Logo TU Ilmenau

Photo of the Contact Person
Contact Person

Prof. Dr. Michael Stiebitz

Head of Institute

Phone +49 3677 69-3633

Send email



Publications at the institute since 1990

Anzahl der Treffer: 1183
Erstellt: Mon, 25 May 2020 08:26:46 +0200 in 0.0394 sec

Giribet, Juan; Langer, Matthias; Leben, Leslie; Maestripieri, Alejandra; Martínez Pería, Francisco; Trunk, Carsten;
Spectrum of J-frame operators. - In: Opuscula mathematica : semiannual.. - Kraków : AGH Univ. of Science and Technology Press, Bd. 38 (2018), 5, S. 623-649
Peterin, Iztok; Schreyer, Jens; Fecková Škrabuláková, Erika; Taranenko, Andrej;
A note on the Thue chromatic number of lexicographic products of graphs. - In: Discussiones mathematicae. Graph theory / Uniwersytet Zielonogórski / Wydział Matematyki, Informatyki i Ekonometrii. - Warsaw : De Gruyter Open, 1995- ; ZDB-ID: 2568813-3, ISSN 2083-5892, Bd. 38 (2018), 3, S. 635-643
Leben, Leslie; Martínez Pería, Francisco; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik;
Finite rank perturbations of linear relations and singular matrix pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018. - 1 Online-Ressource (25 Seiten). . - (Preprint. - M18,08)

We elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare the number of Jordan chains of length at least n corresponding to some eigenvalue to each other. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by n+1 and that this bound is sharp. The reason for this behaviour is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.
Gernandt, Hannes; Trunk, Carsten;
Locally finite extensions and Gesztesy-Šeba realizations for the Dirac operator on a metric graph. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018. - 1 Online-Ressource (27 Seiten). . - (Preprint. - M18,07)

We study extensions of direct sums of symmetric operators S=\oplus S_n where n run through the natural numbers. In general there is no natural boundary triplet associated even if there is one for every S_n^*. We consider a subclass of extensions of S which can be described in terms of the boundary triplets of S_n^* and investigate the self-adjointness, the semi-boundedness from below and the discreteness of the spectrum. Sufficient conditions for these properties are obtained from recent results on weighted discrete Laplacians. The results are applied to Dirac operators on metric graphs with point interactions at the vertices. In particular, we allow graphs with arbitrarily small edge length.
Sprodowski, Tobias; Mehrez, Mohamed W.; Worthmann, Karl; Mann, George K. I.; Gosine, Raymond G.; Sagawa, Juliana K.; Pannek, Jürgen;
Differential communication with distributed MPC based on occupancy grid. - In: Information sciences : an international journal.. - New York, NY : Elsevier Science Inc., ISSN 0020-0255, Bd. 453 (2018), S. 426-441
Flaßkamp, Kathrin; Worthmann, Karl; Greiner-Petter, Christoph; Büskens, Christof; Sattel, Thomas;
An optimal control problem for stereotactic neurosurgery. - In: MATHMOD 2018 extended abstract volume : extended abstracts of 9th Vienna Conference on Mathematical Modelling, Vienna, Austria, February 21-23, 2018.. - Vienna : ARGESIM Publisher, ISBN 978-3-901608-91-9, (2018), S. 67-68
Ilchmann, Achim;
Das bürgerliche Stadthaus im Rokoko. - Tübingen : Wasmuth, 2018. - 255 Seiten. ISBN 3-8030-0833-6

Schmid, Andreas; Schmidt, Jens M.;
Computing 2-walks in polynomial time. - In: ACM transactions on algorithms : TALG.. - New York, NY, ISSN 1549-6333, Bd. 14 (2018), 2, Article No. 22, insges. 18 S.
- An extended abstract of this article was published in STACS 2015
Berger, Thomas; Gernandt, Hannes; Trunk, Carsten; Winkler, Henrik; Wojtylak, Michał;
The gap distance to the set of singular matrix pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018. - 1 Online-Ressource (22 Seiten). . - (Preprint. - M18,05)

We study matrix pencils sE-A using the associated linear subspace ker[A,-E]. The distance between subspaces is measured in terms of the gap metric. In particular, we investigate the gap distance of a regular matrix pencil to the set of singular pencils and provide upper and lower bounds for it. A relation to the distance to singularity in the Frobenius norm is provided.
Thomann, Jana; Eichfelder, Gabriele;
A trust region algorithm for heterogeneous multiobjective optimization. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2018. - 1 Online-Ressource (30 Seiten). . - (Preprint. - M18,04)