
NLR 2 / P2.2: PREPARATION TASK - SYNCHRONOUS
MACHINE

Notes: 

• Realizing the exact linearization of the example system via MATLAB Symbolic toolbox gives the
necessary introduction to the software specifications that are needed for the actual laboratory work.

• Furthermore, the basic principle of exact input/output linearization shall be demonstrated for the
MIMO case. The obtained functionalities shall then be utilized and extended for the lab work.

• Useful short cuts of MATLAB Live Script: Ctrl+Alt+G - Latex Input interface; Alt+Enter - Switch
between math and text mode; Ctrl+Enter - Run section; Ctrl+Alt+Enter - Insert section break

• Open calculations are marked with "[ ]" and have to be filled by you. Additionally, use the
preparation tasks for orientation.

• Feel free to choose an alternative way or approach if the suggested strategy in the script does not
comfort you.

% Setup:
rootpath = 'C:\...'; % INSERT data path here!
cd(rootpath)
addpath functions models % include auxilary functions & simulation models
set(0,'defaulttextinterpreter','latex') % Latex style labels

Exemplary MIMO exact input-output linearization for synchronous
machine

System model

The motor can be described by the following nonlinear system of differential equations:

with the d-q current states  (Park-Transformation), the angular velocity  and the respective

angle . Consider the following output relation:

(2.1) Bring the system into an input-affine form for further calculations! 

% Define symbolic variables:
syms x1 x2 x3 x4 real
syms u1 u2 real
z = [x1 x2 x3 x4]';
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u = [u1 u2]';
% Input-affine system form:
f = []
g = []
h = []

Thus, an input-affine form  with output  has been formulated.

Relative degree and decoupling

In order to determine the relative degree automatically, the Lie Derivative has to be implemented. It is
defined in the following itaritve manner:

Then, the respective relative degree can be determined step by step by computing the decoupling
matrix :

(2.2) Determine the vector relative degree as well as the sum relative degree and examine the
exact I/O linearizability! In order to compute symbolic Lie derivatives , formulate a MATLAB

function lie_derivative(f,h,x,i).

% First output derivatives: y1 = h1(x)
alpha11 = simplify(lie_derivative(g,lie_derivative(f,h(1),z,0),z,1))
...
% Second output derivatives: y2 = h2(x)
alpha21 = simplify(lie_derivative(g,lie_derivative(f,h(2),z,0),z,1))
...

Supposingly, the vector relative degree  is obtained with a full sum vector relative degree
of 4. This ensures that there is no internal dynamics in the transformed system. For the exact I/O
linearizability the respective decoupling matrix must be proven to be non-singular.

(2.3) Bring the system into a form which directly relates the inputs u to derivatives of the output y!

% Decoupling matrix:
alpha = []
simplify(det(alpha))
% Input-output relation:
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beta = []

The relation  has to be established for further calculations.

Linearizing transformation

Applying the input transformation

a new linear system in block Brunovsky form

can be obtained in combination with the state transformation

(2.4) Determine the exact form of the transformed linear system (A,B,C), state the flat state
transformation and calculate its inverse mapping!

% Control law:
syms w1 w2 real % reference inputs
w = [w1 w2]';
uctrl = [] ;
% Flat state transformation:
Y = []
% Linear system block form:
A = []
B = []
C = []
% Inverse transformation:
syms z1 z2 z3 z4 real
Z = [z1 z2 z3 z4]';
zsol = solve( [] ,z);
Zsol = [zsol.x1 zsol.x2 zsol.x3 zsol.x4]'

For simulation purposes, the obtained structures are transfered to Matlab functions in order to be used
in a Simulink model. Keep the order within the transformation in mind as it affects the linear control
design in the z domain.

% Saving important functions for implementation:
matlabFunction(uctrl,'File','functions/flat_control','Vars',[z;w]);
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matlabFunction(Y,'File','functions/transformation','Vars',z);
% Saving important functions for simulation:
matlabFunction(f+g*u,'File','functions/system_dynamics','Vars',[z;u]);

System implementation

Now, the control system can be implemented utilizing a linear control design methodology for the
system with flat states.

(2.5) Design a state feedback controller for the linearized system by utilizing pole placement!

Take advantage of the block Brunovsky form and treat each input-output block channel for separate
coefficient placement with respect to the desired poles (controllability normal form).

% Smart pole placement:
K = []
A + B*K
eig(A + B*K) % check eigenvalues

(2.6) Implement the system as a Simulink model and verify your specifications by simulative tests!

The closed-loop system is simulated in MATLAB Simulink with the following simulation model structure:

% Simulation parameters & reference:
Tf = 10; % end time
ref = [0.1 -0.3]'; % output reference
Yref = [];
x0 = [0 0 0 0]'; % initial simulation conditions
% Execute Simulink model:
sim('synchro_mdl')
time = StateData.time;
xsim = [StateData.signals(1).values StateData.signals(2).values ...
        StateData.signals(3).values StateData.signals(4).values];
ysim = OutData.signals.values;
% Evaluated results:
% [please insert some nice plots here]
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[Discussion]

Extended concepts

Especially for the flatness based reference tracking control problem, additional design prepration for the
feedforward control and reference error stabilization has to be made.

(2.7) Realize a function for computing polyonomial trajactories in order to implement operating point
transitions!

In this case, the flat output reference tracking control problem becomes:

with the gain K that stabilized the error dynamics asymptotically. Then, a polynomial shaped reference
trajectory between two operating points can be constructed like this:

where  is the starting and  the final operating point at time T. A polynomial interpolation function
shape is chosen for easier computation.

% Symbolic function generation:
syms t T positive % time argument & time horizon
y0 = sym('y0', [2 1]); % initial OP
yF = sym('yF', [2 1]); % target OP
r = []; % required derivatives -> max(vector relative degree)
 
... % [generate polynomials]
    
wFF = [];
zdes = [];
% Save & test functionality:
matlabFunction(wFF,zdes,'File','functions/feedforward','Vars',{t,T,y0,yF});
% Test:
time = 0:1e-2:Tf;
[wtest,ztraj] = feedforward(time,Tf,ref,[0;0]);
subplot(2,1,1); plot(time,wtest','LineWidth',1.5); grid
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title('Feedforward control signal'); ylabel('$w_{FF}(t)$')
subplot(2,1,2); plot(time,ztraj','LineWidth',1.5); grid
title('Flat state reference trajectory'); ylabel('$z^\ast(t)$')
xlabel('transition time $t\in[0,T_f]$')

(2.8) Repeat and examine important additional MATLAB functionalities!

% (a) Matrix arrangement:
% help kron
% help blkdiag
N = 0;
A = magic(3);
B = [3 1 2]'; % =2222 in base 5
C = [1 4 6]; % =222 in base 8
AA = []
BB = []
% (b) Optimal control:
% help lqr
Q = [];
R = [];
K = []
disp(eig(AA-BB*K))

6


