

Seminarraum Humboldtbau 201 Dienstag, den 21.03.2023 Beginn: 8.00 Uhr

Bearbeitungszeit: 120 Min

Modalitäten

- Als Hilfsmittel sind **nur** handschriftliche Aufzeichnungen, Kopien der Vorlesungs- und Übungsunterlagen sowie Übungsklausuren zugelassen.
- Bitte schreiben Sie mit dokumentenechtem Schreibgerät (Tinte oder Kugelschreiber).
- Zur Lösung der Aufgaben ist der freie Platz nach den jeweiligen Aufgaben vorgesehen; bei Bedarf werden Ihnen Zusatzblätter ausgehändigt.
- Für alle Berechnungen sind die **Lösungswege** darzustellen. Die alleinige Angabe eines Ergebnisses wird als Lösung nicht bewertet.

Name: _		
MatrNr.: _	F	Abgabe:
Studiengang: _	Z	Zusatzblätter:

Aufgabe	1	2	3	4		Σ
max. Punkte	16	14	10	16		56
erreichte Punkte						
					Note	

Klausur:	Klausur: Nichtlineare Regelungssysteme 1			

Aufgabe 1 16 Punkte

Gegeben ist das nichtlineare System

$$\dot{x}_1 = f_1(x, u) = -\cos(x_1)(x_2 + 1) + u_1$$

$$\dot{x}_2 = f_2(x, u) = (x_1 + 1)(x_2 - 1)^2 + u_2$$

 $\text{mit Zustand } x(t) \in \mathbb{R}^2 \text{ und Eingang } u(t) \in \mathbb{R}^2.$

a) Bestimmen Sie alle Ruhelagen des freien Systems, d.h. für $u \equiv 0$.

Um den Betriebspunkt $x = \begin{pmatrix} 0 & 0 \end{pmatrix}^{\top}$ zu stabilisieren soll das Regelgesetz

$$u(x) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \cos(x_1)(x_2 + 1) - x_1^3 + x_2^2 \\ -(x_1 + 1)(x_2 - 1)^2 - x_2 - x_1 x_2 \end{pmatrix}$$

verwendet werden. Im Weiteren wird der geschlossene Regelkreis mit Regelgesetz u(x) betrachtet.

- b) Zeigen Sie, dass $x = \begin{pmatrix} 0 & 0 \end{pmatrix}^{\top}$ einzige Ruhelage ist. Welche Aussage können Sie über die Stabilität der Ruhelage mit der indirekten Methode von Lyapunov treffen?
- c) Prüfen Sie die Stabilität der Ruhelage mit der direkten Methode von Lyapunov unter Verwendung der Funktion $V(x) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$.

Um Rechenkapazität zu sparen, soll die folgende Linearisierung des Regelgesetzes genutzt werden:

$$\hat{u}(x) = u(0) + \left. \frac{\partial u(x)}{\partial x} \right|_{x=0} = \begin{pmatrix} 1 + x_2 \\ -1 - x_1 + x_2 \end{pmatrix}.$$

Ab hier wird der geschlossene Regelkreis mit Regelgesetz $\hat{u}(x)$ betrachtet.

- d) Zeigen Sie, dass $x = \begin{pmatrix} 0 & 0 \end{pmatrix}^{\top}$ Ruhelage ist. Welche Aussage können Sie über die Stabilität der Ruhelage mit der indirekten Methode von Lyapunov treffen?
- e) Zeigen Sie, dass $x_2 \equiv 0$ die Differentialgleichung $\dot{x}_2 = f_2(x, \hat{u}(x))$ für beliebige $x_1 \in \mathbb{R}$ löst. Betrachten Sie die skalare Differentialgleichung $\dot{x}_1 = f_1 \left(\begin{pmatrix} x_1 & 0 \end{pmatrix}^\top, \hat{u} \left(\begin{pmatrix} x_1 & 0 \end{pmatrix}^\top \right) \right)$, d.h. für den Sonderfall $x_2 \equiv 0$, und zeichnen Sie qualitativ den Graphen von f_1 über x_1 . Kann die Ruhelage $x = \begin{pmatrix} 0 & 0 \end{pmatrix}^\top$ stabil sein?

Betrachten Sie das allgemeine System $\dot{x} = f(x) + \sum_{i=1}^{m} g_i(x)u_i(x)$ mit $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ mit den Regelgesetzen $u_i = K_i(x)$ und deren Linearisierungen $\hat{u}_i = K_i(x^*) + \frac{\partial K_i(x)}{\partial x}\Big|_{x=x^*} (x-x^*)$ am Punkt x^* .

f) Zeigen Sie, dass die indirekte Methode von Lyapunov für beide Regler u und \hat{u} das gleiche Ergebnis liefert.

Klausur:	Klausur: Nichtlineare Regelungssysteme 1			

Klausur:	Klausur: Nichtlineare Regelungssysteme 1			

Klausur: Nichtlineare Regelungssysteme 1				

Aufgabe 2 14 Punkte

Betrachten Sie das folgende System

$$\dot{x}_1 = -x_2 + 2x_1 - x_1 u$$

$$\dot{x}_2 = x_1 + 2x_2 - x_2 u$$

 $\text{mit } x(t) \in \mathbb{R}^2 \text{ und } u(t) \in \mathbb{R}.$

a) Bestimmen Sie alle möglichen Betriebspunkte, d.h. die Ruhelagen für allgemeine *u*.

Im Folgenden betrachten Sie das System für zwei mögliche Eingänge $u=u_1$ bzw. $u=u_2$ mit

$$u_1 = e^{\frac{1}{2}(x_1^2 + x_2^2)} + 3$$

$$u_2 = \frac{x_1^2}{4} + \frac{x_2^2}{2}.$$

- b) Überprüfen Sie für beide Fälle, ob Grenzzyklen ausgeschlossen werden können.
- c) Überprüfen Sie gegebenenfalls unter Verwendung von $V(x)=x_1^2+x_2^2$, ob das System einen Grenzzyklus besitzt.

Hinweis: Zeigen Sie, dass $\dot{V}(x) = \alpha(x)V(x)$ für eine Funktion $\alpha(x)$ gilt.

Klausur:	Nichtlineare Regelungssysteme 1			

Aufgabe 3 10 Punkte

Betrachten Sie das System zweiter Ordnung

$$\dot{x}_1 = -x_2 - x_1(1 - x_1^2 - x_2^2)$$

$$\dot{x}_2 = x_1 - x_2(1 - x_1^2 - x_2^2)$$

mit Zustand $x(t) \in \mathbb{R}^2$.

- a) Zeigen Sie, dass die rechte Seite der Differentialgleichung für beliebige Anfangswerte $x(t_0) = x_0$ in $\mathcal{K}_r = \{x \in \mathbb{R}^2 | x_1^2 + x_2^2 \le r^2 < \infty\}$ lokal Lipschitz-stetig ist.
- b) Existiert lokal um einen Anfangswert $x_0 \in \mathcal{K}_r$ ab $t \ge t_0$ eine eindeutige stetig differenzierbare Lösung?
- c) Zeigen Sie, dass für beliebige Anfangswerte x_0 im Einheitskreis K_1 die Lösung des Anfangswertproblems eindeutig ist.

Klausur: Nichtlineare Regelungssysteme 1		

Aufgabe 4 16 Punkte

Gegeben seien die kinetische Energie $T(q,\dot{q})$ sowie die potentielle Energie U(q) mit

$$T = \frac{l^2 m}{2} \left(2\dot{q}_1^2 + 2\cos(q_1 - q_2)\dot{q}_1\dot{q}_2 + \dot{q}_2^2 \right) ,$$

$$U = -Glm(2\cos(q_1) + \cos(q_2)) ,$$

wobei $q = \begin{pmatrix} q_1 \\ q_2 \end{pmatrix}$ die generalisierten Koordinaten und m, l, G > 0 die Systemparameter sind.

- a) Bestimmen Sie die homogene Systemdifferentialgleichung mithilfe des Lagrange-Formalismus. Geben Sie dazu die Terme $\frac{\partial T}{\partial \dot{q}}$, $\frac{\partial U}{\partial q}$ explizit an.
- b) Stellen Sie das System in Form der Robotikgleichung

$$D(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u$$

dar, indem Sie D, C, g angeben. Zeigen Sie, dass $N = \dot{D} - 2C$ schiefsymmetrisch ist.

- c) Weisen Sie nach, dass das homogene System konservativ ist, d.h. für V=T+U gilt $\dot{V}=0$. *Hinweis*: Das Umstellen der Robotikgleichung nach g(q) und späteres Einsetzen kann ggf. zu Vereinfachungen führen.
- d) Geben Sie für u ein Regelgesetz an, das den Ursprung q = 0 asymptotisch stabilisiert.

Klausur: Nichtlineare Regelungssysteme 1		

Klausur: Nichtlineare Regelungssysteme 1		

Klausur: Nichtlineare Regelungssysteme 1				