http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Anzahl der Treffer: 409
Erstellt: Mon, 16 Dec 2019 08:40:54 +0100 in 0.0203 sec


Ilchmann, Achim; Leben, Leslie; Witschel, Jonas; Worthmann, Karl;
Optimal control of differential-algebraic equations from an ordinary differential equation perspective. - In: Optimal control, applications and methods - New York, NY [u.a.] : Wiley, ISSN 1099-1514, Bd. 40 (2019), 2, S. 351-366

https://doi.org/10.1002/oca.2481
Gernandt, Hannes; Pade, Jan Philipp;
Schur reduction of trees and extremal entries of the Fiedler vector. - In: Linear algebra and its applications : LAA. - New York, NY : American Elsevier Publ., Bd. 570 (2019), S. 93-122

https://doi.org/10.1016/j.laa.2019.02.008
Gernandt, Hannes; Moalla, Nedra; Philipp, Friedrich; Selmi, Wafa; Trunk, Carsten;
Invariance of the essential spectra of operator pencils - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019 - 1 Online-Ressource (15 Seiten). . - (Preprint. - M19,03)

The essential spectrum of operator pencils with bounded coefficients in a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients of two pencils are derived which guarantee the same essential spectrum. This is done by exploiting a strong relation between an operator pencil and a specific linear subspace (linear relation).



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200141
Leben, Florian; Trunk, Carsten;
Operator based approach to PT-symmetric problems on a wedge-shaped contour - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019 - 1 Online-Ressource (23 Seiten). . - (Preprint. - M19,02)

We consider a second-order differential equation -y''(z)-(iz)^{N+2}y(z)=\lambda y(z), z\in \Gamma with an eigenvalue parameter \lambda \in C. In PT quantum mechanics z runs through a complex contour \Gamma in C, which is in general not the real line nor a real half-line. Via a parametrization we map the problem back to the real line and obtain two differential equations on [0,\infty) and on (-\infty,0]. They are coupled in zero by boundary conditions and their potentials are not real-valued. The main result is a classification of this problem along the well-known limit-point/ limit-circle scheme for complex potentials introduced by A.R. Sims 60 years ago. Moreover, we associate operators to the two half-line problems and to the full axis problem and study their spectra.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200020
Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten;
Spectral bounds for indefinite singular Sturm-Liouville operators with uniformly locally integrable potentials - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019 - 1 Online-Ressource (26 Seiten). . - (Preprint. - M19,01)

The non-real spectrum of a singular indefinite Sturm-Liouville operator A=1/r (-d/dx p d/dx+q) with a sign changing weight function r consists (under suitable additional assumptions on the real coefficients 1/p,q,r in L^1_loc(R)) of isolated eigenvalues with finite algebraic multiplicity which are symmetric with respect to the real line. In this paper bounds on the absolute values and the imaginary parts of the non-real eigenvalues of A are proved for uniformly locally integrable potentials q and potentials $q in L^s(R) for some s in [1,\infty]. The bounds depend on the negative part of q, on the norm of 1/p and in an implicit way on the sign changes and zeros of the weight function.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200016
Berger, Thomas; Gernandt, Hannes; Trunk, Carsten; Winkler, Henrik; Wojtylak, Michał;
The gap distance to the set of singular matrix pencils. - In: Linear algebra and its applications : LAA. - New York, NY : American Elsevier Publ., Bd. 564 (2019), S. 28-57

https://doi.org/10.1016/j.laa.2018.11.020
Ilchmann, Achim;
Die Baugeschichte eines Rokoko-Stadthauses - Erfurt : Ulenspiegel-Verlag, 2018 - 253 Seiten. ISBN 978-3-932655-56-2

Ilchmann, Achim; Witschel, Jonas; Worthmann, Karl;
Model predictive control for linear DAEs without terminal constraints and costs. - In: IFAC-PapersOnLine - Frankfurt : Elsevier, ISSN 2405-8963, Bd. 51 (2018), 20, S. 116-121

https://doi.org/10.1016/j.ifacol.2018.11.002
Schulze Darup, Moritz; Worthmann, Karl;
Tailored MPC for mobile robots with very short prediction horizons. - In: 2018 European Control Conference (ECC) : 12-15 June 2018. - [Piscataway, NJ] : IEEE, (2018), S. 1361-1366

https://doi.org/10.23919/ECC.2018.8550514
Ilchmann, Achim; Witschel, Jonas; Worthmann, Karl;
Model predictive control for linear differential-algebraic equations. - In: IFAC-PapersOnLine - Frankfurt : Elsevier, ISSN 2405-8963, Bd. 51 (2018), 20, S. 98-103

https://doi.org/10.1016/j.ifacol.2018.10.181