Dissertations at the Department

Results: 213
Created on: Wed, 24 Apr 2024 23:08:46 +0200 in 0.0735 sec


Müller, Martin;
Single-atom junctions and novel electron confinement mechanism on Pb(111). - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (viii, 86 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Punktkontakte wurden zwischen der bleibedeckten Spitze eines Rastertunnelmikroskops und der flachen Pb(111) Oberfläche oder einzelnen Pb-Adatomen hergestellt. Der Leitwert wurde während des Aufbaus und des sich anschließenden Abbruchs des Kontakts aufgenommen. Kontakte auf der flachen Oberfläche zeigen eine starke Leitwerthysterese, die bei Kontakten mit einem einzelnen Pb-Adatom geringer ausgeprägt ist. Die Auswertung der experimentell aufgenommen Kontaktleitwerte und Hysteresebreiten wird von Dichtefunktionalberechnungen unterstützt. Für eine vollständige Reproduktion war es notwendig, Spitzenapizes in Betracht zu ziehen, die von mehr als einem Atom terminiert werden. Dies ist ein wichtiges Ergebnis, wenn man den großen Einfluss der Spitze auf Ergebnisse der Rastertunnelmikroskopie- und Spektroskopie bedenkt. Der zweite Teil dieser Arbeit wird sich mit einer neuartigen Form des Quanteneinschlusses von Elektronen beschäftigen, der über vergrabenen Nanokavitäten unter einer Pb(111)-Oberfläche beobachtet werden kann. Die Kavitäten werden durch den Beschuss der Oberfläche mit hochenergetischen Argon-Ionen sowie einem sich anschließenden Heizzyklus erzeugt. Ein vertikaler Einschluss von Elektronen zwischen der Kavität und der Oberfläche des Kristalls führt zu Quantentrogsubbändern, die mit Hilfe der Rastertunnelspektroskopie untersucht wurden. Das Volumen oberhalb der Vakanz kann näherungsweise als dünner Film mit begrenzter lateraler Ausdehnung angesehen werden. Überraschenderweise sind die Elektronen zusätzlich lateral eingeschlossen von der Grenzfläche, an der der dünne Film in das ungestörte Kristallvolumen übergeht. Diese laterale Beschränkung führt zu einer Feinstruktur, die in Spektren des differentiellen Leitwerts beobachtet werden kann. Die experimentellen Befunde werden durch auf dem freien Elektronengas beruhenden Berechnungen unterstützt, die die Ergebnisse zu einem hohen Grad reproduzieren. Die laterale Beschränkung drückt sich weiterhin durch ein charakteristisches stehende Welle Muster aus, das genutzt wurde, um die Dispersionsrelation der Quantentrogzustände dünner Bleifilme in einem Bereich von bis zu 2 eV zu ermitteln. Eine Analyse der Linienbreite der spektroskopischen Charakteristika wird den Einfluss der Grenzfläche des dünnen Films auf die elastische Abklingrate zeigen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000352
Mahmoud, Muhanad;
Entwurf und Programmierung von numerischen Verfahren und Algorithmen zur Lösung der Boltzmann-Gleichung. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (154 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Die Boltzmann-Gleichung ist eine mesoskopische Gleichung, welche Gas-Strömungen im Übergang zur Teilchendynamik beschreibt. Die Methoden zur Lösung der Boltzmann Gleichung sind ein wichtiges Forschungsthema. In dieser Arbeit interessieren wir uns für die sogenannten deterministischen Schemata, die mit diskreten Geschwindigkeitsmodellen (DVMs) verbunden ist. Zuerst wurden die Grundlagen für DVM zusammengetragen. Dann haben wir für Gase mit kleiner Knudsen-Zahl, in den allgemeinen Fällen, die Konvergenz zu der Maxwell-Verteilung bewiesen. Danach haben wir grundsätzlich eine Detailansicht über die Linearisierung des Stoßoperators und die Eigenschaften der linearisierten Matrix ermittelt. Weiterhin haben wir eine Diskretisierung des Geschwindigkeitsraums (Für 2- und 3-Dimensionen) definiert und einige DVMs untersucht. Außerdem wurden hier die Begriffe "vollständiges Modell" und "vollständige Stoßmenge" definiert und Methoden, um die minimale vollständige Stoßmodelle zu erstellen, entwickelt. Der logisch nachfolgende Schritt ist verschiedene vollständige Stoßmodelle zu entwickeln, sowie untereinander und mit einigen unvollständigen Modellen zu vergleichen, als auch einen genaueren Blick auf die rechnerische Komplexität zu werfen. Danach wurde die Lösung der Boltzmann-Gleichung in den komplexen Randbedingungen untersucht. Die Algorithmen wurden dargestellt, um beliebige Anfangswerte und Randbedingungen verwenden. Man kann durch diese Algorithmen jedes Gasmodell (Ortsraum-Geometrie) in einem Bild darstellen/speichern und in unserem Programm verwenden. Schließlich haben wir numerische Experimente für die Boltzmann-Gleichung durchgeführt. Die Ergebnisse wurden mit denen der physikalischen Experimente und/oder mit den Ergebnissen der anderen numerischen Methoden verglichen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000273
Zhao, Weihong;
Vierpunktmessungen an freistehenden Nanodrähten mit einem Multispitzen-Rastertunnelmikroskop. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (103 Blätter)
Technische Universität Ilmenau, Dissertation 2017

In dieser Arbeit wird die Schaffung der präparativen Voraussetzungen für das Nanodrahtwachstum, die Inbetriebnahme des komplexen MTSTMs für Nanodraht-Charakterisierung und erste Experimente mit anschließenden Analysen an ersten Proben vorgestellt. Zunächst wurden entsprechende Prozessparameter für Präparation von Si(111)- und GaP(111)-Substraten mittels metallorganischer Gasphasenabscheidung (MOCVD) - Verfahren etabliert. Si(111)-Substrate wurden durch Annealingsprozess komplett von Oxidschicht sowie allen anderen Verunreinigungen befreit und mit Wasserstoff terminiert. Mittels AFM-Untersuchung wurde eine Verringerung der Rauheit durch nasschemische Vorbehandlung nachgewiesen. GaP(111)-Substrate wurden ebenfalls mittels MOCVD präpariert, um Oxide und Verunreinigungen zu entfernen. Mittels LEED-Untersuchung ließ sich die Oberflächenpolarität von GaP(111) in A-Typ mit (2x2)-Oberflächenrekonstruktion und B-Typ mit (1x1) unterscheiden. Mit sehr hohem V/III Verhältnis, niedriger Wachstumsrate und niedrigerer Temperatur konnte die Oberflächenrauheit von GaP(111)B, der für Wachstum vertikaler Nanodrähte notwendig ist, bei homoepitaktischem Wachstum stark gesenkt werden. Ein speziell angefertigtes Multispitzen-Rastertunnelmikroskop (MTSTM) mit einem Rasterelektronenmikroskop wurde für diese Arbeit in Betrieb genommen. Mit MTSTM ist es möglich, bis zur vier STM-Spitzen in-situ kontrolliert und kollisionsfrei an Nanostrukturen anzunähern und eine Anordnung für eine Vierpunktmessung zur Bestimmung des Widerstands zu realisieren. Die freistehenden Nanodrähte wurden im Ultrahochvakuum zerstörungsfrei mit hoher Auflösung und geringem Aufwand untersucht, verglichen mit herkömmlicher lithografischer Methode. Erste Experimente an Proben mit freistehenden p-dotierten GaAs-Nanodrähten, die im vapor-liquid-solid (VLS) Prozess mit konstanter Temperatur bzw. zwei Temperaturstufen in MOCVD mit/ohne Push-Leitung präpariert wurden, wurden durchgeführt. Dabei wurden p-GaAs-Nanodrähte auf n-GaP(111)B-, n-GaAs(111)B- sowie p-GaAs(111)B-Substrat zur elektrischen Charakterisierung untersucht und ausgewertet. Es wurde experimentell herausgefunden und nachgewiesen, dass unzureichende Vorsättigung mit Dotierstoff eine ausgebreitete Verarmungszone im Sockelbereich des Nanodrahts verursachte, die man sonst mit lithografisch kontaktierten Einzeldrähten so nicht ermittelt hätte. Darüber hinaus ist es zum ersten Mal gelungen, die Leitfähigkeit freistehender porösen Si/c-Si-Nanodrähte durch MTSTM zu untersuchen. Die festgestellte Diodencharakteristik über den porösen Si/c-Si-Übergang stimmt mit dem Ergebnis an planarer Probe mit poröser Si-Schicht auf c-Si-Substrat sehr gut überein.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000187
Lenk, Claudia;
Role of coupling conditions for pattern formation in excitable media : study of atrial fibrillation mechanisms and oscillator arrays in the Belousov-Zhabotinsky reaction. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (xxii, 175 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Diese Arbeit beschäftigt sich mit dem Übergang zwischen regulären und irregulären Mustern in Reaktions-Diffusions (RD)-Systemen. Hierbei lag der Fokus der Untersuchung auf der Rolle der Kopplungsbedingungen zwischen mehreren Oszillatoren für das Auftreten des Übergangs und der Systemspezifität der zugrundeliegenden Mechanismen. Zwei RD-Systeme wurden hierfür gewählt: (i) das Herz im Vorhofflimmer(VF)-zustand und (ii) die Belousov-Zhabotinsky-Reaktion (BZR). Numerische Simulationen dieser Systeme basierten auf einem Standard-RD-Modell, dem Fitzhugh-Nagumo-Modell, und verschiedenen systemspezifischen Modellen. Ergebnisse der Simulationen wurden mit selbstdurchgeführten Experimenten der BZR auf Silikatgelen sowie mit Literaturdaten zu medizinischen Studien des VF verglichen. Zwei Mechanismen für den Übergang zu irregulären Mustern wurden studiert. Der erste, von mir vorgeschlagene Mechanismus basiert auf der Wechselwirkung zweier aktiver Quellen, welche räumlich separiert sind. In Abhängigkeit des Frequenzverhältnisses der Quellen konnten verschiedene Typen von irregulären Mustern identifiziert werden: ein generischer Typ und drei weitere Typen, welche nur im allgemeinen oder den systemspezifischen Modellen auftraten. Der vorgeschlagene Mechanismus kann das episodische Auftreten von VF erklären, indem Änderungen einer Quellenfrequenz das System in den Zustand irregulärer Muster bringen. Dieser neue Mechanismus ist nicht nur für VF sondern auch für RD-Systeme (BZR, Nervenzellen) relevant. Der zweite untersuchte Mechanismus basiert auf der diffusiven Kopplung vieler Oszillatoren. In dieser Arbeit wurden irreguläre Muster im Bereich schwacher Kopplung gefunden, für welche als Ursache einerseits die reduzierte Kohärenz zwischen den gekoppelten Oszillatoren identifiziert wurde und andererseits die aufgrund der Kopplung veränderte Dynamik im Falle von anregbaren Einheiten. Ein weiterer Typ irregulärer Muster wird durch das Aufbrechen von Wellenfronten an den Oszillatoren verursacht. Der Einfluss der Größe, Form und Kopplungsstärke auf das Auftreten der irregulären Muster wurde untersucht sowie die Eigenschaften der Muster. Aufgrund der Generalität der identifizierten Mechanismen sind diese auch für andere chemische und biologische RD-Systeme wie PEM-Brennstoffzellen oder Herz-, Nerven- oder Bauchspeicheldrüsenzellen von Bedeutung.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000238
Abd Tarish, Samar;
Construction of ZnO/ZnS core/shell nanotube arrays on AAO templates and relevant applications. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (XXI, 129 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Nanotechnologie ist eine multidisziplinäre Technologie, welche unterschiedliche Aspekte der Wissenschaft und Ingenieurwesen im Nanobereich umfasst. Es ist mehr als das Herstellen von sehr geordneten Nanostrukturen durch die gleichzeitige Verschmelzung von Nanomaterialien und es verlang nach gebrauchstauglichen Möglichkeiten einer präzisen Manipulation und Überwachung der entwickelten Nanostrukturen. Mit anderen Worten, die größte Herausforderung in der Nanotechnologie ist es, dass wir mehr über die Materialien und ihre Eigenschaften lernen und herausfinden müssen. Zinkoxid (ZnO) ist ein Halbleiter mit großer Bandlücke (3.37 eV) mit ausgezeichneten elektrischen, optischen, katalytischen und sensorischen Eigenschaften und hat eine Vielzahl von Verwendungsmöglichkeiten. Andererseits hat Zinksulfid (ZnS) eine hohe chemische Stabilität im alkalischen sowie schwach sauren Milieu. Die einzigartigen Eigenschaften der Kombination beider Materialien, ZnO und ZnS, können den Weg ebnen zur Realisierung von zukünftigen Devices (z.B. optoelektronische Bauteile, Sensoren, Wandler, Biomedizintechnik, usw.). Der Hauptbestandteil der in dieser Dissertation gezeigten Studien hat den Schwerpunkt des Designs von sehr geordneten Nanostrukturen aus ZnO und ZnO/ZnS Nanotubes die mithilfe von anodischen Aluminiumoxid (AAO) als feste Template hergestellt wurden. Die Dissertation bezieht sich besonders auf nanostruktur-basierte elektrochemische Sensoren und photoelektrochemische (PEC) Anwendungen zur Wasserspaltung bzw. Wasserstofferzeugung. In dieser Arbeit wurden ZnO/ZnS Nanotubes erfolgreich synthetisiert durch die Kombination von 3 Methoden: (i) AAO Template (ii) Atomlagenabscheidung (ALD) und (iii) schnelles thermischen Abscheiden. Es wurde festgestellt, dass AAO Template ohne weitere zusätzliche Behandlungen durch schnelles thermisches Abscheiden komplett während des Wachstums der ZnS-Ummantelung entfernt werden konnte. Die gleichmäßig angeordneten ZnO/ZnS Nanotube-Arrays mit hoher Kristallqualität zeigten eine verbesserte optische und elektrische Leistungsfähigkeit im Vergleich zu den ZnO Nanotubes. Somit erweist sich dies als kosteneffektive Möglichkeit für die Herstellung von röhrenartigen Core/Shell-Strukturen mit unterschiedlicher Zusammensetzung mittels AAO Template ohne weitere notwendige Prozesse zur Entfernung der Template. Im Gegensatz zu konventionellen Untersuchungen mit dem Fokus auf die Veränderung der optischen Absorptionsbandkante eines aus einen einzigen Material durch sog. Quantum Confinement Effects, wurden die optischen Absorptionseigenschaften von geordneten ZnO/ZnS Core/Shell Nanotubearrays, d.h. Quantum Confinement Effects über Materialgrenzen hinaus, untersucht. Die Daten zeigen, dass das Profil des Absorptionsspektrum der ZnO/ZnS Nanoarrays durch beide Komponenten und ihre geometrischen Parameter bestimmt wird. Beide Materialein zeigen eine Verringerung der optischen Bandlücke bei Erhöhung der ZnS Manteldicke und der Durchmesser der Nanotube-Arrays, was interessant ist bzgl. Der Erklärung in Bezug auf Aspekte des Materials. Nachfolgende Finite-Difference-Time-Domain (FDTD) Simulationen unterstützten die Beobachtungen und zeigten, dass die geometrischen und periodischen Parameter die optische Absorption der Core/Shell Nanostrukturarrays beeinflussen, sogar ohne Quanteneffekte. Diese Ergebnisse liefern eine neue Sichtweise auf die Verschiebung der optischen Bandlücke, was von Bedeutung für die Forschung in der Photoelektronik ist. Des Weiteren wurde der in dieser Arbeit hergestellte und charakterisierte Sensor angewandt um Veränderungen von chemischen und biochemischen Stoffen zu erkennen. Messungen mit dem Devices als primärere Sensoren wurden erfolgreich durchgeführt und zur Erkennung als Glukose-Biosensoren verwendet. Die Untersuchungen zeigen, dass die heterogene Elektronentransferratenkonstante (ks) von ZnO/ZnS gegenüber Glukose (1.69 s^-1) höher ist als die von reinem ZnO (0.95 s^-1), was für die Verbesserung der Leistungsfähigkeit und die höhere Empfindlichkeit verantwortlich ist. Zusätzlich haben Experimente eine Verbesserung der PEC Wasserstofferzeugung mit den hergestellten Nanostrukturen gezeigt, mit höheren Sättigungsphotostromdichten (1,02 mA/cm^2) und höheren Wirkungsgraden bei der Photokonversion (62%) bei ZnO/ZnS als bei den ZnO-Strukturen ohne jegliche Ummantelung (entsprechend 0,23mA/cm^2 und 55%).



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000115
Stockschläder, Pia;
Interplay of geometry and dynamics in mesoscopic model systems. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (182 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Diese Arbeit behandelt anhand verschiedenener mesoskopischer Modellsysteme das Zusammenspiel von Geometrie und Form eines Systems mit seinen Eigenschaften und seiner Dynamik. Im ersten Teil wird ein erweitertes strahlenoptisches Modell für dielektrische optische Mikrokavitäten untersucht. Strahlenoptik ist eine effiziente Methode, um die Fernfeldabstrahlung dieser Systeme vorherzusagen. Werden allerdings Systeme betrachtet, deren Abmessungen nur wenige Lichtwellenlängen betragen, können Korrekturen der geometrischen Optik notwendig werden, um Welleneffekte zu berücksichtigen. Diese Korrekturen sind die Goos-Hänchen-Verschiebung, eine seitliche Verschiebung des Strahls entlang der Grenzfläche, und der Effekt des Fresnel-Filterns, eine Korrektur des Winkels, die das Reflexions- und das Brechungsgesetz der Strahlenoptik und das Prinzip der Umkehrbarkeit des Strahlengangs bricht. Diese Strahlverschiebungen werden für ebene und gekrümmte Grenzflächen diskutiert, außerdem werden die Einflüsse verschiedener Parameter auf die Korrekturterme untersucht. Ein wichtiges Resultat ist, dass die Krümmung der Grenzfläche den Effekt des Fresnel-Filterns verstärkt, wohingegen sie die Goos-Hänchen-Verschiebung abschwächt. Anschließend wird das strahlenoptische Modell auf verschiedene Beispiele angewendet, nämlich Mikrokavitäten in der Form von deformierten Kreisscheiben, also Systeme mit gekrümmten Grenzflächen, und dreieckige Kavitäten, also Systeme mit ausschließlich ebenen Grenzflächen. Sowohl für Systeme mit gekrümmten als auch mit ebenen Grenzflächen kann es wichtig sein, die auf endlichen Wellenlängen beruhenden Korrekturen miteinzubeziehen, um eine gute Übereinstimmung zwischen der Strahlenbeschreibung und Ergebnissen aus Experimenten oder Wellensimulationen zu erhalten. Die Systeme können aber nicht nur durch ihre Grenzfläche charakterisiert werden, sondern auch dadurch, ob ihre klassische Dynamik chaotisch oder nicht-chaotisch ist. Für Systeme mit chaotischer Dynamik ist bekannt, dass die Fernfeldabstrahlung durch die instabile Mannigfaltigkeit des chaotischen Sattels bestimmt wird. Als Beispiele für nicht-chaotische Systeme werden deformierte Kreisscheiben mit kleinen Verformungen und Dreiecke betrachtet. Für diese Systeme wird erörtert, dass die Abstrahlung durch die Trajektorien mit den kleinsten, nichtverschwindenden Zerfallsraten bestimmt wird. Darüber hinaus kann es notwendig sein, Intensitätsverstärkung im Strahlenbild zu berücksichtigen, um verlässliche Ergebnisse für stark verlustbehaftete Lasersysteme zu erhalten. Im zweiten Teil werden graphenartige Systeme diskutiert. An diesen wird zuerst der Einfluss von einachsigen Verformungen in einem tight-binding-Modell des hexagonalen Gitters untersucht. Einachsige Stauchung des Gitters führt zu einem Phasenübergang und zur Ausbildung von Randzuständen senkrecht zur Verzerrungsrichtung. Diese Randzustände sind unabhängig von der genauen Terminierung des Gitters. Als zweites wird ein Strahlenmodell eingeführt, das eine Beschreibung von Graphen-Bauelementen ermöglichen könnte, die genauso effizient ist wie die Strahlenbeschreibung von optischen Systemen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000059
Fang, Yaoguo;
Structural parameters (size, defect and doping) of ZnO nanostructures and relations with their optical and electrical properties. - Ilmenau : Universitätsbibliothek, 2017. - 1 Online-Ressource (XII, 117 Seiten)
Technische Universität Ilmenau, Dissertation 2017

Die Eigenschaften und Leistung von Gerätschaften, welche auf ZnO-Nanostrukturen basieren (vornehmlich drahtähnliche und blattähnliche) hängen im Wesentlichen von der Größe der Nanostrukturen, denen in ihnen auftretenden strukturellen Defekten sowie der Dotierung des ZnO ab. Daher ist es nötig diese Parameter in ZnO zu untersuchen um dessen Eigenschaften optimieren zu können, was somit auch die Motivation für diese Dissertationsschrift darstellt. In dieser Arbeit wurden Größen, Defekt- und Dotierungseffekte auf die Eigenschaften von ultralangen ZnO-Nanodrähten, In-dotierten blattähnlichen ZnO Strukturen sowie nadelförmigen ZnO-Nanostrukturen untersucht, welche mittels chemischer Gasphasenabscheidung (CVD) und einer hydrothermalen Abscheidungsmethode hergestellt wurden. Zunächst wurde eine Vielzahl von Analysetechniken angewendet um die Korrelation zwischen den auftretenden Defekten und der Größe, respektive dem Durchmesser und der Länge, der ZnO-Nanodrähte zu ermitteln. Die entsprechenden Resultate zeigen, dass eine steigende Konzentration von Sauerstoffleerstellen (Vo) in Kombination mit einer steigenden Konzentration von Zn Zwischengitterdefekten (Zni) für eine ansteigende Größe der Nanodrähte verantwortlich ist. Besonders erwähnenswert ist, dass die Variation des Feldverstärkungsfaktors (β) der ZnO-Nanodrähte bei Feldemission erheblich von der Konzentration der Sauerstoffleerstellen (Vo) in Kombination mit der Länge der Nanodrähte zusammenhängt. Im Vergleich mit den ultralangen und nadelförmigen ZnO-Nanodrähten, weisen die In-dotierten Nanostrukturen das niedrigste Anschalt- und Grenzfeld sowie den relativ höchsten Feldverstärkungsfaktor β auf. Der Grund hierfür wird der blattähnlichen Morphologie sowie der Dotierung zugesprochen. Daher ist das Wissen um die Korrelation zwischen der Menge und der Art von natürlichen intrinsischen Defektstrukturen sowie der Dotierung in den Nanodrähten mit sich ändernder Größe der Strukturen ein wichtiger Schritt in Richtung einer Optimierung und eines allgemeinen Tuningprozesses von Geräten, welche auf ZnO-Nanostrukturen basieren.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2017000012
Simon, Adrian;
Schichten aus Kohlenstoff-Nanomaterialien auf asymmetrisch porösen, keramischen Trägern und deren Erprobung für Anwendungen in Membrantechnik und Katalyse. - Ilmenau : Universitätsbibliothek, 2016. - 1 Online-Ressource (xx, 192 Seiten)
Technische Universität Ilmenau, Dissertation 2016

Die vorliegende Arbeit behandelt die maßgeschneiderte Synthese von Kohlenstoff-Nanofilamenten auf asymmetrisch porösen, keramischen Trägern für potentielle Anwendungen in der Membrantechnik und Katalyse und deren Charakterisierung. Die für die Synthese erforderlichen Katalysatorpartikel (Palladium und Eisen) werden anhand nasschemischer Präparationsmethoden überwiegend auf der Innenseite der rohrförmigen Träger aufgebracht. Dem sich anschließenden Trocknungsschritt folgt die Synthese von Kohlenstoff-Nanofilamenten anhand des Verfahrens der chemischen Gasphasenabscheidung (CVD-Verfahren). Eine gezielte Variation von Prozessgrößen (bspw. Synthesetemperatur, Kohlenstoffquelle, Katalysatormaterial, Haltezeit und Katalysatorkonzentration) führt zu einer Strukturvarianz der Röhren mit unterschiedlichen Eigenschaften. Die erhaltenen Kohlenstoffprodukte werden anhand elektronenmikroskopischer, spektroskopischer und thermischer Analysemethoden charakterisiert. Ergänzend wurde in dem apparativen Aufbau der CVD-Anlage eine inline-Analytik implementiert, die die Charakterisierung des Katalysatorverhaltens während der Wachstumsphase erlaubt. Die auf dem Träger abgeschiedenen Schichten aus Kohlenstoff-Nanomaterialien wurden einerseits in Hinblick auf ihre gastrennenden Eigenschaften und andererseits hinsichtlich ihrer katalytischen Eigenschaften anhand einer Modellreaktion untersucht. Insbesondere mit Stickstoff dotierte Röhren zeigen adsorptionsselektive Eigenschaften für Kohlenwasserstoffe (Propan, Propen). Die katalytische Reaktion der oxidativen Dehydrierung von Ethylbenzol zu Styrol (ODEB) konnte erfolgreich anhand der sich auf dem Träger befindlichen Kohlenstoff-Nanofilamenten nachgewiesen werden. Sowohl die elementaren Untersuchungen zu gastrennenden Eigenschaften der Kohlenstoff-Nanofilamente als auch deren Erprobung für katalytische Reaktionen bilden die Grundlage für weitere Entwicklungsmöglichkeiten in Bezug auf katalytisch arbeitende Membranreaktoren.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2016000634
Al-Haddad, Ahmed;
Large area of ultrathin alumina membranes toward innovative heterogeneous nanostructure arrays for solar energy conversion. - Ilmenau : Universitätsbibliothek, 2016. - 1 Online-Ressource (XX, 148 Seiten)
Technische Universität Ilmenau, Dissertation 2016

Geordnete Nanostruktur-Arrays haben viel Aufmerksamkeit erfahren durch ihre vielfältigen Anwendungen. Jedoch ist es noch immer eine große Herausforderung geordnete Nanostrukturen über eine große Fläche (wie z.B. Wafer-Größe) durch Methoden die einen hohen Durchsatz bei großen Flächen und geringen Gerätekosten ermöglichen herzustellen. Hier, durch ein einzigartiges Design für den Herstellungs- und Transferprozess, konnten wir einen einfachen Transfer von wafer-großen gebundenen ultradünnen Aluminium-Membranen (UTAMs) auf Substrate ohne Verdrehen, Faltung, Einreißen oder Verunreinigungen erreichen. Das wichtigste unserer Methode ist das Anheften der 4 Inch großen UTAMs auf wafer-große Substrate vor dem Entfernen des Rückseitenaluminiums und der Aluminiumoxidschicht (sog. Barrier Layer). Es wird auch gezeigt, dass die Dicke und das Glätten der Oberflächen der UTAMs eine wichtige Rolle in dem Prozess spielen. Durch perfekt transferierte UTAMs als Masken werden viele unterschiedliche Nanostruktur-Anordnungen wie Nanopartikel, Nanomeshs, und Nanowire-Arrays auf wafer-großen Substraten hergestellt mit einstellbaren und einheitlichen Abmessungen. Weil es für UTAMs keine Limitierungen was Substrate und abzuscheidende Materialien gibt repräsentiert die Methode eine kostengünstige und effiziente Möglichkeit zur Herstellung von geordneten Nanostrukturen auf großflächigen Substraten für viele Anwendungen der Nanotechnologie. Zusätzlich wurden hexagonale TiO2 Nanotube-Arrays mit exzellenter Kristallqualität durch die Kombination von anodischen Aluminiumoxid (AAO)-Templaten und Atomlagenabscheidung (ALD) hergestellt. Durch spektroskopische Absorptionsmessungen haben wir beobachtet, dass die optische Absorptionsbandkante der TiO2 Nanotube-Arrays eine Rotverschiebung erfährt mit steigendem Durchmesser der Nanotubes und entsprechend kleineren Abstand zwischen den einzelnen Nanotubes, während die Wandstärke konstant gehalten wurde. Nachfolgende FDTD-Simulationen unterstützten diese Beobachtung im Blick auf den theoretischen Hintergrund und machten eine große Nahfeldverstärkung im Außenbereich der Nanotubes deutlich für Arrays mit dicht angeordneten Nanotubes wenn diese beleuchtet wurden. Demnach liefern diese Ergebnisse eine neue Perspektive auf die Verschiebung der optischen Bandlücke, was von großer Bedeutung für die Forschung im Bereich Photoelektronik ist. Andererseits zeigten die hergestellten CdTe/TiO2 Core-Shell-Nanowire-Arrays mit unterschiedlichen Durchmessern eine Verbesserung der photoelektrischen Wasserspaltung und der photovoltaischen Eigenschaften. Durch Modulation der Durchmesser konnte ein optimierter Photostrom von 1,1 mA/cm^2 erreicht werden. Im Gegensatz zu vielen vorherigen heterogenen Photoelektroden die Core/Shell Konfigurationen anwenden, basierend auf verbundenen UTAMs, TNTs Si und TNWs Si Heterostrukturen mit einer Konfiguration aus TiO2 Nanotubes oder Nanowires wurden vertical verwurzelt im Si-Substrat für PEC Wasserspaltung. Die einzigartige Struktur der TNTs Si Heterostrukturen ermöglicht eine PEC Performance, die unter den Besten der heterogenen Photoelektroden basierend auf TiO2 und Si ist, während eine exzellente strukturelle Stabilität während der Wasser-Oxidations-Reaktion gegeben ist. Zusätzlich kann die TNWs Si Heterostruktur die photovoltaischen Eigenschaften stärker als andere Heterostrukturen verbessern. Die Herstellungsmethode erlaubt es diese Heterostruktur-Arrays einfach und in Massenfertigung zu produzieren und ebenfalls wichtig, die Methode ist universell einsetzbar und lässt genug Spielraum für strukturelle Optimierungen sowie weitere Materialien für Heterostruktur-Arrays für Verbesserungen in Richtung solarer Energieanwendungen.



http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2016000479
Leben, Leslie;
Non-negative operators in Krein spaces and rank one perturbations. - Ilmenau : Universitätsverlag Ilmenau, 2016. - Online-Ressource (116 Seiten, 6.65 MB)
Technische Universität Ilmenau, Dissertation 2016

In der vorliegenden Arbeit werden eindimensionale Störungen von nichtnegativen Operatoren in Kreinräumen betrachtet. Dabei wird untersucht wie sich die Anzahl der Eigenwerte und deren Vielfachheit in einer Lücke des essentiellen Spektrums unter einer Störung ändern können. Zudem wird beschrieben wie sich an einem Eigenwert die Anzahl und die Länge der linear unabhängigen Jordanketten ändern können.



https://www.db-thueringen.de/receive/dbt_mods_00029981