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 Abstract – Theoretical and experimental analysis of the luminous flux distribution inside the closed 
space illuminated by an electrical light source (ELS) of unknown total luminous flux is presented in this paper. 
Presented results suggest that beside the commonly used Ulbricht’s sphere several different closed spaces with 
precious geometries can be used for total luminous flux measurement (i.e., as the integrating closed space – 
ICS). The mathematical model used in analysis is based on the luminous flux conservation law, expressed 
through System of the Interreflection Equations of the Luminous Flux (SIE-LF, [1]-[6]). More precisely, the 
three-surface model of the ICS with ideally diffuse (Lambertian) characteristics of the three interior surfaces is 
used in analysis. 
 The SIE-LF is applied on the following geometries of the ICS: 

• Sphere (so called Ulbricht’s sphere); 
• Parallelepiped with square bases; and 
• Cylinder with circular bases, or bases that are spherical sectors of the circumscribed sphere. ([6]-[8]). 

Results of the SIE-LF are obtained in the form convenient for further analyses and optimization of the ICS 
geometry. A number of numerical experiments were performed in cases when the ICS are illuminated by the 
ELSs with known Luminous Intensity Distribution Function (LIDF). This included: the “pear shaped” ELSs 
(standard bulb lamps) and ELSs in the shape of thin lengthened cylinder (fluorescent tubes). These experiments 
illustrate possibilities of using the alternative geometries for luminous flux measurement, as well as the 
estimation of the part of the error obtained in measurement. 
 The Integrating Luminous Fluxmeter System (ILFS) is realized in the Laboratory of Electrical 
Installations and Illumination Engineering (Lab. of E.I.&I.E.) at the University of Nis, Faculty of Electronic 
Engineering, based on the previous theoretical analysis of the ICS cube geometry. That system consists of: 

• The cube shaped ICS; 
• The LMT Digital Illuminance Meter B510 with Photometer Head P 30 SC0 placed in the center of one 

cube surface, used for the measurement of the indirect illuminance component; 
• The ELS with unknown luminous flux, placed in the cube center; 
• The stabilized power supply, as well as the equipment for voltage and current control (measurement); 
• The circular screen (baffle) placed between the ELS and photometer head; and 
• The OSRAM etalons (standards) ELSs. 

The main part of previous experimental and related theoretical results is given in [9] and [10]. Some of these 
results are used in this paper for more general analysis. This analysis indicates that the place and the size of the 
screen are not critical what in turn allows the wide range for the selection of the screen place and size. 
 
Key words: Integrating Luminous Fluxmeter Systems, Integrating Closed Space, Luminous Flux, Indirect 

Illuminance, Electrical Light Source, System of the Interreflection Equations of the Luminous Flux, 
Methodical Error. 

1. INTRODUCTION 

 Measurement of the ELS’ luminous flux is very important process in the lighting 
characterization of the ELS (and the luminaires), in the design and development of the ELSs, 
as well as in the quality control during the ELS production and in assembling of the ELS’ 
catalogue materials. A lot of references consider the theoretical and experimental aspects of 
this problem, what indicates its significance. Authors are not going to present detailed 
bibliography of this research area, except of pointing to references [2], [3], [5], [6] and [11], 
where can be found the review and detailed bibliography. 
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 Two methods are mostly used for the ELS’ luminous flux measurement until now: 
• The integrating fluxmeter method (IFM); and 
• The goniophotometer method (GPM). 

 First method can be characterized as the direct method for the luminous flux 
measurement, i.e., the luminous flux is directly proportional to the indirect illuminance 
component at the measuring point of the ICS, which is illuminated by the ELS of unknown 
luminous flux. The closed space sphere shaped (Ulbricht’s sphere) which interior surface is 
uniformly painted with white color of ideally diffuse characteristics (Lambertian surface) is 
mostly used for that purpose. Indirect illuminance of the arbitrary point at the interior sphere 
surface, for arbitrary position of the light source, is constant and proportional to the total 
radiated luminous flux of the ELS. Thus, the sphere is optimal ICS and it is necessary to have 
the radius as large as possible in order that, during the measurement, ELS would represent the 
point light source as well as would require relatively small screen. The usage of a small screen 
minimally perturbs the light field inside the sphere, and in that way, its optimization and 
proper location can minimize methodical error. 
 Second method corresponds to the indirect measurement of the luminous flux, i.e., the 
first step is recording of the ELS’ luminous intensity spatial distribution, and after that 
radiated luminous flux is calculated based on the general (integrating) definition expression. 
 Both methods are currently used for measurements. The ILFS is mostly used for 
luminous flux measurement, while the second method is used for the measurement of the 
spatial luminous intensity distribution of luminaires, which is necessary characteristic for the 
interior and exterior lighting design. Datum of the luminaire’s total luminous flux, which is 
then obtaining by the calculation, enables the determination of the luminaire’s luminous flux 
utilization coefficient, if the luminous flux of the built-in light sources is known (CIE code 
flux number svN η=5 ). 
 Due to the difficulties that authors had during the construction of the mechanical part 
of the measuring systems (sphere and mechanical construction of the goniophotometer), in the 
Lab. of E.I. & I.E., it was started with theoretical analysis with the aim to use some other ICSs 
with precious geometry and easier for construction, instead of the sphere geometry. One part 
of these theoretical and experimental researches is presented in this paper. 
 This paper consists two parts. 
 The used SIE-LF method as well as the analysis of the luminous flux distribution 
solutions on the sphere, parallelepiped and cylinder surfaces are presented in the first part. 
Analysis is aimed on the research of the possibilities for using of the parallelepiped shaped 
ICS with square basses as well as the cylinder shaped ICS with circular basses (or with 
spherical sector basses) in the ILFS. The geometry of the ICS is particularly analyzed in the 
aim of the mathematical model methodical error minimization. 
 In the second part of the paper, some numerical experiments are given first, which for 
the adopted mathematical models of ICSs, illustrate possibilities of their usage in cases when 
the ICSs are illuminated by pear shaped ELS or by the ELS in the shape of thin lengthened 
cylinder (standard bulb lamps and fluorescent tubes). Summary of the results related to the 
realized ILFS’, with the cube as the ICS, is also presented in this part of the paper. 

2. THE THEORETICAL BACKGROUND 

2.1.  General Expression of the SIE-LF 
 A closed space whose interior is illuminated by the ELS is considered. All interior N  
surfaces are ideally diffuse (Lambertian) with known reflectances iρ , Ni ,...,2,1= . Total 
surface of the closed space is NSSSS +++= ...21 . Number N  describes so called N-surface 



 

3 

model of the ICS. The ELS location as well as its Luminous Intensity Distribution Function 
(LIDF), ),()ˆ( ϕγ= IrI k  in ]cd[ , are known. Direct component of the luminous flux on 
individual k-th surface, k0Φ , Nk ,...,2,1= , N002010 ... Φ++Φ+Φ=Φ , is determined on the 
basis of the definition expression: 

 20
ˆd)ˆ(d)ˆ(

k
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S
kkkk r
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⋅=Ω=Φ ∫∫
Ω

�

, Nk ,...,2,1= , (1) 

where: kΩ  - the solid angle subtended by the k-th surface of the closed space as seen from the 
ELS, and kr̂  - the ort vector. 

 The SIE-LF, which expresses the law of luminous flux conservation, in the case of the 
closed space is  

 ∑
=

Φρ−δ=Φ
N

i
ikiiikk f

1
,0 )( , Nk ,...,2,1= , (2) 

where: ikδ  - Kronecker symbol, iindii Φ+Φ=Φ 0  - the total luminous flux on the i-th surface 
( i0Φ  - direct and iindΦ  - indirect component), kif ,  - the form factor (coefficient of 
interreflection) given by the double surface Fredholm’s integral 
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General relations are always valid for the form factors, for each closed space consisted of N  
ideally diffuse surfaces  
 ikkkii fSfS ,, = , Nki ,...,2,1, = , (3b) 
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1

, =∑
=

N

k
kif , Ni ,...,2,1= , (3c) 

where (3b) expresses the reciprocity law, and (3c) is also the law of luminous flux 
conservation consequence. The form factors ( kif , ) can be determined using (3a-c), and its 
substitution into (2) leads to the solution of the SIE-LF. The luminous flux distribution of the 
closed space surfaces as well as the average values of the plane illuminance of these surfaces 
is obtained on that way. The mean direct component of plane illuminance is 
 kkk SE /00 Φ= , Nki ,...,2,1, = , (4a) 

and the mean indirect component of the plane illuminance is  
 kkindkind SE /Φ= , Nki ,...,2,1, = . (4b) 

� In the following considerations, in front of the existing indexes following ones will be 
added: s – in the sphere case, p – in the parallelepiped case, and c – in the cylinder case, 
e.g.: skindΦ  - denotes the indirect luminous flux on the the k-th surface of the integrating 
sphere, pkpif ,  - denotes the form factor between the i-th and the k-th surfaces of the 
parallelepiped, ckindE  - denotes mean indirect illuminance of the k-th cylinder surface, etc. 

� Three-surfaced model ( 3=N ) will be considered in all three cases, while the all three 
parts of the Lambertian surface are with the same reflectance coefficients 

ρ=ρ=ρ=ρ 321 . 
� For the determination of the direct luminous fluxes k0Φ , 3,2,1=k  according to (1), two 

types of the ELSs are considered, for the purpose in further theoretical analysis: 
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• Type A - pear shaped ELS (standard bulb lamp) whose LIDF is given by the following 
expression 

 )cos1(5.0),()ˆ( 0 γ+=ϕγ= IIrI , ],0[ πγ ∈ ; (5a) 

• Type B - ELS in the shape of thin lengthened cylinder (fluorescent tube) whose LIDF 
is given by the following expression 

 γ=ϕγ= sin),()ˆ( 0IIrI , ],0[ π∈γ . (5b) 

2.2.  The Integrating Sphere 

 Form factors in the case of the sphere shaped ICS with radius sR  and Lambertian 
arbitrary painted interior surfaces have simple solutions ([7]) 
 ssksksi SSf /, = , Nki ,...,2,1, = , (6) 

and the analytical solutions for (2) can be obtained easily ([6] i [7]). Indirect illuminance 
component of any point at the sphere surface, in the case of the uniformly painted sphere 
surface ssi ρ=ρ , Ni ,...,2,1= , Fig. 1, using the solutions of the SIE-LF (2), has the known 
simple uniform solution, given by expression 
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i.e. the indirect illuminance is directly proportional to the ELS’ totally radiated (direct) 
luminous flux in any point P  at the uniformly painted sphere surface. 
 For the measurement of the indirect illuminance, it is necessary, according to Fig. 1, to 
place the screen Z . The screen Z  should be placed in the way that its size and place 
minimally perturbs light field and in that way minimally disturbs the direct proportionality 
(7), i.e. includes the minimal methodical screen error. Relating to the mathematical model, the 
methodical measuring error of the real model is influenced by accuracy of the sphere surface 
construction and the accuracy of the used illuminance meter, as well as the accuracy of the 
method for the integrating sphere factor sC  determination. 

2.3.  The Integrating Parallelepiped 
 The parallelepiped shaped ICS as a three-surface model has square bases of the side 
a , surfaces 2

31 aSS pp == , and lateral surfaces of the length pH  and of the area 

pp HaS 42 = , Fig. 2. Interior surface is uniformly painted so it holds: pppp ρ=ρ=ρ=ρ 321 .  
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Fig. 1: The mathematical model of the sphere ICS. Fig. 2: The mathematical model of the parallelep. ICS.
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 Form factors in the case of this geometry and in case of pp HaA /=  are: 
• according to (3a) 

 03,31,1 == pppp ff , (8a) 
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• and according to (3b) and (3c) follows 
 ppppp Fff −=−= 11 3,12,1 , (8c) 
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 ppppp fff 2121 1,22,2 −=−= . (8e) 

After solving of the SIE-LF (2) by the variable eliminating method, the following is obtained 
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where: C  - the new constant, )1/( pppp ffC ρ+ρ= , p0Φ  - the total direct flux +Φ=Φ 100 pp  

3020 pp Φ+Φ+ , i.e. total unknown ELS’ luminous flux. 
 Simple analysis of (9a) shows that influence of the unknown direct flux 30 pΦ  on the 
solution for the total luminous flux on the base of area 1pS , can be eliminated by adopting the 
ratio 1/ =pp fF . This ratio corresponds to the approximately cube geometry, i.e. 

1/ ≅= pp HaA . Solutions for the (9a-c) now obtain simpler forms: 
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and the mean indirect illuminance of the base of area 1pS  is 
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Last expression indicates the possibilities of the ELSs luminous flux measurement. 
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 The indirect illuminance of the point 1P  vicinity, i.e. the indirect illuminance which is 
measured at the point 1P , has also to be theoretically determinated first in order to explicitly 
prove the previous claim. The illuminance of the point 1P  vicinity, placed in the center of the 
surface 1pS , can be determined by the solutions (10a-c) and solutions from [11]. 
 Luminous exitances of surfaces 2pS  and 3pS  are: 2222 / ppppp LSM π=Φρ=  and 

3333 / ppppp LSM π=Φρ= , where 2pL  and 3pL  are equivalent resulting luminances of the 
surfaces 2 and 3 which have Lambertian characteristics. Indirect illuminance of the point 1P  
vicinity is: 
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where 1C  is constant, given by the expression: 
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 Indirect illuminance of the point 1P  vicinity, for 1/ =pp fF  and using the luminous 
flux distribution solutions (10a-c), i.e. for 1/ ≅= pp HaA , 2.0=pf , 3010 pp Φ≅Φ , and 

2395.0
5

1tgarc
5

14
1 =

π
=C , can be expressed by the following expression 
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where: pC  - the integrating parallelepiped (cube) factor calculated for 1=pA , 
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and 21 ppp ε⋅ε=ε , 1pε  - is the methodical error caused by the proposed parallelepiped (cube) 
model, and 2pε  - is the error caused by the ESI’ luminous flux distribution, i.e.: 
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 ppp 0102 / ΦΦ=ε , (14b) 

The error caused by the screen is not enlaced by this expression. 

2.4.  The Integrating Cylinder 

 The cylinder shaped ICS as a three-surface model has circular bases of the radius cR , 
of area 2

31 ccc RSS π== , and shell of the length cH  and of the area ccc HRS π= 22 , Fig. 3. 
Interior surface is uniformly painted so it holds: cccc ρ=ρ=ρ=ρ 321 . 
 Form factors for cylinder shaped ICS are: 

• according to (3a) 
 03,31,1 == cccc ff , (15a) 

• and according to (3b), (3c), (6), using the method of the equivalent sphere ([7] and 
[8]), Fig. 4, follows 
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If by cF  is denoted the following form factor: 1,33,1 ccccc ffF == , and by cf  is denoted the 
following form factor: 1,2 ccc ff = , solutions for the distribution of the luminous flux are 
obtained in the same form as in (9a-c), i.e.: 
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where: )1/( cccc ffC ρ+ρ=  and c0Φ , 3020100 cccc Φ+Φ+Φ=Φ  - is the total unknown 
(direct) luminous flux of ELS. After eliminating the influence of the 30cΦ  in the solution 
(16a), by adopting cc fF = , i.e. 3/4/2 == ccc HRA , the following is obtained: 
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Fig. 3: The mathematical model of the cylinder for 

measurement of the luminous flux of the ELS Type A.
Fig. 4: The mathematical model of cylinder shaped 

ICS and the equivalent circumscribed sphere. 
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Fig. 5: The mathematical model of the cylinder shaped ICS for the ELS Type B luminous flux measurement. 

Screen Z  is not necessary in this case. 
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and the mean indirect illuminance of the base of area 1cS  is: 
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 The indirect illuminance of the point 1P  vicinity, where the measurement is 
performed, i.e. in the center of the base of area 1cS , is 
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where: 2222 / ccccc LSM π=Φρ=  and 3333 / ccccc LSM π=Φρ=  - are luminous exitances of the 
surfaces ( 2cS  and 3cS ), and 2cL  and 3cL  - are equivalent resulting luminances of the surfaces 
( 2cS  and 3cS ) with Lambertian characteristics. 
 In the case of cc fF = , which leads to 3/4=cA  and 25.0=cf , and with the 
assumption that 3010 cc Φ≅Φ , indirect illuminance of the point 1P  vicinity is: 

 ccccPind CE 0)1(
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where: cC  - integrating cylinder factor calculated for 3/4=cA , 
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and 21 ccc ε⋅ε=ε , 1cε  - methodical error caused by the adopted geometry of cylinder, 

2cε  - error caused by the ESI luminous flux distribution, i.e. 
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 ccc 0102 / ΦΦ=ε . (21b) 

The error caused by the screen is not enlaced by this expression. 

 Solutions for the cylinder with bases of circumscribed spherical sectors, Fig. 4, are not 
considered in this paper. 

3. EXPERIMENTS 

3.1.  Numerical experiments 
 The methodical error for ICS in the shape of the parallelepiped (cube) and the cylinder 
is numerically estimated for the two cases of the ELSs (bulb lamp and fluorescent tube) that 
can be approximately determinated for the LIDF (expressions (5a) and (5b)), in order to 
illustrate the validity of the proposed solutions. 
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 Methodical errors of the proposed mathematical measuring models, for adopted 
geometries of the parallelepiped 1/ ≅= pp HaA  and the cylinder 3/4/2 == ccc HRA , are 
given by expressions (14a) and (21a), respectively, i.e.: 
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3.1.1 ELS in the shape of the pear (Type A – Standard bulb lamp) 
 Errors that are results of the luminous flux distribution of the Type A ELSs for the 
parallelepiped (cube) and cylinder respectively are: 
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 Total errors with reflectance as a parameter are: 
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Numerical results of errors are shown on Fig. 6a with reflectance as a parameter. 

3.1.2 The ELS in the shape of thin lengthened cylinder (Type B - Fluorescent tube) 

 Errors that are results of the luminous flux distribution of the Type B ELS for the 
parallelepiped (cube) and the cylinder respectively are: 
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 Total errors with reflectance as a parameter are: 
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Numerical results of errors are shown on Fig. 6b with reflectance as a parameter. 
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Fig. 6a Methodical errors caused by the geometry of 

ICS in the shape of parallelepiped (cube) and cylinder 
as well as luminous flux distribution of the Type A, 

with reflectance as a parameter 

Fig. 6b Methodical errors caused by the geometry of 
ICS in the shape of parallelepiped (cube) and cylinder 

as well as luminous flux distribution of the Type B, 
with reflectance as a parameter 

 

3.2. Experimental results related to the developed ILFS Laboratory model 
 The ILFS Laboratory model constructed in the Lab. of E.I. & I.E. is given 
schematically in the Fig. 7a and its photography is given in Fig. 7b. It was assumed that 
indirect illuminance in the measuring point 1P , i.e. the illuminance measured by the LMT 
Digital Illuminance Meter B510, is proportional to the luminous flux of the ELS, and that the 
error, given by the expressions for pAε , can be neglected. These conclusions are based on the 
experimental results obtained with OSRAM etalons (specifications given in Table 1), and also 
obvious in results taken from [9, 10] and shown in Table 2. After the determination of the 
mean value of the integrating parallelepiped (cube) factor, using different etalons OSRAM, 
which are given in Table 1, and which for the control measurements of the luminous flux 
were done in the Federal Bureau of Measures and Precious Metals (FBM-PM) [13], it is 
followed that etalons luminous flux could be measured with error less than 1%. Data for 
etalons luminous flux, given in Table 1 and taken from [13], are considered as accurate. The 
error pAε  given with (24a) is not included. 
 

LMT B 510
lx U=110 _ 230  V: dc

V

A

PP 2 x 1.5 mm    2

lz

2 mm 10 mm

50 cm

50
 c

m

100 cm

10
0 

cmdzP2

 

Fig. 7a: The schematic illustration of the luminous 
fluxmeter system laboratory model 

 with integrating cube. 

Fig. 7b: The photo of the integrating luminous 
fluxmeter system laboratory model in, FEE Niš, 

Lab. of E.I. & I.E. 
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 Theoretical considerations presented in this paper and considerations given in chapter 
"3.1. Numerical Experiments", theoretically prove hypothesis: Measurement of indirect 
illuminance in one particular point (center of the one cube’s surface) could give high accuracy 
of the measured results as it is in the case of the sphere geometry. 
 
Table 1: Data of the OSRAM light sources etalons power supply conditions. Luminous flux 0Φ  is given 

according to [13]. 

No. 
 

Etalon’s 
Code 

P 
[W] 

I 
[A] 

U 
[V] 

0Φ  
[lm] 

1. 7/903 25 0.2323 110.0 242.0
2. 8/904 25 0.2318 110.0 237.4
3. 21/129 40 0.3724 110.0 446.4
4. 22/130 40 0.3751 110.0 451.5
5. 73/131 100 0.8941 102.7 1,202.5
6. 27/917 150 1.3845 104.2 1,985.1

 
 
Table 2: Experimental determination of the ICF, for two positions of different screens, using the light source 

etalons and the calculation of the luminous flux of the etalons based on the mean value of ICF as 
well as on the measured values of the indirect illuminance of the point 2P  vicinity. Colour 
temperature of all OSRAM etalons was kept constant and according to [13] it is K2800=TCE . 

Etalons’ data [13] dz = 10 cm, lz = 25 cm dz = 6 cm, lz = 33.6 cm 

Code P [W] 0Φ  [lm] Eind pP1 
[lx] 

1
pC−

 

[lm/lx] 
1pPind

1
psr EC−

[lm] 
δ 0Φ  

[%] 
Eind pP1 

[lx] 
1

pC−
 

[lm/lx] 
1pPind

1
psr EC−

[lm] 
δ 0Φ  

[%] 
7/903 25 242.0 215.2 1.1245 240.6 0.593 216.8 1.1162 240.3 0.702 
8/904 25 237.4 211.8 1.1209 236.8 0.267 212.9 1.1151 236.0 0.599 

21/129 40 446.4 396.0 1.1273 442.7 0.834 401.6 1.1116 445.1 0.283 
22/130 40 451.5 403.6 1.1187 451.2 0.072 407.8 1.1072 452.0 0.112 
73/131 100 1,202.5 1,087.0 1.1063 1,215.1 1.050 1,095.0 1.0982 1,213.7 0.932 
27/917 150 1,985.1 1,789.0 1.1096 1,999.9 0.744 1,801.0 1.1022 1,996.2 0.561 

   1
psrC−  = 1.117871452 [lm/lx] 1

psrC−  = 1.108403721 [lm/lx] 
 
 
 The effects of the screen size and screen position are investigated and assessed on the 
basis of more than 400 experiments. These experimental results are given in Fig. 8. Presented 
results show that the screen diameter and screen position are not critical and could be selected 
in a wide range, depending on the cube and ELS sizes. 

4. CONCLUSION 
 The mathematical model for Integrating Luminous Fluxmeter System (ILFS) is 
established in this paper. The model uses System of the Interreflection Equations of the 
Luminous Flux (SIE-LF), i.e., the Law of luminous flux conservation. The presented analysis 
uses three following geometries of the Integrating Closed Spaces (ICS): sphere, parallelepiped 
and cylinder. Interior surfaces of the ICS are ideally diffuse painted, i.e., they form 
Lambertian surfaces. The so called three-surface model is adopted considering the SIE-LF. 
Interior of the ICS is illuminated by the ELS with unknown luminous flux. 
 Mean values of the luminous flux distribution on each of three ICS surfaces, as well as 
mean indirect illuminance of the surface selected for measurement (point 1P  in the center of 
the of surface 1S ), are determined based on the proposed mathematical model. Expression for  
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Fig. 8: Indirect illuminance measured in point 1P ,
1pPindind EE = , with position of the screen lz as well as 

size of the screen dz as parameters 
 
indirect illuminance calculated for the measuring point 1P , in this paper is also determined 
using the SIE-LF. Expression for indirect illuminance in the point 1P , placed in the center of 
the surface 1S , has two terms. The first one is directly proportional to the ESI total unknown 
luminous flux. The second has significantly smaller influence, and depends on the used 
geometry, reflectance of the ICS’ surfaces and direct luminous flux of the surface 1S . 
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 Using of different geometries instead of the sphere for the Integrating Luminous Flux 
Meter System is not new (see for example [4]). Analysis of results presented in this paper 
suggests that at least theoretically parallelepiped with square bases (close to the cube 
geometry pHa ≅ ) and cylinder with circular bases ( cc HR 23 = ) can be used as the ICS. The 
introduced methodical errors are minimal, and can be estimated.  
 The methodical error is minimized with appropriate selection of the ICS. The 
numerical results show that for 8.0≥ρ  this error is less than 2.5%. However, with regards to 
the mathematical model of the sphere shaped ICS, this error is practically zero. The process of 
the estimation of the total methodical error is illustrated graphically for the two different ELS 
types, while measuring their unknown radiated luminous flux. Results from the Fig. 6a and 
Fig. 6b show that error can be even less than 2.5% if ICS’ painting has reflectance greater 
than 0.8, i.e., 8.0>ρ . 
 In the previous published papers [9], [10], the authors presented results of luminous 
flux measurements related to the laboratory model of the ILFS with cube shaped ICS. Some 
of these results are used and presented here. The Type A OSRAM etalons are used as the 
reference ELS. Among the other, following experimental results are highlighted in this paper: 
results that indicate possibilities for the luminous flux measurement using the cube as the ICS 
(Table 2), and results showing that size and location of the screen are not critical (Fig. 8). 
 The proposed mathematical model allows selection of the measuring point 1P , located 
on the surface 1S , in order to minimize methodical calculation error. 
 Finally, the proposed mathematical model also allows analysis of following ICS 
geometries: cylinder ICS and cut cone ICS, both with bases that are spherical sectors of the 
circumscribed sphere. The Equivalent Sphere Method [6]-[8] should be used in such analysis. 
This research is in progress. 
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