Journal articles and book contributions

Anzahl der Treffer: 1438
Erstellt: Fri, 19 Apr 2024 23:04:10 +0200 in 0.0691 sec


Wang, Honglei; Bo, Yifan; Klingenhof, Malte Philipp Helmuth; Peng, Jiali; Wang, Dong; Wu, Bing; Pezoldt, Jörg; Cheng, Pengfei; Knauer, Andrea; Hua, Weibo; Wang, Hongguang; Aken, Peter Antonie van; Sofer, Zdeněk; Strasser, Peter; Guldi, Dirk; Schaaf, Peter
A universal design strategy based on NiPS3 nanosheets towards efficient photothermal conversion and solar desalination. - In: Advanced functional materials, ISSN 1616-3028, Bd. 34 (2024), 8, 2310942, S. 1-11

2D nanomaterials are proposed as promising photothermal materials for interfacial photothermal water evaporation. However, low evaporation efficiency, the use of hazardous hydrofluoric solution, and poor stability severely limit their practical applications. Here, a mixed solvent exfoliation surface deposition (MSESD) strategy for the preparation of NiPS3 nanosheets and NiPS3/polyvinyl alcohol (PVA) converter is successfully developed. The converter is obtained by drop-casting the NiPS3/PVA nanosheets onto a sponge. The PVA is mainly deposited on the edge of NiPS3 nanosheets, which not only improves the stability of NiPS3 nanosheets, but also adheres to the sponge to prepare a 3D photothermal converter, which shows an evaporation rate of 1.48 kg m−2 h−1 and the average photothermal conversion efficiency (PTCE) of 93.5% under a light intensity of 1 kW m−2. The photothermal conversion mechanism reveals that the energy of absorbed photons in NiPS3 nanosheets can be effectively converted into heat through non-radiative photon transitions as well as multiple optical interactions. To the best of the knowledge, this is the first report on the application of 2D metal-phosphorus-chalcogen (MPChx) for solar desalination, which provides new insights and guidance for the development of high-performance 2D photothermal materials.



https://doi.org/10.1002/adfm.202310942
Reuter, Christoph; Ecke, Gernot; Strehle, Steffen
Exploring the surface oxidation and environmental instability of 2H-/1T’-MoTe2 using field emission based scanning probe lithography. - In: Advanced materials, ISSN 1521-4095, Bd. 36 (2024), 4, 2310887, S. 1-14

An unconventional approach for the resistless nanopatterning 2H- and 1T’-MoTe2 by means of scanning probe lithography is presented. A Fowler-Nordheim tunneling current of low energetic electrons (E = 30-60 eV) emitted from the tip of an atomic force microscopy (AFM) cantilever is utilized to induce a nanoscale oxidation on a MoTe2 nanosheet surface under ambient conditions. Due to the water solubility of the generated oxide, a direct pattern transfer into the MoTe2 surface can be achieved by a simple immersion of the sample in deionized water. The tip-grown oxide was characterized using Auger electron and Raman spectroscopy, revealing it consists of amorphous MoO3/MoOx as well as TeO2/TeOx. With the presented technology in combination with subsequent AFM imaging it was possible to demonstrate a strong anisotropic sensitivity of 1T’-/(Td)-MoTe2 to aqueous environments. We finally used the discussed approach to structure a nanoribbon field effect transistor out of a few-layer 2H-MoTe2 nanosheet. This article is protected by copyright. All rights reserved



https://doi.org/10.1002/adma.202310887
Luo, Wenjun; Xuan, Xinmiao; Shen, Jinfeng; Cheng, Pengfei; Wang, Dong; Schaaf, Peter; Zhang, Zhang; Liu, Junming
High performance photothermal carbon nanotubes/nanostructured hydrogel for solar electricity production and solar water sterilization. - In: Applied surface science, Bd. 643 (2024), 158680

Solar energy is a promising renewable energy source with the potential to contribute to sustainable development. Efficient photothermal conversion is critical for solar energy acquisition and conversion. Here, carbon nanotubes (CNTs) were gelatinized to obtain the nanostructured CNT/hydrogel, and then highly light-absorbing CNT/n-hydrogels with surface texture were obtained by replicating the micrometer structure from the black silicon (b-Si) surface onto CNT/hydrogels by using a PDMS mold. Through the synergistic effect of both surface texture and nanostructures, it demonstrates high efficiency of solar electricity production and solar sterilization. A small thermoelectric (TE) module with an area of 4 × 4 cm2 is integrated with CNT/n-hydrogel absorber for the investigation of photo-thermoelectric conversion. The output power of the CNT/n-hydrogel TE device is 1.42 W•m−2 under 1 sun. And by connecting four devices in series, it has successfully demonstrated for charging mobile phones under two different solar illuminations. This work provides a cost-effective and easy fabrication method for opening up the hydrogel as a photothermal absorber, which is low-cost, reproducible, high-efficiency solar water sterilization and high photothermal conversion efficiency.



https://doi.org/10.1016/j.apsusc.2023.158680
Supreeti, Shraddha; Fischer, Michael; Fritz, Mathias; Müller, Jens
High-resolution patterning on LTCC by transfer of photolithography-based metallic microstructures. - In: International journal of applied ceramic technology, ISSN 1744-7402, Bd. 21 (2024), 2, S. 1180-1190

The growing applications and constant miniaturization of electronic devices and of low-temperature co-fired ceramics (LTCC) in various fields, such as aviation, telecommunications, automotive, satellite communications, and military, have led to an increase in the demand for LTCC. Such prospects arise due to the continuous scaling down of components and high-density interconnection in electronics packaging. This paper reports a technique for the transfer of high-resolution microstructures from silicon substrates to LTCC. In this method, gold and copper patterns were formed by photolithography, electrodeposition, and residual layer stripping on silicon substrate. Lithography provides the opportunity to create and transfer complex patterns for use in several different applications and electroplating enables the use of pure metal for excellent electrical properties. The developed structures were transferred onto a top layer of LTCC tape using hot embossing. Then, the subsequent layers were stacked, laminated, and sintered. A resolution of 1.5 μm after free sintering and 4.5 μm after pressure-assisted sintering was achieved. This distinctive method can be useful for several applications requiring high-resolution and superior electrical properties.



https://doi.org/10.1111/ijac.14569
Hiller, Benedikt T.; Azzi, Julia L.; Rennert, Mirko
Improvement of the thermo-oxidative stability of biobased poly(butylene succinate) (PBS) using biogenic wine by-products as sustainable functional fillers. - In: Polymers, ISSN 2073-4360, Bd. 15 (2023), 11, 2533, S. 1-23

Biobased poly(butylene succinate) (PBS) represents one promising sustainable alternative to petroleum-based polymers. Its sensitivity to thermo-oxidative degradation is one reason for its limited application. In this research, two different varieties of wine grape pomaces (WPs) were investigated as fully biobased stabilizers. WPs were prepared via simultaneous drying and grinding to be used as bio-additives or functional fillers at higher filling rates. The by-products were characterized in terms of composition and relative moisture, in addition to particle size distribution analysis, TGA, and assays to determine the total phenolic content and the antioxidant activity. Biobased PBS was processed with a twin-screw compounder with WP contents up to 20 wt.-%. The thermal and mechanical properties of the compounds were investigated with DSC, TGA, and tensile tests using injection-molded specimens. The thermo-oxidative stability was determined using dynamic OIT and oxidative TGA measurements. While the characteristic thermal properties of the materials remained almost unchanged, the mechanical properties were altered within expected ranges. The analysis of the thermo-oxidative stability revealed WP as an efficient stabilizer for biobased PBS. This research shows that WP, as a low-cost and biobased stabilizer, improves the thermo-oxidative stability of biobased PBS while maintaining its key properties for processing and technical applications.



https://doi.org/10.3390/polym15112533
Diemar, Andreas; Gerth, Uwe; Lahmer, Tom; Teichert, Gerd; Könke, Carsten
Numerische Ermittlung von Zielgrößen und Prozessparametern des Einsatzhärtens unter Berücksichtigung des lokalen Beanspruchungszustandes versagensrelevanter Konstruktionsdetails :
Numerical determination of target values and process parameters of case hardening, taking into account the local stress state of failure-relevant construction details. - In: HTM - journal of heat treatment and materials, ISSN 2194-1831, Bd. 78 (2023), 6, S. 352-368

Through the thermochemical process of case hardening, the local material strength of steel components can be increased. In addition to the increase in stress due to the notch effect, the shape of construction details also has an effect on key component properties after case hardening, such as edge hardness and case hardening depth. The component-related specification of target values for case hardening is currently based on empirical values or expert knowledge. In addition, the effect of design details during case hardening is not taken into account when specifying process parameters in the control and regulation software of case hardening systems. This article presents a concept for the numerical determination of target values and process parameters for case hardening based on the stress state of the component. Compared to the empirically based determination of target values and process parameters for case hardening, the application of the concept makes it possible to adapt the case hardening of components to their stress in the failure range and thus significantly increase the energy and resource efficiency of case hardening.



https://doi.org/10.1515/htm-2023-0023
Bohm, Sebastian; Grunert, Malte; Schwarz, Felix; Runge, Erich; Wang, Dong; Schaaf, Peter; Chimeh, Abbas; Lienau, Christoph
Gold nanosponges: fascinating optical properties of a unique disorder-dominated system. - In: Journal of the Optical Society of America, ISSN 1520-8540, Bd. 40 (2023), 6, S. 1491-1509

Nanoporous gold is a three-dimensional bulk material that is percolated with a random network of nanometer-sized ligaments and made by selective corrosion of bimetallic alloys. It has intriguing geometric, catalytic, and optical properties that have fascinated scientists for many decades. When such a material is made into the form of small, 100-nm-sized particles, so-called nanosponges emerge that offer much flexibility in controlling their geometric, electronic, and optical properties. Importantly, these particles act as an antenna for light that can efficiently localize optical fields on a deep subwavelength scale in certain hotspots at the particle surface. This makes such nanosponges an interesting platform for plasmonic sensing, photocatalysis, and surface-enhanced Raman spectroscopy. Since the optical properties of these nanosponges can be controlled to a large degree by tuning their geometry and/or composition, they have attracted increasing attention in recent years. Here, we provide a concise overview of the current state of the art in this field, covering their fabrication, computational modeling, and specifically the linear and nonlinear optical properties of individual and hybrid nanosponges, for example, plasmon localization in randomly disordered hotspots with a size <10 nm and a long lifetime with an exceptionally high Purcell factor. The resulting nonlinear optical and photoemission properties are discussed for individual and hybrid nanosponges. The results presented have strong implications for further applications of such nanosponges in photonics and photocatalysis.



https://doi.org/10.1364/JOSAB.479739
Kurniawan, Mario; Bund, Andreas
Photoelectrochemical water splitting with cuprous oxide. - In: Galvanotechnik, ISSN 0016-4232, Bd. 114 (2023), 11, S. 1396-1398

Enhancing the performance through the implementation of porous structures - an innovative and cost-effective fabrication technique that relies solely on electrodeposition.



Sun, Hongye; Zettl, Julian; Willenbacher, Norbert
Highly conductive and stretchable filament for flexible electronics. - In: Additive manufacturing, ISSN 2214-8604, Bd. 78 (2023), 103872, S. 1-10

Conductive and stretchable filaments are crucial for advancing additive manufacturing, particularly in flexible electronics. However, existing conductive filaments suffer from limitations in conductivity and stretchability. To overcome these challenges, this study presents a highly conductive and stretchable filament for material extrusion type 3D printing. The developed filament achieves an initial electrical conductivity of 558 S/cm and maintains low resistance up to 60 % strain with 10 vol% silver loading. This significantly surpasses the performance of commercial filaments and previous literature reports. The addition of polyethylene glycol (PEG) as a plasticizer for the silver filled thermoplastic polyurethane (Ag-TPU) composite enhances extrusion and improves filament surface quality. The printability of the filament in material extrusion 3D printing was evaluated, and the electrical conductivity of the printed objects was assessed. Two demonstrator structures, an electrical interconnection and a capacitive strain sensor, were successfully prototyped, showcasing the potential applications of this filament in stretchable electronics. The developed filament paves the way for creating intricate and stretchable electronic devices using material extrusion printing techniques. These advancements contribute to the field of additive manufacturing and enable the fabrication of flexible electronic components with enhanced conductivity and stretchability.



https://doi.org/10.1016/j.addma.2023.103872
Engemann, Thomas; Ispas, Adriana; Bund, Andreas
Electrochemical reduction of tantalum and titanium halides in 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquids. - In: Journal of solid state electrochemistry, ISSN 1433-0768, Bd. 0 (2023), 0, insges. 14 S.

The electrodeposition of tantalum-titanium–based films using different tantalum and titanium halides was investigated in two ionic liquids, namely, 1-butyl-1-methylpyrrolidinium bis (trifluoromethyl-sulfonyl)imide ([BMP][TFSI]) and 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ([BMP][OTf]). Cyclic voltammetry was used to analyse the electrochemistry of the electrolytes and potentiostatic deposition was performed to evaluate the feasibility of electrodepositing tantalum-titanium–based layers. Both the metal salts and the ionic liquid influenced the electrochemical reduction of the tantalum and titanium halides significantly. While titanium halides considerably retarded the reduction of tantalum pentahalides and inhibited electrodeposition in many electrolytes, an electrolyte composition from which tantalum and titanium-containing layers could be deposited was identified. Specifically, in TaBr5 and TiBr4 in [BMP][TFSI], TiBr4 did not inhibit the deposition of tantalum and titanium was co-deposited itself by a three-step reduction mechanism as confirmed by cyclic voltammetry and energy-dispersive X-ray spectroscopy. Furthermore, [BMP][TFSI] led to smoother and more compact deposits.



https://doi.org/10.1007/s10008-023-05773-7