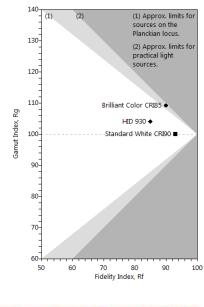


Investigation of colour rendering of white pc LEDs according to TM-30-15 and CIE-CRI-Ra

Carolin Horst | 10th September 2017 | LUXjunior Dörnfeld Light is OSRAM

Agenda

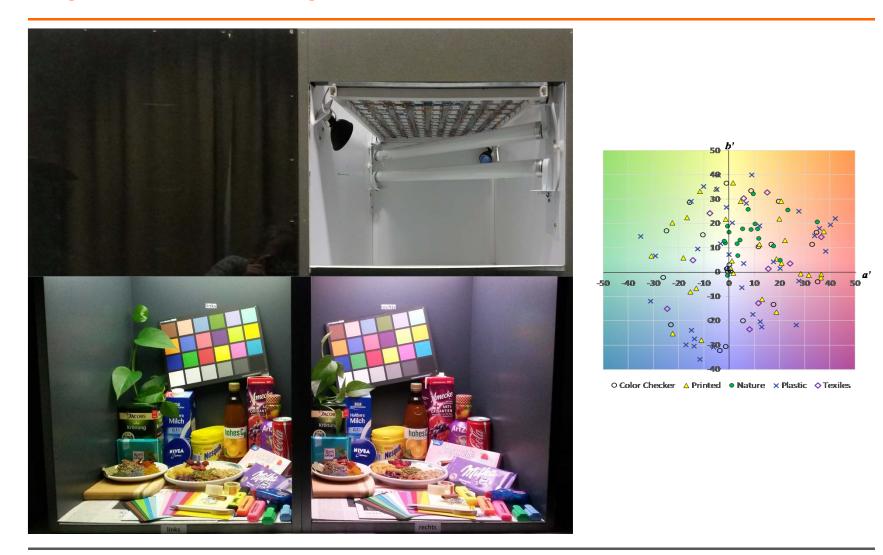
1.	Introduction
2.	Hypotheses
3.	Experimental Setup
4.	Results


Introduction

- LEDs become more and more the main light source for a lot of applications
- White light for indoor lighting is produced with phosphor converted LEDs
- With different phosphor combinations the spectral distribution can be tuned to achieve certain values in case of light quality
- To improve phosphor development it is neccessary to target the right value of a correct description of color quality
- A new way to describe color quality is the TM-30-15 from IES

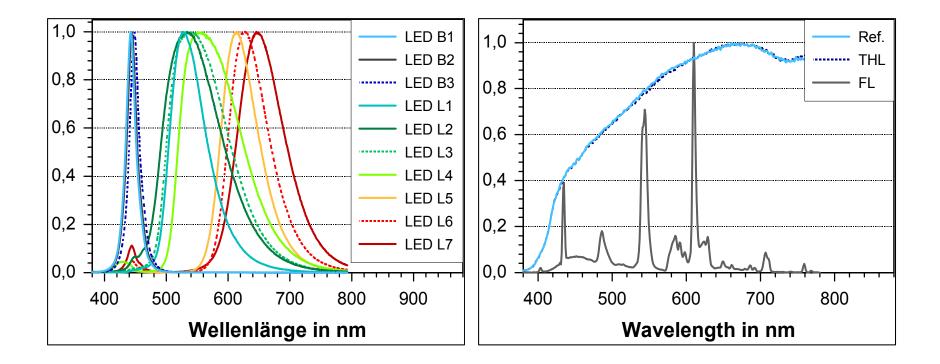
TM-30-15

- Beside the latest scientific transformation formulas and color spaces the TM-30-15 provides two different indices:
- \succ $R_{\rm f}$ = Color fidelity index similar to CRI $R_{\rm a}$
- R_g = Color preference index based on color gamut
- By evaluating color fidelity and color preference at the same time one can analyze and judge the light quality of the light source.
- Compared to the CRI R_a the TM-30-15 R_f is using 99 test color samples instead of 8

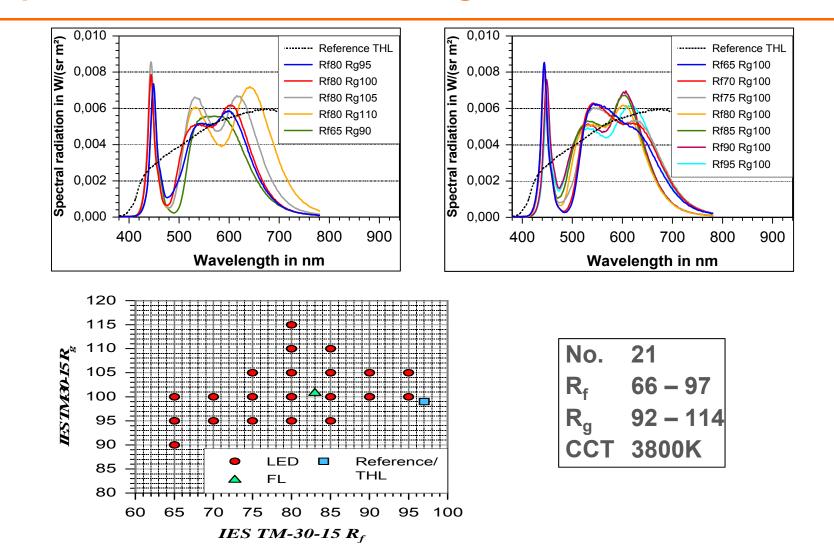

• Results of a first investigation of ROYER showed that LED luminaires with a $R_f \ge 75$ and $R_q \ge 100$ are preferred by subjects

Hypotheses:

- It is possible for phosphor converted LEDs to fulfill the recommendations of ROYER
- The R_f and R_g values will show a high correlation to the rating of color rendering by subjects
- In comparison to fluorescent lamps phosphor converted LEDs with identical R_f and R_q values will be preferred



Experimental Setup

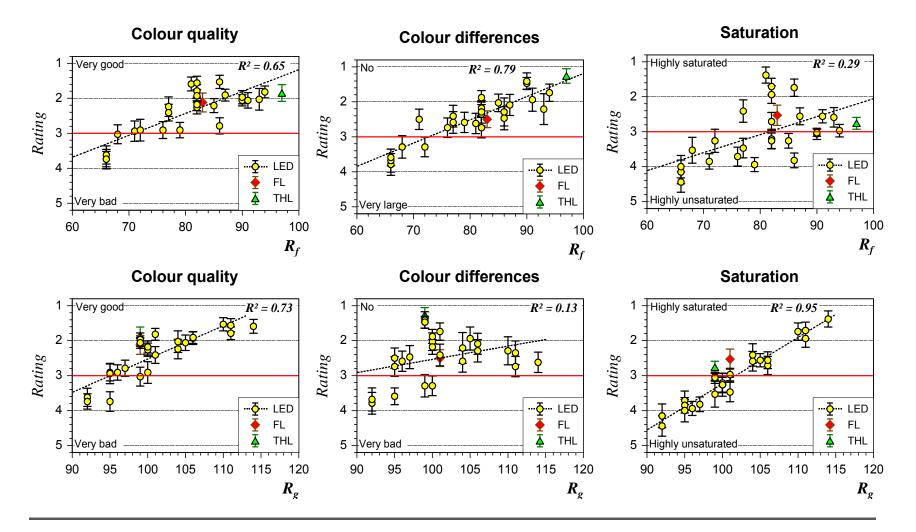


Spectral Distributions and Target Combinations

Spectral Distributions and Target Combinations

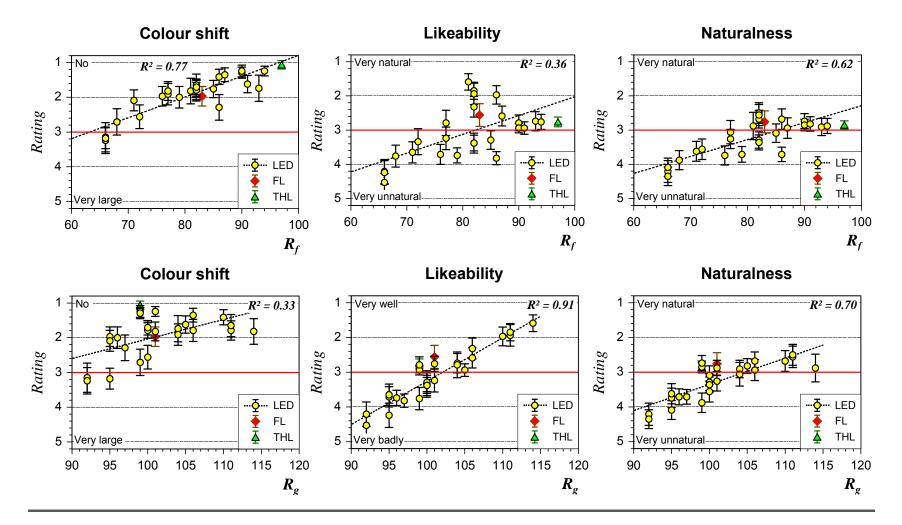
Subject Study

- 34 Subjects
- Age: 23 48 (Ø 35)
- 10 female, 24 male

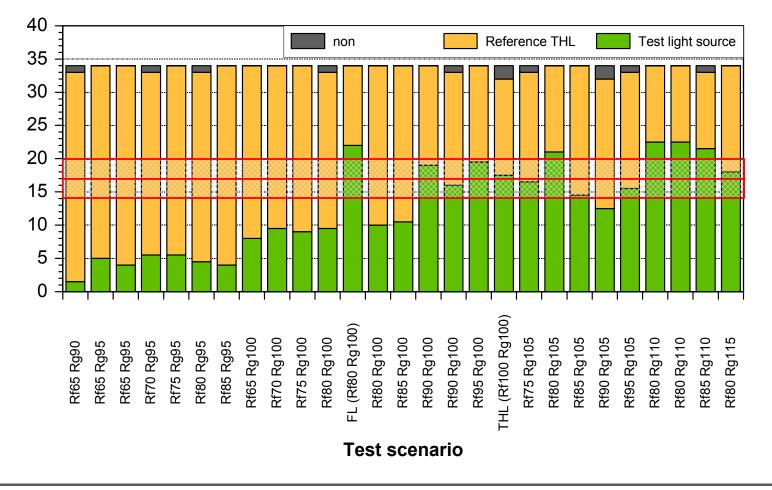

In a questionnaire the subjects had to rate

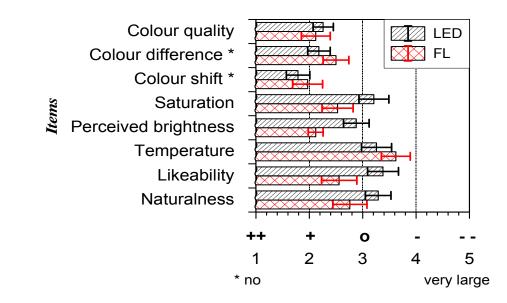
- Color quality
- Color difference
- Saturation
- Brightness
- Temperature
- Likability
- Naturalness
- Own idea of color
- General color quality

of objects under LED spectra compared to the reference light source



Results


Results


Results

Results Comparison of LED and Fluorescent lamp

Rg	95			100					105		
Item/ Rf	75	80	85	75	80	85	90	95	75	80	85
Colour quality CQ	0,000	0,000	0,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Colour difference CD	1,000	1,000	1,000	1,000	0,082	0,277	0,000	0,000	1,000	1,000	0,622
Colour shift CS	1,000	1,000	0,910	1,000	1,000	1,000	0,000	0,002	1,000	1,000	0,030
Saturation S	0,000	0,000	0,000	0,000	0,000	0,002	0,037	0,303	1,000	1,000	1,000
Likeability LA	0,000	0,000	0,000	0,026	0,000	0,009	1,000	1,000	1,000	1,000	1,000
Naturalness NN	0,000	0,000	0,000	0,185	0,036	1,000	1,000	1,000	1,000	1,000	1,000
Interpretation	Interpretation FL significant			LED significant				No sicnificant difference			

Results - Hypotheses

It is possible for phosphor converted LEDs to fulfill the recommendations of ROYER

Yes, phosphor converted LEDs can achieve the recommended values of $R_f \ge 75$ and $R_q \ge 100$.

The R_f and R_g values will show a high correlation to the rating of color rendering by subjects

 R_f and R_g values have a correlation with the perception of naturalness of object colors. R_f can not describe color preference only the perception of color differences compared to a reference light source.

In comparison to fluorescent lamps phosphor converted LEDs with identical R_f and R_g values will be preferred

Compared to the reference and the LEDs with same R_f and R_g values (R_f =80 & R_g =100) the fluorescent lamp was preferred. The same likability is achieved by LED spectra with R_f =75 & R_q =105 and R_f =80 & R_q =105.

Summary

- Perception of Color Quality is not an one dimensional problem. All aspects have to be considered and eather R_f nor R_g can describe color quality as a single value.
- With Rf, similar to Ra, optimization of spectra has always the target to meet the spectrum of reference. This fact says nothing about likeability of object colors.
- As a result for optimization values R_f ≥ 80 and R_g ≥ 100 are recommended. Spectra with this value have been rated better in likeability of colors compared to the reference.

www.osram-os.com

Thank you.

