http://www.tu-ilmenau.de

Logo TU Ilmenau



Foto des Ansprechpartners
Ansprechpartner

Prof. Dr. Achim Ilchmann

Head of Group

Telefon +49 3677 69-3623

E-Mail senden


Ihre Position

INHALTE

Veröffentlichungen

Anzahl der Treffer: 402
Erstellt: Mon, 19 Aug 2019 23:05:25 +0200 in 0.0335 sec


Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten;
Bounds on the non-real spectrum of a singular indefinite Sturm-Liouville operator on R - Ilmenau : Technische Universität, Institut für Mathematik, 2016 - 1 Online-Ressource (4 Seiten). . - (Preprint. - M16,05)

A simple explicit bound on the absolute values of the non-real eigenvalues of a singular indefinite Sturm-Liouville operator on the real line with the weight function sgn(&hahog;) and an integrable, continuous potential q is obtained.



https://www.db-thueringen.de/receive/dbt_mods_00029271
Gernandt, Hannes; Trunk, Carsten;
On the parametric eigenvalue behavior of matrix pencils under rank one perturbations - Ilmenau : Technische Universität, Institut für Mathematik, 2016 - 1 Online-Ressource (8 Seiten). . - (Preprint. - M16,04)

We study the eigenvalues of rank one perturbations of regular matrix pencils depending linearly on a complex parameter. We prove properties of the corresponding eigenvalue sets including a convergence result as the parameter tends to infinity and an eigenvalue interlacing property for real valued pencils having real eigenvalues only.



https://www.db-thueringen.de/receive/dbt_mods_00029233
Ilchmann, Achim; Selig, Tilman; Trunk, Carsten;
The Byrnes-Isidori form for infinite-dimensional systems. - In: SIAM journal on control and optimization - Philadelphia, Pa : Soc, ISSN 1095-7138, Bd. 54 (2016), 3, S. 1504-1534

http://dx.doi.org/10.1137/130942413
Behrndt, Jussi; Möws, Roland; Trunk, Carsten;
Eigenvalue estimates for operators with finitely many negative squares - Ilmenau : Technische Universität, Institut für Mathematik, 2016 - 1 Online-Ressource (14 Seiten). . - (Preprint. - M16,02)

Let A and B be selfadjoint operators in a Krein space. Assume that the re- solvent difference of A and B is of rank one and that the spectrum of A consists in some interval I of isolated eigenvalues only. In the case that A is an operator with finitely many negative squares we prove sharp estimates on the number of eigenvalues of B in the interval I. The general results are applied to singular indefinite Sturm-Liouville problems.



https://www.db-thueringen.de/receive/dbt_mods_00029046
Worthmann, Karl; Braun, Philipp; Proch, Michael; Schlüchtermann, Jörg; Pannek, Jürgen;
On contractual periods in supplier development. - In: IFAC-PapersOnLine - Frankfurt : Elsevier, ISSN 2405-8963, Bd. 49 (2016), 2, S. 60-65

http://dx.doi.org/10.1016/j.ifacol.2016.03.011
Behrndt, Jussi; Leben, Leslie; Martínez Pería, Francisco; Möws, Roland; Trunk, Carsten;
Sharp eigenvalue estimates for rank one perturbations of nonnegative operators in Krein spaces. - In: Journal of mathematical analysis and applications - Amsterdam [u.a.] : Elsevier, Bd. 439 (2016), 2, S. 864-895

http://dx.doi.org/10.1016/j.jmaa.2016.03.012
Gernandt, Hannes; Trunk, Carsten;
Eigenvalue placement for regular matrix pencils with rank one perturbations - Ilmenau : Technische Universität, Institut für Mathematik, 2016 - 1 Online-Ressource (15 Seiten). . - (Preprint. - M16,01)

A regular matrix pencil sE-A and its rank one perturbations are considered. We determine the sets in \C\cup\{\infty\} which are the eigenvalues of the perturbed pencil. We show that the largest Jordan chains at each eigenvalue of sE-A may disappear and the sum of the length of all destroyed Jordan chains is the number of eigenvalues (counted with multiplicities) which can be placed arbitrarily in \C\cup\{\infty\}. We prove sharp upper and lower bounds of the change of the algebraic and geometric multiplicity of an eigenvalue under rank one perturbations. Finally we apply our results to a pole placement problem for a single-input differential algebraic equation with feedback.



http://www.db-thueringen.de/servlets/DocumentServlet?id=27311
Knobloch, Jürgen; Vielitz, Martin
Non-conservative perturbations of homoclinic snaking scenarios. - In: Journal of differential equations - Orlando, Fla. : Elsevier, ISSN 1090-2732, Bd. 260 (2016), 1, S. 517-566

http://dx.doi.org/10.1016/j.jde.2015.09.005
Berger, Thomas; Trunk, Carsten; Winkler, Henrik
Linear relations and the Kronecker canonical form. - In: Linear algebra and its applications : LAA. - New York, NY : American Elsevier Publ., Bd. 488 (2016), S. 13-44

http://dx.doi.org/10.1016/j.laa.2015.09.033
Philipp, Friedrich; Trunk, Carsten;
Spectral points of type π+ and type π- of closed operators in indefinite inner product spaces. - In: Operators and matrices : OaM. - Zagreb : Element, Bd. 9 (2015), 3, S. 481-506
Im Titel ist "+" und "-" tiefgestellt

http://dx.doi.org/10.7153/oam-09-30