http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe Stochastik



Ansprechpartner

Prof. Dr. rer. nat. Thomas Hotz

Fachgebietsleiter

Telefon +49 3677 69 3627

E-Mail senden


Ihre Position

INHALTE

Abschlussarbeiten

Anzahl der Treffer: 25
Erstellt: Mon, 23 Oct 2017 23:03:51 +0200 in 0.0296 sec


Henneberg, Jessica
Universale Konfidenzbänder im Fixed-Design-Modell. - 53 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

Die Regressionsschätzung ist ein wichtiger Teil der Statistik. Hierbei werden Abhängigkeiten zwischen verschiedenen Größen genauer untersucht. In einem Regressionsmodell, dem sogenannten Fixed-Design-Modell, werden zu festen Eingabewerten zufällig gestörte Daten einer Funktion beobachtet. Ziel ist es nun, die unbekannte Funktion anhand dieser Datenpaare zu schätzen. In der vorliegenden Arbeit wurde dazu der Priestley-Chao-Schätzer und der Gasser-Müller-Schätzer verwendet. Für solche Schätzer ist außerdem von Interesse, wie weit die geschätzte Funktion von der unbekannten Funktion abweicht. Hierzu werden Konfidenzbänder betrachtet. Das heißt, es wird ein möglichst kleines Band um die geschätzte Funktion gesucht, welches die unbekannte Funktion mit einer vorgegebenen Wahrscheinlichkeit überdeckt. Dabei soll auf eine Verteilungsannahme sowie auf eine asymptotische Betrachtung verzichtet werden. Ziel dieser Arbeit ist die Bestimmung universaler Konfidenzbänder. Es wird daher für jede feste Stichprobenzahl ein Konfidenzband in Abhängigkeit dieser bestimmt.


http://www.gbv.de/dms/ilmenau/abs/877005230henne.txt
Elbert, Lukas
Die Schätzung des Market Impacts im Wertpapierhandel institutioneller Anleger. - 81 Seiten
Technische Universität Ilmenau, Masterarbeit, 2016

Diese Arbeit untersucht die impliziten Transaktionskosten von Aktientransaktionen institutioneller Investoren wie Pensionskassen, Versorgungswerke und Versicherungen. Die Bestimmung der impliziten Transaktionskosten erfolgt durch die Kennzahl Market Impact, die die prozentuale Abweichung des Ausführungspreises von einer Benchmark misst. Zur Untersuchung des Market Impacts werden circa 60.000 Transaktionen deutscher Großinvestoren mittels linearer Regressionsmodelle betrachtet und analysiert. Dabei zeigt sich, dass die impliziten Transaktionskosten signifikant von vielen Variablen, durch die sich eine Transaktion charakterisiert, beeinflusst werden. Diese Variablen werden durch die Modelle und Schätzungen ermittelt, beschrieben und mit der vorhandenen Literatur verglichen. Zusätzlich erfolgt eine Identifizierung neuer Kenngrößen, die den Market Impact beeinflussen. Darunter fallen unter anderem ein relativer Liquiditätsfaktor und das Nacht-Momentum. Weiterhin werden das Akaike- und das Bayessche Informationskriterium zur Modellwahl für die Regressionen angewendet und beschrieben. Zudem wird ein Broker identifiziert, für den sich der Market Impact vergleichsweise gut schätzen lässt. Anschließend erfolgen weitere mathematische Modellierungen des Market Impacts, um sich den impliziten Transaktionskosten weiter theoretisch zu nähern.


http://www.gbv.de/dms/ilmenau/abs/872816397elber.txt
Semper, Sebastian
Bounds for the coherence of Khatri-Rao-products and Vandermonde matrices. - 80 S.
Ilmenau : Techn. Univ., Masterarbeit, 2015

Diese Arbeit handelt von einem kleinen Teil des weiten Feldes Compressed Sensing, welches heutzutage eine große Rolle in der Signal- und Bildverarbeitung spielt. Diese Arbeit besteht aus fünf Kapiteln. Das erste Kapitel erläutert einige grundlegende Begriffe im Zusammenhang mit Compressed Sensing. Unter anderem werden die Begriffe Sparsity, Kohärenz und der Kruskal-Rang eingeführt. Darüber hinaus wird das Vorgehen bei Sparsity Order Estimation beschrieben. Dies dient als Motivation im zweiten Kapitel zunächst das allgemeine Packungsproblem zu erläutern. Hier wird ein bekanntes Resultat für die n-dimensionale Sphäre auf einen projektiven Raum übertragen, welches es uns ermöglicht Schranken für die Packungszahlen von Matrizen mit Rang 1 herzuleiten. Dies ermöglicht die Ableitung von Schranken für die Kohärenz von Khatri-Rao-Produkten, welche ein zentrales Ergebnis dieser Arbeit darstellen. Das dritte Kapitel dreht sich um das Problem, wie man explizit Matrizen mit niedriger Kohärenz konstruieren kann, wobei reell- und komplexwertige Matrizen zum Tragen kommen. Wir stellen Strategien zur Konstruktion von beliebigen Matrizen, Khatri-Rao-Produkten und Vandermonde Matrizen vor. Der Algorithmus für letztere zieht auch untere und obere Köhärenzschranken nach sich. Kapitel vier illustriert einige numerische Resultate für die Schranken und Algorithmen, welche vorher hergeleitet wurden. Wann immer möglich werden numerische Resultate mit theoretischen verglichen. Das letzte Kapitel gibt eine kurze Zusammenfassung der Arbeit und zeigt einige Bereiche auf, welche noch offene Fragen beinhalten.


http://www.gbv.de/dms/ilmenau/abs/837290228sempe.txt
Schneider, Daniel
On confidence sets in multiobjective optimization. - 41 S.
Ilmenau : Techn. Univ., Masterarbeit, 2014

Es gibt viele multikriterielle Optimierungsprobleme in denen verschiedene Größen unbekannt sind und daher geschätzt werden müssen. Solche Schätzungen liefern eine Folge von Ersatzproblemen. Daher wäre es nützlich die Qualität dieser Probleme in Bezug auf die zulässige Menge, die effiziente Menge und die zugehörige Lösungsmenge zu kennen. Das Ziel dieser Arbeit ist die Herleitung geeigneter quantitativer Aussagen zur Konvergenz der Mengenfolgen die durch das Lösen der Ersatzprobleme entstehen. Weiterhin wird gezeigt wie diese Aussagen dazu benutzt werden können, um Konfidenzmengen zu erhalten.


http://www.gbv.de/dms/ilmenau/abs/786788186schne.txt
Beck, Matthias
Dichteschätzungen mit Epi-Splines. - 108 S.
Ilmenau : Techn. Univ., Masterarbeit, 2014

Die Masterarbeit befasst sich mit einer neuartigen Methode innerhalb der nichtparametrischen Dichteschätzung, die auf sogenannten Epi-Splines beruht. Zunächst geht es in der Arbeit um die Aufbereitung eines Artikels von Johannes O. Royset und Roger J-B Wets zur Schätzung eindimensionaler Dichten mittels exponentieller Epi-Splines. Dieser Ansatz wird schließlich in der Arbeit auf den zweidimensionalen Fall erweitert und es wird dabei das theoretische Fundament zur Schätzung bivariater Dichtefunktionen gelegt. Hierbei wird unter anderem eine Konsistenz-Aussage der entstehenden Dichteschätzer für eine spezielle Klasse von Dichten hergeleitet. Empirische Studien, die vor allem für den eindimensionalen Fall durchgeführt wurden, bildeten die Grundlage, um sowohl mögliche Potentiale als auch Schwachstellen des Schätzverfahrens aufzudecken.


http://www.gbv.de/dms/ilmenau/abs/786294973beck.txt
Heilmann, Gerrit
Empirische Likelihood-Quotienten-Konfidenzintervalle für Funktionale der Verteilungsfunktionen. - 36 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2013

In dieser Arbeit geht es darum, asymptotische Konfidenzintervalle bereitzustellen, dafür wird der Artikel "Empirical likelihood ratio confidence intervals for a single functional" von Art B. Owen aufgearbeitet. Die Beweise, die im Artikel nur angedeutet werden, werden in dieser Arbeit tiefgründiger vollzogen, so dass der Leser diesen besser folgen kann. Außerdem sollen die Simulationen, die der Autor dieses Artikels durchgeführt hat, anhand eigener eingeschätzt werden.


Seeger, Stefan
Kerndichteschätzer im Kontext universaler Konfidenz. - 127 S.
Ilmenau : Techn. Univ., Masterarbeit, 2013

Die Masterarbeit befasst sich mit einer nichtparametrischen Variante der Dichteschätzung, den Kerndichteschätzern. Im Mittelpunkt stehen gleichmäßige und punktweise Approximationen der unbekannten Dichte in Wahrscheinlichkeit durch einen Kerndichteschätzer. Diese Approximationen bilden die Grundlage zur Bestimmung von universalen Konfidenzmengen. Im Fall punktweiser Approximationen werden die resultierenden universalen Konfidenzmengen mit bekannten asymptotischen Aussagen verglichen. Der Schwerpunkt liegt jedoch auf der Bestimmung von Konfidenzmengen für obere Niveaumengen der unbekannten Dichte, welche in der explorativen Statistik eine wesentliche Rolle spielen. Die benötigten gleichmäßigen Approximationen der Dichte in Wahrscheinlichkeit liegen Arbeiten von Frau Professor Vogel und Frau Dünnbier vor. Diese Möglichkeiten werden in der Arbeit aufgegriffen und abgeändert. Die Voraussetzungen an die unbekannte Dichte werden abgeschwächt und es wird gezeigt, dass die Hölder- Stetigkeit der Dichte hinreichend ist, um Approximationen der Dichte in Wahrscheinlichkeit zu erhalten. Basierend auf der Definition geeigneter multivariater Kernfunktionen wird eine Abschätzung des gleichmäßigen Bias für hinreichend glatte Dichten unter Berücksichtigung einer allgemeineren Bandbreitenmatrix angegeben, welche ebenfalls in die Approximation der Dichte in Wahrscheinlichkeit einfließt. Es wird gezeigt, dass die Angabe der universalen Konfidenzmengen für obere Niveaumengen der Dichte über die Bestimmung von oberen Niveaumengen des Kerndichteschätzers zu realisieren ist. Auf Grundlage dieser Aussage und der fast sicheren Hölder- Stetigkeit des Kerndichteschätzers werden allgemeine multivariate Algorithmen vorgeschlagen und in der Statistiksoftware R umgesetzt. Die Algorithmen ermöglichen eine äußere und innere Approximation der oberen Niveaumengen des realisierten Kerndichteschätzers. Es wird gezeigt, dass sich die fast sicher Hölder- Stetigkeit des Kerndichteschätzers unter bestimmten Voraussetzungen an die unbekannte Dichte abschwächen lässt und so eine verbesserte Laufzeit der Algorithmen zu erreichen ist. Insbesondere für uni- und bivariate Kerndichteschätzer bilden die vorgeschlagenen Algorithmen eine erste Grundlage die oberen Niveaumengen des Kerndichteschätzers auch ohne weitere Strukturaussagen, wie die Konvexität oder Sternförmigkeit der Niveaumengen, zu bestimmen.


http://www.gbv.de/dms/ilmenau/abs/736411461seege.txt
Schäfer, Lukas Matthias
Konfidenzmengen für multivariate, stetige Dichten und univariate Dichten mit Unstetigkeitsstellen auf der Basis von Kernschätzern. - 33 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

In der Arbeit werden für multivariate Dichtefunktionen optimale Bandbreiten und Kernfunktionen bez. einer gleichm. Approximation der Dichte in Wahrscheinlichkeit abgeleitet und diese in einer Computersimulation verwendet. Des Weiteren wird eine gleichm. Approximation der Dichte in Wahrscheinlichkeit für Dichten mit einer Unstetigkeitsstelle und modifizierte Kerndichteschätzer hergeleitet.


Schneider, Daniel
Konfidenzintervalle für Value-at-Risk und Average Value-at-Risk. - 33 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

In dieser Arbeit werden Konfidenzintervalle für die Risikomaße Value-at-Risk und Average Value-at-Risk abgeleitet. Dies geschieht jeweils unter Benutzung der empirischen Verteilungsfunktion und unter Verwendung von Kerndichteschätzern. Abschließend werden die theoretischen Ergebnisse in einer Computersimulation umgesetzt.


Boldt, Sebastian
Schätzung des Value-at-Risk mit Hilfe elliptischer Copulas. - 121 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2011

Die Finanzmärkte haben sich in jüngster Zeit rasant entwickelt. Ein wichtiger Aspekt beim Halten eines Portfolios besteht deshalb darin, Abhängigkeiten und Risiken adäquat zu modellieren. Die seit Jahrzehnten benutzte Normalverteilungsannahme mit dem Korrelationskoeffizienten nach Bravais-Pearson erweist sich durch immer neue statistische Untersuchungen als dafür ungeeignet. Für ein Portfolio werden gemeinsame extreme Ereignisse durch die mehrdimensionale Normalverteilung nur unzureichend erfasst. Ein Standardmaß zur Bestimmung des Marktrisikos ist der Value-at-Risk. Dabei wird eine Wahrscheinlichkeit vorgegeben und der Wert des Value-at-Risk bestimmt. Beim Value-at-Risk handelt es sich einfach um ein Quantil der vorgegebenen Wahrscheinlichkeit der Verteilung einer risikobehafteten Anlage. Für die Modellierung des Value-at-Risk werden elliptische Copulas verwendet. Copulafunktionen stellen ein allgemeines Konzept zur Modellierung von Abhängigkeiten dar. Die Copula soll die eindimensionalen Randverteilungen zu einer gemeinsamen, mehrdimensionalen Verteilungsfunktion koppeln. Dabei trägt die Copula die ganze Abhängigkeitsstruktur in sich. Für stetige mehrdimensionale Verteilungen können durch die Copula die eindimensionalen Randverteilungen und die mehrdimensionale Abhängigkeitsstruktur separiert werden. Das Hauptaugenmerk wird auf der Gauß- und der t-Copula liegen. Für diese beiden Copulas wird die praktische Anwendung auf reale Finanzmarktdaten im Rahmen der Risikomessung mit dem Value-at-Risk gezeigt. Dabei werden nicht nur die Copulas, sondern auch die Randverteilungen der einzelnen Vermögenswerte eine Rolle spielen. Es wird ein parametrischer Ansatz verwendet. Dazu werden Verfahren vorgestellt, mit denen die Parameter der benutzen Copulas und Randverteilungen geschätzt werden können. Für die Schätzungen wird das Statistikprogramm R verwendet. Es werden Befehle und Programmcodes vorgestellt um die vollständige Anwendung in R darzustellen. Die zur Schätzung des Value-at-Risk benötigten Zufallsrenditen werden mit Hilfe der durch die Copula vorgegebenen Abhängigkeitsstruktur mit Berücksichtigung der Randverteilungen erzeugt.


http://www.gbv.de/dms/ilmenau/abs/672958457boldt.txt