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Abstract—In this paper, we present a high-resolution direction
of arrival (DoA) estimation scheme using compressive measure-
ments for mmWave band communications. We first propose an
off-grid refinement algorithm to refine an initial on-grid DoA
estimation through a gradient descent search in the beamspace
covariance (BSC) domain. Then we integrate the proposed
refinement algorithm into the covariance orthogonal matching
pursuit (COMP) algorithm, such that an on-grid detected source
is firstly refined and then off-grid canceled during the successive
iterations. Numerical results show that the proposed method has
a lower complexity than the state-of-the-art off-grid compressive
DoA estimation method in case of OFDM signals, while it can
reliably estimate the DoAs with high accuracy.

Index Terms—compressive sensing, DoA estimation,
beamspace covariance gradient descent, off-grid cancellation.

I. INTRODUCTION

The millimeter wave (mmWave) band provides a wide band-
width for high data throughput and has been adopted by 5G
new radio (NR) cellular communication systems. To overcome
the high path-loss through mmWave band propagation while
at the same time being cost and power efficient, large antenna
arrays based on analog beamforming with phase shifters have
become a popular architecture not only on the base station
(BS) side but also on the user equipment (UE) side. Antenna
arrays bring the opportunity to perform direction of arrival
(DoA) sensing. On one hand, DoA sensing improves the
spatial channel estimates, which further helps to improve the
multiple-input-multiple-output (MIMO) communication effi-
ciency [1]. On the other hand, DoA sensing provides additional
perception information to a mobile device, which is useful
for integrated sensing and communication (ISAC) applications
[2] . However, due to RF chain sharing among multiple
antennas, the baseband processor does not directly observe
the channel state information (CSI) in the antenna element
space, but rather the projected version in the beamspace. This
makes accurate DoA estimation for mmWave communications
challenging [3].

By exploring the sparsity of the mmWave propagation
channel, compressive sensing (CS) techniques can be ex-
plored to estimate the DoAs using a small measurement
overhead. CS based DoA estimation for OFDM systems has
been proposed by [4], which shows that the spatial channel
transfer function in the antenna element space can be recov-
ered through compressive measurements using the orthogonal
matching pursuit (OMP) algorithm. The heuristic nature of

the OMP algortihm leads to a reduced complexity compared
to gridless methods [5]. However, the estimates are on-grid
which limits the DoA estimation accuracy. To improve the
estimation accuracy, a two-step estimation algorithm called
gradient descent orthogonal matching pursuit (GOMP) has
been proposed by [6]. The algorithm first conducts initial on-
grid DoA estimations using a conventional OMP algorithm,
then it introduces a gradient descent based off-grid refinement
to further improve the estimation accuracy for all the on-grid
detected sources. The algorithm achieves a better resolution
than on-grid DoA estimation techniques. However, since the
refinement is applied in the channel snapshots domain, the
optimal gradient has to be computed for all snapshots jointly,
which introduces a high complexity when the number of
snapshots is increased. Compressive DoA estimation based on
the so-called covariance orthogonal matching pursuit (COMP)
algorithm has been proposed by [7], where DoA estimation
is conducted in the beamspace covariance (BSC) domain.
Since the compressive recovery is done after BSC combining
over different snapshots, the complexity is much lower than
the recovery in the channel snapshots domain. However, the
estimation by COMP is still on-grid, whose resolution is
bounded by the grid density.

To address the aforementioned issues, we first propose
a novel off-grid refinement algorithm called beamspace co-
variance gradient descent (BSC-GD), to refine the on-grid
estimated DoA for a single source. The refinement is based
on the gradient descent technique using a quadratic cost
function in the BSC domain. Then, instead of treating on-grid
estimation and off-grid refinement as two independent steps
to estimate the DoAs as in [6], we propose to integrate the
developed BSC-GD algorithm into the successive procedure
of the COMP algorithm. This means that an on-grid detected
DoA source is off-grid refined, then canceled in the BSC do-
main, before the next source is on-grid detected. This method
mitigates the power spreading issue for the off-grid DoAs.
Numerical results show that the proposed method achieves
a lower complexity than GOMP, and a higher accuracy than
GOMP and COMP.

Notation: Upper-case and lower-case bold-faced letters de-
note matrices and vectors, respectively. The Frobenius norm,
transpose, conjugate, Hermitian transpose, pseudo-inverse of
a matrix are denoted by ∥.∥F , {·}T , {·}∗, {·}H , {·}†, respec-
tively. The diag{·} , vec{·} denote a diagonal matrix construc-
tion and the vectorization operators, respectively.

2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)

979-8-3503-4452-3/23/$31.00 ©2023 IEEE 321

20
23

 IE
EE

 9
th

 In
te

rn
at

io
na

l W
or

ks
ho

p 
on

 C
om

pu
ta

tio
na

l A
dv

an
ce

s i
n 

M
ul

ti-
Se

ns
or

 A
da

pt
iv

e 
Pr

oc
es

sin
g 

(C
AM

SA
P)

 |
 9

79
-8

-3
50

3-
44

52
-3

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CA
M

SA
P5

82
49

.2
02

3.
10

40
34

81

Authorized licensed use limited to: TU Ilmenau. Downloaded on May 03,2024 at 13:40:31 UTC from IEEE Xplore.  Restrictions apply. 



II. PROBLEM FORMULATION

We consider a typical mmWave MIMO communication
system with a base station (BS) and a user equipment (UE)
each is equipped with T and N antennas, respectively. The
antennas on both sides are assumed to form uniform linear
arrays (ULAs) which use phase shifters for transmit and
receive beamforming. The BS transmits a measurement burst
of M OFDM symbols each containing K pilot reference
sub-carriers, with the same frequency domain allocation. We
assume that the transmit beam at the BS is fixed during
the measurement burst, whereas the UE uses M different
measurement beams to receive the M OFDM symbols where
M ≪ N . The switching time from one measurement beam
to the next is assumed to be shorter than the cyclic prefix
(CP) duration. We further assume that all M OFDM symbols
are transmitted within the channel coherence time so that
the channel could be assumed to be constant during the
measurement. On the receiver side, after applying the FFT
operation for the mth received OFDM symbol, the frequency
domain received signal on kth sub-carrier is formulated as:

ym(k) = wH
mH(k)fsm(k) +wH

mzm(k) (1)

where zm(k) ∈ CN×1 is a zero mean complex Gaussian
noise vector with variance σ2, sm(k) is the pilot reference
signal on the kth sub-carrier of the mth OFDM symbol and
|sm(k)| = 1. Moreover, f ∈ CT×1 is the beamforming vector
at the BS which is fixed over the measurement burst while
wH

m ∈ C1×N is the receive beamforming row vector at the
UE for the mth OFDM symbol. Since the beams are formed
by using analog phase shifters, f and wH

m contain only unit
modulus entries. H(k) ∈ CN×T is the sampled frequency
domain channel transfer function (CTF) on the kth sub-carrier.
A typical mmWave massive MIMO channel is assumed with
L scatterers. The lth scatterer accounts for one time delay
τl, one complex gain αl, and one pair of spatial frequencies
(µT,l, µR,l), corresponding to a direction of departure (DoD)
and a DoA. Then H(k) is modeled as [8]:

H(k) =

L−1∑
l=0

αle
−j2πk∆fτlaR(µR,l)a

T
T (µT,l) (2)

where ∆f is the sub-carrier spacing, aR(µR,l) =

[1, ejµR,l , · · · , ej(N−1)µR,l ]
T ∈ CN×1 and aTT (µT,l) =

[1, ejµT,l , · · · , ej(T−1)µT,l ]
T ∈ CT×1 are the array steering

vectors at the UE and the BS corresponding to the lth scatterer.
Since the transmit beamforming vector f is fixed for all m
OFDM symbols, (1) can be written as:

ym(k) = wH
mh(k)sm(k) +wH

mzm(k) (3)

where

h(k) =

L−1∑
l=0

αle
−j2πk∆fτlaR(µR,l)a

T
T (µT,l)f

=

L−1∑
l=0

xl(k)aR(µR,l)

(4)

and xl(k) ≜ αle
−j2πk∆fτlaTT (µT,l)f is the complex valued

gain of the lth incoming DoA source on the kth sub-carrier.
Since we only focus on DoA estimation, in the rest of

the paper, for simplicity, we use the notation a(µl) instead
of aR(µR,l) to represent the steering vector corresponding
to the spatial frequency of the lth incoming DoA source.
We then apply the descrambling operation by multiplying
with s∗m(k) on the kth sub-carrier and stack the descram-
bled signal for all M measurements together. We also stack
the steering vectors of all L sources into a steering matrix
A = [a(µ0), . . . ,a(µL−1)] ∈ CN×L and stack the complex
valued gains of all L sources on the kth sub-carrier into a gain
vector x = [x0(k), . . . , xL−1(k)]

T ∈ CL×1. Then we get the
measurement vector in the beamspace as

y(k) =

wH
1

...
wH

M

 [a(µ0), . . . ,a(µL−1)]

 x0(k)
...

xL−1(k)

+ z̃(k) (5)

which could be written in the compact form:

y(k) = WAx(k) + z̃(k), k ∈ 0, . . . ,K − 1 (6)

where y(k) ∈ CM×1 is the stacked vector on the kth

sub-carrier for all M measurements whose mth element is
[y(k)]m = ym(k)s∗m(k). The term z̃(k) ∈ CM×1 is the
modulated noise vector whose mth element is [z̃(k)]m =
wH

mzm(k)s∗m(k). The matrix W ∈ CM×N is the analog
codebook for the UE to receive the pilot OFDM symbols,
which is also denoted as the projection matrix. For the
measured signal, a wideband beamspace covariance matrix can
be derived as:

Ry =
1

K

K−1∑
k=0

y(k)yH(k) (7)

Using (6), we rewrite (7) as:

Ry = WARxA
HWH +

σ2

K
WWH (8)

where Rx ≜ 1
K

∑K−1
k=0 x(k)xH(k).

III. THE PROPOSED APPROACH

In this section, we first present a DoA refinement for a
given coarse DoA estimate of a single source. The refinement
is applied in the BSC domain by the gradient descent search.
We then propose an improved version of the COMP algorithm
called gradient descent covariance orthogonal matching pur-
suit (GCOMP). GCOMP integrates the proposed refinement
algorithm into the successive procedure of COMP, which
allows off-grid DoA estimation for multiple sources.

A. DoA Refinement by BSC Gradient Descent

For the single source case, equation (8) reduces to:

Ry = Wa(µ)σ2
xa

H(µ)WH +
σ2

K
WWH (9)

where σ2
x ∈ R and a(µ) ∈ CN×1. In the BSC domain, the

objective function for DoA estimation can be formulated in
matrix form as:

argmin
σ2
x,µ

∥∥Ry −Wa(µ)σ2
xa

H(µ)WH
∥∥
F

(10)

Note that the minimization problem in (10) is non-convex due
to joint optimization over µ and σ2

x. Similar to the approach
in [6], we use an iterative alternating optimization procedure
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between µ and σ2
x where a step is taken to optimize one

variable while assuming that the other is fixed.
In the iteration (i + 1), the first step is a local refinement

to compute µ(i+1) with a fixed σ2
x
(i). The cost function in

(10) becomes a function of µ only and the objective is to
compute a change in µ which is denoted hereforth as δ ∈ R
which minimizes the cost function. Using the first-order Taylor
approximation of a(µ) ∈ CN×1 as:

a(µ(i+1)) ≈ a(µ(i)) + g(µ(i))δ, δ = µ(i+1) − µ(i) (11)

where g(µ(i)) is the gradient of vector a with respect to µ at
µ = µ(i) and is given as :

g(µ(i)) = jdiag {0, · · · , N − 1}a(µ(i)), (12)

For simplicity of notation, we replace g(µ(i)), a(µ(i)), and
a(µ(i+1)) by gi, ai, and ai+1, respectively. The cost function
in (10) can be approximated as f(δ) which is given as:

f(δ) =
∥∥∥Ry −Wa(µ)σ2

xa
H(µ)WH

∥∥∥
F

≈
∥∥∥Ry −W(ai + giδ)σ

2
x(ai + giδ)

HWH
∥∥∥
F

= ∥Ry − σ2
xWaia

H
i WH − σ2

xW(aig
H
i + gia

H
i )WHδ

− σ2
xWgig

H
i WHδ2∥F =

∥∥u0 + u1δ + u2δ
2
∥∥2

(13)
where u0,u1,u2 are given by:

u0 = vec
(
Ry − σ2

xWaia
H
i WH

)
∈ CM2×1

u1 = −σ2
xvec

(
W(aig

H
i + gia

H
i )WH

)
∈ CM2×1

u2 = −σ2
xvec

(
Wgig

H
i WH

)
∈ CM2×1

(14)

From (13), δ̂ which minimizes f(δ) is obtained by solving the
equation ∂f

∂δ = 0. Therefore, we have:

∂f

∂δ
= 2

[
w0 + w1δ + w2δ

2 + w3δ
3
]
= 0 (15)

where w0, w1, w2, w3 are given by:

w0 = ℜ
{
uH
1 u0

}
, w1 =

{
2ℜ{uH

0 u2}+ ∥u1∥2
}

w2 = 3ℜ
{
uH
1 u2

}
, w3 = 2 ∥u2∥2

(16)

Equation (15) is a third-order polynomial with 3 roots
δ1, δ2, δ3 and δ̂ is selected as the real root which minimizes
the approximate cost function f(δ) as follows:

δ̂ = min
δ∈{δ1,δ2,δ3}

∥u0 + u1δ + u2δ
2∥2 (17)

The second step of the iteration (i + 1) is to take the least
squares (LS) estimate of σ2

x
(i+1) from (9) by fixing µ(i+1)

σ2
x
(i+1)

= {Wai+1}† Ry

{
aHi+1W

H
}† ∈ R (18)

This alternating procedure is performed iteratively and it ter-
minates if the maximum number of iterations Imax is reached
or the cost function in (10) has reached a local minimum. The
proposed algorithm is summarized in Algorithm 1.
B. The GCOMP Algorithm

According to the compressive sensing framework, the wide-
band beamspace covariance matrix in (8) can also be written
using the dictionary as in the following:

Algorithm 1 Proposed BSC-GD Algorithm

Input: Ry, W, µ(0)

Compute σ2
x
(0)

= {Wa0)}† Ry

{
aH0 WH

}†

Compute ϵ(0) = ∥Ry −Wa0σ
2
x
(0)

aH0 WH∥F
for i = 0 to Imax do

For given σ2
x
(i)
, µ(i), find roots of (15)

Compute δ̂ as in (17)
Compute µ(i+1) = δ̂ + µ(i)

Compute σ2
x
(i+1) as in (18)

ϵ(i+1) = ∥Ry −Wai+1σ
2
x
(i+1)

aHi+1W
H∥

F

if ϵ(i+1) ≥ ϵ(i)

return µ̂ = µ(i) and terminate
end if
µ̂ = µ(i+1)

end for
Output: The estimated parameter µ̂

Algorithm 2 Proposed GCOMP Algorithm

Input: y(k), W, Å, L, K

Compute Ry = 1
K

∑K−1
k=0 y(k)yH(k), V = Ry, A = ∅

for l = 0 to L− 1 do
µ̊l = argmaxµ̊i∈{µ̊1,...,µ̊P } (Wa(µ̊i))

H
VWa(µ̊i)

µl = BSC GD (V,W, µ̊l)
A = [A,a(µl)]

Rx = {WA}† Ry

(
{WA}†

)H

V = Ry − (WA)Rx(WA)
H

end for
Output: The estimated parameter µ̂ = [µ0, . . . , µL−1]

Ry = WÅR̊xÅ
HWH +

σ2

K
WWH (19)

where Å = [a(µ̊1), . . . ,a(µ̊P )] ∈ CN×P is the dictionary ma-
trix of P steering vectors with pre-defined spatial frequencies,
a(µ̊i) denotes the ith steering vector with spatial frequency µ̊i,
and R̊x is a sparse P × P Hermitian matrix.

By assuming that R̊x is sparse, the original COMP algo-
rithm in [7] iteratively detects the index of the grid-point
which corresponds to the strongest DoA source, cancels its
contribution from Ry, and then detects the next strongest
DoA source. When a DoA source is off-grid, the power of
the source leaks into multiple grid points, so that the sparsity
of R̊x is reduced. When the cancellation is applied only on the
pre-defined grid, the contribution of a detected off-grid DoA
source to the Ry is not totally eliminated, which impacts the
detection performance for the next DoA source. To mitigate
this, the developed BSC-GD algorithm is further integrated
into the COMP procedure, such that instead of subtracting the
on-grid contributions of the detected sources, we subtract the
refined off-grid contributions from Ry, before a further DoA
source is detected. The proposed algorithm is summarized in
Algorithm 2. This method clearly differs from the two-step
approach by the GOMP algorithm in [6], which computes the
on-grid estimates of all sources in a first step, and then applies
the refinement for all on-grid estimates jointly in a second step.
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IV. NUMERICAL RESULTS

A. Computational Complexity
We compare the computational complexity of our proposed

algorithm with GOMP which treats each sub-carrier as one
snapshot and computes the gradients in the channel snapshots
domain instead of the BSC domain. We use the methods
introduced in [9] for matrix operations to compute the total
number of floating point operations (FLOPS) for both algo-
rithms. Table I compares the FLOPS of GCOMP and GOMP
with Imax = 5 and L = 1. We see that GCOMP has a
much lower complexity than GOMP. This is mainly because
the complexity of the pseudo-inverse step in GOMP is di-
rectly proportional to O(K2), whereas the GCOMP algorithm
computes the pseudo-inverse with complexity proportional to
O(M2). Since, K ≫ M , it is clear that GCOMP scales much
better than GOMP with the number of sub-carriers. Note that
Ry in the GCOMP is computed according to (7) only once
and requires M2(K + 1) FLOPS.

B. Performance Evaluation
We compare our proposed GCOMP algorithm with GOMP

from [6] and COMP from [7]. The same sensing matrix is
used for all algorithms and it has been designed to minimize
the mutual coherence (MC) following the schemes introduced
in [6]. For the dictionary design, we configure P = N .
The simulations are conducted using OFDM signals with the
central carrier frequency of 28 GHz and 120 kHz sub-carrier
spacing. The DoAs of the configured sources are randomly
selected within the range from [−π

2 , . . . ,
π
2 ]. We evaluate the

mean-squared error (MSE) of the estimated spatial frequency
vector for the DoA sources by averaging over 2000 Monte
Carlo runs per signal to noise ratio (SNR) point. The SNR is
swept from −10 dB to 20 dB with steps of 5 dB.

In the first scenario, only a single DoA source is configured.
We further configure M = 4, N = 8 and we vary the number
of sub-carriers to be K = 64 and K = 128, respectively. The
algorithm performance in this scenario is shown by Fig. 1. The
simulation figure shows that both GOMP and GCOMP achieve
a similar accuracy, although the proposed GCOMP enjoys
a much smaller computational complexity due to the BSC
domain processing. Meanwhile, both GOMP and GCOMP
significantly outperform COMP, which is due to the gain of
the gradient descent based local refinement. Furthermore, the
figure shows that the performance of the local refinement
improves with an increased number of sub-carriers, which is
also expected. In the second scenario, multiple DoA sources
are configured. Hereby, two setups are evaluated: In the first
setup we configure L = 2, M = 4, N = 8 while in the second
setup we configure L = 3, M = 8, N = 16. The number
of sub-carriers is fixed to be K = 64 in both setups. The
algorithm performance in this scenario is shown in Fig. 2. We
can see that in both setups GOMP only achieves a marginal
improvement over COMP. That is due to the fact that GOMP
treats the on-grid estimation for all DoA sources and the off-
grid refinement for all DoA sources as two independent steps.
In a multi-source scenario, when an early on-grid detected
DoA source is off-grid, its leaked power will impact the on-
grid detection of the next DoA source. As a result, the on-grid
estimation step does not provide reliable initial estimates for
all DoA sources, which may lead to a failure of the later local

refinement. On the other hand, we see that in both setups, the
proposed GCOMP significantly outperforms both GOMP and
COMP. That is because GCOMP integrates the BSC-GD into
the successive procedure of the COMP, such that an early
detected DoA source is off-grid refined and then canceled
before the next DoA source is detected. In this way, the grid
mismatch issue is mitigated.

M = 4, N = 8 M = 8, N = 16
K GOMP GCOMP GOMP GCOMP
32 69448 9145 186768 59645
64 219528 9657 532176 61693
128 765448 10681 1714512 65789

TABLE I: FLOPS comparison with Imax = 5 and L = 1

−10 −5 0 5 10 15 20

10−5

10−4

10−3

10−2

10−1

SNR in dB

µ
M
S
E

COMP ,K = 64
GOMP ,K = 64
GCOMP,K = 64
COMP ,K = 128
GOMP ,K = 128
GCOMP,K = 128

Fig. 1: MSE of the spatial frequency µ for single source with M = 4, N = 8.

−10 −5 0 5 10 15 20
10−2

10−1

SNR in dB

µ
M
S
E

COMP , L = 2,M/N = 4/8

GOMP , L = 2,M/N = 4/8

GCOMP, L = 2,M/N = 4/8

COMP , L = 3,M/N = 8/16

GOMP , L = 3,M/N = 8/16

GCOMP, L = 3,M/N = 8/16

Fig. 2: MSE of the spatial frequency µ for multiple sources with K = 64.

V. CONCLUSIONS

We present a compressive sensing based high resolution
DoA estimation scheme using BSC-GD. Compared with an
existing gradient descent based DoA refinement algorithm
in the channel snapshots domain, the proposed refinement
algorithm operates in the BSC domain so that the complexity
does not scale with the number of snapshots. The proposed
BSC-GD refinement is further integrated into a known COMP
algorithm, such that an on-grid detected source is first refined
and then off-grid canceled before the next source is detected.
Such an approach can eliminate the power spreading issue
when an off-grid source is on-grid canceled. Numerical results
show the effectiveness of the proposed method.
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