http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe
Diskrete Mathematik und Algebra


Ansprechpartner

Univ.-Prof. Dr. rer. nat. habil. Matthias Kriesell

Fachgebietsleiter

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Studienabschlussarbeiten

Anzahl der Treffer: 67
Erstellt: Mon, 16 Oct 2017 23:04:22 +0200 in 0.0243 sec


Fischer, Steffen
A new separator theorem, metric properties and crossing numbers. - Ilmenau. - 34 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Gegeben sei ein einfacher, endlicher, ungerichteter Graph G = (V,E) mit Eckenmenge V (G) und Kantenmenge E(G). Die Kreuzungszahl eines Graphen G, die mit cr(G) bezeichnet wird, ist das Minimum aller Kantenkreuzungen über alle Zeichnungen von G in der Ebene. Diese ist eine wichtige Messgröße für die Charakterisierung der Nichtplanarität eines Graphen. Aufgrund der schweren Berechenbarkeit des dazugehörigen Entscheidungsproblems ist es gerechtfertigt, sich mit Schranken zu beschäftigen. Diese Masterarbeit liefert einen Beweis für eine obere Schranke für Graphen, die mit beschränkter Verzerrung eingebettet werden können. Unabhängig davon wird ein neues Separator-Theorem angegeben, das ein konstantes Größenverhältnis bei den Komponenten eines Graphen G erzeugt, die durch den Trenner S entstehen. Trenner von Graphen sind mächtige Werkzeuge, die durch den Teile-und-herrsche-Algorithmus motiviert sind.


http://www.gbv.de/dms/ilmenau/abs/1000474887fisch.txt
Schweser, Thomas
Graph partitions. - Ilmenau. - 52 Seiten
Technische Universität Ilmenau, Masterarbeit, 2017

Eine Partition eines Graphen $G$ ist eine Folge $(G_1,G_2,\ldots,G_p)$ paarweise disjunkter induzierter Teilgraphen von $G$ mit $V(G)=V(G_1) \cup V(G_2) \cup \ldots \cup V(G_p)$. Diese Arbeit beschäftigt sich mit Zerlegungen von (Multi-)Graphen unter bestimmten Gradbedingungen. So werden unter anderem eine Verallgemeinerung eines Satzes von Borodin, Kostochka und Toft bewiesen, welcher Zerlegungen von Graphen mit Anforderungen an die Degeneriertheit untersucht. Des Weiteren werden Sätze von Stiebitz, Kaneko, Bazgan, Tuza und Vanderpooten, als auch Liu und Xu verallgemeinert; diese handeln von Graphzerlegungen mit Mindestanforderungen an den Minimalgrad.


http://www.gbv.de/dms/ilmenau/abs/895549840schwe.txt
Möller, Florian
Das Max-k-Kantenfärbungsproblem. - Ilmenau. - 29 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2017

In dieser Arbeit beschäftigen wir uns mit den Max-k-Kantenfärbungsproblem. Dabei betrachten wir die Resultate von Farnik, Kowalik und Socała aus ihrer Arbeit "Beyond the Shannon Bound" und führen die Beweise schneller und verständlicher. Zum Abschluß beschäftigen wir uns noch mit Färbungsalgorithmen um einen Graphen mit den Konzept des Max-k-Kantenfärbungsproblem zu färben.


http://www.gbv.de/dms/ilmenau/abs/883765020moell.txt
Postel, Justus
Hadwigers Vermutung : eine Auswahl der bisherigen Ergebnisse. - Ilmenau. - 38 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2017

Ein wichtiges Thema der Graphentheorie ist das Färben von Graphen und in diesem Zusammenhang die chromatische Zahl. Der wohl bekannteste Satz zu diesem Thema ist der 4-Farben-Satz, der sich ursprünglich mit dem Färben von Landkarten bschäftigte. Mit einer Verallgemeinerung dieses Themas und einer Verbindung der Färbungszahl mit gewissen Unterstruktren beschäftigte sich der Schweizer Hugo Hadwiger und stellte eine sehr weitreichende Vermutung auf.


http://www.gbv.de/dms/ilmenau/abs/880795034poste.txt
Trautmann, Luca
Zwischen geordneten Pfadpartitionen und Schnyderwäldern. - Ilmenau. - 42 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2017

In dieser Bachelorarbeit werden Zusammenhänge zwischen Schnyderwäldern und geordneten Pfadpartitionen genutzt, um geordnete Pfadpartitionen mit bestimmten Eigenschaften zu finden. Eine geordnete Pfadpartition eines Graphen G ist eine geordnete Partition der Eckenmenge von G, sodass ihre Blöcke Wege induzieren und bestimmte Grad- und Zusammenhangsbedingungen erfüllt sind. Ein Schnyderwald orientiert jede Kante in eine oder zwei Richtungen und markiert jede Richtung mit einer von drei Markierungen. Außerdem hat jede Ecke Ausgangsgrad eins in jeder Markierung, kein Flächenrand enthält einen gerichteten Kreis in einer Markierung und es werden Bedingungen an die zyklische Reihenfolge der Kanten um jede Ecke gestellt. Jeder 3-zusammenhängende ebene Graph besitzt eine geordnete Pfadpartition und einen Schnyderwald, welche einfach auseinander berechnet werden können. Wir nehmen an, dass eine geordnete Pfadpartition gegeben ist und betrachten 3-zusammenhängende ebene Graphen, deren Außenfläche Grad 3 hat. Mit Hilfen von Schnyderwäldern können wir zwei weitere geordnete Pfadpartitionen bestimmen, die verschieden von sind und voneinander abhängen. Diese geordneten Pfadpartitionen werden konsistent zueinander genannt. Da diese drei Pfadpartitionen voneinander abhängen, ist es möglich unter ihnen eine geordnete Pfadpartition mit bestimmten Eigenschaften zu finden. Es ist möglich drei konsistente Pfadpartitionen in Linearzeit zu finden. Wir zeigen, dann eine von drei konsistenten Pfadpartitionen mindestens F/9 Singletons enthält, wenn G F Flächen besitzt und keine davon vom Grad 6 ist. Außerdem ist jede innere Ecke eines Blockes der geordneten Pfadpartition Singleton in einer der zu konsistenten geordneten Pfadpartitionen. Andere Eigenschaften wie die Höhe einer geordneten Pfadpartition konnten nicht verbessert werden.


http://www.gbv.de/dms/ilmenau/abs/880720247traut.txt
Fabel, Marc
Ein alternatives Lösungskonzept für 2-Personen Normalformspiele. - 60 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

In der nicht kooperativen Spieltheorie existiert kein komplett zufriedenstellendes Lösungskonzept. Selbst das häufig verwendete Nash-Gleichgewicht liefert nicht immer plausible Ergebnisse, sodass in der aktuellen Forschung nach neuen besseren Lösungskonzepten gesucht wird. In dieser Arbeit wird ein neues Lösungsverfahren für 2-Personen Normalformspiele vorgestellt, welches iterativ vorgeht. Nach der Definition werden erste Eigenschaften gezeigt, bevor es auf verschiedene bekannte Beispiele der Spieltheorie angewendet wird. Anhand dieser Spiele wird untersucht, ob das Verfahren plausible Lösungen liefert. Des Weiteren dienen die Beispiele um Vergleiche zu anderen bekannten Lösungskonzepten der Spieltheorie durchzuführen.


http://www.gbv.de/dms/ilmenau/abs/87635634Xfabel.txt
Mohr, Samuel
Über untere Schranken zur Unabhängigkeit in Graphen. - 57 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

Gegeben sei ein einfacher, endlicher, ungerichteter Graph G = (V, E) mit Eckenmenge V(G) und Kantenmenge E(G). Eine unabhängige Menge in G ist eine Teilmenge der Eckenmenge V(G), in der je zwei Ecken nicht adjazent in G sind. Ein oft untersuchtes kombinatorisches Optimierungsproblem ist die Frage nach einer unabhängigen Menge maximaler Kardinalität. Aufgrund der schweren Berechenbarkeit des dazugehörigen Entscheidungsproblems ist es gerechtfertigt, sich mit Schranken, überwiegend unteren Schranken, zu beschäftigen. Der Beitrag dieser Masterarbeit ist eine neue untere Schranke, die als Verbesserung der bekannten Caro-Wei-Schranke aufgefasst werden kann. Hierbei sind insbesondere Spezialisierungen von Interesse, die zu einfachen und leicht berechenbaren Schranken führen. Neben Vergleichen mit klassischen unteren Schranken von O. Murphy und S. M. Selkow wird das Resultat genutzt, um eine Schranke zu entwickeln, die einer Vermutung von E. Bertram und P. Horak nahe kommt.


http://www.gbv.de/dms/ilmenau/abs/87627596Xmohr.txt
Kulse, Katja
Caro-Wei-ähnliche untere Schranken für Unabhängigkeit in Graphen. - 18 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

In der vorliegenden Arbeit wird für zusammenhängende und nicht vollständige Graphen die Caro-Wei-Schranke CW(G) betrachtet. Auf dessen Grundlage wird eine Klassifizierung von Caro-Wei-ähnlichen unteren Schranken für die Unabhängigkeitszahl in Graphen vorgenommen. Außerdem wird eine neue untere Schranke, $\alpha(G) \geq CW(G) + \sum\limits_{v \in V(G)} \sum\limits_{(A,B) \in \pi(v)} \sum\limits_{[A,B,v,\sigma,\tau]\in F(A,B,v)}\frac{1}{c_1\cdots c_{|A|}d_1\cdots d_{|B|}(d(v)+1-|B|)}$, bewiesen. Im Beweis wird der Spezialfall $|A|=|B|=1$ betrachtet und somit die Schranke $\alpha(G) \geq CW(G) + \sum\limits_{v \in V(G)} \sum\limits_{(v,w,u) \in W^2(v)} \frac{1}{|N[v,w,u]| (|N[v,w]|-1) d(v)}$ für induzierte Wege der Länge 2 formuliert. Das daraus entstandene schwächere Theorem wurde vollständig bewiesen.


http://www.gbv.de/dms/ilmenau/abs/87091314Xkulse.txt
Hippmann, Lisa
Färbungskritische signierte Graphen. - 37 Seiten
Technische Universität Ilmenau, Bachelorarbeit, 2016

Ein signierter Graph ist ein Graph, in dem jede Kante mit +1 oder -1 bewertet (signiert) ist. Die vorliegende Arbeit befasst sich mit kritischen signierten Graphen und ihren Färbungen. Kritische signierte Graphen sind besonders interessant, weil sich Färbungsprobleme signierter Graphen oft auf Färbungsprobleme kritischer signierter Graphen zurückführen lassen. So werden zunächst wichtige, bereits bekannte Ergebnisse der chromatischen Zahl signierter Graphen wiedergegeben und anschließend Färbungen kritischer signierter Graphen diskutiert. Den Hauptteil der Arbeit bildet dann der Vergleich gewöhnlicher kritischer Graphen mit kritischen signierten Graphen. Dabei wird sich zeigen, dass viele Eigenschaften kritischer Graphen auch für kritische signierte Graphen gelten. Den Abschluss bilden dann der Zusammenhang sowie die Hajós-Konstruktion kritischer signierter Graphen. Auch hier wird überprüft inwieweit sich Eigenschaften von kritischen Graphen auf kritische signierte Graphen übertragen lassen.


http://www.gbv.de/dms/ilmenau/abs/861065158hippm.txt
Otte, Katrin
Deterministische Irrfahrten auf Graphen. - 31 Seiten
Technische Universität Ilmenau, Diplomarbeit, 2016

Die Arbeit behandelt die deterministische Irrfahrt I in der Eckenversion und die deterministische Irrfahrt I' in der Kantenversion.


http://www.gbv.de/dms/ilmenau/abs/85975037Xotte.txt