http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Dr. Friedrich Philipp

Projekt DeepTurb

Telefon +49 3677 69 3267

E-Mail senden


Ihre Position

INHALTE

Dr. Friedrich Philipp

FG Optimization Based Control

Tel.: +49 3677 69-3267

Fax: +49 3677 69-3270

E-Mail: friedrich.philipp@tu-ilmenau.de

Büro: Curiebau, Raum 334

Research

  • Mathematical Control Theory
  • Machine Learning
  • Neural Networks
  • Harmonic Analysis
  • Time-Frequency Analysis
  • Spectral Theory
  • Operator Theory
  • Indefinite Inner Product Spaces
  • Perturbation Theory
  • Frame Theory

Publications

Submitted Journal Publications

  • F. Philipp
    Relatively bounded perturbations of J-non-negative operators
  • A. Caragea, D. Lee, F. Philipp, and F. Voigtlaender
    A quantitative subspace Balian-Low theorem
  • A. Caragea, D. Lee, F. Philipp, and F. Voigtlaender
    Balian-Low type theorems for subspaces
  • H. Gernandt, N. Moalla, F. Philipp, W. Selmi, and C. Trunk
    Invariance of the essential spectra of operator pencils
  • L. Leben, F. Martínez-Pería, F. Philipp, C. Trunk, and H. Winkler
    Finite Rank Perturbations of Linear Relations and Singular Matrix Pencils

     

    Refereed Journal Publications

    1. J. Giribet, M. Langer, F. Martínez-Pería, F. Philipp, and C. Trunk
      Spectral enclosures for a class of block operator matrices
      J. Funct. Anal. 278 (2020), 108455.
    2. O. Christensen, M. Hasannasab, and F. Philipp
      Frame properties of operator orbits
      Math. Nachr. 293 (2020), 52—66
    3. A. Caragea, D. Lee, G.E. Pfander, and F. Philipp
      A Balian-Low theorem for subspaces
      to appear in J. Fourier Anal. Appl.
    4. C. Cabrelli, U. Molter, V. Paternostro, and F. Philipp
      Dynamical Sampling on finite index sets
      J. Anal. Math. 140 (2020), 637—667
    5. J. Behrndt and F. Philipp
      Finite rank perturbations in Pontryagin spaces and a Sturm-Liouville problem with λ-rational boundary conditions
      Operator Theory: Adv. Appl. 263 (2018), 163—189
    6. F. Philipp
      Bessel orbits of normal operators
      J. Math. Anal. Appl. 448 (2017), 767—785.
    7. R. Duong and F. Philipp
      The effect of perturbations of linear operators on their polar decomposition
      Proc. Amer. Math. Soc. 145 (2017), 779—790
    8. G. Kutyniok, V. Paternostro, and F. Philipp
      The effect of perturbations of operator-valued frame sequences and fusion frames on their duals
      Oper. Matrices. 11 (2017), 301—336
    9. X. Chen, G. Kutyniok, K.A. Okoudjou, F.Philipp, and R. Wang
      Measures of scalability
      IEEE Trans. Inf. Theory 61 (2015), 4410—4423.
    10. C. Trunk and F. Philipp
      Spectral points of type pi+ and type pi- of closed operators in indefinite inner product spaces
      Oper. Matrices. 9 (2015), 481—506.
    11. J. Behrndt, S. Chen, F. Philipp, and J. Qi
      Estimates on the non-real eigenvalues of regular indefinite Sturm-Liouville problems
      Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), 1113—1126.
    12. J. Behrndt, F. Philipp, and C. Trunk
      Bounds on the non-real spectrum of differential operators with indefinite weights
      Math. Ann. 357 (2013), 185—213.
    13. F. Philipp
      Indefinite Sturm-Liouville operators with periodic coefficients
      Oper. Matrices. 7 (2013), 777—811.
    14. J. Behrndt, L. Leben, and F. Philipp
      Variation of discrete spectra of non-negative operators in Krein spaces
      J. Oper. Theory 71 (2014), 157—173.
    15. G. Kutyniok, K.A. Okoudjou, and F. Philipp
      Scalable frames and convex geometry
      Contemp. Math. 626 (2014), 19—32.
    16. C. Trunk and F. Philipp
      The numerical range of non-negative operators in Krein spaces
      Linear Algebra Appl. 438 (2013), 2542—2556.
    17. G. Kutyniok, K.A. Okoudjou, F. Philipp, and E.K. Tuley
      Scalable frames
      Linear Algebra Appl. 438 (2013), 2225—2238.
    18. V. Strauss, F. Philipp, and C. Trunk
      Local spectral theory for normal operators in Krein spaces
      Math. Nachr. 286 (2013), 42—58.
    19. T.Ya. Azizov, M. Denisov, and F. Philipp,
      Spectral functions of products of selfadjoint operators
      Math. Nachr. 285 (2012), 1711—1728.
    20. F. Philipp
      Locally definite normal operators in Krein spaces
      J. Func. Anal. 262 (2012), 4929—4947.
    21. A.C.M. Ran, F. Philipp, and M. Wojtylak
      Local definitizability of T*T and TT*
      Integral Equ. Oper. Theory 71 (2011), 491—508.
    22. F.H. Szafraniec, F. Philipp, and C. Trunk
      Selfadjoint operators in S-spaces
      J. Funct. Anal. 260 (2011), 1045—1059.
    23. J. Behrndt and F. Philipp
      Spectral analysis of singular ordinary differential operators with indefinite weights
      J. Differ. Equations 248 (2010), 1899—2198.
    24. F. Philipp and C. Trunk
      G-selfadjoint operators in Almost Pontryagin spaces
      Oper. Theory: Adv. Appl. 188 (2008), 207—235.
    25. T.Ya. Azizov, J. Behrndt, F. Philipp, and C. Trunk
      On domains of powers of linear operators and finite rank perturbations
      Oper. Theory: Adv. Appl. 188 (2008), 31—37.
    26. J. Behrndt, F. Philipp, and C. Trunk
      Properties of the spectrum of type pi+ and type pi- of self-adjoint operators in Krein spaces
      Methods Funct. Anal. Topology 12 (2006), 326—340.

     

    Refereed Conference Publications

    1. A. Caragea, D. Lee, F. Philipp, and F.Voigtländer
      Time-Frequency Shift Invariance of Gabor Spaces
      Proceedings of the 2019 International Conference on Sampling Theory and Applications (SampTA), Bordeaux, France, 2019
    2. C. Cabrelli, U. Molter, V. Paternostro, and F. Philipp
      Finite sensor dynamical sampling
      Proceedings of the 2017 International Conference on Sampling Theory and Applications (SampTA), Tallinn, Estonia, 2017
    3. G. Kutyniok, V. Paternostro, and F. Philipp
      Perturbations of fusion frames and the effect on their duals
      Proc. SPIE 9597, Wavelets and Sparsity XVI, 95970S; doi:10.1117/12.2187063
    4. F. Philipp
      Phase retrieval from 4N-4 measurements: A proof of injectivity
      Proc. Appl. Math. Mech. 14 (2014), 833—834.
    5. H. Boche, M. Guillemard, G. Kutyniok, and F. Philipp
      Signal recovery from thresholded frame measurements
      Proc. SPIE 8858, Wavelets and Sparsity XV, 88580D (September 26, 2013); doi:10.1117/12.2022793.
    6. G. Kutyniok, K.A. Okoudjou, and F. Philipp
      Preconditioning of frames
      Proc. SPIE 8858, Wavelets and Sparsity XV, 88580G (September 26, 2013); doi:10.1117/12.2022667.
    7. J. Behrndt, S. Chen, F. Philipp, and J. Qi
      Bounds on the non-real eigenvalues of indefinite Sturm-Liouville problems
      Proc. Appl. Math. Mech. 13 (2013), 525—526.
    8. H. Boche, M. Guillemard, G. Kutyniok, and F. Philipp, Signal analysis with frame theory and persistent homology
      10th International Conference on Sampling Theory and Applications (SampTA ’13, Bremen, Germany, 2013), 309—331, Eurasip, 2013.
    9. G. Kutyniok, K.A. Okoudjou, and F. Philipp
      Perfect preconditioning of frames by a diagonal operator
      10th International Conference on Sampling Theory and Applications (SampTA ’13, Bremen, Germany, 2013), 85—88, Eurasip, 2013.
    10. T.Ya. Azizov, M.Denisov, and F. Philipp,
      Definitizable products of selfadjoint operators
      Proc. Appl. Math. Mech. 12 (2012), 769—770.
    11. J. Behrndt, F. Philipp, and C. Trunk
      Definitizability of a class of J-selfadjoint operators with applications
      Proc. Appl. Math. Mech. 9 (2009), 665—666.

     

    Book Chapters

    1. P.G. Casazza, G. Kutyniok, and F. Philipp
      Introduction to Finite Frame Theory
      in: Finite Frames: Theory and Applications, Birkhäuser Boston, 2012.
    2. M. Guillemard, G. Kutyniok, and F. Philipp
      Information Extracting Sensor Networks
      in: MATHEON – Mathematics for Key Technologies, EMS Publishing House, Zürich, 2014.

     

    Other Publications

    1. F. Philipp
      Phase retrieval from 4N-4 measurements
      arXiv:1403.4769v1.
    2. F. Philipp
      Eigenvalues in gaps of selfadjoint operators in Pontryagin spaces
      arXiv:1111.3011v1.
    3. F. Philipp
      Scalable frames
      Oberwolfach Report 29/2012, DOI: 10.4171/OWR/2012/29.