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Abstract—In this paper, we study three recently proposed probability
mass function (PMF) estimation methods for flow cytometry data
analysis. By modeling the PMFs as a mixture of simpler distributions, we
can reformulate the PMF estimation problem as three different tensor-
based approaches: a least squares coupled tensor factorization approach,
a least squares partially coupled tensor factorization approach, and
a Kullback-Leibler divergence (KLD)-based expectation-maximization
(EM) approach. In the coupled methods, the full PMF is estimated from
lower-order empirical marginal distributions, while the EM approach
estimates the full PMF directly from the observed data. The three
approaches are evaluated in the context of simulated and real data
experiments.

Index Terms—Probability Mass Functions (PMF), Naïve Bayes Model,
Low-Rank Tensor Decomposition, Flow Cytometry

I. INTRODUCTION

Flow cytometry (FCM) is one of the most popular techniques for
biological cell analysis. It is the reference technique in immunology
because it allows for the identification of rare cell populations and
thus improves the knowledge of the human immune system [1]. From
a data analysis point of view, a cytometer produces a point cloud in
an N -dimensional space, where each point measured represents N
characteristics called markers. The aim is to identify the different cell
populations in this set of data points. Conventional analysis carried
out manually by practitioners essentially consists of a series of 2-
dimensional analyses; it becomes complex, subjective, and costly in
terms of manpower and time when N increases. This has motivated
the development of automatic methods [2], [3], which are still costly
and difficult to apply to large data sets. Furthermore, these methods
have a limited performance for the analysis of rare cell populations,
and their associated visualization tools are often difficult to interpret
by end-users.

Recently, probabilistic approaches based on the estimation of the
joint density of the data have been explored. Estimating a probability
mass function (PMF) is a challenging problem in practice due to the
curse of dimensionality: the amount of data required to provide an
accurate estimate increases exponentially with the dimension N of
the problem. To cope with the curse of dimensionality, the methods
presented adopt a naïve Bayes model of the joint density whose
complexity remains linear with N . Under this model, estimating the
N -dimensional PMF can be reduced to estimating the factors of a CP
(canonical polyadic) tensor model [4]. To estimate the factors from
a set of T observations, the authors in [5] proposed a cost function
using the Frobenius norm that coupled lower-order marginals. While
this approach works quite effectively, the complexity is a function
of the number of lower-order marginals. For example, the number
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of order-3 marginals is
(
N
3

)
and can be quite large for large N .

Therefore, to reduce the complexity of [5], a partially coupled
tensor factorization that only considers a subset of order-3 marginals
was proposed in [6]. On the other hand, [7] and [8] proposed an
expectation-maximization (EM) algorithm which estimates the full
PMF tensor directly from the data, obviating the need to compute
lower-order marginals.

While the coupled methods are based on the least squares criterion,
the similarity criterion in the EM approach is the Kullback-Leibler di-
vergence (KLD) between the estimated and the (unknown) true PMF
tensor. These two criteria behave quite differently in terms of how
they handle rare events, which have small empirical probabilities.
The least squares criterion, being a symmetric distance measure, may
assign an extremely small (or even zero) probability to a rare event
because it is penalized equally for larger and smaller probabilities.
On the other hand, the KLD criterion, being an asymmetric distance
measure, would not allow zero probability where the empirical
probability is nonzero, even if that probability is very small. In fact, if
zero probability were assigned in this case, the KLD would diverge
to infinity. As was demonstrated in [9], the KLD criterion results
in more accurate PMF estimates than the least squares criterion.
Therefore, in the context of FCM data analysis, the EM algorithm
is expected to detect small cell populations more accurately than the
least squares-based methods.

In this paper, we compare the performance of three recently
proposed PMF estimation schemes: least squares fully coupled and
partially coupled tensor factorizations [6], [10] and the EM algorithm
[7], [8], which is based on the KLD criterion. In particular, we are
interested in the conditions under which the three algorithms detect
small populations as well as the computational efficiency of the
algorithms. To compare these methods, we examine both synthetic
data as well as real flow cytometry data.

II. NAÏVE BAYES MODEL FOR PMF ESTIMATION

Let x =
(
X(1), . . . , X(N)

)
be a random vector taking values in

I(1) × · · · × I(N) where I(n) = [x
(n)
min , x

(n)
max ]. We assume that the

T rows xt of X are realizations of the random vector x. Our goal
is to estimate the multivariate probability density function (PDF)
p(x) = p(X(1), . . . , X(N)) from the observation matrix X. One
first approach is to consider an N -dimensional histogram. In this
case, each interval I(n) is separated in I equal bins from ∆

(n)
1 =

[x
(n)
0 , x

(n)
1 ] to ∆

(n)
I = [x

(n)
I−1, x

(n)
I ], where x

(n)
0 = x

(n)
min and x

(n)
I =

x
(n)
max. The histogram H ∈ (RI)N is an order-N tensor which can be
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interpreted as the discretized joint PDF:

Hi1...iN = Pr(x ∈ ∆
(1)
i1
× · · · ×∆

(N)
iN

) (1)

=

∫
∆

(1)
i1

· · ·
∫
∆

(N)
iN

p(x)dX(1) · · · dX(N)

A naïve approach to estimate the histogram from X is to count the
number of samples xt in each N -dimensional bin:

H̃i1···iN =
1

T
Card

{
t ∈ [[1, T ]]

∣∣∣xt ∈ ∆
(1)
i1
× · · · ×∆

(N)
iN

}
. (2)

However, it requires a number of samples growing exponentially with
N . To give some figures, with N = 8 and I = 20, H is described
by IN ≈ 1010 values, and a prohibitively large number of samples is
required to produce an accurate estimate. This drawback is referred
to as the curse of dimensionality. To cope with it, [5] proposed to use
a model whose complexity remains linear with N [10]. The naïve
Bayes model (NBM) [5] introduces a latent variable L taking values
in {1, . . . , R}, such that X(n) is conditionally independent on L:

p(x) =

R∑
r=1

Pr(L = r)

N∏
n=1

p(X(n)|L = r). (3)

By inserting (3) into (1), the NBM corresponds to an order-N
canonical polyadic decomposition (CPD) [11] of H:

Hi1···iN =

R∑
r=1

Pr(L = r)

N∏
n=1

Pr
(
X(n) ∈ ∆

(n)
in

∣∣∣L = r
)

H =
[[
λ;A(1), . . . ,A(N)

]]
=

R∑
r=1

λra
(1)
r ◦ · · · ◦a(N)

r (4)

where λ ∈ RR contains the probabilities Pr(L = r), and the factors
a
(n)
r are 1D conditional marginals (i.e., the values of Pr(X(n) ∈

∆
(n)
in
|L = r)). Thus, R corresponds to the tensor rank of H. As

the factor matrices A(n) =
[
a
(1)
r . . . a

(R)
r

]
and λ represent

probabilities, they should satisfy non-negativity constraints (λ ≥ 0,
A(n) ≥ 0), and sum-to-one constraints (1Tλ = 1,1TA(n) = 1

T).

III. OVERVIEW OF ALGORITHMS

A. Least squares coupling of 3D marginals

The coupled tensor factorization of 3D marginals is based on the
fact that a marginalized NBM (3) is a lower-order NBM. Indeed,
due to simplex constraints, the 3D histogram H(jkℓ) of a subset of
variables (X(j), X(k), X(ℓ)) has the CPD

H(jkℓ) =
[[
λ;A(j),A(k),A(ℓ)

]]
. (5)

The 3D histograms for all triplets of variables {j, k, ℓ} are estimated
with

H̃(jkℓ)
ijikiℓ

=
1

T
Card

{
xt ∈ ∆

(j)
ij
×∆

(k)
ik
×∆

(ℓ)
iℓ

}
(6)

which are easily computable compared to the full N -D histogram
(2). Estimating the factors comes to solving the following coupled
tensor optimization problem:

λ̂, Â(1), . . . , Â(N) = argmin
λ,A(1),...,A(N)

N−2∑
j=1

N−1∑
k=j+1

N∑
ℓ=k+1

∥∥∥H̃(jkℓ) −
[[
λ;A(j),A(k),A(ℓ)

]]∥∥∥2

F

s.t. λ ≥ 0,A(n) ≥ 0,1Tλ = 1,1TA(n) = 1
T. (7)

This method is referred to as Coupled Tensor Factorization or
CTF3D, which was initially proposed in [5] and is solved via an

alternating optimization procedure using the alternating direction
method of multipliers (ADMM) [12].

B. Least squares partial coupling of 3D marginals

As the number of dimensions N increases, the number of triplets
in (7) is

(
N
3

)
and therefore increases cubically with N . In practice,

this complexity can lead to computational issues. For example, with
N = 20 variables, 1140 3D marginals must be estimated, stored and
handled to solve (7). To reduce the complexity of the approach [5],
we showed in [6] that it is not necessary to consider all possible
triplets like in (7). This leads to the following optimization problem:

argmin
λ,A(1),...,A(N)

∑
{j,k,ℓ}∈T

∥∥∥H̃(jkℓ) −
[[
λ;A(j),A(k),A(ℓ)

]]∥∥∥2

F

s.t. λ ≥ 0,A(n) ≥ 0,1Tλ = 1,1TA(n) = 1
T, (8)

where T is the subset of triplets considered in the coupling. For
example, if T = {{j, k, ℓ} ⊂ [[1, N ]] |j < k < ℓ}, then (8) is equiv-
alent with CTF3D. This approach will be denoted as Partial Coupled
Tensor Factorization of 3D marginals or PCTF3D. Some possible
coupling strategies are presented in [6]. In the following, the coupling
T will be chosen randomly such that T contains a random half of
all possible triplets.

C. Expectation-maximization (EM) algorithm

Instead of estimating H from lower-order marginals, we can
directly use the observations X to compute the maximum-likelihood
(ML) estimate of H. This is achieved via the expectation-
maximization (EM) algorithm [7]. It can be shown that maximizing
the log-likelihood of X given the CPD model of H is equivalent
to minimizing the Kullback-Leibler divergence (KLD) between the
true PMF and the model. As was demonstrated in [9], the KLD
criterion is a more appropriate choice for the PMF estimation task
as compared to the least squares criterion. The optimization problem
for maximizing the log-likelihood of X is given by

argmin
λ,A(1),...,A(N)

−
T∑

t=1

log

R∑
r=1

λr

N∏
n=1

a(n)
xn,t,r

s.t. λ ≥ 0,A(n) ≥ 0,1Tλ = 1,1TA(n) = 1
T, (9)

where xn,t is the n-th element of the observed vector xt and a
(n)
i,r

represents the i-th element of a(n)
r .

It turns out that the NBM conveniently lends itself to the EM
algorithm. Since, according to the model, each observed data vector
xt depends on the corresponding (unobserved) latent state st ∈
{1, . . . , R} (st is a realization of the latent variable L), we can define
the complete data vector zt = [xT

t , st]
T. The EM algorithm then

consists of two steps. In the E-Step, the a posteriori distribution of
the latent variable L given the current observations X and parameters
θ =

{
λ,A(1), . . . ,A(N)

}
is computed. Since the latent states are

unobserved, the distribution is approximated as the expected value
of the complete data given the observations. With θ′ as the initial
setting of the parameters, we compute

Q(θ,θ′) = E[log Pr({zt}Tt=1;θ) | {xt}Tt=1;θ
′]. (10)

In the M-Step, the parameter values that maximize Q(θ,θ′) are
computed, i.e.,

θ′ ← arg max
θ

Q(θ,θ′). (11)
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These two steps are then iterated until convergence. The maximizing
solutions admit a closed form consisting of simple divisions [7], i.e.,

λr=
Cr∑R

g=1 Cg

and a
(n)
i,r =

K
(n)
i,r∑In

j=1 K
(n)
j,r

, (12)

where Cr =
∑T

t=1 ct,r(θ
′), K

(n)
i,r =

∑
t:xn,t=i ct,r(θ

′), and
ct,r(θ

′) = Pr(st = r |xt;θ
′).

While the EM algorithm is simple to implement and has fast,
closed-form updates, it is known to exhibit slow convergence. Thus,
in the following, we employ the SQUAREM-PMF algorithm, pro-
posed in [8] to accelerate the convergence of the EM algorithm.

D. Complexity analysis

The EM algorithm consists of three procedures: the E-Step, the M-
Step, and the log-likelihood computation to check for convergence.
The E-Step and the M-Step are based on the coefficients ct,r(θ

′),
Cr , and K

(n)
i,r (cf. Section III-C), whose complexities are O(TNR),

O(TR), and O(TR), respectively. Furthermore, the complexity of
the log-likelihood computation (cf. (9)) is O(T (N + R)). There-
fore, the overall computation complexity is given by O(TNR).
The SQUAREM-PMF algorithm [8] consists of three EM updates,
some acceleration procedures, and the log-likelihood computation.
However, the complexity of SQUAREM-PMF is dominated by the
EM updates and the log-likelihood computation; hence, it is slightly
higher than that of the EM algorithm.

Concerning least squares methods, the complexity of both
PCTF3D and CTF3D relies on the number of marginals to compute
and couple. The number of triplets for CTF3D is

(
N
3

)
which is

in O(N3). In this paper, the coupling strategy used for PCTF3D
consists in taking randomly half of all possible triplets. Therefore,
the number of triplets for PCTF3D is also in O(N3). Therefore,
PCTF3D and CTF3D have the same asymptotic complexity even if
PCTF3D’s complexity is half of CTF3D’s. The complexity of the
least squares methods is then computed by adding the complexity of
the computation of 3D histograms with the complexity of the internal
ADMM [13] which gives a complexity in O(N3T+N3RI2(R+I)).
In practice, the computations are dominated by ADMM which yields
a complexity in O(N3RI2(R+ I)). However, it is possible that the
computations of the 3D marginals become dominant, especially for
large data sets.

IV. NUMERICAL EXPERIMENTS

A. Small cluster sensitivity experiment

In flow cytometry, end users search for small cell populations.
Thus, we propose an experiment to test the sensitivity of the
methods presented in Section III. To do this, Rth = 3 multi-
variate discrete Gaussian random variables were generated with
N = 7 and I = 20. For each theoretical distribution, T =
105 samples were generated with 8 different proportions: λ1 ∈{
0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 1

3

}
, λ2 = 1

3
and λ3 = 1 −

(λ1+λ2). With theoretical datasets generated, the three methods were
applied with increasing rank until the smallest component was part of
the estimate. Therefore, this procedure stopped if there existed an es-
timated CPD rank-one term such that

∏N
n=1 ∥â

(n)
r −a

(n)
r ∥2 < 10−4.

Figure 1 shows the minimum rank required for each experiment
averaged over 100 trials. It can be seen that, compared to CTF3D
and PCTF3D, SQUAREM-PMF is more sensitive to small clusters
as R must be higher if one wants to obtain a small component
with (P)CTF3D. Unlike CTF3D and PCTF3D, for SQUAREM-PMF,

Fig. 1. Results for the sensitivity experiment. 100 trials were run on datasets
with N = 7 variables featuring Rth = 3 theoretical rank-one terms. Left
plot: Mean value over 100 trials of the minimal rank that provides the desired
rank-one term. Right plot: Median value over 100 trials of the runtime in
seconds.

the estimation rank can be chosen close to the expected number of
clusters. In terms of computational load, SQUAREM-PMF is faster
on harder problems because the smallest rank-one term is found with
R = 3. As λ1 increases, the minimum rank required is close to Rth

for all methods and thus SQUAREM-PMF is slower than the other
methods.

B. Runtime analysis

The three algorithms which we examine have varying complexi-
ties. For example, the computational time of CTF3D and PCTF3D is
less dependent on T in comparison with SQUAREM-PMF. In order
to verify this empirically, we ran three experiments on each method
and averaged the results over 100 trials. The performance criteria
were the runtime and the factor match score (FMS) [14].

a) Evolution with respect to N : In the first experiment, T =
105 samples were generated from random factors with N ∈ [[4, 10]],
I ∈ {5, 10, 15} and R = 5. For each setting, the three proposed
methods were run to obtain a CPD of rank R = 5. The left plots of
Figure 2 show that CTF3D’s runtimes increase with N , and CTF3D
becomes slower than SQUAREM-PMF for the highest values of N
(note that the total number of elements in 3D histograms becomes
comparable with the number of data points T ). The runtimes for
SQUAREM-PMF do not depend strongly on I .

b) Evolution with respect to R: Next, for 100 random observa-
tion matrices of size (T = 104) × (N = 5), the proposed methods
were run to obtain a CPD with different ranks R ∈ [[3, 20]]. The
middle plots of Figure 2 shows that the runtimes increase with R. For
small values of R, SQUAREM-PMF converges with less iterations
and thus has a lower computation time for lower ranks; for higher
ranks CTF3D and PCTF3D are faster. For CTF3D and PCTF3D, we
observed a drop of the runtime for I = 4 and R > 20 (not shown),
which is explained by a loss of identifiability after those ranks.

c) Evolution with respect to T : Finally, to study the complexity
of T , the proposed methods were applied on 100 datasets with N = 6
to obtain a rank R = 5 CPD. The right plots of Figure 2 show that
the runtime of CTF3D does not depend on T , while achieving similar
performance to that of SQUAREM-PMF. However, SQUAREM-
PMF’s runtimes increase considerably with T (some trials took a
few hours to run).

V. APPLICATION TO FLOW CYTOMETRY

A. Flow cytometry data analysis

One main flow cytometry (FCM) data analysis problem is the
search of small cell populations. In practice, manual gating permits to
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Fig. 2. Runtime and FMS [14] depending on 4 main complexity parameters
N , T , R and I . Left plots: N experiment with N ∈ [[4, 10]]. Middle plots:
R experiment with R ∈ [[3, 20]]. Right plots: experiment regarding T .

find as little cell populations as possible, at a cost of subjective and
time-consuming analysis. Moreover, as soon as N ≥ 3, assessing
an overview of all cells while considering all possible markers is
challenging. For example, viSNE [3] provides a dataset overview by
projecting data onto a 2D map; whereas SPADE [2] uses a minimum
spanning tree to present a visualization of k-means clusters.

B. Connection to the data model

With N markers for T cells, FCM data can be interpreted as a
T ×N matrix X, so that each row xt contains the characteristics of
the t-th cell. Typical values for T are from thousands to millions of
cells while N ranges from 1 to 30. By considering the N markers
as a random vector, the PDF of this random vector is modelled with
the NBM as presented in Section II. This model can be interpreted
as a sum where the r-th component represents a cell population. The
factor a(n)

r then represents the expression of the n-th marker for the
r-th component while λr is the proportion of cells such that λrN
cells are contained in the r-th component.

C. Real data experiment: controlled dataset

To validate our methods on real data, flow cytometry datasets were
created in a controlled environment. Three cell lines were considered:
Lymphocytes B and T (LB), Lymphocytes T (LT) and Macrophages
(MP), having different responses according to N = 4 markers (see
Table I). Cells were then mixed in different proportions resulting in
3 datasets with T = 105 cells, where the MP proportion varies
(around 20%, 8% and 1%). The population sizes obtained by a
manual gating (see Figure 3) are considered ground-truth as the 3
clusters are separable for these controlled experiments. By applying
the same procedure as in Section IV-A, the minimum ranks (and their
associated runtimes) that provide the 3 cell populations were found
for each method with I = 20. Table II shows that SQUAREM-PMF
identifies the MP cluster with a lower rank compared with CTF3D
and PCTF3D. Moreover, SQUAREM-PMF gives a more accurate
estimate of λ̂MP, but at the cost of a higher computational time.

VI. CONCLUSIONS AND DISCUSSION

In this paper, three tensor-based probability mass function esti-
mation methods for flow cytometry data analysis were presented:
SQUAREM-PMF, CTF3D and PCTF3D. For all three methods, the
distribution is modelled with a naïve Bayes model whose complexity

TABLE I
PROPERTIES OF THE 3 POPULATIONS USED IN THE CONTROLLED

EXPERIMENT. + IS HIGH MARKER EXPRESSION AND - LOW EXPRESSION.

Marker expression

Population CFSE CD4 CTV MHCII

Macrophage - - + +
Lymphocyte B + - - ++
Lymphocyte T - +- - -

Fig. 3. Manual gating of the 3 populations. The plot shows three gates :
P3 groups CFSE+ cells (LB), P4 groups LT cells and P5 CTV+ cells (MP).
Logicle scale is used on this plot [15].

remains linear with the number of variables. However, the three
presented approaches have different complexities, as each method
estimates canonical polyadic decomposition factors differently. To
compare the approaches, a sensitivity study was performed showing
that, compared to the approaches based on marginals, SQUAREM-
PMF is able to identify small clusters at lower ranks . Experiments on
a real flow cytometry dataset corroborate this conclusion. However,
the runtime of SQUAREM-PMF depends on the number of samples.
According to the results of our experiments, for large numbers of data
points (typical for flow cytometry application) CTF3D and PCTF3D
have much lower computational time, but can achieve a comparable
accuracy to SQUAREM-PMF. We believe that, for large datasets,
a combination of marginal- and ML-based approaches needs to be
developed, which we leave as a future research question.

TABLE II
SENSITIVITY EXPERIMENT FOR N = 4 CONTROLLED EXPERIMENTS.

Gating CTF3D PCTF3D SQUAREM-PMF

λMP = 20.7%
19.9% 19.3% 20.5%
R = 4 R = 4 R = 4

1.2s 1s 5.3s

λMP = 8%
6% 5.3% 7.9%

R = 11 R = 15 R = 7

4.5s 15s 31s

λMP = 1.1%
0.71% 0.76% 1.4%
R = 29 R = 31 R = 11
35s 25s 170s
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