Calculation Methods of Luminous Intensity Distributions from Ray Files by using Different Solid Angles

Markus Katona, Ingo Rotscholl, Klaus Trampert, Cornelius Neumann

Light Technology Institute (LTI), Department of Electrical Engineering and Information Technology

Motivation

Luminous Intensity Distribution

Ray file

Near field:

Far field:
Luminous Intensity Distribution

Markus Katona - Calculation Methods of Luminous Intensity Distributions from Ray Files by using Different Solid Angles

LID calculation of near field data

LID calculation of near field data

- Influence parameters:

- Number of rays M (stochastic uncertainty)

- Shape of the solid angle

- Resolution/size of the solid angle
\square

LID calculation of near field data

- Different types of solid angles

Calculation results

- Point light source, $M \approx 25$ million, $N \approx 1000$

Karlsruhe Institute of Technology

Markus Katona - Calculation Methods of Luminous Intensity Distributions from Ray Files by using Different Solid Angles Electrical Engineering and Information Technology

Calculation results

- Point light source, $M \approx 25$ million

Markus Katona - Calculation Methods of Luminous Intensity Distributions from Ray Files by using Different Solid Angles Electrical Engineering and Information Technology

Calculation results

- Real lambertian light source, $M \approx 25$ million

$N_{a}: \frac{\varphi \times \vartheta}{2}=\frac{65 \times 60}{2}=1950$
$N_{b}=2000$
$N_{c}: \omega=4.55^{\circ}$
$N_{d}=2058$

Calculation results

Real narrow beam flash light, $M \approx 25$ million

$N_{a}: \frac{\varphi \times \vartheta}{2}=\frac{50 \times 720}{2}=18000$
$N_{b}=200000$
$N_{c}: \omega=0.455^{\circ}$
$N_{d}=2668$

Markus Katona - Calculation Methods of Luminous Intensity Distributions from Ray Files by using Different Solid Angles

Comparison

Conclusion

- LID calculation possible with all types of solid angle
- Every solid angle types has their own advantages and limitations
- Fastest
- Fast \& good solid angle shape
- Perfect solid angle shape
- Dynamic
very unshaped
bad for narrow beam LID
slow \& space cover

no Pseudo-LID calculation

Thank you for your attention

