http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Anzahl der Treffer: 421
Erstellt: Thu, 17 Sep 2020 23:15:26 +0200 in 0.0567 sec


Behrndt, Jussi; Gsell, Bernhard; Schmitz, Philipp; Trunk, Carsten;
An estimate on the non-real spectrum of a singular indefinite Sturm-Liouville operator. - In: Proceedings in applied mathematics and mechanics : PAMM.. - Weinheim [u.a.] : Wiley-VCH, ISSN 1617-7061, Bd. 17 (2017), 1, S. 859-860

https://doi.org/10.1002/pamm.201710397
Derkach, Vladimir; Trunk, Carsten;
Coupling of definitizable operators in Kre&bovko;in spaces. - In: Nanosistemy: fizika, chimija, matematika. - Sankt-Peterburg, ISSN 2220-8054, Bd. 8 (2017), 2, S. 166-179

https://doi.org/10.17586/2220-8054-2017-8-2-166-179
Mehrez, Mohamed W.; Sprodowski, Tobias; Worthmann, Karl; Mann, George K. I.; Gosine, Raymond G.; Sagawa, Juliana K.; Pannek, Jürgen;
Occupancy grid based distributed MPC for mobile robots. - In: IROS Vancouver 2017 : IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada September 24-28, 2017 : conference digest.. - [Piscataway, NJ] : IEEE, (2017), S. 4842-4847

https://doi.org/10.1109/IROS.2017.8206360
Mehrez, Mohamed W.; Worthmann, Karl; Mann, George K.I.; Gosine, Raymond G.; Pannek, Jürgen;
Experimental speedup and stability validation for multi-step MPC. - In: IFAC-PapersOnLine. - Frankfurt : Elsevier, ISSN 2405-8963, Bd. 50 (2017), 1, S. 8698-8703

https://doi.org/10.1016/j.ifacol.2017.08.1551
Mehrez, Mohamed W.; Worthmann, Karl; Mann, George K.I.; Gosine, Raymond G.; Faulwasser, Timm;
Predictive path following of mobile robots without terminal stabilizing constraints. - In: IFAC-PapersOnLine. - Frankfurt : Elsevier, ISSN 2405-8963, Bd. 50 (2017), 1, S. 9852-9857

https://doi.org/10.1016/j.ifacol.2017.08.907
Ioan, Daniel-Mihail; Stoican, Florin; Worthmann, Karl;
Active fault detection and isolation in a zonotopic framework. - In: 2017 21st International Conference on System Theory, Control and Computing (ICSTCC) : October 19-21, 2017, Sinaia, Romania : proceedings.. - [Piscataway, NJ] : IEEE, ISBN 978-1-5386-3842-2, (2017), S. 595-600

https://doi.org/10.1109/ICSTCC.2017.8107100
Hassi, Seppo; Sandovici, Adrian; Snoo, Henk S. V.; Winkler, Henrik;
Extremal maximal sectorial extensions of sectorial relations. - In: Indagationes mathematicae. - Amsterdam : Elsevier, Bd. 28 (2017), 5, S. 1019-1055

https://doi.org/10.1016/j.indag.2017.07.003
Behrndt, Jussii; Schmitz, Philipp; Trunk, Carsten;
Spectral bounds for singular indefinite Sturm-Liouville operators with L1-potentials. - Ilmenau : Technische Universität, Institut für Mathematik, 2017. - 1 Online-Ressource (7 Seiten). . - (Preprint. - M17,12) - Im Titel ist "1" hochgestellt

The spectrum of the singular indefinite Sturm-Liouville operator A=sgn(.) (-d^2/dx^2)+q with a real potential q in L^1(R)$ covers the whole real line and, in addition, non-real eigenvalues may appear if the potential q assumes negative values. A quantitative analysis of the non-real eigenvalues is a challenging problem, and so far only partial results in this direction were obtained. In this paper the bound l lambda | <= |q|_{L^1}^2 on the absolute values of the non-real eigenvalues lambda of A is obtained. Furthermore, separate bounds on the imaginary parts and absolute values of these eigenvalues are proved in terms of the L^1-norm of q and its negative part q_-.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017200509
Behrndt, Jussii; Gsell, Bernhard; Schmitz, Philipp; Trunk, Carsten;
An estimate on the non-real spectrum of a singular indefinite Sturm-Liouville operator. - Ilmenau : Technische Universität, Institut für Mathematik, 2017. - 1 Online-Ressource (5 Seiten). . - (Preprint. - M17,10)

It will be shown with the help of the Birman-Schwinger principle that the non-real spectrum of the singular indefinite Sturm-Liouville operator $\operatorname{sgn}(\cdot)(-\mathrm d^2/\mathrm d x^2 +q)$ with a real potential $q\in L^1\cap L^2$ is contained in a circle around the origin with radius $\|q\|_{L^1}^2$.



https://www.db-thueringen.de/receive/dbt_mods_00032787
Berger, Thomas; Gernandt, Hannes; Trunk, Carsten; Wojtylak, Micha&lstrok;;
New lower bound for the distance to singularity of regular matrix pencils. - Ilmenau : Technische Universität, Institut für Mathematik, 2017. - 1 Online-Ressource (5 Seiten). . - (Preprint. - M17,10)

For regular matrix pencils $\Ac(s)=sE-A$ the distance to the nearest singular pencil in the Frobenius norm of the coefficients is called the distance to singularity. We derive a new lower bound for this distance by using the spectral theory of tridiagonal Toeplitz matrices.



https://www.db-thueringen.de/receive/dbt_mods_00032786