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Abstract—Recent research has shown that the joint analysis
of heterogeneous data can be beneficial to understand the
underlying structure of the data compared to a separate analysis.
This research direction has gained high interest due to the tech-
nological progress, where massive amounts of data from multiple
sources are collected, e.g., multi-modal data from a patient such
as EEG (electroencephalogram), MAG (magnetoencephalogram),
and other data gathered from laboratory tests. This task of data
fusion is challenging due to the heterogeneous structure of the
data. In this study, we perform a joint CP decomposition of
a heterogeneous data set, i.e., a matrix coupled with a three-
dimensional tensor along the first mode, via a new formulation of
the coupled matrix and tensor factorization (CMTF) based on the
SEmi-Algebraic framework for approximate CP decomposition
via SImultaneous matrix diagonalization (SECSI). In comparison
with the traditional alternating and gradient-based optimization
algorithms, the proposed SECSI-CMTF algorithm shows an
accurate and robust performance with a significantly increased
computational speed. The results are evaluated on synthetic data
set and compared to other state-of-the-art approaches, also in
ill-conditioned scenarios and in scenarios with different SNRs.

Index Terms—tensor decomposition, CP, coupled matrix-
tensor factorization, semi-algebraic framework, SECSI, simul-
taneous diagonalization

I. INTRODUCTION

Due to its high significance, rigorous requirements, and
huge potential, data fusion from multiple sources has always
been attracting a lot of research interest. From its structure,
the data can be gathered in different formats, i.e., matrices
or higher-order tensors, forming the heterogeneous data sets
and this raises a challenge. The joint analysis of massive
heterogeneous data requires reliable mathematical tools that
can provide sufficient processing for further interpretation to
reveal the underlying structure of the data, while providing an
acceptable complexity-accuracy trade-off.

The task of the joint analysis of heterogeneous data sets
first started with the collective matrix factorization [1] and
has been successfully applied in bioinformatics [2], [3], social
network analysis [4], and signal processing [5]. Furthermore,
this problem was reformulated for the joint processing of
heterogeneous data sets, i.e., a matrix coupled with a higher-
order tensor [6]–[10]. The joint factorization of such data

has already been successfully applied, e.g., in [7], where
the authors provided the quantitative comparison of histology
and in vitro samples with the goal of differentiating between
cancerous and healthy states of brain, breast, and bone tissues.
Additionally, this approach found its application in social
networks [11], [12]. The authors in [6] formulated the CMTF
problem where the heterogeneous data sets are modeled
by fitting outer-product models to higher-order tensors and
matrices in a coupled manner with the squared Euclidean
distance as the loss function. They used a gradient-based
optimization approach. Furthermore, this approach has been
extended in [8] to reveal the common and distinct components
of the aforementioned heterogeneous data set structure by
incorporating sparsity penalties on component weights. The
approach in [8] is also a gradient-based optimization approach
and has already a successful application in metabolomics.

Our contribution is summarized as follows. In this paper,
we introduce a robust semi-algebraic framework to compute
the CMTF via an extension of SECSI [13]. This leads to a
significantly reduced computational complexity as compared
to the state-of-the-art CMTF approaches [6]. SECSI-CMTF
demonstrates an accurate performance and a significantly
increased computational speed on simulated data.

The data model from [6] is highlighted in Section II. In
Section III, we introduce our proposed approach. In Section
IV, we evaluate the proposed approach via simulations, and
Section V concludes our findings.

The following notation is used in the paper. Scalars are
denoted as lower-case and capital italic letters, i.e., a, A. The
bold-faced lower-case and capital letters a and A stand for
vectors and matrices, respectively, and bold-faced calligraphic
letters A stand for tensors. We denote the transposition,
Hermitian transpose, matrix inversion, and Moore-Penrose
pseudo matrix inversion as T, H, −1, and +, respectively. The
symbols ◦, ⋄, and ⊘ stand for the outer product, Khatri-
Rao product, and element-wise division. The higher-order
norm of a tensor and the Frobenius norm of a matrix are
denoted as ∥·∥H and ∥·∥F, respectively. We use the Kruskal
operator [14] to denote the CP model of an N -way tensor
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A ∈ CI1×I2×···×IN , i.e., A = JF1,F2, . . . ,FN K, where
Fn ∈ CIn×R, n = 1, . . . , N , are the factor matrices of A. The
n-mode product of a tensor A with a matrix B ∈ CIn×R is
denoted as A×nB. Finally, the N -way super-diagonal tensor
which holds ones on the super-diagonal and zeros elsewhere
is denoted by IN,R ∈ CR×R× ···×R.

II. DATA MODEL

The objective function of the joint factorization of hetero-
geneous data sets, e.g., consisting of a tensor X ∈ CI1×I2×I3

coupled with a matrix Y ∈ CI1×M can be formulated as

f(F1,F2,F3,D) = ∥X − JF1,F2,F3K∥2F + ∥Y − F1D
H∥2F,

(1)
where the first mode is assumed to be coupled, i.e., the
matrix F1 ∈ CI1×R is shared by both factorizations [6].
This formulation fits the CANDECOMP/PARAFAC model of
X and factorizes Y according to the corresponding coupled
matrix F1 that is assumed to be the same along the first
mode for both, X and Y [15], [16]. The remaining matrices
Fn ∈ CIn×R, n = 2, . . . , N , are the n-mode factor matrices
of the tensor X , and D ∈ CM×R is a factor matrix along the
second mode of Y .

This formulation as in (1) was proposed in [6]. However,
according to [6], it can be considered as a special case of the
approach introduced by [9] for multi-way multi-block data
analysis. This research direction was also of interest in [7],
[11], [12], [17]. Moreover, due to its high significance in many
applications, e.g., in metabolomics, the CMTF model has been
extended to the unsupervised identification of the common
(shared) and individual (unshared) structures across multiple
data sets in [8].

III. SECSI-CMTF

A. Joint subspace estimation

Let us consider a three-dimensional tensor X 0 ∈ CI1×I2×I3

and a matrix Y0 ∈ CI1×M , which are coupled along the first
mode.1 In this case, the tensor and the matrix are defined as

X 0 = I3,R ×1 F1 ×2 F2 ×3 F3 ∈ CI1×I2×I3 , (2)

Y0 = F1D
H ∈ CI1×M , (3)

where Fn ∈ CIn×R, n = 1, . . . , N , are the factor matrices
of the tensor. Similarly, the matrices F1 ∈ CI1×R and D ∈
CM×R are the factor matrices of Y0. Here, F1 is a coupled
factor matrix along the first mode, i.e., it is the same for X 0

and a Y0. In practice, we observe a noise-corrupted model as

X = X 0 +N and Y = Y0 +N , (4)

where N and N are the additive noise tensor and a matrix,
respectively. In our proposed framework, we also consider the
case when the tensor and the matrix can have different SNRs.

1However, the coupling can also occur in the second or third mode and
the resulting framework can be extended to the case with multiple coupled
matrices.

For notational simplicity, we show the derivations for the
noiseless case [13]. The truncated HOSVD (T-HOSVD) is
defined as

X 0 = S [s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , (5)

where S [s] ∈ CR×R×R is the truncated core tensor and
U

[s]
n ∈ CIn×R, n = 1, . . . , N , are the unitary subspace

matrices of a tensor that span the n-mode column space of
the corresponding unfolding of X . For the first coupled mode,
the common unitary subspace matrix U

[s]
1 is obtained via[

[X 0](1) , Y0

]
= U

[s]
1 ·Σ

[s]
1 · V

[s]H

1 , (6)

where U
[s]
1 ∈ CI1×R, Σ

[s]
1 ∈ CR×R and

V
[s]H

1 ∈ CR×(I2I3 +M). For the latter, note that

V
[s]H

1 =
[
V

[s]H

I2I3
, V

[s]H

M

]
, (7)

where V
[s]H

I2I3
∈ CR×I2I3 and V

[s]H

M ∈ CR×M span the row
space for the 1-mode unfolding of X 0 and Y0, respectively.
We will make use of this fact in further derivations.

B. CPD via Simultaneous Matrix Diagonalization (SMD)

In this section, we introduce the SECSI-CMTF approach
step-by-step for one tensor coupled with a matrix along the
first mode. The suggested approach is based on the com-
putation of the CP decomposition via Simultaneous Matrix
Diagonalization (SMD) [13]. The initial step is the coupled
truncated HOSVD described in the previous section. From the
fundamental link between the HOSVD and the CP decompo-
sition, we have [13]

X 0 =
(
S [s] ×3 U

[s]
3

)
×1 U

[s]
1 ×2 U

[s]
2 (8)

=
(
I3,R ×3

(
U

[s]
3 · T3

))
×1

(
U

[s]
1 · T1

)
×2

(
U

[s]
2 · T2

)
,

where Fn = U
[s]
n · Tn, n = 1, . . . , N . The matrices

Tn ∈ CR×R, n = 1, . . . , N , are the transform matrices,
which diagonalize the core tensor S [s]. In order to obtain the
tensor in terms of the transform matrices, we multiply (8)
by the matrices U

[s]H

1 and U
[s]H

2 along the 1- and 2-mode,
respectively, resulting in a non-symmetric SMD [13]

S3 = F3 ×1 T1 ×2 T2, (9)

where S3 = S [s]×3U
[s]
3 ∈ CR×R×I3 and F3 = I3,R×3F3 ∈

CR×R×I3 . The symmetric one is obtained by multiplying (9)
by the pivoting slice p ∈ {1, 2, . . . , I3} from the right-hand-
side (rhs) and left-hand-side (lhs), respectively

I : Srhs
3,k = S3,k · S−1

3,p (10)

= T1 · diag {F3(k, :)⊘ F3(p, :)} · T−1
1

and

II : Slhs
3,k =

(
S−1
3,p · S3,k

)T
(11)

= T2 · diag {F3(k, :)⊘ F3(p, :)} · T−1
2 ,
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Figure 1: TMSFE as a function of SNR for X̂ ∈ R55×150×409

and Ŷ ∈ R55×409, R = 8, SNRmatrix = 35dB, SNRtensor =
0 : 60 dB, F1 is coupled with ρ1 = 0.97.

where S3,k stands for the k-th slice of the tensor S3 along
the third mode, F3(k, :) is the k-th row of the matrix F3, and
k = 1, . . . , I3. By applying the same procedure to the rest
of the modes, six different SMDs are obtained as shown in
Table I [13].

For more details regarding the solutions of the SMDs, we
refer the reader to [13].

C. Estimation of the Factor Matrices

After solving the right-hand side SMD, we get the estimate
for the first (coupled) matrix

F̂1,I = U
[s]
1 · T1, (12)

where T1 is the same for both coupled tensor and coupled
matrix. From the knowledge of this matrix and the shared
subspace matrices U

[s]
1 and V

[s]H

M from (6) and (7), we get an
estimate of Ŷ

Ŷ = U
[s]
1 · T1 · D̂H ← D̂H = T−1

1 ·Σ[s]
1 · V

[s]H

M . (13)

Overall, we get two estimates of Ŷ from the corresponding
SMDs I and III from Table I. The estimate of F̂3,I is ob-
tained form the diagonal elements of the jointly diagonalized
matrices [13]. Since F̂1,I and F̂3,I are already estimated, the

Table I: SMDs

No. Symmetric SMD
I Srhs

3,k=T1 ·diag{F3(k, :)⊘ F3(p, :)}·T
−1

1

II Slhs
3,k=T2·diag{F3(k, :)⊘F3(p, :)}·T−1

2

III Srhs
2,k=T1 ·diag{F2(k, :)⊘ F2(p, :)}·T

−1

1

IV Slhs
2,k=T3·diag{F2(k, :)⊘F2(p, :)}·T−1

3

V Srhs
1,k=T2 ·diag{F1(k, :)⊘ F1(p, :)} · T−1

2

VI Slhs
1,k=T3 ·diag{F1(k, :)⊘ F1(p, :)} · T−1

3
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Figure 2: CCDF (Complementary Cumulative Distribution
Function) of the SRE for X ∈ R55×150×409, R = 8,
SNR = 6dB, F1 is coupled with ρ1 = 0.97. The vertical
lines represent the mean value of the error for each curve.

remaining estimate for F̂2,I is computed via a Least Squares
(LS) fit as follows

F̂2,I =
[
X 0

]
(2)
·
[(
F̂3,I ⋄ F̂1,I

)T]+
. (14)

From solving the remaining SMDs, the remaining four sets
of factor matrix estimates are obtained. Overall, we obtain
six sets of estimates. The final solution is chosen for both,
the tensor and the matrix, separately and is based on the
chosen selection criterion. In this paper, we consider the
REConstructed Paired Solutions (REC PS) for the selection
of the final factor matrix estimates. REC PS solves all SMDs
and calculates the reconstruction error (RSE) for solutions
coming from the same (paired) SMD. The pair of solutions,
which leads to the smallest value of the RSE is then chosen
as the final solution. The reconstruction error is calculated as

RSE =

∥∥X̂ −X
∥∥2

H

∥X∥2H
, (15)

where X̂ is the estimated tensor and X denotes the noise-
corrupted tensor. The same procedure applies to the final
estimate selection of Ŷ , where they are chosen from all
available estimates independently.

IV. SIMULATIONS RESULTS

In this section, we evaluate the proposed approach by
conducting simulations with synthetic data. As benchmark
algorithms, we use the traditional Coupled Matrix Tensor
Factorization algorithm (CMTF) [8] and the Advanced CMTF
(ACMTF) [18], which are available in the MATLAB CMTF
toolbox (available from https://www.models.life.ku.dk).

First, we consider a real-valued scenario of a tensor X cou-
pled with a matrix Y along the first mode (1-mode) according
to (2) and (3), respectively. All of the factor matrices, i.e.,
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Figure 3: CCDF of the TSFE from the tensor factors,
X̂ ∈ R55×150×409, R = 8, SNR = 6dB, F1 is coupled
with ρ1 = 0.97.

Fn, n = 1, . . . , N , and D, are formed from i. i. d. zero mean
Gaussian distributed random entries with variance one. Then,
the synthetic data is generated via adding i. i. d. zero mean
Gaussian noise with variance σ2

n. As the accuracy measures,
we use the squared reconstruction error (SRE) defined in (15)
and the Total relative Mean Square Factor Error (TMSFE)

TMSFE = E

 ∑
F̂n=F̂1,F̂2,F̂3

min
P∈MPD(R)

∥∥F̂n · P − Fn
∥∥2
F

∥Fn∥2F

 ,

where MPD(R) is a set of permuted diagonal matrices P
of size R × R, which correct for the inherent scaling and
permutation ambiguity in the CP-model, R is the tensor rank,
and Fn are the n-mode factor matrices, n = 1, . . . , N .

In Fig. 1, we compare the TMSFE of CMTF, ACMTF, and
SECSI-CMTF for a real-valued tensor 55 × 150 × 409 with
the rank R = 8 and matrix Y , where F1 ∈ R55×R and
D ∈ R409×R. In this scenario, we fix the SNR of Y to
SNR = 35dB and vary the SNR of X from 0 dB to 60 dB.
To challenge the algorithms even more, we add correlation in
the coupled mode with the correlation parameter ρ1 = 0.97
via

F ← F ·R(ρ), R(ρ) = (1− ρ) · IR + ρ/R · 1R×R,

where 1R×R denotes a matrix of ones and ρ is a parameter
to control the collinearity of the resulting matrix F . Since the
common mode is highly-correlated, it is ill-conditioned and,
therefore, the approximate coupled matrix-tensor decomposi-
tion is difficult to calculate. The results have been averaged
over 100 Monte Carlo trials. As can be observed from
Fig. 1, the joint subspace estimation improves the estimates in
low SNRs, and, thus, SECSI-CMTF shows a more accurate
performance than CMTF and ACMTF. The average CPU for
CMTF, ACMTF, and SECSI-CMTF was 45min., 2 h., and
5 sec., respectively.

0.8 0.9 1 1.1 1.2

TSFE (matrix)

10
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10
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10
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10
0

C
C

D
F

CMTF

ACMTF

SECSI-CMTF

Figure 4: CCDF of the TSFE for Ŷ ∈ R55×409, R = 8,
SNR = 6dB, F1 is coupled with ρ1 = 0.97.

Next, in Fig. 2, we compare the SRE of CMTF, ACMTF,
and SECSI-CMTF for the same simulation set up with 1,000
Monte-Carlo trials, except for SNR. Now we consider a low
SNR case, i.e., SNR = 6dB, and it is fixed for both coupled
objects. The TMSFE of the tensor factors F1, F2, and F3

and the matrix Ŷ with coupling via F1 are depicted in
Fig. 3 and Fig. 4, respectively. SECSI-CMTF shows a more
robust performance than CMTF with a significantly enhanced
computational speed (CPU), i.e., the average CPU is 5 sec. and
13min., respectively, while ACMTF decomposes the coupled
objects with the average CPU being 49min.

V. CONCLUSIONS

In this paper, we have presented a new approach for coupled
matrix tensor factorizations (CMTFs) based on solving the
SMDs for a tensor coupled with a matrix along one mode. The
developed algorithm has been compared with the traditional
CMTF and ACMTF algorithms. The results of the simulations
have shown that the proposed SECSI-CMTF outperforms the
benchmark algorithms in critical scenarios, i.e., low SNRs and
ill-conditioning in the coupled mode.

Moreover, while SECSI-CMTF provides a semi-algebraic
solution, the CMTF and ACMTF are both dependent on the
maximum number of function evaluations and inner iterations
of the external optimization algorithms, which are both set
manually. Thus, SECSI-CMTF has a significantly smaller
computational complexity in all of the simulation scenarios. In
contrast to the approaches in [8], [18], the proposed SECSI-
CMTF algorithm supports matrix-tensor decompositions for
complex-valued data.
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