarianter differentiell-algebraischer Gleichungen (DAEs). Die Arbeit besteht aus zwei Hauptteilen: Im ersten Teil betrachten wir zeitvariante DAEs. Wir wiederholen die Lösungstheorie von DAEs und definieren das von uns betrachtete Optimalsteuerungsproblem. Anschließend zeigen wir, dass der Optimalwert eine quadratische Funktion ist und das Bellmansche Optimalitätsprinzip erfüllt. Mithilfe dieser Ergebnisse können wir den Optimalwert als extremale Lösung der Kalman-Yakubovich-Popov-Ungleichung charakterisieren. Im zweiten Teil widmen wir uns zeitinvarianten regulären DAEs. Wir leiten zunächst eine Differenzierbarkeitsbedingung her, die der Steuereingang des Systems erfüllen muss. Mithilfe dieser Resultate führen wir ein erweitertes System ein, das gewisse Ableitungen des Eingangs als Systemzustände enthält. Für das so erweiterte System kann ein zum Optimalsteuerungsproblem des originalen Systems äquivalentes Optimalsteuerungsproblem definiert werden. Dieses lässt sich mithilfe der Theorie der Optimalsteuerung gewöhnlicher Differentialgleichungen leicht lösen. Das ermöglicht uns, die optimale Steuerung der ursprünglichen DAE explizit anzugeben. Weiterhin lässt sich diese auch als Zustandsrückführung implementieren.


http://www.gbv.de/dms/ilmenau/abs/881843539witsc.txt
Dennstädt, Dario
Algebraische Theorie linearer zeitvarianter Systeme. - 60 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

Die Untersuchung linearer zeitvarianter Differentialgleichungen ist von grundlegendem Interesse der Systemtheorie. In ihrem Artikel "Weak exponential stability of linear time-varying differential behaviors" von 2015 stellten Bourlès, Marinescu und Oberst eine neue Herangehensweise vor, solche Systeme mittels algebraischer Methoden zu untersuchen. Dabei wird die Betrachtung der Differentialgleichung auf die Untersuchung eines Moduls über einem geeigneten Schiefpolynomring reduziert. Die vorliegende Arbeit greift diesen Ansatz auf und es wird gezeigt, wie sich die bekannten systemtheoretischen Konzepte der Steuerbarkeit, Beobachtbarkeit und Systemäquivalenz mittels dieses modultheoretischen Zugangs definieren und algebraisch charakterisieren lassen.


http://www.gbv.de/dms/ilmenau/abs/876585942denns.txt
Scholz, Stephan
Direkte und inverse Streuprobleme in einem Mehrschichtenmodell. - 57 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

In dieser Arbeit werden Reflexion und Brechung von seismischen Wellen an Schichtgrenzen innerhalb eines Mehrschichtenmodells betrachtet. Grundlage dessen bildet die Publikation von Leyds und Fokkema (Leyds, F.B. and Fokkema, J.T., 1988. A discrete-time inverse scattering algorithm for plane wave incidence in a one-dimensional inhomogeneous acoustic medium.), welche mathematisch aufgearbeitet und um einige Punkte erweitert wurde. Die Ziele dieser Arbeit gliedern sich dabei in die Lösung des direkten und inversen Problems. Bei ersterem sollen bei einem bekannten Schichtenmodell der Verlauf von Druckwellen konstruiert werden. Bei der Lösung des inversen Problems wird die Struktur des Schichtenmodells, insbesondere die akustische Admittanz jeder Schicht, bei bekannten Wellen an der Oberfläche bestimmt. Im letzten Teil dieser Arbeit wird der Fokus auf den Spezialfall der überkritschen Brechung gelegt. Dabei treten Effekte auf, welche die Lösung des direkten und inversen Problems beeinträchtigen.


http://www.gbv.de/dms/ilmenau/abs/874948495schol.txt
Rußwurm, Franz
Diskontierte optimale Steuerung : eine Anwendung in der Lagerhaltung. - 63 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

In dieser Arbeit wird, nach einführenden Betrachtungen über optimale Steuerung, das Lagerhaltungsproblem ausführlich diskutiert und untersucht. Dies erfolgt zunächst mit Hilfe von Pontryagins Maximumprinzip und später mit Hilfe von Diskretisierung. Zum Abschluss werden die Ergebnisse beider Methoden verglichen.


http://www.gbv.de/dms/ilmenau/abs/866559337russw.txt
Joost, Niels Gerrit
Normalformen und Störungen niedrigen Ranges von Matrixbüscheln. - 46 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

In dieser Arbeit wird die Weierstraß-Form für Matrixbüschel vorgestellt, die, wie beispielsweise in neueren Veröffentlichungen [1] und [3], unter Zuhilfenahme der in [12] erstmals vorgestellten Wong Sequenzen, bewiesen wird. Einerseits liefern die Wong Sequenzen, im Gegensatz zu dem Beweis aus [7], eine geometrische Anschauung. Andererseits lässt sich ohne größeren Aufwand die Quasi-Weierstraß-Form, eine Normalform für Matrixbüschel auf beliebigen Körpern, ableiten. Des Weiteren werden Störungen von Matrixbüscheln untersucht und dabei anhand von Beispielen ein Einstieg in dieses aktuelle Forschungsthema mit zahlreichen Veröffentlichungen, wie zum Beispiel in [5], [11], [10], ermöglicht. Bereits in den 1960er Jahren verfasste F. R. Gantmacher sein Standardwerk über Matrizentheorie [7], in dem er sich unter Anderem mit dem verallgemeinerten Eigenwertproblem auseinandersetzte. Nach Gantmacher [7, S. 373]: "Ein Kriterium für die strenge Äquivalenz sowie die kanonische Form regulärer Matrizenbüschel wurde im Jahr 1867 von K. Weierstraß aufgestellt; die Grundlage bildete seine Elementarteilertheorie [...] Analoge Fragen für singuläre Büschel wurden später (im Jahr 1890) durch die Untersuchungen von L. Kronecker gelöst." Aufbauend auf seinen Leistungen wurden in der Folgezeit weiterführende Arbeiten zum Thema Matrixpolynome [8], im Speziellen Matrixbüschel, erarbeitet. Ebenfalls in den 1960er Jahren entwickelte vor allem G. H. Golub die ersten stabilen Algorithmen, die eine Transformation größerer Matrizen ermöglichen. Die Ergebnisse seiner Arbeit, welche in dem Buch Matrix Computations [9] gesammelt sind, stellen bis heute die Grundlage für viele Forschungsarbeiten dar. Ziel aktueller Untersuchungen ist vor allem die Suche nach dem singulären Matrixbüschel mit dem geringsten Abstand zu einem gegebenen regulären Matrixbüschel [5], wobei eine generelle Problemlösung noch außer Reichweite liegt.


http://www.gbv.de/dms/ilmenau/abs/861364384joost.txt
Sauerteig, Philipp
Greens Satz als Alternative zum Maximumprinzip. - 46 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

Inhalt dieser Bachelorarbeit sind Optimalsteuerungsprobleme und mögliche Lösungsansätze. Es wird ein Problem aus der Biologie mit ökonomischer Anwendung betrachtet und versucht, es zum einen mit dem Maximumprinzip von Pontryagin und zum anderen mithilfe des Integralsatzes von Green zu lösen. Das zu untersuchende Optimalsteuerungsproblem betrifft die Fischzucht. Wie in den Wirtschaftswissenschaften üblich, geht es darum, den Gewinn zu maximieren. Dies soll durch einen optimalen Befischungsplan realisiert werden. Um diesen Plan zu bestimmen, wird ein passendes mathematisches Modell benötigt, auf dem die Entscheidungsfindung aufbaut. Es handelt sich also um eine Aufgabenstellung aus dem Bereich Operations Research. Beiden Lösungswegen wird zunächst ein Gerüst aus mathematischen Definitionen und Sätzen zugrunde gelegt. Darauf aufbauend wird das jeweilige Vorgehen Schritt für Schritt erklärt. Ziel ist es, am Ende der Untersuchungen eine/die optimale Lösung direkt anzugeben. Dieser Bachelorarbeit liegen weitere Arbeiten von unterschiedlichen Autoren zugrunde. Die Aufgabe besteht zunächst darin, die Vorgehensweisen nachzuvollziehen. Dazu müssen nicht durchgeführte Nebenrechnungen eigenständig erarbeitet werden. Dabei wird vor allem auf mathematische Korrektheit geachtet. Darüber hinaus werden an gegebener Stelle gänzlich eigene Lösungsansätze verfolgt.


http://www.gbv.de/dms/ilmenau/abs/856294837sauer.txt
Höhler, Karen
Pontryagins Maximumprinzip und dessen Anwendung im Supply Chain Management. - 64 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2015

In dieser Bachelorarbeit wird ein Optimalsteuerungsproblem aus dem Supply Chain Management betrachtet und mit Hilfe des Pontryagin'schen Maximumprinzips analytisch gelöst. Das Anwendungsmodell beschreibt die Zusammenarbeit eines Produzenten und seines Zulieferers. Hierbei wird untersucht, ob Maßnahmen zur Lieferantenentwicklung zu Gewinnsteigerungen aus Perspektive der einzelnen Marktteilnehmer und/oder innerhalb der gesamten Wertschöpfungskette führen können. Zur Beantwortung dieser Fragestellung werden mehrere Optimalsteuerungsprobleme formuliert und gelöst. Insbesondere wird ein Faktor zur Aufteilung der Kosten für die Lieferantenentwicklung so bestimmt, dass die Zusammenarbeit den aufsummierten Gewinn des Produzenten und des Zulieferers maximiert. Besonderer Wert wird dabei auf die ausführliche und mathematisch korrekte Darstellung des Lösungsweges gelegt. Im Anschluss erfolgt die ökonomische Interpretation, um Handlungsempfehlungen aus den Ergebnissen abzuleiten. Zur Lösungsbestimmung wird Pontryagins Maximumprinzip für feste Endzeiten und freie rechte Endbedingung angewendet. Dieses wird in einem vorangestellten Theorieteil ausgehend von Pontryagins Maximumprinzip für feste Endpunkte und freie Endzeit hergeleitet und angegeben.


http://www.gbv.de/dms/ilmenau/abs/837664705hoehl.txt
Schmitz, Philipp
Zur WKB-Näherung für Lösungen gewöhnlicher Differentialgleichungen einer komplexen Veränderlichen. - 72 S.
Ilmenau : Techn. Univ., Masterarbeit, 2015

In der vorliegenden Arbeit wird für Lösungen gewöhnlicher, linearer Differentialgleichungen zweiter Ordnung der Form $f''=(p+q)f$ das Wachstumsverhalten mit Hilfe der WKB-Näherung untersucht. Neben Problemen entlang der reellen Achse werden insbesondere Differentialgleichungen innerhalb einfach zusammenhängender Gebiete betrachtet. Ein Schwerpunkt ist die Konstruktion von Fehlerschranken für die WKB-Näherungen. Dieses Problem wird auf eine Volterra-Integralgleichung zurückgeführt, wobei in dieser Arbeit eine Aussage über das Wachstumsverhalten von Lösungen bewiesen wird. Die Resultate der WKB-Methode werden für den Fall polynomieller Koeffizienten angewendet. Dabei werden Lösungen konstruiert, die in bestimmten Bereichen (Stokes wedges und Stokes lines) der komplexen Zahlenebene mit exponentieller Geschwindigkeit wachsen beziehungsweise gegen Null konvergieren. Dieser Fall spielt eine herausragende Rolle in der sogenannten $\PT$-Quantenmechanik.


http://www.gbv.de/dms/ilmenau/abs/836032527schmi.txt