Prediction and Lossless Audio Coding

Prof. Dr.-Ing. Gerald Schuller

Fraunhofer IDMT & Ilmenau Technical University
Ilmenau, Germany
Use of Redundancy (1)

- For higher correlation between samples → higher redundancy
- For „flat“ PSD → low redundancy
- ACF (Auto Correlation Function):

\[r_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)dt = E\{x(t)x(t+\tau)\} \]

- PSD (Power Spectrum Density):

\[r_{XX}(\tau) \quad \longrightarrow \quad S_{XX}(f) = \int_{-\infty}^{\infty} r_{XX}(\tau)e^{-j2\pi f \tau} d\tau \]

\[S_X(f) \cdot \overline{S_X(f)} = \left| S_X(f) \right|^2 \]

impulse response

\[e^{j\omega} \quad \text{conj. compl.} \]

\[e^{-j\omega} \]
Use of Redundancy (2)

Signal

\[u(t) \]

ACF

\[\phi_{xx}(\tau) \]

PSD

\[\Phi_{xx}(f) \]
Predictive Coding (1)

- Use of the correlation of nearby samples
- Method:
 - Prediction of the current sample, using past samples
 - Transmission of the smaller prediction error (smaller code word)
Predictive Coding (2)

- **Encoder**
 \[e(n) = x(n) - \hat{x}(n) \]
 \[\hat{x}(n) = \sum_{j=1}^{N} h_j \cdot x(n - j) \]

 predictor of filter coefficients

- **Decoder**
 \[x(n) = e(n) + \sum_{j=1}^{N} h_j \cdot x(n - j) \]

- **Goal:** Minimize the mean squared error \(\sigma_e^2 = E\{e^2(n)\} \)
 by optimizing the filter coefficients \(h_j \)
Predictive Coding (3)

• Approach: \(\frac{\partial \sigma_e^2}{\partial h_j} = 0 \)

\[\sigma_e^2 = E \left\{ (x(n) - \hat{x}(n))^2 \right\} \]

\[\frac{\partial \sigma_e^2}{\partial h_j} = 2E \left\{ (x(n) - \hat{x}(n))x(n - j) \right\} \]

Eq. 1: \(\Rightarrow 0 = E \left\{ (x(n) - \hat{x}(n))x(n - j) \right\} \)

\[0 = r_{XX}(k) - \sum_{j=1}^{N} h_j r_{XX}(k - j), \quad r_{XX}(k) = E \{x(n)x(n - k)\} \]

\[\Rightarrow r_{XX}(k) = \sum_{j=1}^{N} h_j r_{XX}(k - j) \]
Predictive Coding (4)

- orthogonality principle: for the optimum coefficients the expectation (average) of the error is zero, hence the prediction error is said to be "orthogonal" to the input signal (Eq. 1)

\[
R_{xx} = \begin{bmatrix}
 r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(N-1) \\
 r_{xx}(1) & r_{xx}(0) & & r_{xx}(N-2) \\
 \vdots & \ddots & \ddots & \vdots \\
 r_{xx}(N-1) & r_{xx}(N-2) & \cdots & r_{xx}(0)
\end{bmatrix}
\]
Wiener-Hopf-Equation

- Wiener-Hopf-Equation in matrix description

\[r_{XX}(k) = \sum_{j=1}^{N} h_j r_{XX}(k - j) \]

\[
\begin{bmatrix}
 r_{XX}(1) \\
 \vdots \\
 r_{XX}(N)
\end{bmatrix}
= \begin{bmatrix}
 r_{XX}(0) & \ldots & r_{XX}(N - 1)
\end{bmatrix}
\begin{bmatrix}
 h_1 \\
 \vdots \\
 h_N
\end{bmatrix}
\]

\[r_{XX} = R_{XX}^{-1} h_{opt} \]

- Vector of ideal filter coefficients:

\[h_{opt} = R_{XX}^{-1} r_{XX} \]
Deriving Wiener-Hopf with Pseudo Inverses (1)

• Input matrix X:

$$X = \begin{bmatrix}
 x(0) & x(1) & \cdots & x(N-1) \\
 x(1) & x(2) & \cdots & x(N) \\
 \vdots & \vdots & \ddots & \vdots \\
 x(B) & x(B+1) & \cdots & x(B+N-1)
\end{bmatrix}$$

• Solve equation as close as possible to „d“ as our desired signal, in a quadratic sense (minimize sum of quadratic error):

$$X \cdot h \approx d$$

more equations than unknowns

Sequence of “next” values
Deriving Wiener-Hopf with Pseudo Inverses (2)

- Solving the matrix equation with pseudo inverse of the input matrix X^T

 quadratic matrix $\rightarrow (X^T X)^{-1} h = X^T \cdot d$

 h which approximates d in quadratic error sense

 $h = (X^T X)^{-1} X^T \cdot d$

 $\begin{pmatrix} X^T X \end{pmatrix}^{-1}$ ACF estimation matrix

 $X^T \cdot d$ Cross correlation vector

- This results in the Wiener-Hopf-Equation for block size $B \rightarrow \infty$
Coding Gain (1)

- Prediction error variance/power
 \[\sigma_e^2 = E\{(x(n) - \hat{x}(n))^2\} = E\{x^2(n) + \hat{x}^2(n) - 2x(n)\hat{x}(n)\} \]

- with the orthogonality principle
 \[\sigma_e^2 = E\{(x(n) - \hat{x}(n))\hat{x}(n)\} \]
 \[\Rightarrow E\{(x(n)\hat{x}(n))\} = E\{\hat{x}^2(n)\} \]
 \[\Rightarrow \sigma_e^2 = E\{x^2(n) - x(n)\hat{x}(n)\} \]

- Using the Wiener-Hopf-Equation
 \[\sigma_e^2 = \sigma_x^2 - \sum_{j=1}^{N} h_j R_{xx}(j) \]
Coding Gain (2)

- Minimal prediction error (plugging in definition of h)

\[\sigma_e^2 = \sigma_x^2 - r_{XX}^T R_{XX}^{-1} r_{XX} \]

\[\lim_{N \to \infty} \sigma_e^2 = \exp \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \log S_{XX}(e^{j\omega}) d\omega \right] \]

\[\frac{1}{2} \log(\sigma_e^2) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \log S_{XX}(e^{j\omega}) d\omega \]

Reference: Digital Coding of Waveforms
Jayant, Noll, 1984
Predictive Coding – Subband Coding

• Reduce redundancy in input signal

• Redundancy in input signal is independent of method
 – Predictive coding and subband coding will achieve
 same results for $N \to \infty$
 different properties result for finite N

• Example:
 – few sinusoids \to better prediction with finite N
 – narrowband noise \to better subband coding with finite N
Lossless Coding

• definition:
 – the decoded and original signal are bit identical / integer identical

• original signal:
 – integer valued audio samples

• lossless coding only removes redundancy, no psychoacoustics or irrelevancy removal is done

• prediction is convenient for lossless compression
 – integer to integer prediction
 – prediction error can easily be made integer valued
 – inverse prediction results in original integers!
Predictive Encoder
Predictive Decoder

Exactly the same rounding as in encoder. Same algebra needed, e.g. IEEE defined. Example: rounding of 0.5 needs to be the same.
Approaches to Predictive Coding

- How to adapt h_j for real world signals
 - Wiener-Hopf for a block of a certain length
 → transmit h_j as side info (most freeware lossless audio coders)
 long blocksize: good for low side info
 short blocksize: good for signal adaptation
 - LMS-Method: Online update derived from Wiener-Hopf for h_j based on past samples
 Normalized LMS:
 $$h_j(n+1) = h_j(n) + \frac{x(n) - \hat{x}(n)}{1 + \lambda \sigma_x^2} x(n - j)$$
 → no side info, no blocks necessary
References/Literature:

- Lossless Compression of Digital Audio
 H. Mat, R. Schafer
 IEEE Signal Processing Magazine
 July 2001
 http://ieeexplore.ieee.org

- Perceptual Coding Using Adaptive Pre- and Post-Filters and Lossless Compression
 G. Schuller et al.
 IEEE Trans. On Speech and Audio Signal Processing
 Sept 2002
Lossless Audio Coding with Filter Banks

- Perceptual audio codecs: usually based on filter banks

- Lossless audio codecs: usually based on prediction

- Lossless audio coding using filter banks?
Lossless Audio Coding with Filter Banks

- Problem: Input values integer, output values not integer
- Possible solution: add quantizer

\[n \cdot h_N(n) - \text{integer} \] (1)

\[n \cdot g_N(n) - \text{integer} \] (0)

\[n \cdot x(n) \] (integer)

- Drawback of this quantization
 - destroys perfect reconstruction
 - has to be very fine or error in time domain has to be coded additionally
Lifting Scheme (aka „Ladder Network“)

- Goal: Invertible integer-to-integer transform
- Principle: Insert quantizer without destroying perfect reconstruction
- Lifting Scheme or Ladder Network:

\[
\begin{align*}
\text{forward step:} & & x_0 & \rightarrow & & \text{Inverse step:} & & x_0 \\
\text{round:} & & a & \rightarrow & & \text{a: float}
\end{align*}
\]

\[
\begin{align*}
x_1 &= x_1 + ax_0 \\
\text{round:} & & a \rightarrow \\
\text{Inverse step:} & & x_0' = y_0 = x_0 \\
y_1 &= x_1 + \text{round}(a \cdot x_0) \\
x_1' &= y_1 - \text{round}(a \cdot y_0) = x_1 \\
y_0 &= x_0 \\
x_0' &= y_0 = x_0
\end{align*}
\]

→ invertible integer-to-integer transform
Givens Rotations by Lifting Scheme

- Apply lifting scheme to Givens rotation

- Decomposition:

\[
\begin{bmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{bmatrix} = \begin{bmatrix}
1 & \frac{\cos \alpha - 1}{\sin \alpha} \\
0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 \\
\sin \alpha & 1
\end{bmatrix} \begin{bmatrix}
1 \\
0
\end{bmatrix}
\]

- Result: Invertible integer approximation

![Diagram of Givens Rotations by Lifting Scheme]
Application to MDCT

• MDCT can be decomposed into
 – Windowing / Time Domain Aliasing
 – DCT of type IV (DCT-IV)

• Both blocks can be decomposed into Givens rotations

• For DCT-IV: Fast algorithms usually provide such a decomposition
MDCT/inverse MDCT by Givens rotations and DCT_{IV}
Integer Modified Discrete Cosine Transform (IntMDCT)

- MDCT can be completely decomposed into Givens rotations
- Apply lifting scheme for each Givens rotation
- Result: Invertible integer approximation of MDCT, called “IntMDCT”
Properties of IntMDCT

• Inherits properties of MDCT
 – perfect reconstruction
 – critical sampling
 – overlapping of blocks
 – good spectral representation of audio signal

• Allows lossless coding in frequency domain by
 entropy coding of integer spectral values
IntMDCT and MDCT of sine wave (1kHz, -20dBFS)
IntMDCT, MDCT and difference values

Item: SQAM, track 64
(Orff: Carmina Burana)
Recent Improvement: Multi-Dimensional Lifting

- Decompose DCT-IV into two DCT-IV of half length
- Further decompose: [left, right]
- Apply lifting scheme to 2x2 block matrices instead of 2x2 matrices
- Result: Approximation error reduced from $O(N\log(N))$ to $O(N)$

\[
\begin{pmatrix}
-DCT_{IV} & 0 \\
0 & DCT_{IV}
\end{pmatrix}
\begin{pmatrix}
-I_N & 0 \\
DCT_{IV} & I_N
\end{pmatrix}
\begin{pmatrix}
I_N & -DCT_{IV} \\
0 & I_N
\end{pmatrix}
\begin{pmatrix}
0 & I_N \\
I_N & DCT_{IV}
\end{pmatrix}
\]

\[
\text{DCT}_{IV} \cdot \text{DCT}_{IV} = I_{1024} \cdot 1024 \times 2048
\]
Two blocks of DCT-IV by Multi-Dimensional Lifting

invertible rounding
Lossless enhancement of perceptual coder (1)

- IntMDCT closely approximates MDCT
- Scalable combination with MDCT-based perceptual codec (e.g. AAC) possible
- Scalable bitstream with two layers allows two stages of decoding
 - Perceptually coded (e.g. AAC @ 128 kBit/s)
 - Lossless (higher, variable bitrate)
Lossless enhancement of perceptual coder (2)

Encoder:

- MDCT
- Quantization & Coding
- Encoding of bitstream

Quantization below masking threshold

Perceptual Model

IntMDCT

Inverse Quantization & Rounding

Entropy Coding

audio in

perceptually coded bitstream

lossless enhancement bitstream
Lossless enhancement of perceptual coder (3)

Decoder

Decoding of bitstream → Inverse Quantization → Inverse MDCT

Rounding

Entropy Decoding

Perceptually coded bitstream + lossless enhancement bitstream

Bit-exact reconstruction → perceptual audio

Lossless audio

Sounds exactly like original
Compression Results

Results in bits per sample:

<table>
<thead>
<tr>
<th></th>
<th>48 kHz 16 bit</th>
<th>48 kHz 24 bit</th>
<th>96 kHz 24 bit</th>
<th>192 kHz 24 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAC</td>
<td>1.3</td>
<td>1.3</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Enhancement</td>
<td>6.5</td>
<td>14.4</td>
<td>11.0</td>
<td>9.2</td>
</tr>
<tr>
<td>AAC + Enhancement</td>
<td>7.8</td>
<td>15.7</td>
<td>11.8</td>
<td>9.7</td>
</tr>
<tr>
<td>Lossless-only</td>
<td>7.5</td>
<td>15.3</td>
<td>11.6</td>
<td>9.5</td>
</tr>
<tr>
<td>Monkey’s Audio 3.97</td>
<td>7.2</td>
<td>15.2</td>
<td>11.5</td>
<td>9.4</td>
</tr>
<tr>
<td>Simulcast</td>
<td>8.5</td>
<td>16.5</td>
<td>12.3</td>
<td>9.9</td>
</tr>
<tr>
<td>(AAC + Monkey’s Audio)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signals: Test set used in ongoing MPEG Lossless Audio activities
Conclusions

- Lossless Audio Coding with filter banks is possible

- Lifting Scheme or Ladder Network is appropriate tool

- IntMDCT allows
 - Efficient lossless audio coding
 - Scalable lossless enhancement of MDCT-based perceptual audio codec (e.g. AAC)