http://www.tu-ilmenau.de

Logo TU Ilmenau


Arbeitsgruppe
Diskrete Mathematik und Algebra


Foto des Ansprechpartners
Ansprechpartner

Univ.-Prof. Dr. rer. nat. habil. Matthias Kriesell

Fachgebietsleiter

Telefon +49 3677 69-3633

E-Mail senden


Ihre Position

INHALTE

Studienabschlussarbeiten

Anzahl der Treffer: 68
Erstellt: Sun, 10 Dec 2017 06:41:41 +0100 in 0.0319 sec


Krumbholz, Michaela
Kritische Hypergraphen kleiner Ordnung. - 34 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2013

Es wurden Regeln zum Erhalten der k-kritischen Hypergraphen mit k, k+1 oder k+2 Ecken, sowie aller 2-kritischen Hypergraphen aufgestellt. Weiterhin wurden vollständige Listen der 1-kritischen Hypergraphen, 3-kritischen Hypergraphen mit fünf Ecken und 4-kritischen Hypergraphen mit sechs Ecken erstellt.


Thomann, Jana
Eckenfärbungskonzepte für verschiedene Graphenklassen. - 39 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2013

Für einen Graph G mit der Eckenmenge V und der Kantenmenge E wird das klassische Eckenfärbungskonzept verallgemeinert. Hierbei weist man zunächst jeder Ecke v des Graphen eine Menge S(v) zu, welche lediglich eine Teilmenge von V \cup E sein muss. Des Weiteren wählt man eine Gewichtsfunktion w : V \cup E -> {1,2,..,k}, wobei k eine natürliche Zahl ist. Nun wird für jede Ecke v mittels c(v) = sum_{x \in S(v)} w(x) eine Farbe definiert. Die so entstandene Färbung soll zulässig sein, d.h. benachbarte Ecken sollen stets verschieden gefärbt sein. Unter dieser Bedingung soll die Zahl k minimiert werden. Wie obere Schranken für dieses minimale k aussehen können, wird für verschiedene Färbungskonzepte, also verschiedene Mengen S(v), angewendet auf einige Graphenklassen untersucht. Genauer werden die Färbungskonzepte S(v) = N(v) = {x \in V | xv \in E} und S(v) = N[v] = N(v) \cup {v} für Kreise, Bäume, bipartite und vollständige r-partite Graphen betrachtet. Zusätzlich werden die Färbungskonzepte S(v) = N_E(v) = {uv \in E | u \in V} , S(v) = N[v] \cup N_E(v) und S(v) = N(v) \cup N_E(v) für Bäume betrachtet.


Haase, Jens
Ein Netzwerkfärbungsalgorithmus mit Listenfärbungen. - 38 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2013

Kernpunkt dieser Arbeit ist die verteilte Färbung von Netzwerken. Als allgemeine Form von Färbungen werden Listenfärbungen verwendet, die von verteilten Algorithmen vorgenommen werden. Bei verteilten Algorithmen besteht das Problem des "symmetry breaking", welches beispielsweise durch probabilistische Algorithmen gelöst werden kann. Kommunikation geschieht nur durch Erkennen der Farben der Nachbarn. Zunächst wird mit Hilfe eines Greedy-Algorithmus mit probabilistischer Farbauswahl bei vorgegebener Mindestwahrscheinlichkeit 1-d einer zulässigen Färbung die obere Schranke O(log(n/d)) für Listenfärbungen mit Mindestlistenlänge d(u)+1 für jede Ecke u bewiesen. Im Anschluss wird ein Algorithmus vorgestellt, der ein einfaches zentralisiertes Färbungsverfahren, welches die Färbungszahl col(G) zu Hilfe nimmt, auf verteilte Färbungen überträgt. Mit diesem Algorithmus wird bei vorgegebener Mindestwahrscheinlichkeit 1-d einer zulässigen Färbung die obere Schranke O(n log(n/d)) für Listenfärbungen mit Mindestlistenlänge col(G) für jede Ecke gezeigt. Abschließend wird bewiesen, dass jeder beliebige verteilte Algorithmus mindestens Omega(n) Runden benötigt, um jeden beliebigen Graphen mit mindestens col(G) Farben zulässig zu färben.


http://www.gbv.de/dms/ilmenau/abs/750678801haase.txt
Holzlehner, Saskia
Flächenberechnung polygonalberandeter Objekte. - 62 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2013

Im Katasteramt ist es nötig, verschiedene Grundstücksgrenzen zu markieren. Vor allem spielt die Unterteilung dieser Flächen in Nutz- und Grundstücksflächen eine zentrale Rolle. In dieser Arbeit wird ein Algorithmus entwickelt, welcher die Flächen von ebenen polygonalberandeten Objekten und deren Schnitten berechnet. Um mit zweidimensionalen Objekten handhaben zu können, besteht die Möglichkeit deren Ränder durch einfach geschlossene Polygonzüge zu approximieren. Zunächst wird die Flächenberechnung affiner Funktionen auf endlichen Intervallen betrachtet. Anschließend steigert man sich mittels Vereinigungen von Trapezflächen auf die Berechnung der Flächeninhalte polygonalberandeter Objekte. Hierbei werden diese Objekte in endlich viele Trapeze mittels Schnittgeraden zerlegt. Dafür müssen die Schnittpunkte zwischen den verschiedenen einfach geschlossenen Polygonzügen ausfindig gemacht werden. Am Schluss wurde dieser Algorithmus zur Flächenberechnung in einem C++-Programm umgesetzt.


Sasse, Thomas
An improvement on the Erdös-Pósa property for long circuits. - 43 S.
Ilmenau : Techn. Univ., Masterarbeit, 2013

Zu jeder natürlichen Zahl $\ell \geq 3$ und jedem beliebigen Graphen $G$ derart, dass $G$ keine zwei eckendisjunkte Kreise der Länge mindestens $\ell$ enthält, exisitert eine Eckenmenge $X$ von höchstens $\frac{5}{3}\ell+\frac{13}{3}$ Elementen derart, dass $G - X$ keinen Kreis der Länge mindestens $\ell$ mehr enthält. Dies ist eine Verbesserung der oberen Schranke $2\ell+3$ von Birmelé, Bondy und Reed (The Erdös-Pósa property for long circuits, {Combinatorica} {27} (2007), 135-145).


http://www.gbv.de/dms/ilmenau/abs/742471993sasse.txt
Langner, Kerstin
Über Unterteilungen des $K_{3,3}$ in Graphen. - 30 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Diese Arbeit beschäftigt sich mit den Fragen: 1. Unter welchen Voraussetzungen enthält ein nichtplanarer Graph eine Unterteilung des $K_{3,3}$? 2. Unter welchen Voraussetzungen enthält ein paarer Graph sogar eine saubere Unterteilung des $K_{3,3}$?


Glock, Stefan
Gebrochene Kantenfärbungen gewichteter Graphen. - 32 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Das f-Kantenfärbungsproblem besteht darin, die Kanten eines gewichteten Graphen mit so wenig wie möglich Farben zu färben, wobei an jedem Knoten v jede Farbe höchstens f(v)-mal vorkommen darf. Zhang, Yu und Liu charakterisierten das f-Matching-Polytop durch lineare Ungleichungen und konnten damit eine Formel für den gebrochenen f-chromatischen Index herleiten. Es wird festgestellt, dass die Beweise lückenhaft sind, und durch Angabe von Gegenbeispielen belegt, dass die Aussagen falsch sind. Auf den Zusammenhang mit der Vermutung von Nakano, Nishizeki und Saito wird ebenfalls eingegangen.


Richter, Sebastian
Packungen von isomorphen induzierten unabhängigen Untergraphen. - 38 S.
Ilmenau : Techn. Univ., Masterarbeit, 2012

Zu einem gegebenen Graphen $G$ nennt man zwei eckendisjunkte induzierte Untergraphen $H$ und $H'$ von $G$ unabhängig in $G$, wenn in $G$ keine Kante zwischen $H$ und $H'$ existiert. Mit $\alpha(G,H)$ bezeichnen wir die maximale Anzahl von eckendisjunkten Kopien von $H$, die in $G$ als induzierte und paarweise unabhängige Untergraphen enthalten sind. Damit ist $\alpha(G,K_1)$ äquivalent zur Unabhängigkeitszahl von $G$. In der Arbeit werden obere Schranken für $\alpha(G,H)$ gezeigt. Dabei wird die Ungleichung $\alpha(G,K_1)\le \frac{-\lambda_0 }{r-\lambda_0 } |V(G)|$ von A.J. Hoffman für einen $r$ - regulären Graphen $G$ mit kleinstem Eigenwert $\lambda_0$ verallgemeinert. Für einen beliebigen Graphen $G$ mit größtem Eigenwert $\ambda^0$ und Minimalgrad $\delta$ hat W.H. Haemers die Ungleichung von Hoffman erweitert zu $\alpha(G,K_1)\le \frac{-\lambda_0\lambda^0}{\delta^2-\lambda_0\lambda^0} |V(G)|$. Unsere Resultate sind nicht mit dem Ergebnis von W.H. Haemers vergleichbar.


http://www.gbv.de/dms/ilmenau/abs/726550167richt.txt
Dumke, Mandy
Unabhängigkeit und Potentiale in ungerichteten Graphen. - 45 S.
Ilmenau : Techn. Univ., Bachelor-Arbeit, 2012

Abschlussarbeit zur Approximation der Unabhängigkeitszahl mit Hilfe von Potentialen, eine Verbesserung der Caro-Wei-Schranke, unterstützt durch das Programm "Graphen"


Goertz, Mathias
Freundliche Eckenzerlegung von Graphen. - 42 S.
Ilmenau : Techn. Univ., Diplomarbeit, 2012

In meiner Diplomarbeit behandelten wir Probleme folgender Art. Eine Gruppe von n Reisenden muss in zwei Teilgruppen aufgeteilt werden, wobei jeder Reisende möchte, dass sich wenigstens so viele Freunde von ihm in seiner Teilgruppe befinden wie in der anderen und er somit keinen Grund hat die Teilgruppe zu wechseln. Dieses Problem lässt sich als Zerlegungsproblem für Graphen formulieren und ist in der Literatur unter dem Namen SATISFACTORY PARTITION bekannt. Wir untersuchten die Frage, ob es zu einem gegebenen Graphen G und zwei Funktionen a, b: V(G) &flech; N eine Zerlegung (A, B) der Eckenmenge von G gibt mit d_G[A] (x)≥a(x) für alle Ecken x A und d_G[B] (x)≥b(x) für alle Ecken x B. Eine solche Zerlegung (A, B) von V(G) heißt (a, b)- Zerlegung von G. Wir haben gezeigt, dass man unter bestimmten Gradbedingungen solche (a, b)- Zerlegungen findet. Eine (a, b)- Zerlegung von G mit a(x)=b(x)= (d_G (x)) 2 für alle x V(G) wird freundliche Zerlegung genannt. Aus unseren Untersuchungen folgt, dass jeder Graph mit Taillenweite mindestens 5 und Minimalgrad mindestens 3 eine freundliche Zerlegung besitzt. Im letzten Abschnitt der Arbeit betrachteten wir Zerlegungen unter bestimmten Färbungsbedingungen. Insbesondere beschäftigten wir uns mit einer bekannten Vermutung von Erd&dblac;os und Lovász aus dem Jahr 1968, welche bis heute ungelöst ist. Seien s, t ≥ 2 natürliche Zahlen und sei G ein Graph mit (G)<(G)=s+t-1, wobei (G) die Cliquenzahl von G ist und (G) die chromatische Zahl von G ist. Dann besitzt G zwei eckendisjunkte Teilgraphen G1 und G2 mit (G_1)≥s und (G_2)≥t.


http://www.gbv.de/dms/ilmenau/abs/71564131Xgoert.txt