http://www.tu-ilmenau.de

Logo TU Ilmenau



Photo of the Contact Person
Contact Person

Prof. Dr. Michael Stiebitz

Head of Institute

Phone +49 3677 69-3633

Send email


INHALTE

Publications

Publications at the institute since 1990

Anzahl der Treffer: 1182
Erstellt: Tue, 07 Apr 2020 23:13:01 +0200 in 0.0404 sec


Behrndt, Jussi; Leben, Leslie; Philipp, Friedrich
Variation of discrete spectra of non-negative operators in Krein spaces. - In: Journal of operator theory. - Bucharest, ISSN 1841-7744, Bd. 71 (2014), 1, S. 157-173

http://dx.doi.org/10.7900/jot.2011nov30.1964
Azizov, Tomas Ya.; Trunk, Carsten
On limit point and limit circle classification for PT symmetric operators. - Ilmenau : Techn. Univ., Inst. für Mathematik, 2014. - Online-Ressource (PDF-Datei: 5 S., 103,3 KB). . - (Preprint. - M14,03)

A prominent class of PT-symmetric Hamiltonians is $H:= 1/2 p^2 + x^2 (ix)^N, for x \in \Gamma$ for some nonnegative number N. The associated eigenvalue problem is defined on a contour $\Gamma$ in a specific area in the complex plane (Stokes wedges), see [3,5]. In this short note we consider the case N=2 only. Here we elaborate the relationship between Stokes lines and Stokes wedges and well-known limit point/limit circle criteria from [11, 6, 10].



http://www.db-thueringen.de/servlets/DocumentServlet?id=24009
Behrndt, Jussi; Leben, Leslie; Martínez Pería, Francisco; Trunk, Carsten
The effect of finite rank perturbations on Jordan chains of linear operators. - Ilmenau : Techn. Univ., Inst. für Mathematik, 2014. - Online-Ressource (PDF-Datei: 12 S., 280,7 KB). . - (Preprint. - M14,02)

A general result on the structure and dimension of the root subspaces of a matrix or a linear operator under finite rank perturbations is proved: The increase of dimension from the n-th power of the kernel of the perturbed operator to the (n+1)-th power differs from the increase of dimension of the corresponding powers of the kernels of the unperturbed operator by at most the rank of the perturbation and this bound is sharp.



http://www.db-thueringen.de/servlets/DocumentServlet?id=23864
Behrndt, Jussi; Möws, Roland; Trunk, Carsten
On finite rank perturbations of selfadjoint operators in Krein spaces and eigenvalues in spectral gaps. - In: Complex analysis and operator theory. - Cham (ZG) : Springer International Publishing AG, ISSN 1661-8262, Bd. 8 (2014), 4, S. 925-936

http://dx.doi.org/10.1007/s11785-013-0318-2
Czap, Július; Harant, Jochen; Hudák, Dávid
An upper bound on the sum of powers of the degrees of simple 1-planar graphs. - In: Discrete applied mathematics. - [S.l.] : Elsevier, Bd. 165 (2014), S. 146-151

http://dx.doi.org/10.1016/j.dam.2012.11.001
Snoo, Henk; deWinkler, Henrik; Wojtylak, Michal
Global and local behavior of zeros of nonpositive type. - In: Journal of mathematical analysis and applications. - Amsterdam [u.a.] : Elsevier, ISSN 1096-0813, Bd. 414 (2014), 1, S. 273-284

http://dx.doi.org/10.1016/j.jmaa.2014.01.004
Brechtken, Stefan;
GPU and CPU acceleration of a class of kinetic lattice group models. - In: Computers and mathematics with applications : an international journal.. - Amsterdam [u.a.] : Elsevier Science, ISSN 1873-7668, Bd. 67 (2014), 2, S. 452-461

http://dx.doi.org/10.1016/j.camwa.2013.07.002
Babovsky, Hans;
Discrete kinetic models in the fluid dynamic limit. - In: Computers and mathematics with applications : an international journal.. - Amsterdam [u.a.] : Elsevier Science, ISSN 1873-7668, Bd. 67 (2014), 2, S. 256-271

http://dx.doi.org/10.1016/j.camwa.2013.07.005
Ando, Kiyoshi; Egawa, Yoshimi; Kriesell, Matthias
The average degree of minimally contraction-critically 5-connected graphs. - In: Journal of graph theory. - New York, NY [u.a.] : Wiley, ISSN 1097-0118, Bd. 75 (2014), 4, S. 331-354

http://dx.doi.org/10.1002/jgt.21741
Pannek, Jürgen; Worthmann, Karl
Stability and performance guarantees for model predictive control algorithms without terminal constraints. - In: ZAMM : journal of applied mathematics and mechanics.. - Berlin : Wiley-VCH, ISSN 1521-4001, Bd. 94 (2014), 4, S. 317-330

http://dx.doi.org/10.1002/zamm.201100133