http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Abschlussarbeiten

Studienabschlussarbeiten seit 1990

Anzahl der Treffer: 39
Erstellt: Sun, 24 May 2020 08:26:01 +0200 in 0.0487 sec


Abdul Hai, Ziad;
Differentialoperatoren zweiter Ordnung mit komplexen Koeffizienten. - 39 S.. Ilmenau : Techn. Univ., Masterarbeit, 2015

Ein Sturm-Liouville-Problem besteht ist eine gewöhnliche Differentialgleichung der Form $$-(p(x)y'(x))'+(q(x)-\lambda w(x))y(x)=0\quad \text{für } -\infty \le a<x<b\le \infty,$$ für $\lambda\in \mathbb{C}$ mit Anfangswerten $y(x_0)=y_0, \quad y'(x_0)=y_1.$. Hier sind die Funktionen $p,q:(a,b)\mapsto \mathbb{C}$ und $w:(a,b)\mapsto \mathbb{R}$ meßbar und $\frac{1}{p},q,w$ sind lokal integrierbar. Zudem gelte für fast alle $x\in (a,b)$, dass $p(x)\neq 0$ und $r(x)>0$. Die Differentialgleichung besitzt zwei linear unabhängige Lösungen. Diese Lösungen müssen aber nicht unbedingt im Hilbertraum $$L^2(a,b,w\,dx):=\bigg\{u:(a,b)\mapsto \mathbb{C}:\int_{a}^{b}w|u|^2\,dx<\infty\bigg\}$$ liegen. Sind $p$ und $q$ reellwertige Funktionen, so besagt ein berühmtes Ergebnis von H. Weyl, dass entweder alle Lösungen des Eigenwertproblems für jedes $\lambda\in\mathbb{C}$ im Hilbertraum $L^2(a,b,w\,dx)$ liegen oder nur eine Lösung (und ihre Vielfachen) in $L^2(a,b,w\,dx)$ liegen. Liegen alle Lösungen im Hilbertraum $L^2(a,b,w\,dx)$, spricht man vom Grenzkreisfall anderenfalls vom Grenzpunktfall. In dieser Masterarbeit werden einige der Ergebnisse der Arbeit "Secondary conditions for linear differential operators of the second order" von A. R. Sims (Journal of Mathematics and Mechanics, 6 (1957), 247-285) vorgestellt. A. R. Sims erweiterte die Grenzpunkt-Grenzkreis-Klassifikation von Weyl auf komplexwertige Koeffizienten im Fall $p=w\equiv 1$. In dieser Klassifikation einen Fall mehr, als in der klassischen Klassifikation von H. Weyl für reelle Koeffizienten $p$ und $q$. Außerdem werden Eigenschaften der Weylschen $M$-Funktion untersucht und ein Lösungsoperator $R_{\lambda}$ erklärt. In den Fällen, in denen alle Lösungen in $L^2[a,b)$ liegen, ist dieser Lösungsoperator ein Hilbert-Schmidt Operator. Damit besteht das Spektrum in diesen Fällen nur aus isolierten Eigenwerten mit endlicher algebraischer Vielfachheit, welche in der unteren Halbebene liegen.



Büttner, Florian;
Differentialoperatoren zweiter Ordnung mit komplexwertigen Koeffizienten. - 46 S.. Ilmenau : Techn. Univ., Masterarbeit, 2015

Diese Masterarbeit befasst sich mit Differentialausdrücken zweiter Ordnung der Form $\tau[y]=\frac{1}{w}[-(py')'+qy]$. Hier sind $p^{-1}$, $q$ und $w$ lokal summierbare Funktionen, welche auf einem halboffenen, nicht notwendigerweise beschränktem, Intervall [a,b) erklärt sind. Das dazugehörige Eigenwertproblem $\tau[y]=\lambda y$ heißt Sturm-Liouville'sches Eigenwertproblem. Diese Differentialgleichung besitzt zwei linear unabhängige Lösungen, die aber nicht unbedingt im Hilbertraum $$L^2(a,b,w\, dx):= \left{u:(a,b)\rightarrow \mathbb{C}:\int_a^bw|u|^2\, dx <\infty \right}$$ liegen. Ein berühmtes Ergebnis von H. Weyl besagt, dass entweder für jedes $\lambda$ alle Lösungen des Eigenwertproblems in $L^2(a,b,w\, dx$ liegen oder nur eine Lösung (und ihre Vielfache) in $L^2(a,b,w\, dx$ liegt. Im ersten Fall spricht man vom Grenzkreisfall, sonst vom Grenzpunktfall. Es werden die Ergebnisse der Arbeit "On the spectrum of second-order differential operators with complex coefficients" von B.M. Brown, D.K.R. McCormack, W.D. Evans und M. Plum (Proc. R. Soc. Lond. 455 (1999), 1235-1257) vorgestellt. Diese behandelt das Sturm-Liouville'sche Eigenwertproblem mit komplexwertigen $p$ und $q$. Auch in diesem Fall lassen sich die Ergebnisse von H.Weyl zumindest teilweise übertragen. Die Charakterisierung führt dann auf zwei Grenzpunktfälle und einen Grenzkreisfall. Außerdem werden Eigenschaften der Weylschen $m$-Funktion untersucht und eine Operatorrealisierung von $\tau$ angegeben. Für diesen Operator bestimmen wir Mengen, in denen das Spektrum des Operators nur aus Eigenwerten mit endlicher algebraischer Vielfachheit besteht.



Martens, Björn;
Zur Stabilisierbarkeit von linearen zeitvarianten diskreten Systemen. - 40 S.. Ilmenau : Techn. Univ., Masterarbeit, 2014

In dieser Masterarbeit wird das Problem der Stabilisierbarkeit durch lineares Feedback für lineare zeitvariante diskrete Systeme mit beschränkten Systemmatrizen untersucht. Es wird unter anderem gezeigt, dass vollständige Steuerbarkeit nach Null die Existenz eines linearen Feedbacks impliziert, so dass das geschlossene System asymptotisch stabil ist. Des Weiteren wird bewiesen, dass dem System durch geeignetes Feedback ein beliebiger Lyapunov-Exponent zugewiesen werden kann, wenn das System vollständig steuerbar nach Null ist. Die Umkehrung gilt im Allgemeinen nicht. Die Resultate wurden mit der Hilfe von zwei endlichen Kosten-Bedingungen gezeigt. Der Unterschied, ob das System asymptotisch oder gleichmäßig exponentiell stabilisierbar ist, liegt in der Frage, ob die endliche Kostenbedingung gleichmäßig in der Anfangszeit erfüllt ist oder nicht.



Gernandt, Hannes;
Untersuchung von Quantengraphen mittels direkter Summen von Randtripeln. - 73 S.. Ilmenau : Techn. Univ., Masterarbeit, 2014

In der vorliegenden Arbeit werden Quantengraphen untersucht. Quantengraphen bestehen aus einer endlichen oder abzählbar unendlichen Eckenmenge, einer endlichen oder abzählbar unendlichen Menge von Kanten, welche die Ecken miteinander verbinden, einer Kantenlängenfunktion und Differentialausdrücken auf jeder Kante zusammen mit Vernüpfungs- und Randbedingungen an den Ecken. Zur Modellierung der Operatoren auf dem Graphen verwenden wir die direkte Summe von Hilberträumen und linearen Relationen sowie das aus der Erweiterungstheorie symmetrischer linearer Relationen bekannte Konzept der Randtripel. Genauer werden Kirchhoff-Erweiterungen und Punktinteraktionen untersucht. Zur Beschreibung dieser Erweiterungen benutzen wir Regularisierungstechniken für Randtripel in Verbindung mit Zwischenerweiterungen. Von besonderem Interesse ist hier der Fall, dass die Kantenlängen beliebig klein werden dürfen. In diesem Fall übertragen sich gewisse Eigenschaften von diskreten Laplace-Operatoren auf die von uns betrachteten Erweiterungen. Hiermit wird die Selbstadjungiertheit, die Halbbeschränktheit und das Spektrum von Punktinteraktionen auf Quantengraphen beschrieben.



Dennstädt, Dario;
Ein nichtlinearer Regler mit Zeitverzögerung. - 24 S.. Ilmenau : Techn. Univ., Bachelor-Arbeit, 2014

Mingxuan Sun stellte in seinem Manuskript "Convergence of incremental adaptive systems" ein Konzept für einen nichtlinearen Regler mit Zeitverzögerung vor. Diese Bachelorarbeit greift den grundlegenden Entwurf auf und gibt einen überarbeiteten Vorschlag wieder, der vorhandene mathematische Ungenauigkeiten im basierenden Manuskript auflöst. Als Erweiterung der Ideen wird abschließend der Aufbau des Reglers mit dem Konzept der Funnel-Regelung verbunden.



Schacht, Johanna Eleonore;
Spektrum und quadratisch numerischer Wertebereich von Blockoperatormatrizen. - 36 S.. Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Eine wichtige Eigenschaft des quadratisch numerischen Wertebereichs ist die sogenannte Spektralinklusion. Das bedeutet, dass das Punktspektrum eines Operators in seinem quadratisch numerischen Wertebereich liegt und das Spektrum von im Abschluss enthalten ist. Diese Eigenschaft ist auch vom numerischen Wertebereich bekannt. Dabei bietet der quadratisch numerische Wertebereich im Allgemeinen eine genauere Abschätzung des Spektrums als der numerische Wertebereich. Generell gilt, dass der quadratisch numerische Wertebereich im numerischem Wertebereich enthalten ist. Dagegen gehen beim quadratisch numerischem Wertebereich im Vergleich zum numerischem Wertebereich Eigenschaften, wie Konvexität und Zusammenhang verloren. Stattdessen besteht der quadratisch numerische Wertebereich aus bis zu zwei Zusammenhangskomponenten. In dieser Arbeit geben wir einen eigenen Beweis für diese Eigenschaft des quadratisch numerischen Wertebereichs an. Die in dieser Arbeit vorgestellten Theoreme und Aussagen über den quadratisch numerischen Wertebereich entstammen zu einem großen Teil den Abschnitten 1.1, 1.2 und 1.3 aus dem Buch von Christiane Tretter: Spectral Theory of Block Operator Matrices and Applications. Diese Abschnitte werden mit dieser Arbeit um eigene Beweise ergänzt. Außerdem werden Corollary 1.14 und Remark 1.3.5 aus diesem Buch korrigiert wiedergegeben und mit passenden Gegenbeispielen unterlegt.



Krannich, Cornelia;
Selbstadjungierte Operatoren und Skalen von Hilberträumen. - 51 S.. Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Betrachtet man einen Hilbertraum $H$ und einen Operator $A:D(A)\to H$, so lässt sich mit Hilfe der Norm $\|x\|_{1/2}:=\|(I+A^{1/2})x\|, x\in D(A^{1/2})$ der Raum H_{1/2}:=(D(A^{1/2},\|.\|_{1/2)$ erklären. Dieses Verfahren lässt sich auf Operatoren verallgemeinern, für die nicht unbedingt eine Wurzel definiert ist. Dazu verwendet man die Tatsache, dass für dicht definierte, abgeschlossene Operatoren $A$ die Operatoren $I+AA^*$ und $I+A^*A$ selbstadjungiert sind. Die Potenzen dieser Operatoren und die zugehörigen Definitionsbereiche werden benutzt, um eine Skala von Hilberträumen einzuführen.



Schmitz, Philipp;
Zur Selbstadjungiertheit regulärer Sturm-Liouville-Differentialoperatoren. - 45 S.. Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

In vielen Bereichen der mathematischen Physik treten Sturm-Liouville-Differentialausdrücke im Zusammenhang mit Eigenwertproblemen auf. In dieser Arbeit werden daher, neben der Lösungstheorie solcher Differentialgleichungen, selbstadjungierte Realisierungen von Sturm-Liouville-Differentialausdrücken in geeigneten Hilberträumen sowie die Spektraleigenschaften dieser Realisierungen untersucht. Dabei beschränken sich die Betrachtungen im Wesentlichen auf den regulären Fall. Am Ende dieser Arbeit findet sich eine vollständige Beschreibung aller selbstadjungierten Realisierungen regulärer Sturm-Liouville-Differentialausdrücke.



Kreibich, Maria;
Construction of codimension one relative homoclinic cycles. - 57 S.. Ilmenau : Techn. Univ., Masterarbeit, 2011

Zeitlich veränderliche Prozesse aus der Physik, der Chemie oder der Biologie werden mathematisch häufig durch (gewöhnliche) Differentialgleichungen beschrieben. Von wachsendem Interesse ist dabei das Studium heterokliner und homokliner Zykel, da diese als "Quelle" für nichttriviale Dynamik erkannt wurden. Diese Arbeit befasst sich damit, Beispiele für homokline Zykel zu konstruieren. Ein Orbit der eine Gleichgewichtslage mit sich selbst verbindet, heißt homokliner Orbit. Ein homokliner Zykel besteht aus mehreren homoklinen Orbits an die selbe Gleichgewichtslage. Speziell werden relative homokline Zykel der Kodimension-1 betrachtet, also homokline Zykel, die in einparametrigen Familien von Vektorfeldern auftauchen, die eine diskrete Symmetrie aufweisen. Die konstruierten Vektorfelder sind äquivariant bezüglich der Diedergruppe D_m, der Symmetriegruppe des regulären m-Ecks in der Ebene. Die homoklinen Orbits laufen tangential zu den führenden Richtungen einer hyperbolischen Gleichgewichtslage ein, wobei die führenden Eigenwerte reell sind. Desweiteren finden sich in dieser Arbeit auch Beispiele für robuste homokline Orbits.



Vielitz, Martin;
Nonreversible homoclinic snaking in R 3. - 77 S.. Ilmenau : Techn. Univ., Diplomarbeit, 2010

Im Kontext gewöhnlicher Differentialgleichungen bezeichnet "Homoclinic Snaking" ein bestimmtes Fortsetzungsszenario homokliner Orbits in einer Umgebung eines heteroklinen Zykel zwischen einem Gleichgewicht und einem periodischen Orbit. Die betrachteten Differentialgleichungen beschreiben häufig Gleichgewichte partieller Differentialgleichungen und sind oftmals reversibel und Hamiltonisch - besitzen also eine spezielle aufgeprägte Struktur. - In der vorliegenden Diplomarbeit werden zweiparametrige Familien gewöhnlicher Differentialgleichungen im R 3 betrachtet, die weder reversibel noch Hamiltonisch sind. Es wird angenommen, dass ein heterokliner Zykel zwischen einem hyperbolischen Gleichgewicht E und einem hyperbolischen periodischen Orbit [gamma] existiert. Weiter werden Voraussetzungen über das Schnittverhalten der stabilen und instabilen Mannigfaltigkeit von E und [gamma] gemacht. Unter diesen Annahmen wird das Fortsetzungsverhalten von 1-homoklinen Orbits zu E (das sind Orbits, die einmal entlang des originalen Zykels laufen) analytisch untersucht. Für solche Orbits wird "Homoclinic Snaking" nachgewiesen. Dabei wird gezeigt, dass das "Snakingverhalten" durch die Bifurkationen der heteroklinen Verbindungen zwischen E und [gamma] bestimmt wird.