http://www.tu-ilmenau.de

Logo TU Ilmenau


Ansprechpartner

Prof. Dr. Thomas Hotz

Studienberater Mathematik

Telefon +49 3677 69-3627

E-Mail senden

INHALTE

Liste der Studienabschlussarbeiten

Abschlussarbeiten

Anzahl der Treffer: 200
Erstellt: Mon, 13 Jul 2020 08:34:43 +0200 in 0.0534 sec


Eckenpartitionszahlen. - Ilmenau. - 46 Seiten.
Technische Universität Ilmenau, Masterarbeit 2020

Ein wichtiger Teil der Graphentheorie sind bis heute Färbungsprobleme. Das klassische Färbungsproblem ist ein kombinatorisches Optimierungsproblem. Im Mittelpunkt steht dabei die Untersuchung der chromatische Zahl. Erweitern wir dieses Konzept und fordern, dass jede Farbklasse streng-t-degeneriert ist, so nennen wir die minimale Anzahl benötigter Farben die Eckenpartitionszahl. Wir zeigen grundlegende Eigenschaften kritischer Graphen bezüglich der Eckenpartitionszahl und untersuchen, wann ein Graph in zwei disjunkte Teilgraphen zerlegt werden kann, wobei jede Ecke des ersten Teilgraphen mit jeder Ecke des zweiten Teilgraphen durch genau t Kanten verbunden wird. Des Weiteren untersuchen wir die minimale Anzahl Kanten eines kritischen Graphen bezüglich der Eckenpartitionszahl. Außerdem erweitern wir das Strong Perfect Graph Theorem auf die Eckenpartitionszahl mit t=2.



Vogel, Hannah;
Kreise durch vorgeschriebene Knoten eines Graphen. - Ilmenau. - 40 Seiten.
Technische Universität Ilmenau, Masterarbeit 2020

Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der Länge von Kreisen durch vorgegebene Knoten von wesentlich c-zusammenhängenden Graphen. Es werden obere Schranken der Länge von Kreisen solcher Graphen für einen sowie zwei vorgegebene Knoten erarbeitet. Dazu wird zunächst eine alternative Problemstellung betrachtet, in der untere Schranken für die Anzahl der Knoten eines Graphen bestimmt werden, der eine Mindestkreislänge durch die vorgegebenen Knoten erfüllt. Dass diese Schranken scharf sind wird durch entsprechende Konstruktion von Graphen gezeigt, welche die Schranken mit Gleichheit erfüllen. Durch Abschätzen und Umformen dieser unteren Schranken, ergeben sich dann die vorliegenden Ergebnisse. In Falle eines vorgegebenen Knotens werden zudem Graphen betrachtet, die zusätzlich planar sind.



Kästner, Carolin;
Trichter- und modellprädiktive Regelung. - Ilmenau. - 70 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird der Trichterregler für Systeme mit beliebigem Relativgrad nach Berger, Lê und Reis, welcher keine Kenntnis des Modells und des Anfangswertes benötigt, anhand eines linearen und eines nichtlinearen Beispiels nachvollzogen. Es wird getestet, wie gut eine Abtastung dieses Trichterreglers möglich ist und festgestellt, dass eine sehr kleine Schrittweite von Nöten ist, damit der Regler stückweise konstant agieren kann. Des Weiteren wird mit Hilfe der Trichterregelung gezeigt, dass die modellprädiktive Steuerung initial und rekursiv zulässig ist. Ferner wird eine stückweise konstante Version dieser Regelung auf das lineare und das nichtlineare Beispiel angewendet und anhand eines selbst gewählten Kostenfunktionals aufgezeigt, dass die entstehenden Kosten der Trichterregelung größer sind als die entsprechenden der modellprädiktiven Regelung. Dabei fällt zusätzlich auf, dass die modellprädiktive Regelung mit einer deutlich größeren Schrittweite als der Trichterregler stückweise konstant agieren kann. Außerdem wird der Einfluss verschiedener Optimierungsfunktionen auf das entstehende (lokal) optimale Eingangssignal und die daraus resultierenden Fehler für die modellprädiktive Regelung verglichen. Es wird ein Ausblick darauf gegeben, wie die Vorteile der modellprädiktiven Regelung genutzt werden können, ohne alle Parameter des Modells zu kennen.



Warnow, Leo;
Error measures for necessary optimality conditions in single- and multi-objective optimization. - Ilmenau. - 69 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

Eine zentrale Anforderung an das numerische Lösen von Optimierungsproblemen mit Hilfe von Computeralgorithmen besteht in der Verifizierung der Optimalität einer gefundenen Lösung. Ein häufig genutzter Ansatz dafür ist die numerische Überprüfung notwendiger Optimalitätskriterien. In dieser Arbeit werden verschiedene solcher Kriterien für skalarwertige und multikriterielle Optimierungsprobleme vorgestellt. Zudem werden sogenannte Fehlerfunktionen eingeführt, die als Maß der Verletzung notwendiger Optimalitätsbedingungen dienen. Deren Eigenschaften werden untersucht und an einzelnen Beispielen demonstriert.



Ehrlich, Daniel;
Subharmonische Bifurkationen der reversiblen Hénon-Abbildung. - Ilmenau. - 37 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

In dieser Arbeit untersuchen wir eine Familie von reversiblen Hénon-Abbildungen und ein dazu äquivalentes reversibles diskretes dynamisches System von biinfiniten Folgen. Wir zeigen, dass in diesen Systemen durch subharmonische Bifurkationen symmetrische periodische Orbits entstehen. Für die symmetrischen periodischen Orbits vom Typ (b,b) in diesen Systemen wird ein Resultat bezüglich deren Anzahl und Minimalperiode gezeigt.



Eingartner, Anna;
Mathematische Beschreibung der Ausbreitung seismischer Wellen im Mehrschichtmodell. - Ilmenau. - 25 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

In dieser Arbeit wird die seismische Wellengleichung, angefangen bei der Herleitung bis hin zur Anwendung in der Seismik, untersucht. Zunächst werden die benötigten mathematischen Grundlagen wie Dierentialoperatoren und Tensoren betrachtet. Anschließend wird die Bewegungsgleichung, eine partielle Dierentialgleichung, für die seismischen Wellen sowie deren Lösung hergeleitet. Des Weiteren wird das Verhalten einer Welle bezüglich Reexion und Transmission an einem 3-Schichten-Modell betrachtet. Abschließend werden Berechnungen zur Laufzeit und Reichweite einer Welle sowie deren Anwendung bei der Untersuchung von Erdschichten gemacht.



Leinweber, Leon;
Optimierung mit neuronalen Netzen. - Ilmenau. - 51 Seiten.
Technische Universität Ilmenau, Bachelorarbeit 2019

Diese Arbeit beschäftigt sich mit der Lösung eines linearen Optimierungsproblems mit Hilfe eines neuronalen Netzes. Das Optimierungsproblem wird aufgestellt und Vereinfachungen vorgenommen, um zu einem linearen Optimierungsproblem zu gelangen. Zu diesem Optimierungsproblem dann mit Hilfe einer diskreten Methode eine optimale Lösung berechnet wird. Für den Lösungsansatz mit einem neuronalen Netz wird das mathematische Grundgerüst aufgebaut, für das gezeigt wird, dass es unter gewissen Bedingungen zur Lösung führt. Begletend dazu wird ein einfaches Beispielproblem mit zwei Variablen eingeführt und schrittweise bearbeitet. Dieser theoretischen Ausführung folgt die tatsächliche Implementierung eines Algorithmus, der die Lösung approximiert. Die optimale Lösung und das Ergebnis des Algorithmus werden gegenübergestellt und da Ergebnis untersucht anhand des Beispielproblems.



Mu, Weikang;
Eine Delta-Methode für den Wasserstein-Abstand. - Ilmenau. - 44 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

Die Steinsche Methode dient der Herleitung von Grenzwertsätzen in der Wahrscheinlichkeitstheorie. Sie erlaubt es, dabei auch Konvergenzgeschwindigkeiten zu bestimmen, da sie den Abstand der Verteilung der betrachteten Zufallsvariable zur asymptotischen Verteilung abschätzt. Diese Arbeit beschäftigt sich hauptsächlich mit der Steinschen Methode ohne Reskalierung, wobei die zugehörigen Approximationsfehler quantifiziert. Dies wird anschließend für die Delta-Methode verwendet, welche eine große Rolle in der asymptotischen Statistik spielt.



Zeng, Sebastian;
Ein verallgemeinerter Kalman-Filter für den homogenen Raum der Tensorzerlegungen . - Ilmenau. - 64 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

In dieser Arbeit formulieren wir, motiviert durch das Problem der Vorhersage des Ausbreitungskanals in einem MIMO Übertragungssystem, verallgemeinerte Zustandsraummodelle und Kalman-Filter auf Mannigfaltigkeiten. Die Ausbreitungskanäle lassen sich durch komplexe 3-Weg Tensoren niedrigen Ranges beschreiben. Zur Reduktion der zu schätzenden Parameter dienen Tensorzerlegungen. Zunächst weisen wir nach, dass die Menge dieser Tensorzerlegungen einen homogenen Raum bildet. Im Anschluss formulieren wir Zustandsraummodelle, wobei der Zustandsraum durch den homogenen Raum der Tensorzerlegungen und der Beobachtungsraum, durch den Raum der komplexen 3-Weg Tensoren gegeben ist. Das Vorhersageproblem lösen wir mit Hilfe eines verallgemeinerten Kalman-Filters. Abschließend testen wir durch Simulation eines einfachen Zustandsraummodells, wie gut das gewonnene Verfahren zur Rekonstruktion dient.



Mehner, Tom;
Adaptive identification of linear systems. - Ilmenau. - 65 Seiten.
Technische Universität Ilmenau, Masterarbeit 2019

In vielen Anwendungen, wie der Regelung von Robotern, dem autonomen Fahren oder der adaptiven Signalverarbeitung, ist es nicht möglich oder zu teuer unbekannte Parameter mit einem Sensor zu messen. Diese Masterarbeit untersucht die adaptive Schätzung dieser Parameter unter Verwendung der bekannten Ein- und Ausgänge eines Systems, in dem diese Parameter vorkommen. Dabei beschränken wir uns auf die Betrachtung linearer Modelle. Die Standardliteratur zu diesem Thema wechselt zwischen der Darstellung im Zeit- und Frequenzbereich. Das Ziel dieser Arbeit ist es eine im Zeitbereich geschlossene Darstellung der dort betrachteten Resultate und Beweise zu liefern. Die Arbeit besteht aus vier Teilen. Im ersten Teil wird eine Einführung in die Thematik gegeben und ein erstes Schätzgesetz hergeleitet. Der zweite Teil besteht aus Grundlagen. Die Beobachtbarkeit von zeitvarianten Systemen wird definiert und entsprechende Lemmata abgeleitet. Anschließend wird aus der Beobachtbarkeit eine Anforderung an Eingangssignale gefolgert, die sogenannte persistente Anregung. Eigenschaften dieser Funktionen werden untersucht und es wird überprüft ob der Ausgang eines stabilen linearen Systemes von persistenter Anregung ist, wenn der Eingang von persistenter Anregung ist. Der dritte Teil befasst sich mit Konvergenzbeweisen für Schätzgesetze. Dabei wird das Schätzgesetz aus der Einleitung wieder aufgegriffen. Unter der Annahme, dass der Eingang von persistenter Anregung ist, kann die Konvergenz der Parameter bewiesen werden. Des Weiteren wird, unter Verwendung von Ideen aus der Theorie des Funnel Control, ein neues Schätzgesetz hergeleitet. Der vierte Teil widmet sich der Simulation eines Beispieles.