http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Abschlussarbeiten

Studienabschlussarbeiten seit 1990

Anzahl der Treffer: 39
Erstellt: Mon, 01 Jun 2020 18:42:24 +0200 in 0.0460 sec


Kästner, Carolin;
Trichter- und modellprädiktive Regelung. - Ilmenau. - 70 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird der Trichterregler für Systeme mit beliebigem Relativgrad nach Berger, Lê und Reis, welcher keine Kenntnis des Modells und des Anfangswertes benötigt, anhand eines linearen und eines nichtlinearen Beispiels nachvollzogen. Es wird getestet, wie gut eine Abtastung dieses Trichterreglers möglich ist und festgestellt, dass eine sehr kleine Schrittweite von Nöten ist, damit der Regler stückweise konstant agieren kann. Des Weiteren wird mit Hilfe der Trichterregelung gezeigt, dass die modellprädiktive Steuerung initial und rekursiv zulässig ist. Ferner wird eine stückweise konstante Version dieser Regelung auf das lineare und das nichtlineare Beispiel angewendet und anhand eines selbst gewählten Kostenfunktionals aufgezeigt, dass die entstehenden Kosten der Trichterregelung größer sind als die entsprechenden der modellprädiktiven Regelung. Dabei fällt zusätzlich auf, dass die modellprädiktive Regelung mit einer deutlich größeren Schrittweite als der Trichterregler stückweise konstant agieren kann. Außerdem wird der Einfluss verschiedener Optimierungsfunktionen auf das entstehende (lokal) optimale Eingangssignal und die daraus resultierenden Fehler für die modellprädiktive Regelung verglichen. Es wird ein Ausblick darauf gegeben, wie die Vorteile der modellprädiktiven Regelung genutzt werden können, ohne alle Parameter des Modells zu kennen.



Ehrlich, Daniel;
Subharmonische Bifurkationen der reversiblen Hénon-Abbildung. - Ilmenau. - 37 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

In dieser Arbeit untersuchen wir eine Familie von reversiblen Hénon-Abbildungen und ein dazu äquivalentes reversibles diskretes dynamisches System von biinfiniten Folgen. Wir zeigen, dass in diesen Systemen durch subharmonische Bifurkationen symmetrische periodische Orbits entstehen. Für die symmetrischen periodischen Orbits vom Typ (b,b) in diesen Systemen wird ein Resultat bezüglich deren Anzahl und Minimalperiode gezeigt.



Eingartner, Anna;
Mathematische Beschreibung der Ausbreitung seismischer Wellen im Mehrschichtmodell. - Ilmenau. - 25 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird die seismische Wellengleichung, angefangen bei der Herleitung bis hin zur Anwendung in der Seismik, untersucht. Zunächst werden die benötigten mathematischen Grundlagen wie Dierentialoperatoren und Tensoren betrachtet. Anschließend wird die Bewegungsgleichung, eine partielle Dierentialgleichung, für die seismischen Wellen sowie deren Lösung hergeleitet. Des Weiteren wird das Verhalten einer Welle bezüglich Reexion und Transmission an einem 3-Schichten-Modell betrachtet. Abschließend werden Berechnungen zur Laufzeit und Reichweite einer Welle sowie deren Anwendung bei der Untersuchung von Erdschichten gemacht.



Leinweber, Leon;
Optimierung mit neuronalen Netzen. - Ilmenau. - 51 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

Diese Arbeit beschäftigt sich mit der Lösung eines linearen Optimierungsproblems mit Hilfe eines neuronalen Netzes. Das Optimierungsproblem wird aufgestellt und Vereinfachungen vorgenommen, um zu einem linearen Optimierungsproblem zu gelangen. Zu diesem Optimierungsproblem dann mit Hilfe einer diskreten Methode eine optimale Lösung berechnet wird. Für den Lösungsansatz mit einem neuronalen Netz wird das mathematische Grundgerüst aufgebaut, für das gezeigt wird, dass es unter gewissen Bedingungen zur Lösung führt. Begletend dazu wird ein einfaches Beispielproblem mit zwei Variablen eingeführt und schrittweise bearbeitet. Dieser theoretischen Ausführung folgt die tatsächliche Implementierung eines Algorithmus, der die Lösung approximiert. Die optimale Lösung und das Ergebnis des Algorithmus werden gegenübergestellt und da Ergebnis untersucht anhand des Beispielproblems.



Mehner, Tom;
Adaptive identification of linear systems. - Ilmenau. - 65 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

In vielen Anwendungen, wie der Regelung von Robotern, dem autonomen Fahren oder der adaptiven Signalverarbeitung, ist es nicht möglich oder zu teuer unbekannte Parameter mit einem Sensor zu messen. Diese Masterarbeit untersucht die adaptive Schätzung dieser Parameter unter Verwendung der bekannten Ein- und Ausgänge eines Systems, in dem diese Parameter vorkommen. Dabei beschränken wir uns auf die Betrachtung linearer Modelle. Die Standardliteratur zu diesem Thema wechselt zwischen der Darstellung im Zeit- und Frequenzbereich. Das Ziel dieser Arbeit ist es eine im Zeitbereich geschlossene Darstellung der dort betrachteten Resultate und Beweise zu liefern. Die Arbeit besteht aus vier Teilen. Im ersten Teil wird eine Einführung in die Thematik gegeben und ein erstes Schätzgesetz hergeleitet. Der zweite Teil besteht aus Grundlagen. Die Beobachtbarkeit von zeitvarianten Systemen wird definiert und entsprechende Lemmata abgeleitet. Anschließend wird aus der Beobachtbarkeit eine Anforderung an Eingangssignale gefolgert, die sogenannte persistente Anregung. Eigenschaften dieser Funktionen werden untersucht und es wird überprüft ob der Ausgang eines stabilen linearen Systemes von persistenter Anregung ist, wenn der Eingang von persistenter Anregung ist. Der dritte Teil befasst sich mit Konvergenzbeweisen für Schätzgesetze. Dabei wird das Schätzgesetz aus der Einleitung wieder aufgegriffen. Unter der Annahme, dass der Eingang von persistenter Anregung ist, kann die Konvergenz der Parameter bewiesen werden. Des Weiteren wird, unter Verwendung von Ideen aus der Theorie des Funnel Control, ein neues Schätzgesetz hergeleitet. Der vierte Teil widmet sich der Simulation eines Beispieles.



Scholz, Stephan;
Modeling and simulation of pulsed laser beam welding for aluminum alloys. - Ilmenau. - 90 Seiten.
Technische Universität Ilmenau, Masterarbeit 2018

Diese Masterarbeit stellt den Vorgang des gepulsten Laserschweißens an einem Schweißpunkt mittels analytischen Beschreibungen und numerischen Simulationen vor. Hierbei werden Aluminiumlegierungen als das zu bearbeitende Material betrachtet, da diese für das Ausbilden von Heißrissen entlang der Schweißnaht bekannt sind. Heißrisse treten im Inneren und an der Oberfläche des bearbeiteten Materials auf Grund von rascher thermischer Kontraktion während des Ausschaltvorganges des Lasers auf. Im Gegensatz zu anderen Ansätzen, die beispielsweise auf die Verwendung von zusätzlichen Lasern setzen um einen geeigneten Abkühlprozess zu erhalten (siehe [11]), wird bei der hier vorgestellten Lösung nur ein Laser verwendet, der über dessen Leistung gesteuert wird. Dabei sollen Heißrisse mit flachen Rampen des Laserpulses beim Ausschaltvorgang verhindert werden. Hierfür wird ein mathematisch-physikalisches Modell für das betrachtete Problem des gepulsten Laserschweißens vorgestellt, welches eine semilineare Wärmeleitungsgleichung und eine Randsteuerung enthält. Darüber hinaus werden Methoden zur numerischen Berechnung der Wärmeentwicklung diskutiert und abschließend die Resultate der Simulationen für diverse Modi des Abschaltvorganges präsentiert.



Rußwurm, Franz;
Steuerbarkeitsbegriffe und Motion Primitives anhand ausgewählter Beispiele. - Ilmenau. - 109 Seiten.
Technische Universität Ilmenau, Masterarbeit 2018

In dieser Masterarbeit werden wir uns mit Kontrollsystemen, lokaler Steuerbarkeit und dem Konzept des Manöver-Automaten befassen. Wir werden uns zunächst kontrollaffine Systeme und die lokale Steuerbarkeit für kurze Zeit anschauen. Wir werden verschiedene Sätze kennenlernen, um festzustellen, ob diese Kontrollsysteme in kurzer Zeit lokal steuerbar sind. Während wir dies tun, werden wir auch das Modell des starren Körpers betrachten und die Sätze verwenden, um dieses Beispielsystem für verschiedene Dimensionen der Steuerung auf lokale Steuerbarkeit zu untersuchen. Außerdem werden wir Sätze über die Existenz von lokal asymptotisch stabilisierenden Feedbacks kennenlernen und diese Sätze auf das Modell des starren Körpers anwenden. Im zweiten Teil dieser Masterarbeit werden wir uns auf Bewegungsabläufe konzentrieren. Speziell werden wir uns auf getrimmte Abläufe und Manöver konzentrieren. Während wir die verschiedenen Definitionen und Sätze in diesem Abschnitt kennenlernen, werden wir diese auch auf ein Beispielsystem anwenden, den nicht-holonomen Roboter. Nachdem wir getrimmte Abläufe und Manöver für dieses System gefunden haben, werden wir die Bewegungsabläufe verwenden, um den Manöver-Automaten zu definieren. Mit diesem Manöver-Automaten werden wir einen Weg für den nicht-holonomen Roboter berechnen. Darüber hinaus lernen wir Sätze über die Steuerbarkeit des Manöver-Automaten kennen und wie man ein Optimalsteuerungsproblem damit löst. Dabei betrachten wir ein Programm zur Lösung eines solchen Optimalsteuerungsproblems für den nicht holonomen Roboter. Am Ende betrachten wir ein komplizierteres Beispielsystem, den erweiterten nicht-holonomen Roboter, und stellen Unterschiede zu den Bewegungsabläufen des nicht-holonomen Roboters fest.



Luger, Cedric;
Algebraische Untersuchung linearer zeitvarianter Differenzialgleichungssysteme. - Ilmenau. - 52 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2018

In dieser Arbeit werden Grundlagen der algebraischen Untersuchung linearer zeitvarianter Differenzialgleichungssysteme mit meromorphen Koeffizienten ausgearbeitet. Dabei wird der Ring der linearen Differenzialoperatoren mit meromorphen Koeffizienten als Schiefpolynomring eingeführt. Mithilfe größter gemeinsamer Teiler und kleinster gemeinsamer Vielfacher wird ein Quotientenschiefkörper konstruiert, der sich für die Arbeit mit Matrizen als nützlich erweist. Wir stellen die Transformation dieser in die sogenannte Jacobson-Form vor, die eine simple Normalform dieser Matrizen liefert. Wir nutzen den Raum fast überall glatter Funktionen als Linksmodul des betrachteten Rings. Für diesen wird gezeigt, dass er die Eigenschaft eines injektiven Kogenerators besitzt. Die Anwendungsmöglichkeit der gefundenen Resultate wird an Beweisen einiger Sätze der Systemtheorie demonstriert.



Krannich, Steffen;
Das [Lambda]-Lemma für Vektorfelder und Diffeomorphismen. - Ilmenau. - 59 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2018

Sei H ein Diffeomorphismus bzw. f ein Vektorfeld mit einem hyperbolischen Fixpunkt p des zugehörigen Flusses. Das [Lambda]-Lemma besagt, dass ein Transversalschnitt der zum Punkt p gehörenden stabilen Mannigfaltigkeit $W^s_{loc}(p)$ unter dem Fluss gegen die instabile Mannigfaltigkeit $W^u_{loc}(p)$ mit exponentieller Ordnung konvergiert. Das starke [Lambda]-Lemma trifft eine analoge Aussage für Transversalschnitte einer erweiterten stabilen Mannigfaltigkeit. Diese konvergieren dann im Sinne der $C^k$-Norm gegen die streng instabile Mannigfaltigkeit. In einer Arbeit von B.Deng, J. Differ. Equations 79, No. 2, 189-231 (1989) werden diese Aussagen im Vektorfeldkontext bewiesen. Dabei werden Eigenschaften der Lösung des Sil'nikov-Problems genutzt. In dieser Bachelorarbeit werden diese Beweise ausfühlich ausgearbeitet. Weiterhin wird der Beweis des [Lambda]-Lemmas in das diskrete Setting übertragen.



Fiedler, Manuel;
Translationsinvariante Maße auf Banachräumen. - Ilmenau. - 58 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2018

Diese Arbeit handelt von der Maß- und Integrationstheorie auf Banachräume, wobei insbesondere translationsinvariante Maße betrachtet werden. Hierzu werden zunächst Produktmaße auf unendlich dimensionalen Räumen erläutert. Anschließend wird gezeigt, dass auf unendlich dimensionalen Räumen keine Maße mit Eigenschaften wie beispielsweise (Quasi-)Translationsinvarianz und [sigma]-Endlichkeit existieren, mit Ausnahme einiger trivialer Beispiele. Danach wird der Nullmengenbegri diskutiert, wobei eine Adaption des Begris betrachtet wird, welche auf B. Hunt zurückgeht. Diese Mengen werden schüchterne Mengen genannt. Anschließend wird ein [sigma]-endliches, lokalendliches Maß konstruiert, welches zwar nicht invariant bezüglich aller Nullmengen, jedoch invariant bezüglich aller schüchternen Mengen ist. Zuletzt werden die erarbeiteten Begrie anhand von Beispielen veranschaulicht.