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Abstract—Estimating the probability mass function (PMF) of
a set of discrete random variables using a low-rank model for
the PMF tensor has recently gained much attention. However,
detecting the rank (model order) of the PMF tensor from
observed data is a challenging problem. While classical tech-
niques such as the Akaike and the Bayesian information criteria
(AIC and BIC) may be applied in this regard, they require
testing a number of candidate model orders before selecting
the best one, a procedure which is computationally intensive
for large datasets. In this work, we propose an algorithm to
estimate the PMF tensor and implicitly detect its rank. We
specify appropriate prior distributions for the model parameters
and develop a deterministic algorithm which enables the rank
to be detected as part of the inference. Numerical results
using synthetic data demonstrate that, compared to classical
model selection techniques, our approach is more robust against
missing observations and is computationally efficient.

Index Terms—PMF estimation, tensor decomposition, varia-
tional Bayesian inference, rank detection, model selection.

I. INTRODUCTION

One of the most important problems in statistical data anal-
ysis is the estimation of the joint probability mass function
(PMF) of a set of discrete random variables from partial
observations. Applications arise in many different contexts,
for instance, inferring the label corresponding to a set of fea-
tures (data classification) and inferring missing ratings from
a subset of ratings (recommender systems). Unfortunately,
estimating the joint PMF tensor via a histogram suffers from
the curse of dimensionality since the number of observations
required grows exponentially with the number of random
variables. Therefore, alternative estimation approaches, which
impose a low-rank nonnegative canonical polyadic decompo-
sition (CPD) model on the PMF tensor (and thus reduce the
size of the problem), have been proposed in recent years [1]–
[9].

In practice, the CPD rank (or the model order) of the
PMF tensor is not usually known beforehand and has to be
manually specified. It was shown in [2], [3] that the CPD
can be interpreted as a naı̈ve Bayes model, for which model
selection techniques such as the decomposed normalized
maximum likelihood (DNML) criterion as well as the well-
known Akaike and Bayesian information criteria (AIC and
BIC) have been presented in [10]. Using these techniques, the
rank which minimizes the respective criteria is selected from
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a set of candidates as the model order. The rank is thus treated
as a parameter that needs to be tuned. These techniques may
therefore be computationally intensive, especially for large
datasets.

As an alternative, probabilistic models for the CPD factor-
ization of a data tensor have been proposed in [11]–[14]. In
these approaches, the CPD rank is determined automatically
through variational Bayesian (VB) inference [15]–[17]. By
initializing the rank as some suitable large value (e.g., the
upper bound) and imposing sparsity-promoting priors, unnec-
essary components can be ‘pruned’, leaving only those which
‘explain’ the data. These works [11]–[14], however, deal with
the factorization of a data tensor into its constituent CPD
components. In addition, the works consider continuous data
and therefore the Bayesian model specification is markedly
different from the discrete case.

In this paper, our goal is to estimate the CPD components
and simultaneously detect the rank of a PMF tensor from
observed discrete data. We specify a Bayesian model for the
problem by assigning appropriate priors to the model param-
eters. Exact Bayesian inference of the posterior distribution
(of the model parameters given the data) using the resultant
model turns out to be analytically intractable. Therefore,
inspired by [11]–[14], we apply the VB framework and
derive a deterministic solution to approximate the posterior
distributions of various model parameters. A similar problem
was considered in [18], where a Markov-Chain Monte-Carlo
(MCMC) algorithm was used to infer the posterior distribu-
tions. However, while MCMC algorithms theoretically yield
an exact solution, they are stochastic in nature and tend to
converge slowly. On the other hand, while VB inference is
only an approximation, the solution is analytical and scalable
[17].

Using synthetic data, we compare the rank estimation
performance as well as the accuracy of our algorithm (VB-
PMF) to AIC, BIC, and DNML [10]. Numerical results under
a variety of scenarios show that VB-PMF is able to estimate
the CPD components of the PMF tensor while implicitly and
automatically detecting its rank, obviating the need to select
the rank via tuning.

II. PRELIMINARIES

Consider N random variables X1, . . . , XN which can take
discrete values in [1, In], n = 1, . . . , N . The joint probability
mass function (PMF) of these variables is described by a
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PMF tensor X ∈ RI1×I2×···×IN such that X (i1, . . . , iN ) =
Pr(X1 = i1, . . . , XN = iN ). Further, assume that X admits a
low-rank canonical polyadic decomposition (CPD) [19] with
rank R such that

X =

R∑
r=1

λrA1(:, r) ◦A2(:, r) . . . ◦AN (:, r), (1)

where λ ∈ RR is the loading vector, An ∈ RIn×R are the
factor matrices, and ◦ denotes the outer product. It has been
shown in [3] that a rank-R CPD can be interpreted as a naı̈ve
Bayes model with one latent variable taking R states. Hence,
λ and {An}Nn=1 are subject to a set of probability simplex
constraints such that λ > 0, An ≥ 0 (nonnegativity), and
1Tλ = 1, 1TAn = 1T (sum-to-one).

In this paper, we assume the setup in [5] whereby a discrete
random vector Y = [Y1, . . . , YN ]T is observed according to
the model

Yn =

{
Xn w.p. 1− p

0 w.p. p
, n = 1, . . . , N, (2)

where p, the outage probability, controls the fraction of
missing data. Let there be T i.i.d. realizations {y[t]}Tt=1 of
Y , collected into a dataset Y = [y[1], . . . ,y[T ]], where
y[t] = [y1,t, . . . , yN,t]

T. Estimates of the CPD components
(and therefore, of the joint PMF tensor X ) can be readily
obtained from Y using maximum likelihood (ML) estimation
[5]. However, this approach assumes that the CPD rank R
is known, a scenario which rarely arises in practice. We
therefore seek to formulate the problem within the Bayesian
paradigm and design an algorithm to learn the resulting
probabilistic model.

III. BAYESIAN MODEL SPECIFICATION

In this section, for notational convenience, it is assumed
that there are no missing observations in the data, i.e., p =
0. Following the model (2), the joint log-likelihood of the
observations Y can be expressed (up to a constant) in terms
of the CPD components (the model parameters) {An}Nn=1

and λ as [5]

log p(Y |λ, {An}Nn=1) =

T∑
t=1

log

R∑
r=1

λr

N∏
n=1

An(yn,t, r). (3)

This form of the log-likelihood is problematic to handle be-
cause the logarithm appears outside the summation over the R
components. To circumvent this, it is customary to introduce
a set of latent variables z[t] ∈ RR with binary elements
zr,t ∈ {0, 1} where r = 1, . . . , R and

∑R
r=1 zr,t = 1. Each

variable z[t] describes which component in λ gave rise to
an observation y[t]. In other words, if y[t] is drawn from
component s then zr,t = 1 if s = r and zr,t = 0 if s ̸= r.
Thus, Pr(zr,t = 1) = λr and since z[t] is a binary vector, we
can equivalently write

p(z[t]) =

R∏
r=1

λ
zr,t
r . (4)

Letting Z = [z[1], . . . ,z[T ]], the joint log-likelihood (3) can
then be rewritten (up to a constant) as

log p(Y |Z, {An}Nn=1) =

T∑
t=1

R∑
r=1

N∑
n=1

zr,t logAn(yn,t, r). (5)

Next, we specify the prior distributions for the latent
variables Z and the CPD components {An}Nn=1 and λ. From
(4), it can be seen that z[t] is parametrized by λ and thus,
for T observations

p(Z |λ) =
T∏

t=1

R∏
r=1

λ
zr,t
r . (6)

Since λ and {An}Nn=1 represent probabilities and should sat-
isfy the probability simplex constraints, an appropriate choice
for a conjugate prior is the Dirichlet distribution. Let p(λ) and
p(an,r) be the prior distributions for λ and the r-th column
An(:, r) of the n-th factor matrix An, respectively. Here, we
have defined An(:, r) = an,r = [an,r,1, . . . , an,r,In ]

T ∈ RIn .
Applying the Dirichlet distribution, we have

p(λ) = Dir(λ |αλ) = C(αλ)

R∏
r=1

λ
αλ,r−1
r , (7)

p(an,r) = Dir(an,r |αn,r) = C(αn,r)

In∏
in=1

a
αn,r,in−1

n,r,in
, (8)

where C(·) is the respective normalization constant for
the distribution (see, e.g., [17]). The Dirichlet concentra-
tion parameters αλ = [αλ,1, . . . , αλ,R]

T and αn,r =
[αn,r,1, . . . , αn,r,In ]

T govern how evenly or sparsely dis-
tributed the resulting distributions are. In particular, α → 0
favors distributions with nearly all mass concentrated on one
of their components (i.e., sparse), α → ∞ favors near-
uniform distributions, while for α = 1, all distributions
are equally likely. In the absence of any prior information
favoring one element over another, we choose symmetric
Dirichlet distributions as priors, i.e., αλ,r = αλ ∀r and
αn,r,in = αn,r ∀in.

Define Θ = {Z,λ,A1, . . . ,AN} as the collection of all
unknown parameters. Taking the logarithms of (6), (7), and
(8) and combining with (5) gives the logarithm of the joint
distribution p(Y ,Θ) as

log p(Y ,Θ) =

T∑
t=1

R∑
r=1

N∑
n=1

zr,t log an,r,yn,t +

T∑
t=1

R∑
r=1

zr,t log λr

+ (αλ − 1)

R∑
r=1

log λr +

N∑
n=1

R∑
r=1

In∑
in=1

(αn,r − 1) log an,r,in

+ const.
(9)

Using Bayes theorem, we can calculate the posterior dis-
tribution p(Θ |Y ) as p(Θ |Y ) = p(Y ,Θ)/

∫
p(Y ,Θ)dΘ.

However, in this case, the denominator of the expression
involves integration over all latent variables as well as CPD
components and is analytically intractable. We therefore resort
to variational Bayesian inference to approximate p(Θ |Y ).

IV. VARIATIONAL APPROXIMATION

Under the variational Bayesian framework [15]–[17], we
seek a variational distribution q(Θ) to approximate the poste-
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rior distribution p(Θ |Y ) by minimizing the Kullback-Leibler
divergence (KLD) [20] between them, i.e.,

D(q(Θ) ∥ p(Θ |Y )) =

∫
q(Θ) log

{
q(Θ)

p(Θ |Y )

}
dΘ

= log p(Y )−
∫

q(Θ) log

{
p(Y ,Θ)

q(Θ)

}
dΘ︸ ︷︷ ︸

L(q)

, (10)

where L(q) is a lower bound on the model evidence log p(Y ),
or the evidence lower bound (ELBO). Since the KLD is
nonnegative and log p(Y ) is independent of Θ, it follows
from (10) that maximizing L(q) is equivalent to minimizing
D(q(Θ) ∥ p(Θ |Y )).

Based on mean-field approximation [17], it is assumed that
q(Θ) factorizes between the latent variables and the CPD
components such that

q(Θ) = qZ(Z)qλ(λ)

N∏
n=1

R∏
r=1

qn,r(an,r). (11)

Under this setup, it can be shown that the optimal distribution
for the j-th component of q(Θ) (i.e., the distribution for which
L(q) is largest) is

log q∗j (θj) = Eq(Θ\θj)[log p(Y ,Θ)] + const, (12)

where Eq(Θ\θj)[·] is the expectation with respect to q(Θ)
over all components except θj . In the following, we derive
the optimal variational distributions for Z, λ, and all factor
matrix columns an,r using (12).

A. Variational distribution of the latent variable Z

From (12), taking only the terms with a functional depen-
dence on Z and evaluating the expectations, we find that

log q∗Z(Z) =

T∑
t=1

R∑
r=1

zr,t
( N∑

n=1

log ãn,r,yn,t + log λ̃r

)
+ const,

(13)
where log ãn,r,yn,t

= ψ(α̃n,r,yn,t
) − ψ(α̂n,r), log λ̃r =

ψ(α̃λ,r) − ψ(α̂λ), α̂λ =
∑R

r=1 α̃λ,r, α̂n,r =
∑In

in=1 α̃n,r,in ,
and ψ(·) is the digamma function. Additionally, the tilde sign
distinguishes the updated hyperparameters (e.g., α̃λ,r) from
their initial values (e.g., αλ). The optimal distribution is thus
given by

q∗Z(Z) =

T∏
t=1

R∏
r=1

ρ
zr,t
r,t , (14)

where

ρr,t =
γr,t∑R
j=1 γj,t

, (15)

and γr,t = exp
{∑N

n=1 log ãn,r,yn,t
+ log λ̃r

}
.

The value ρr,t is the conditional (posterior) probability of
z[t] given y[t]. It can be viewed as the ‘responsibility’ that
the r-th component takes for explaining the data y[t]. Indeed,
from (14), we can see that E[zr,t] = ρr,t, a relation that will
be useful in the sequel.

B. Variational distribution of the loading vector λ

Beginning with (12) and only taking terms depending on
λ, we have

log q∗λ(λ) =

R∑
r=1

(
Mr + αλ − 1

)
log λr + const, (16)

where Mr =
∑T

t=1 ρr,t. Taking exponentials on both sides
reveals that

q∗λ(λ) ∝
R∏

r=1

λ
α̃λ,r−1
r =⇒ q∗λ(λ) = Dir(λ | α̃λ), (17)

where the elements of α̃λ are given by
α̃λ,r = Mr + αλ. (18)

Each element of λ now has its own concentration parameter
α̃λ,r which depends on the data via the quantity Mr. Compo-
nents which have no role in explaining the data will tend to
zero during the inference process, producing a sparse loading
vector. The rank can therefore be determined by initializing
with L > R components and pruning out components with a
value less than some specified small positive constant ϵ after
convergence.

A point estimate of λ can be found by computing the poste-
rior expectation over q∗λ(λ), i.e., λ̂r = Eq∗λ(λ)[λr] =

α̃λ,r

α̂λ
, ∀r.

C. Variational distribution of the factor matrix columns an,r

First, note that, by changing indices such that we sum over
the discrete states in, we can rewrite the first term in (9) (cf.
also (5)) as

log p(Y |Z, {An}Nn=1) =

N∑
n=1

R∑
r=1

In∑
in=1

gn,r,in log an,r,in , (19)

where gn,r,in =
∑

t:yn,t=in
zr,t. Proceeding from (12) as

before, we find

log q∗n,r(an,r) =

In∑
in=1

(
g′n,r,in + αn,r − 1

)
log an,r,in + const,

(20)
where g′n,r,in =

∑
t:yn,t=in

E[zr,t] =
∑

t:yn,t=in
ρr,t. Taking

exponentials on both sides gives the optimal posterior distri-
bution

q∗n,r(an,r) ∝
In∏

in=1

a
α̃n,r,in−1

n,r,in
=⇒ q∗n,r(an,r) = Dir(an,r | α̃n,r),

(21)
where the elements of α̃n,r are given by

α̃n,r,in = g′n,r,in + αn,r. (22)

As before, point estimates of an,r can be found by
computing the posterior expectation over q∗n,r(an,r), i.e.,
ân,r,in = Eq∗n,r(an,r)[an,r,in ] =

α̃n,r,in

α̂n,r
, ∀n, r, in.

D. Variational lower bound L(q)

Having derived expressions to approximate the posterior
distributions, we can also find the ELBO L(q). Since the
ELBO is a lower bound, it should increase at each iteration
and can thus be used to evaluate the correctness of the
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Fig. 1. Performance comparison of model selection techniques under
different scenarios. From left to right: mean rank vs. T (p = 0), mean rank
vs. p (T = 105), mean KLD (between the estimated and true PMF tensors)
vs. T (p = 0), and the mean CPU runtime (in seconds) vs. T (p = 0).

mathematical expressions, as well as to test for convergence.
From (10), the ELBO is given by

L(q) = Eq(Θ)[log p(Y ,Θ)]− Eq(Θ)[log q(Θ)] (23)

where the expectations are taken with respect to the
optimal variational distributions (14), (17), and (21) in turn.
Evaluating various terms in (23) gives the final expression
(24) for the ELBO. The complete variational Bayes PMF
estimation algorithm (VB-PMF), is summarized in Algorithm
1.

Algorithm 1. VB-PMF
Input: Dataset Y
Output: CPD estimates {Ân}N

n=1 and λ̂, rank estimate R̂
Initialization: αn,r , αλ, ρr,t, ∀n, r, t
repeat

Update the posterior qλ(λ) using (18)
for n = 1 to N , r = 1 to R

Update the posterior qn,r(an,r) using (22)
end for
Update the posterior qZ(Z) using (15)
Evaluate the ELBO using (24)

until convergence
Compute posterior expectations to find {Ân}N

n=1 and λ̂

Find R̂ by pruning out components corresponding to λ̂r < ϵ

V. RESULTS

To evaluate the performance of VB-PMF, we generate
synthetic data from a 5-way (N = 5) PMF tensor X of rank
R = 5 and dimensions [10, 10, 10, 10, 10]. The tensor X is
constructed from CPD components λ and {An}Nn=1 drawn
randomly from U(0, 1) and normalized to fulfill the proba-
bility simplex constraints. Each observation y[t] is obtained
by sampling a vector x[t] from the PMF X randomly and
independently zeroing out elements of x[t] according to the
outage probability p (cf. (2)).

We compare VB-PMF to the AIC, BIC, and DNML model
selection techniques [10]. The hyperparameters for VB-PMF
are initialized as follows: αλ = 10−6 in order to obtain a
sparse solution for λ such that unnecessary CPD components
can be pruned out; αn,r = 1 ∀n, r such that all distributions
for {An}Nn=1 are equally likely; ρr,t are randomly drawn
from U(0, 1) and normalized such that

∑R
r=1 ρr,t = 1 ∀t

(cf. (15)). Moreover, VB-PMF is initialized with L = 10
components and, after convergence, all components with a
weight λ̂r < 10−5 are discarded. The number of remaining
elements of λ̂ provide an estimate R̂ of the rank. For AIC,
BIC, and DNML, we use an accelerated form of the EM
algorithm [21] to estimate the CPD components and test
candidate ranks [2, 3, . . . , 10], selecting the candidate which
minimizes the respective criterion as the rank estimate. We
average the results over 100 independent trials.

From Fig. 1, it can be seen that VB-PMF, BIC, and DNML
converge to the true rank as the number of observations T is
increased. Compared to the other techniques, VB-PMF detects
the correct rank with fewer observations, e.g., at T = 104,
the correct rank is detected in almost all trials. As expected,
AIC is biased towards models with higher ranks because it is
not a consistent estimator [22].

VB-PMF is also quite robust against missing observations,
mostly detecting the correct rank even for 70 % outage
(p = 0.7). On the other hand, the performance of the other
techniques deteriorates significantly as the outage is increased.
The accuracy of the PMF tensor estimates is evaluated in
terms of the KLD. Here, the ‘Oracle’ KLD [5] provides an
empirical lower bound on the KLD. We see that VB-PMF
provides more accurate estimates for smaller values of T
and a comparable performance as T is increased. Finally, we
observe that, compared to the other techniques, VB-PMF has
the smallest CPU runtime, even though the runtime increases
with T .

VI. CONCLUSIONS

We have investigated the problem of detecting the model
order of a low-rank PMF tensor from observed data. By
formulating the problem within the Bayesian paradigm, we
have proposed VB-PMF, an algorithm which is able to esti-
mate the PMF tensor while implicitly detecting its rank as a
part of the inference process. Compared to classical model
selection techniques, VB-PMF is computationally efficient
and is robust in the presence of missing observations while
providing accurate estimates of the PMF tensor.

L(q) =

T∑
t=1

R∑
r=1

N∑
n=1

ρr,t log ãn,r,yn,t +
T∑

t=1

R∑
r=1

ρr,t log λ̃r +
N∑

n=1

R∑
r=1

In∑
in=1

(
logC(αn,r) + (αn,r − 1) log ãn,r,in

)
+ logC(αλ)

+ (αλ − 1)

R∑
r=1

log λ̃r −
T∑

t=1

R∑
r=1

ρr,t log ρr,t −
N∑

n=1

R∑
r=1

In∑
in=1

(
logC(α̃n,r) + (α̃n,r,in − 1) log ãn,r,in

)
− logC(α̃λ)

−
R∑

r=1

(α̃λ,r − 1) log λ̃r. (24)
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