Publications at the Department of Mathematics and Natural Sciences from 2019

Results: 896
Created on: Wed, 24 Apr 2024 23:08:36 +0200 in 5.2228 sec


Zhao, Lanqing; Hou, Minjie; Ren, Kun; Yang, Dongrong; Li, Fupeng; Yang, Xiecheng; Zhou, Yingjie; Zhang, Da; Liu, Shan; Lei, Yong; Liang, Feng
Hot-pressing enhances mechanical strength of PEO solid polymer electrolyte for all-solid-state sodium metal batteries. - In: Small Methods, ISSN 2366-9608, Bd. 0 (2024), 0, 2301579, S. 1-9

Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) are widely utilized in all-solid-state sodium metal batteries (ASSSMBs) due to their excellent flexibility and safety. However, poor ionic conductivity and mechanical strength limit its development. In this work, an emerging solvent-free hot-pressing method is used to prepare mechanically robust PEO-based SPE, while sodium superionic conductors Na3Zr2Si2PO12 (NZSP) and NaClO4 are introduced to improve ionic conductivity. The as-prepared electrolyte exhibits a high ionic conductivity of 4.42 × 10−4 S cm−1 and a suitable electrochemical stability window (4.5 V vs Na/Na+). Furthermore, the SPE enables intimate contact with the electrode. The Na||Na3V2(PO4)3C ASSSMB delivers a high-capacity retention of 97.1% after 100 cycles at 0.5 C and 60 ˚C, and exhibits excellent Coulombic efficiency (CE) (close to 100%). The ASSSMB with the 20 µm thick electrolyte also demonstrates excellent cyclic stability. This study provides a promising strategy for designing stable polymer-ceramic composite electrolyte membranes through hot-pressing to realize high-energy-density sodium metal batteries.



https://doi.org/10.1002/smtd.202301579
Yang, Xiecheng; Zhang, Dantong; Zhao, Lanqing; Peng, Chao; Ren, Kun; Xu, Changfan; Liu, Pan; Zhou, Yingjie; Lei, Yong; Yang, Bin; Xue, Dongfeng; Liang, Feng
Upgrading cycling stability and capability of hybrid Na-CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. - In: Advanced energy materials, ISSN 1614-6840, Bd. 0 (2024), 0, 2304365, S. 1-12

Rechargeable Na-CO2 batteries are considered to be an effective way to address the energy crisis and greenhouse effect due to their dual functions of CO2 fixation/utilization and energy storage. However, the insolubility and irreversibility of solid discharge products lead to poor discharge capacity and poor cycle performance. Herein, a novel strategy is proposed to enhance the electrochemical performance of hybrid Na-CO2 batteries, using water-in-salt electrolyte (WiSE) to establish an optimal reaction environment, regulate the CO2 reduction pathway, and ultimately convert the discharge product of the battery from Na2CO3 to formic acid (HCOOH). This strategy effectively resolves the issue of poor reversibility, allowing the battery to exhibit excellent cycle performance (over 1200 cycles at 30 ˚C), especially under low-temperature conditions (2534 cycles at −20 ˚C). Furthermore, density functional theory (DFT) calculations and experiments indicate that by adjusting the relative concentration of H/O atoms at the electrolyte/catalyst interface, the CO2 reduction pathway in the battery can be regulated, thus effectively enhancing CO2 capture capability and consequently achieving an ultra-high discharge specific capacity of 148.1 mAh cm−2. This work effectively promotes the practical application of hybrid Na-CO2 batteries and shall provide a guidance for converting CO2 into products with high-value-added chemicals.



https://doi.org/10.1002/aenm.202304365
Szántó, Géza; Pritzke, Pia; Kluitmann, Jonas; Köhler, Michael; Csáki, Andrea; Fritzsche, Wolfgang; Csarnovics, István; Bonyár, Attila
Optimization of the bulk refractive index sensitivity of silver nanoprisms. - In: Advanced optical materials, ISSN 2195-1071, Bd. 0 (2024), 0, 2302967, S. 1-11

The sensitivity and optical properties of silver nanoprisms (triangular plates with round-truncated corners) are investigated in this paper. Results of boundary element method simulations are compared with experimental results and literature data. Based on electron microscopy images of the synthesized nanoprisms, a single-particle model is set up for simulations with three running parameters: edge length, thickness, and roundness (defined as the radius of the circumscribed circle divided by the edge length). These geometric parameters can be optimized during chemical synthesis to create sensors with improved sensitivity. The effect of biomolecular layers is also investigated. As a novel approach to improve the agreement between the simulated and experimentally measured extinction spectra, the single-particle model is extended to consider the variation of the prisms' parameters in the form of distributions. The resulting extinction cross-section spectra correspond well with the experimental data. The calculated bulk refractive index sensitivity is 670 nm/RIU (RIU stands for refractive index unit) for the single particle model (length = 150 nm, thickness = 10 nm, and roundness = 0.1), while (690 ± 5) nm/RIU for the extended model. The presented model and obtained relations between sensitivity and geometry can be effectively used to design and optimize the fabrication technologies for silver nanoprism-based sensing applications.



https://doi.org/10.1002/adom.202302967
Hoff, Daniel; Mehlitz, Patrick
Notes on the value function approach to multiobjective bilevel optimization. - In: Optimization, ISSN 1029-4945, Bd. 0 (2024), 0, S. 1-37

This paper is concerned with the value function approach to multiobjective bilevel optimization which exploits a lower-level frontier-type mapping in order to replace the hierarchical model of two interdependent multiobjective optimization problems by a single-level multiobjective optimization problem. As a starting point, different value-function-type reformulations are suggested and their relations are discussed. Here, we focus on the situations where the lower-level problem is solved up to efficiency or weak efficiency, and an intermediate solution concept is suggested as well. We study the graph-closedness of the associated efficiency-type and frontier-type mappings. These findings are then used for two purposes. First, we investigate existence results in multiobjective bilevel optimization. Second, for the derivation of necessary optimality conditions via the value function approach, it is inherent to differentiate frontier-type mappings in a generalized way. Here, we are concerned with the computation of upper coderivative estimates for the frontier-type mapping associated with the setting where the lower-level problem is solved up to weak efficiency. We proceed in two ways, relying, on the one hand, on a weak domination property and, on the other hand, on a scalarization approach. Illustrative examples visualize our findings and some flaws in the related literature.



https://doi.org/10.1080/02331934.2024.2323107
Prylutska, Svitlana; Grebinyk, Anna; Ponomarenko, Stanislav; Gövem, Defne; Chumachenko, Vasyl; Kutsevol, Nataliya; Petrovsky, Mykola; Ritter, Uwe; Frohme, Marcus; Piosik, Jacek; Prylutskyy, Yuriy
Toxicity of water-soluble D-g-PNIPAM polymers in a complex with chemotherapy drugs and mechanism of their action in vitro. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 25 (2024), 5, 3069, S. 1-15

The application of a biocompatible polymer nanocarrier can provide target delivery to tumor tissues, improved pharmacokinetics, controlled drug release, etc. Therefore, the proposed strategy was to use the water-soluble star-like copolymers with a Dextran core and Poly(N-isopropylacrylamide) grafts (D-g-PNIPAM) for conjugation with the widely used chemotherapy drugs in oncology-Cisplatin (Cis-Pt) and Doxorubicin (Dox). The molecular characteristics of the copolymer were received using size-exclusion chromatography. The physicochemical characterization of the D-g-PNIPAM-Cis-Pt (or Dox) nanosystem was conducted using dynamic light scattering and FTIR spectroscopy. Using traditional biochemical methods, a comparative analysis of the enhancement of the cytotoxic effect of free Cis-Pt and Dox in combination with D-g-PNIPAM copolymers was performed in cancer cells of the Lewis lung carcinoma line, which are both sensitive and resistant to Dox; in addition, the mechanism of their action in vitro was evaluated.



https://doi.org/10.3390/ijms25053069
Qiu, Wenbo; Wang, Zidong; He, Shijiang; Zhao, Huaping; Lei, Yong
Recent progress and future prospects of high-entropy materials for battery applications. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 45 (2024), 3, 030202, S. 1-5

https://doi.org/10.1088/1674-4926/45/3/030202
Nguyen, Thi-Huong; Chen, Li-Yu; Khan, Nida Zaman; Lindenbauer, Annerose; Bui, Van-Chien; Zipfel, Peter F.; Heinrich, Doris
The binding of the SARS-CoV-2 spike protein to platelet factor 4: a proposed mechanism for the generation of pathogenic antibodies. - In: Biomolecules, ISSN 2218-273X, Bd. 14 (2024), 3, 245, S. 1-14

Pathogenic platelet factor 4 (PF4) antibodies contributed to the abnormal coagulation profiles in COVID-19 and vaccinated patients. However, the mechanism of what triggers the body to produce these antibodies has not yet been clarified. Similar patterns and many comparable features between the COVID-19 virus and heparin-induced thrombocytopenia (HIT) have been reported. Previously, we identified a new mechanism of autoimmunity in HIT in which PF4-antibodies self-clustered PF4 and exposed binding epitopes for other pathogenic PF4/eparin antibodies. Here, we first proved that the SARS-CoV-2 spike protein (SP) also binds to PF4. The binding was evidenced by the increase in mass and optical intensity as observed through quartz crystal microbalance and immunosorbent assay, while the switching of the surface zeta potential caused by protein interactions and binding affinity of PF4-SP were evaluated by dynamic light scattering and isothermal spectral shift analysis. Based on our results, we proposed a mechanism for the generation of PF4 antibodies in COVID-19 patients. We further validated the changes in zeta potential and interaction affinity between PF4 and SP and found that their binding mechanism differs from ACE2-SP binding. Importantly, the PF4/SP complexes facilitate the binding of anti-PF4/Heparin antibodies. Our findings offer a fresh perspective on PF4 engagement with the SARS-CoV-2 SP, illuminating the role of PF4/SP complexes in severe thrombotic events.



https://doi.org/10.3390/biom14030245
Köhler, Michael; Ehrhardt, Linda; Günther, Mike; Böhme, Manfred; Cao-Riehmer, Jialan
Low abundant bacteria reflect soil specificity - analysis of bacterial communities from archaeological investigation of pre-industrial saline ash deposits of Bad Dürrenberg (Germany). - In: Environments, ISSN 2076-3298, Bd. 11 (2024), 3, 42, S. 1-20

Six soil samples from three layers of an archaeological investigation profile from a pre-industrial ash deposit place have been investigated by NGS analyses of 16 S rRNA. The three pairs of sample originate from top soil (internal reference), from an intermediate ash layer and from a lower ash layer, formed about two centuries ago. In addition to general abundant bacteria, special genera known as halophilic or alkaline-tolerant have been found as expected from the history of the place and from the measured pH-value and conductivity measurements. The close relations between samples of pairs and the differences between the three soil layers are clearly indicated by abundance correlation and PCA-diagrams. Comparative PCA correlation plots including samples from an archaeological excavation site dedicated to pre-industrial coal mining illustrate the high distinguishability of investigated soils. These relations are particular clearly shown when lower abundant bacteria are regarded. The investigations are a further example for the “ecological memory of soil” reflecting the strong human impact on this pre-industrial embossed place.



https://doi.org/10.3390/environments11030042
Qian, Yudan; Zhou, Zhiming; Zhang, Qingcheng; Zhao, Huaping; Chen, Heng; Han, Jintong; Wan, Haiting; Jin, Huile; Wang, Shun; Lei, Yong
Boosting the energy density of bowl-like MnO2carbon through lithium-intercalation in a high-voltage asymmetric supercapacitor with “water-in-salt” electrolyte. - In: Small, ISSN 1613-6829, Bd. 0 (2024), 0, 2310037, S. 1-11

Highly concentrated “‘water-in-salt”’ (WIS) electrolytes are promising for high-performance energy storage devices due to their wide electrochemical stability window. However, the energy storage mechanism of MnO2 in WIS electrolytes-based supercapacitors remains unclear. Herein, MnO2 nanoflowers are successfully grown on mesoporous bowl-like carbon (MBC) particles to generate MnO2/MBC composites, which not only increase electroactive sites and inhibit the pulverization of MnO2 particles during the fast charging/discharging processes, but also facilitate the electron transfer and ion diffusion within the whole electrode, resulting in significant enhancement of the electrochemical performance. An asymmetric supercapacitor, assembled with MnO2/MBC and activated carbon (AC) and using 21 m LiTFSI solution as the WIS electrolyte, delivers an ultrahigh energy density of 70.2 Wh kg−1 at 700 W kg−1, and still retains 24.8 Wh kg−1 when the power density is increased to 28 kW kg−1. The ex situ XRD, Raman, and XPS measurements reveal that a reversible reaction of MnO2 + xLi+ + xe−↔LixMnO2 takes place during charging and discharging. Therefore, the asymmetric MnO2/MBC//AC supercapacitor with LiTFSI electrolyte is actually a lithium-ion hybrid supercapacitor, which can greatly boost the energy density of the assembled device and expand the voltage window.



https://doi.org/10.1002/smll.202310037
Hannappel, Thomas; Shekarabi, Sahar; Jaegermann, Wolfram; Runge, Erich; Hofmann, Jan Philipp; Krol, Roel van de; May, Matthias M.; Paszuk, Agnieszka; Hess, Franziska; Bergmann, Arno; Bund, Andreas; Cierpka, Christian; Dreßler, Christian; Dionigi, Fabio; Friedrich, Dennis; Favaro, Marco; Krischok, Stefan; Kurniawan, Mario; Lüdge, Kathy; Lei, Yong; Roldán Cuenya, Beatriz; Schaaf, Peter; Schmidt-Grund, Rüdiger; Schmidt, W. Gero; Strasser, Peter; Unger, Eva; Montoya, Manuel Vasquez; Wang, Dong; Zhang, Hongbin
Integration of multi-junction absorbers and catalysts for efficient solar-driven artificial leaf structures : a physical and materials science perspective. - In: Solar RRL, ISSN 2367-198X, Bd. 0 (2024), 0, S. 1-88

Artificial leaves could be the breakthrough technology to overcome the limitations of storage and mobility through the synthesis of chemical fuels from sunlight, which will be an essential component of a sustainable future energy system. However, the realization of efficient solar-driven artificial leaf structures requires integrated specialized materials such as semiconductor absorbers, catalysts, interfacial passivation, and contact layers. To date, no competitive system has emerged due to a lack of scientific understanding, knowledge-based design rules, and scalable engineering strategies. Here, we will discuss competitive artificial leaf devices for water splitting, focusing on multi-absorber structures to achieve solar-to-hydrogen conversion efficiencies exceeding 15%. A key challenge is integrating photovoltaic and electrochemical functionalities in a single device. Additionally, optimal electrocatalysts for intermittent operation at photocurrent densities of 10-20 mA cm^-2 must be immobilized on the absorbers with specifically designed interfacial passivation and contact layers, so-called buried junctions. This minimizes voltage and current losses and prevents corrosive side reactions. Key challenges include understanding elementary steps, identifying suitable materials, and developing synthesis and processing techniques for all integrated components. This is crucial for efficient, robust, and scalable devices. Here, we discuss and report on corresponding research efforts to produce green hydrogen with unassisted solar-driven (photo-)electrochemical devices. This article is protected by copyright. All rights reserved.



https://doi.org/10.1002/solr.202301047
Philipp, Friedrich; Schaller, Manuel; Worthmann, Karl; Peitz, Sebastian; Nüske, Feliks
Error bounds for kernel-based approximations of the Koopman operator. - In: Applied and computational harmonic analysis, ISSN 1096-603X, Bd. 71 (2024), 101657, S. 1-25

We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.



https://doi.org/10.1016/j.acha.2024.101657
Shen, Fengxia; Wu, Shuai; Zhao, Pengchong; Li, Yunfei; Miao, Shipeng; Liu, Jianxiong; Ostheimer, David; Hannappel, Thomas; Chen, Tianyou; Shi, Jin
Bipolar membrane Electrolyzer for CO2 electro-reduction to CO in organic electrolyte with NaClO produced as byproduct. - In: Electrochimica acta, ISSN 1873-3859, Bd. 483 (2024), 144056, S. 1-8

A novel electrolyzer has been proposed for CO2 reduction to CO, concurrently generating NaClO as a byproduct at the anode. The cell is divided into two compartments by a bipolar membrane, which plays a pivotal role in the dissociation of H2O into H^+ and OH^−. In the cathode compartment, CO2 is reduced to CO within a neutral organic solution. Simultaneously, in the anode compartment, Cl^− undergoes oxidation to form ClO^− within a basic aqueous solution. The electrolyzer remains stable during 10 h of electrolysis, and the current density reaches 76.35 mA cm^−2 at a potential of -2.4 V (vs SHE), with the Faradaic efficiency of CO formation stable at 93 %. By increasing the product values, CO2 electro-reduction technology can be promoted to industrial applications.



https://doi.org/10.1016/j.electacta.2024.144056
Hahn-Klimroth, Maximilian Grischa; Parczyk, Olaf; Person, Yury
Minimum degree conditions for containing an r-regular r-connected spanning subgraph. - In: European journal of combinatorics, Bd. 118 (2024), 103940, S. 1-23

We study optimal minimum degree conditions when an n-vertex graph G contains an r-regular r-connected spanning subgraph. We prove for r fixed and n large the condition to be δ (G) ≥ n+r-2 / 2 when nr ≡ 0 (mod 2). This answers a question of M. Kriesell.



https://doi.org/10.1016/j.ejc.2024.103940
Kunze, Thomas; Dreßler, Christian; Lauer, Christian; Paul, Wolfgang; Sebastiani, Daniel
Reverse mapping of coarse grained polyglutamine conformations from PRIME20 sampling. - In: ChemPhysChem, ISSN 1439-7641, (2024), e202300521, S. 1-11

An inverse coarse-graining protocol is presented for generating and validating atomistic structures of large (bio-) molecules from conformations obtained via a coarse-grained sampling method. Specifically, the protocol is implemented and tested based on the (coarse-grained) PRIME20 protein model (P20/SAMC), and the resulting all-atom conformations are simulated using conventional biomolecular force fields. The phase space sampling at the coarse-grained level is performed with a stochastical approximation Monte Carlo approach. The method is applied to a series of polypeptides, specifically dimers of polyglutamine with varying chain length in aqueous solution. The majority (>70 %) of the conformations obtained from the coarse-grained peptide model can successfully be mapped back to atomistic structures that remain conformationally stable during 10 ns of molecular dynamics simulations. This work can be seen as the first step towards the overarching goal of improving our understanding of protein aggregation phenomena through simulation methods.



https://doi.org/10.1002/cphc.202300521
Diederich, Jonathan; Velasquez Rojas, Jennifer; Zare Pour, Mohammad Amin; Ruiz Alvarado, Isaac Azahel; Paszuk, Agnieszka; Sciotto, Rachele; Höhn, Christian; Schwarzburg, Klaus; Ostheimer, David; Eichberger, Rainer; Schmidt, W. Gero; Hannappel, Thomas; Krol, Roel van de; Friedrich, Dennis
Unraveling electron dynamics in p-type indium phosphide (100): a time-resolved two-photon photoemission study. - In: Journal of the American Chemical Society, ISSN 1520-5126, Bd. 146 (2024), 13, S. 8949-8960

Renewable (“green”) hydrogen production through direct photoelectrochemical (PEC) water splitting is a potential key contributor to the sustainable energy mix of the future. We investigate the potential of indium phosphide (InP) as a reference material among III-V semiconductors for PEC and photovoltaic (PV) applications. The p(2 × 2)/c(4 × 2)-reconstructed phosphorus-terminated p-doped InP(100) (P-rich p-InP) surface is the focus of our investigation. We employ time-resolved two-photon photoemission (tr-2PPE) spectroscopy to study electronic states near the band gap with an emphasis on normally unoccupied conduction band states that are inaccessible through conventional single-photon emission methods. The study shows the complexity of the p-InP electronic band structure and reveals the presence of at least nine distinct states between the valence band edge and vacuum energy, including a valence band state, a surface defect state pinning the Fermi level, six unoccupied surface resonances within the conduction band, as well as a cluster of states about 1.6 eV above the CBM, identified as a bulk-to-surface transition. Furthermore, we determined the decay constants of five of the conduction band states, enabling us to track electron relaxation through the bulk and surface conduction bands. This comprehensive understanding of the electron dynamics in p-InP(100) lays the foundation for further exploration and surface engineering to enhance the properties and applications of p-InP-based III-V-compounds for, e.g., efficient and cost-effective PEC hydrogen production and highly efficient PV cells.



https://doi.org/10.1021/jacs.3c12487
Wu, Zhijun; Zheng, Chunfang; Lin, Qi; Fu, Qun; Zhao, Huaping; Lei, Yong
Unique gap-related SERS behaviors of p-aminothiophenol molecules absorbed on TiO2 surface in periodic TiO2/Ni nanopillar arrays. - In: Nanotechnology, ISSN 1361-6528, Bd. 35 (2024), 21, 215501, S. 1-11

We observed a unique interpillar gap-related surface-enhanced Raman scattering (SERS) behavior of p-aminothiophenol (PATP) molecules from periodic TiO2 nanopillar arrays with three gap sizes of 191, 297 and 401 nm, which is completely different from that on Ag and Ni nanopillar arrays. Especially, the gap-size-dependent charge-transfer (CT) resonance enhancement from TiO2/Ni has been indicated through comparisons of variation trend of SERS intensities with inter-pillar gap size between TiO2/Ni and Ag/TiO2/Ni as well as Ni nanoarrays, and been confirmed by spectra of ultraviolet-visible absorption and photoluminescence. Results demonstrate that the CT resonance enhancement is more susceptible to the change of the gap size compared with the surface plasmon resonance (SPR) enhancement in TiO2/Ni nanoarrays. Hence, SPR and CT enhancement showing different variation trend and rate with the gap size that leads to a different relative contribution of CT resonance to the overall SERS enhancement as gap size changes, and consequently results in a unique gap-related SERS behavior for TiO2/Ni nanoarrays. The present study is not only helpful for investigating SERS mechanism for semiconductors but also providing a method to design and optimize periodic metal/semiconductor SERS substrates in a controllable way.



https://doi.org/10.1088/1361-6528/ad2a5a
Abreu, Zita; Lieb, Julia; Pinto, Raquel; Rosenthal, Joachim
Criteria for the construction of MDS convolutional codes with good column distances. - In: Advances in mathematics of communications, ISSN 1930-5338, Bd. 18 (2024), 2, S. 595-613

Maximum-distance separable (MDS) convolutional codes are characterized by the property that their free distance reaches the generalized Singleton bound. In this paper, new criteria to construct MDS convolutional codes are presented. These codes also possess optimal first (reverse) column distances. The new criteria allow to relate the construction of MDS convolutional codes to those of reverse superregular Toeplitz matrices. Moreover, using the new criteria as well as the help of computer search, examples for MDS convolutional codes over small finite fields are given.



https://doi.org/10.3934/amc.2023060
He, Shijiang; Wang, Zidong; Qiu, Wenbo; Zhao, Huaping; Lei, Yong
Effect of partial cation replacement on anode performance of sodium-ion batteries. - In: Batteries, ISSN 2313-0105, Bd. 10 (2024), 2, 44, S. 1-13

Due to their high specific capacity and long cycle life, bimetallic sulfides are the preferred choice of researchers as anodes in sodium-ion batteries (SIBs). However, studies indicate that this class of materials often requires expensive elements such as Co, Sb, Sn, etc., and their performance is insufficient with the use of inexpensive Fe, V alone. Therefore, there is a need to explore the relationship between metal cations and anode performance so that the requirements of cost reduction and performance enhancement can be met simultaneously. In this work, a series of partially replaced sulfides with different cation ratios have been prepared by a hydrothermal method followed by heat treatment. By partially replacing Co in NiCo sulfides, all samples show improved capacity and stability over the original NiCo sulfides. As a result, the metal elements have different oxidation states, which leads to a higher capacity through their synergistic effects on each other. Mn-NiCoS with 10% replacement showed satisfactory capacity (721.09 mAh g^−1 at 300 mA g^−1, 662.58 mAh g^−1 after 20 cycles) and excellent cycle life (85.41% capacity retention after 1000 cycles at 2000 mA g^−1).



https://doi.org/10.3390/batteries10020044
Faulwasser, Timm; Flaßkamp, Kathrin; Röbenack, Klaus; Worthmann, Karl
Optimale Steuerung und Regelung - Analyse, Algorithmen und Anwendungen :
Optimal control - analysis, algorithms and applications. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 72 (2024), 2, S. 77-79

Optimal control has been at the center of many pivotal developments in systems and control in the 20th century. This includes the twin breakthroughs of Richard E. Bellman’s Dynamic Programming and Lew S. Pontryagin’s Maximimum Principle as well as the optimality does not imply stability punchline by Rudolf E. Kalman. Likewise the dissipativity notion for open systems conceived by Jan C. Willems is deeply routed and closely linked to optimal control theory. Moreover, model predictive control can be regarded as an industrially impactful attempt to overcome the difficulties of analytic computation of feedback laws for constrained systems by numerical online computation. First formulations of receding-horizon ideas for optimal control can be traced back to the 1960s. With this pretext one might be tempted to conclude that contemporary research on optimal control is limited to applications. This special issue on optimal control with its particular focus on analysis, algorithms as well as applications falsifies any adhoc conclusion of this kind. Indeed, it combines different contributions which cover a wide array of topics – ranging from hydropower plants and bicycle dynamics to port-Hamiltonian formulations for adaptive structures, distributed predictive control, and moving horizon estimation. Hence, even without drawing upon the currently prevailing trends of data-driven and learning-based control – which also admit optimization-based research avenues – optimal control continues to be a supporting pillar of modern systems and control research with manifold prospects for fundamental analysis, performant algorithms, and challenging applications. Following the established structure of the journal the articles of this special issue are clustered into two categories – methods and applications.



https://doi.org/10.1515/auto-2023-0235
Schaller, Manuel; Zeller, Amelie; Böhm, Michael; Sawodny, Oliver; Tarín, Cristina; Worthmann, Karl
Energie-optimale Steuerung adaptiver Gebäude :
Energy-optimal control of adaptive structures. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 72 (2024), 2, S. 107-119

Adaptive structures are equipped with sensors and actuators to actively counteract external loads such as wind. This can significantly reduce resource consumption and emissions during the life cycle compared to conventional structures. A common approach for active damping is to derive a port-Hamiltonian model and to employ linear-quadratic control. However, the quadratic control penalization lacks physical interpretation and merely serves as a regularization term. Rather, we propose a controller, which achieves the goal of vibration damping while acting energy-optimal. Leveraging the port-Hamiltonian structure, we show that the optimal control is uniquely determined, even on singular arcs. Further, we prove a stable long-time behavior of optimal trajectories by means of a turnpike property. Last, the proposed controller’s efficiency is evaluated in a numerical study.



https://doi.org/10.1515/auto-2023-0090
Espuny Díaz, Alberto; Morris, Patrick; Perarnau, Guillem; Serra, Oriol
Speeding up random walk mixing by starting from a uniform vertex. - In: Electronic journal of probability, ISSN 1083-6489, Bd. 29 (2024), 26, S. 1-25

The theory of rapid mixing random walks plays a fundamental role in the study of modern randomised algorithms. Usually, the mixing time is measured with respect to the worst initial position. It is well known that the presence of bottlenecks in a graph hampers mixing and, in particular, starting inside a small bottleneck significantly slows down the diffusion of the walk in the first steps of the process. The average mixing time is defined to be the mixing time starting at a uniformly random vertex and hence is not sensitive to the slow diffusion caused by these bottlenecks. In this paper we provide a general framework to show logarithmic average mixing time for random walks on graphs with small bottlenecks. The framework is especially effective on certain families of random graphs with heterogeneous properties. We demonstrate its applicability on two random models for which the mixing time was known to be of order (log n)2, speeding up the mixing to order logn. First, in the context of smoothed analysis on connected graphs, we show logarithmic average mixing time for randomly perturbed graphs of bounded degeneracy. A particular instance is the Newman-Watts small-world model. Second, we show logarithmic average mixing time for supercritically percolated expander graphs. When the host graph is complete, this application gives an alternative proof that the average mixing time of the giant component in the supercritical Erd˝os-Rényi graph is logarithmic.



https://doi.org/10.1214/24-EJP1091
Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
Port-Hamiltonian systems’ modelling in electrical engineering. - In: Scientific computing in electrical engineering, (2024), S. 133-143

The port-Hamiltonian (pH) modelling framework allows for models that preserve essential physical properties such as energy conservation or dissipative inequalities. If all subsystems are modelled as pH systems and the inputs are related to the output in a linear manner, the overall system can be modelled as a pH system, too, which preserves the properties of the underlying subsystems. If the coupling is given by a skew-symmetric matrix, as usual in many applications, the overall system can be easily derived from the subsystems without the need of introducing dummy variables and therefore artificially increasing the complexity of the system. Hence the framework of pH systems is especially suitable for modelling multiphysical systems.



https://doi.org/10.1007/978-3-031-54517-7_15
Jaurigue, Lina; Lüdge, Kathy
Reducing reservoir computer hyperparameter dependence by external timescale tailoring. - In: Neuromorphic computing and engineering, ISSN 2634-4386, Bd. 4 (2024), 1, 014001, S. 1-16

Task specific hyperparameter tuning in reservoir computing is an open issue, and is of particular relevance for hardware implemented reservoirs. We investigate the influence of directly including externally controllable task specific timescales on the performance and hyperparameter sensitivity of reservoir computing approaches. We show that the need for hyperparameter optimisation can be reduced if timescales of the reservoir are tailored to the specific task. Our results are mainly relevant for temporal tasks requiring memory of past inputs, for example chaotic timeseries prediction. We consider various methods of including task specific timescales in the reservoir computing approach and demonstrate the universality of our message by looking at both time-multiplexed and spatially-multiplexed reservoir computing.



https://doi.org/10.1088/2634-4386/ad1d32
âCurgus, Branko; Derkach, Volodymyr; Trunk, Carsten
Indefinite Sturm-Liouville operators in polar form. - In: Integral equations and operator theory, ISSN 1420-8989, Bd. 96 (2024), 2, S. 1-58

https://doi.org/10.1007/s00020-023-02746-3
Drücker, Svenja; Lanza, Lukas; Berger, Thomas; Reis, Timo; Seifried, Robert
Experimental validation for the combination of funnel control with a feedforward control strategy. - In: Multibody system dynamics, ISSN 1573-272X, Bd. 0 (2024), 0, S. 1-19

Current engineering design trends, such as lightweight machines and human-machine interaction, often lead to underactuated systems. Output trajectory tracking of such systems is a challenging control problem. Here, we use a two-design-degree of freedom control approach by combining funnel feedback control with feedforward control based on servo-constraints. We present experimental results to verify the approach and demonstrate that the addition of a feedforward controller mitigates drawbacks of the funnel controller. We also present new experimental results for the real-time implementation of a feedforward controller based on servo-constraints on a minimum phase system.



https://doi.org/10.1007/s11044-024-09976-2
Yang, Hong; Huang, Yuanyong; Luo, Bifu; Xie, Zhongkai; Li, Di; Xu, Dongbo; Lei, Yong; Shi, Weidong
Infrared light dual excitation of Ni-phytate-sensitized ZnIn2S4 with sulfur vacancies for enhanced NIR-driven photocatalysis. - In: Chemical communications, ISSN 1364-548X, Bd. 60 (2024), 8, S. 1035-1038

Near-infrared (NIR) light accounts for about half of the solar spectrum, and the effective utilization of low-energy NIR light is an important but challenging task in the field of photocatalysis. Molecular semiconductor photocatalytic systems (MSPSs) are highly tunable, available and stable, and are considered to be one of the most promising ways to achieve efficient NIR hydrogen production. Here, we demonstrate efficient dual-excitation in MSPS consisting of ZnIn2S4−x (ZIS1−x) with sulfur vacancies and phytic acid nickel (PA-Ni), which differs from other NIR-responsive photosensitized systems. The system achieves a hydrogen evolution reaction (HER) of 119.85 μmol h−1 g−1 at λ > 800 nm illumination, which is an excellent performance among all reported NIR catalysts and even outperforms the noble metal catalysts when compared to the reported literature. The superior activity is attributed to the unique charge dynamics and higher carrier concentration of the system. This work demonstrates the potential of dual-excitation systems for efficient utilization of low-energy NIR light.



https://doi.org/10.1039/D3CC05089K
Wu, Zhijun; Sha, Mo; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Ordered anodic aluminum oxide-based nanostructures for surface-enhanced Raman scattering: a review. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 7 (2024), 1, S. 11-31

As a promising spectroscopic technique, surface enhanced raman spectroscopy (SERS) has been intensively used in bio/chemical sensing, attributing to its unique advantages of ultrasensitive and accurate detection of trace amounts of analytes, high specific fingerprint-like features, fast response, and noninvasive sensing. The robustness and consistency of SERS signals in practical analytical applications highly rely on the composition, structural morphology, and uniformity of SERS substrates. These factors play a pivotal role in determining the intensity and reproducibility of the detected signals. SERS substrates based on ordered nanostructures that are fabricated from anodic aluminum oxide (AAO)-template-assisted approaches are of significant interest due to their cost effectiveness, scalability, precise structural control, and exceptionally ordered features. In this review, recent progress in SERS substrates with high sensitivity and reproducibility prepared from AAO templates is highlighted. We emphasize the optimization strategies toward achieving efficient SERS-active substrates by fine-tuning the size, composition, and morphology of AAO-derived ordered nanostructures. Furthermore, we delve into the discussion of flexible and smart SERS substrates, while also exploring key aspects pertinent to further amplifying SERS signals. Overall, this review aims to offer insights into the future integration of the AAO templates technique with SERS, providing crucial perspectives for forthcoming research in this field.



https://doi.org/10.1021/acsanm.3c04652
Honecker, Maria Christine; Gernandt, Hannes; Wulff, Kai; Trunk, Carsten; Reger, Johann
Feedback rectifiable pairs and stabilization of switched linear systems. - In: Systems & control letters, ISSN 1872-7956, Bd. 186 (2024), 105755, S. 1-10

We address the feedback design problem for switched linear systems. In particular we aim to design a switched state-feedback such that the resulting closed-loop subsystems share the same eigenstructure. To this effect we formulate and analyse the feedback rectification problem for pairs of matrices. We present necessary and sufficient conditions for the feedback rectifiability of pairs for two subsystems and give a constructive procedure to design stabilizing state-feedback for a class of switched systems. In particular the proposed algorithm provides sets of eigenvalues and corresponding eigenvectors for the closed-loop subsystems that guarantee stability for arbitrary switching. Several examples illustrate the characteristics of the problem considered and the application of the proposed design procedure.



https://doi.org/10.1016/j.sysconle.2024.105755
Bohm, Sebastian; Runge, Erich
Efficient analytical evaluation of the singular BEM integrals for the three-dimensional Laplace and Stokes equations over polygonal elements. - In: Engineering analysis with boundary elements, ISSN 0955-7997, Bd. 161 (2024), S. 70-77

Singularities in the fundamental solutions pose a mathematical challenge for all applications of the boundary element method, if the source and field point lie on the same element. To avoid complex and error-prone numerical procedures, analytical solutions for the integrals that arise are desirable. In this work, easy and efficiently to implement analytical solutions are presented for the fundamental solutions of the three-dimensional Stokes equation as well as Laplace’s equation. Explicit expressions are derived for general triangular elements using constant shape functions. In addition, options for extending to arbitrary polygonal elements are shown. In particular, the three cases that the incenter, the centroid or the vertices of the triangles are used as source points for the calculation are addressed. The impressive numerical efficiency of the method is demonstrated by explicit examples.



https://doi.org/10.1016/j.enganabound.2024.01.013
Qiu, Jiajia; Duan, Yu; Li, Shaoyuan; Zhao, Huaping; Ma, Wenhui; Shi, Weidong; Lei, Yong
Insights into nano- and micro-structured scaffolds for advanced electrochemical energy storage. - In: Nano-Micro letters, ISSN 2150-5551, Bd. 16 (2024), 1, 130, S. 1-44

Adopting a nano- and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy storage devices at all technology readiness levels. Due to various challenging issues, especially limited stability, nano- and micro-structured (NMS) electrodes undergo fast electrochemical performance degradation. The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement, even though it only occupies complementary and facilitating components for the main mechanism. However, extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies. This review will aim at highlighting these NMS scaffold design strategies, summarizing their corresponding strengths and challenges, and thereby outlining the potential solutions to resolve these challenges, design principles, and key perspectives for future research in this field. Therefore, this review will be one of the earliest reviews from this viewpoint.



https://doi.org/10.1007/s40820-024-01341-4
Čindrak, Saud; Donvil, Brecht; Lüdge, Kathy; Jaurigue, Lina
Enhancing the performance of quantum reservoir computing and solving the time-complexity problem by artificial memory restriction. - In: Physical review research, ISSN 2643-1564, Bd. 6 (2024), 1, 013051, S. 013051-1-013051-11

We propose a scheme that can enhance the performance and reduce the computational cost of quantum reservoir computing. Quantum reservoir computing is a computing approach which aims at utilizing the complexity and high dimensionality of small quantum systems, together with the fast trainability of reservoir computing, in order to solve complex tasks. The suitability of quantum reservoir computing for solving temporal tasks is hindered by the collapse of the quantum system when measurements are made. This leads to the erasure of the memory of the reservoir. Hence, for every output, the entire input signal is needed to reinitialize the reservoir, leading to quadratic time complexity. Another critical issue for the hardware implementation of quantum reservoir computing is the need for an experimentally accessible means of tuning the nonlinearity of the quantum reservoir. We present an approach which addresses both of these issues. We propose artificially restricting the memory of the quantum reservoir by only using a small number inputs to reinitialize the reservoir after measurements are performed. This strongly influences the nonlinearity of the reservoir response due to the influence of the initial reservoir state, while also substantially reducing the number of quantum operations needed to perform time-series prediction tasks due to the linear rather than quadratic time complexity. The reinitialization length therefore provides an experimental accessible means of tuning the nonlinearity of the response of the reservoir, which can lead to significant task-specific performance improvement. We numerically study the linear and quadratic algorithms for a fully connected transverse Ising model and a quantum processor model.



https://doi.org/10.1103/PhysRevResearch.6.013051
Dong, Yulian; Huo, Jingyao; Xu, Changfan; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Research progress on vanadium sulfide anode materials for sodium and potassium-ion batteries. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. n/a (2024), n/a, 2301840, S. 1-28

Considering environmental changes and the demand for more sustainable energy sources, stricter requirements have been placed on electrode materials for sodium and potassium-ion batteries, which are expected to provide higher energy and power density while being affordable and sustainable. Vanadium sulfide-based materials have emerged as intriguing contenders for the next generation of anode materials due to their high theoretical capacity, abundant reserves, and cost-effectiveness. Despite these advantages, challenges such as limited cycle life and restricted ion diffusion coefficients continue to impede their effective application in sodium and potassium-ion batteries. To overcome the limitations associated with electrochemical performance and circumvent bottlenecks imposed by the inherent properties of materials at the bulk scale, this review comprehensively summarizes and analyzes the crystal structures, modification strategies, and energy storage processes of vanadium sulfide-based electrode materials for sodium and potassium-ion batteries. The objective is to guide the development of high-performance vanadium-based sulfide electrode materials with refined morphologies and/or structures, employing environmentally friendly and cost-efficient methods. Finally, future perspectives and research suggestions for vanadium sulfide-based materials are presented to propel practical applications forward.



https://doi.org/10.1002/admt.202301840
Küstner, Merle Johanna; Eckstein, Diana; Brauer, Dana; Mai, Patrick; Hampl, Jörg; Weise, Frank; Schuhmann, Berit; Hause, Gerd; Glahn, Felix; Foth, Heidi; Schober, Andreas
Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro. - In: Archives of toxicology, ISSN 1432-0738, Bd. 98 (2024), 4, S. 1061-1080

We present a novel lung aerosol exposure system named MALIES (modular air-liquid interface exposure system), which allows three-dimensional cultivation of lung epithelial cells in alveolar-like scaffolds (MatriGrids®) and exposure to nanoparticle aerosols. MALIES consists of multiple modular units for aerosol generation, and can be rapidly assembled and commissioned. The MALIES system was proven for its ability to reliably produce a dose-dependent toxicity in A549 cells using CuSO4 aerosol. Cytotoxic effects of BaSO4- and TiO2-nanoparticles were investigated using MALIES with the human lung tumor cell line A549 cultured at the air-liquid interface. Experiments with concentrations of up to 5.93 × 10^5 (BaSO4) and 1.49 × 10^6 (TiO2) particles/cm^3, resulting in deposited masses of up to 26.6 and 74.0 µg/cm^2 were performed using two identical aerosol exposure systems in two different laboratories. LDH, resazurin reduction and total glutathione were measured. A549 cells grown on MatriGrids® form a ZO-1- and E-Cadherin-positive epithelial barrier and produce mucin and surfactant protein. BaSO4-NP in a deposited mass of up to 26.6 µg/cm^2 resulted in mild, reversible damage (˜ 10% decrease in viability) to lung epithelium 24 h after exposure. TiO2-NP in a deposited mass of up to 74.0 µg/cm^2 did not induce any cytotoxicity in A549 cells 24 h and 72 h after exposure, with the exception of a 1.7 fold increase in the low exposure group in laboratory 1. These results are consistent with previous studies showing no significant damage to lung epithelium by short-term treatment with low concentrations of nanoscale BaSO4 and TiO2 in in vitro experiments.



https://doi.org/10.1007/s00204-023-03673-3
Koch, Juliane; Liborius, Lisa; Kleinschmidt, Peter; Prost, Werner; Weimann, Nils; Hannappel, Thomas
Impact of the tip-to-semiconductor contact in the electrical characterization of nanowires. - In: ACS omega, ISSN 2470-1343, Bd. 9 (2024), 5, S. 5788-5797

Well-defined semiconductor heterostructures are a basic requirement for the development of high-performance optoelectronic devices. In order to achieve the desired properties, a thorough study of the electrical behavior with a suitable spatial resolution is essential. For this, various sophisticated tip-based methods can be employed, such as conductive atomic force microscopy or multitip scanning tunneling microscopy (MT-STM). We demonstrate that in any tip-based measurement method, the tip-to-semiconductor contact is decisive for reliable and precise measurements and in interpreting the properties of the sample. For that, we used our ultrahigh-vacuum-based MT-STM coupled in vacuo to a reactor for the preparation of nanowires (NWs) with metal organic vapor phase epitaxy, and operated our MT-STM as a four-point nanoprober on III-V semiconductor NW heterostructures. We investigated a variety of upright, free-standing NWs with axial as well as coaxial heterostructures on the growth substrates. Our investigation reveals charging currents at the interface between the measuring tip and the semiconductor via native insulating oxide layers, which act as a metal-insulator-semiconductor capacitor with charging and discharging conditions in the operating voltage range. We analyze in detail the observed I-V characteristics and propose a strategy to achieve an optimized tip-to-semiconductor junction, which includes the influence of the native oxide layer on the overall electrical measurements. Our advanced experimental procedure enables a direct relation between the tip-to-NW junction and the electronic properties of as-grown (co)axial NWs providing precise guidance for all future tip-based investigations.



https://doi.org/10.1021/acsomega.3c08729
Horak, Iryna; Skaterna, Tetiana; Lugovskyi, Serhii; Krysiuk, Iryna; Tykhomyrov, Artem; Prylutska, Svitlana; Tverdokhleb, Nina; Senenko, Anton; Cherepanov, Vsevolod; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Prylutskyy, Yuriy
Antimetastatic lung cancer therapy using alkaloid Piperlongumine noncovalently bound to С60 fullerene. - In: Journal of drug delivery science and technology, Bd. 92 (2024), 105275, S. 1-10

A novel nanoformulation, C60 fullerene loaded with a plant alkaloid Piperlongumine (PL) molecules (C60-PL nanocomplex), as a potential drug for the treatment of highly metastatic lung cancer was created and characterized by using ultrasonic technology, computer simulation, atomic force and scanning tunneling microscopy. The aim of the study was to evaluate the antimetastatic potential of PL alone and the C60-PL nanocomplex using Lewis lung carcinoma (LLC) cell line as a model. Evidence has been obtained that the 2:1C60-PL nanocomplex is a potent agent capable of effectively reducing the survival, migration and invasion of LLC cells in vitro, as well as tumor growth and metastasis in vivo compared to free PL. These effects in cell behavior were shown to be associated with an increased Bax expression and high level of cleaved PARP confirming the proapototic potential of C60-PL nanocomplex as well as down-regulation of the mRNA of epithelial-mesenchymal transition regulator Twist1 and cancer stem cell marker CD44, a reduced level of phosphorylated mTOR and adaptor protein Ruk/CIN85. Histological analysis of the lung tissue of LLC-bearing mice showed that in animals that received the C60-PL nanocomplex, the regression of metastases prevailed over their growth. The obtained results allow to conclude that the proposed C60-PL nanocomplex represents a promising drug for the treatment of metastatic lung cancer.



https://doi.org/10.1016/j.jddst.2023.105275
Duan, Yu; Sun, Deen; Zhang, Sam; Wang, Shengyi; Qiu, Jiajia; Feng, Shuanglong
Multi-strategy coordination enables WSe2 to achieve high-performance real-world detection of NO2. - In: Sensors and actuators, ISSN 0925-4005, Bd. 403 (2024), 135183, S. 1-10

In recent years, WSe2 has become an ideal material for room-temperature NO2 gas sensing, but its low response and long response time limit its application. In this study, we combined multiple strategies of constructing a three-dimensional structure, introducing Se vacancies, Au nanoparticle sensitization, and 1 T/2 H-phase modulation. The synergistic effect was utilized to effectively enhance the gas adsorption, charge transfer degree, and carrier transport capacity of WSe2 and achieve high-performance NO2 detection. The prepared V-WAAP achieved high response (78.32%) with a short response time (33 s), and outstanding stability and selectivity for low concentration (1 ppm) NO2. The intrinsic factors of sensing performance improvement were comprehensively analyzed by combining the results of compositional and structural characterization. In addition, we verified its potential for practical applications by assembling a V-WAAP-based NO2 gas sensing equipment.



https://doi.org/10.1016/j.snb.2023.135183
Ran, Yan; Xu, Changfan; Ji, Deyang; Zhao, Huaping; Li, Liqiang; Lei, Yong
Research progress of transition metal compounds as bifunctional catalysts for zinc-air batteries. - In: Nano research energy, ISSN 2790-8119, Bd. 3 (2024), 1, e9120092, S. 1-23

Zinc-air batteries (ZABs) are widely studied because of their high theoretical energy density, high battery voltage, environmental protection, and low price. However, the slow kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on the air electrode limits the further application of ZABs, so that how to develop a cheap, efficient, and stable catalyst with bifunctional catalytic activity is the key to solving the development of ZABs. Transition metal compounds are widely used as cathode materials for ZABs due to their low cost, high electrocatalytic activity, and stable structure. This review summarizes the research progress of transition metal compounds as bifunctional catalysts for ZABs. The development history, operation principle, and mechanism of ORR and OER reactions are introduced first. The application and development of transition metal compounds as bifunctional catalysts for ZABs in recent years are systematically introduced, including transition metal oxides (TMOs), transition metal nitrides (TMNs), transition metal sulfides (TMSs), transition metal carbides (TMCs), transition metal phosphates (TMPs), and others. In addition, the shortcomings of transition metal compounds as bifunctional catalysts for ZABs were summarized and reasonable design strategies and improvement measures were put forward, aiming at providing a reference for the design and construction of high-performance ZABs cathode materials. Finally, the challenges and future in this field are discussed and prospected.



https://doi.org/10.26599/NRE.2023.9120092
Li, Qicong; Yue, Shizhong; Huang, Zhitao; Li, Chao; Sun, Jiaqian; Dong, Keqian; Wang, Zhijie; Liu, Kong; Qu, Shengchun; Lei, Yong
Dissociation of singlet excitons dominates photocurrent improvement in high-efficiency non-fullerene organic solar cells. - In: Nano research energy, ISSN 2790-8119, Bd. 3 (2024), 1, e9120099, S. 1-8

In organic solar cells, the singlet and triplet excitons dissociate into free charge carriers with different mechanisms due to their opposite spin state. Therefore, the ratio of the singlet and triplet excitons directly affects the photocurrent. Many methods were used to optimize the performance of the low-efficiency solar cell by improving the ratio of triplet excitons, which shows a long diffusion length. Here we observed that in high-efficiency systems, the proportion of singlet excitons under linearly polarized light excitation is higher than that of circularly polarized light. Since the singlet charge transfer state has lower binding energy than the triplet state, it makes a significant contribution to the charge carrier generation and enhancement of the photocurrent. Further, the positive magnetic field effect reflects that singlet excitons dissociation plays a major role in the photocurrent, which is opposite to the case of low-efficiency devices where triplet excitons dominate the photocurrent.



https://doi.org/10.26599/NRE.2023.9120099
Heri, Sebastian; Lieb, Julia; Rosenthal, Joachim
Self-dual convolutional codes. - In: IEEE transactions on information theory, Bd. 70 (2024), 2, S. 950-963

This paper investigates the concept of self-dual convolutional codes. We derive the basic properties of this interesting class of codes and we show how some of the techniques to construct self-dual linear block codes generalize to self-dual convolutional codes. As for self-dual linear block codes we are able to give a complete classification for some small parameters.



https://doi.org/10.1109/TIT.2023.3343108
Eichfelder, Gabriele; Quintana, Ernest
Set-based robust optimization of uncertain multiobjective problems via epigraphical reformulations. - In: European journal of operational research, ISSN 0377-2217, Bd. 313 (2024), 3, S. 871-882

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type set relation without sacrificing the compactness property of the image sets. This allows to apply vectorization results to characterize the optimal solutions of these set optimization problems as optimal solutions of a multiobjective optimization problem. We end up with multiobjective semi-infinite problems which can then be studied with classical techniques from the literature.



https://www.sciencedirect.com/science/article/pii/S0377221723007208/pdfft?md5=f5272f8643b0ce953294091001149d0f&pid=1-s2.0-S0377221723007208-main.pdf
Zheng, Yingshuang; Li, Huchao; Jiang, Ting; Jiao, Fei; Li, Jie; Lei, Yong; Tian, Guofeng; Bi, Jinshun; Xuan, Yundong; Li, Liqiang; Ji, Deyang; Hu, Wenping
Interfacial molecular screening of polyimide dielectric towards high-performance organic field-effect transistors. - In: Chinese chemical letters, ISSN 1878-5964, Bd. 35 (2024), 2, 108796

The compatibility of the gate dielectrics with semiconductors is vital for constructing efficient conducting channel for high charge transport. However, it is still a highly challenging mission to clearly clarify the relationship between the dielectric layers and the chemical structure of semiconductors, especially vacuum-deposited small molecules. Here, interfacial molecular screening of polyimide (Kapton) dielectric in organic field-effect transistors (OFETs) is comprehensively studied. It is found that the semiconducting small molecules with alkyl side chains prefer to form a high-quality charge transport layer on polyimide (PI) dielectrics compared with the molecules without alkyl side chains. On this basis, the fabricated transistors could reach the mobility of 1.2 cm2 V−1 s−1 the molecule with alkyl side chains on bare PI dielectric. What is more, the compatible semiconductor and dielectric would further produce a low activation energy (EA) of 3.01 meV towards efficient charge transport even at low temperature (e.g., 100K, 0.9 cm2 V−1 s−1). Our research provides a guiding scheme for the construction of high-performance thin-film field-effect transistors based on PI dielectric layer at room and low temperatures.



https://doi.org/10.1016/j.cclet.2023.108796
Kröger, Jörg; Uchihashi, Takashi
Electron spin finds a fresh excitation. - In: Nature physics, ISSN 1745-2481, Bd. 20 (2024), 1, S. 4-5

The Kondo effect - the screening of an impurity spin by conduction electrons - is a fundamental many-body effect. However, recent experiments combined with simulations have caused a long-standing model system for the single-atom Kondo effect to fail.



https://doi.org/10.1038/s41567-023-02265-3
Böhme, Thomas; Harant, Jochen; Kriesell, Matthias; Mohr, Samuel; Schmidt, Jens M.
Rooted minors and locally spanning subgraphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 105 (2024), 2, S. 209-229

Results on the existence of various types of spanning subgraphs of graphs are milestones in structural graph theory and have been diversified in several directions. In the present paper, we consider “local” versions of such statements. In 1966, for instance, D. W. Barnette proved that a 3-connected planar graph contains a spanning tree of maximum degree at most 3. A local translation of this statement is that if G is a planar graph, X is a subset of specified vertices of G such that X cannot be separated in G by removing two or fewer vertices of G, then G has a tree of maximum degree at most 3 containing all vertices of X. Our results constitute a general machinery for strengthening statements about k-connected graphs (for 1 ≤ k ≤ 4) to locally spanning versions, that is, subgraphs containing a set X ⊆ V (G) of a (not necessarily planar) graph G in which only X has high connectedness. Given a graph G and X ⊆ V (G), we say M is a minor of G rooted at X, if M is a minor of G such that each bag of M contains at most one vertex of X and X is a subset of the union of all bags. We show that G has a highly connected minor rooted at X if X ⊆ V (G) cannot be separated in G by removing a few vertices of G. Combining these investigations and the theory of Tutte paths in the planar case yields locally spanning versions of six well-known results about degree-bounded trees, Hamiltonian paths and cycles, and 2-connected subgraphs of graphs.



https://doi.org/10.1002/jgt.23012
Beddig, Rebekka S.; Benner, Peter; Dorschky, Ines; Reis, Timo; Schwerdtner, Paul; Voigt, Matthias; Werner, Steffen W. R.
Structure-preserving model reduction for dissipative mechanical systems. - In: Calm, smooth and smart, (2024), S. 209-230

Suppressing vibrations in mechanical systems, usually described by second-order dynamical models, is a challenging task in mechanical engineering in terms of computational resources even nowadays. One remedy is structure-preserving model order reduction to construct easy-to-evaluate surrogates for the original dynamical system having the same structure. In our work, we present an overview of recently developed structure-preserving model reduction methods for second-order systems. These methods are based on modal and balanced truncation in different variants, as well as on rational interpolation. Numerical examples are used to illustrate the effectiveness of all described methods.



https://doi.org/10.1007/978-3-031-36143-2_11
Espuny Díaz, Alberto; Janzer, Barnabás; Kronenberg, Gal; Lada, Joanna
Long running times for hypergraph bootstrap percolation. - In: European journal of combinatorics, Bd. 115 (2024), 103783, S. 1-18

Consider the hypergraph bootstrap percolation process in which, given a fixed r-uniform hypergraph H and starting with a given hypergraph G0, at each step we add to G0 all edges that create a new copy of H. We are interested in maximising the number of steps that this process takes before it stabilises. For the case where H = Kr+1(r) with r ≥ 3, we provide a new construction for G0 that shows that the number of steps of this process can be of order Θ (nr). This answers a recent question of Noel and Ranganathan. To demonstrate that different running times can occur, we also prove that, if H is K4(3) minus an edge, then the maximum possible running time is 2n − ⌊log2(n−2)⌋ − 6. However, if H is K5(3) minus an edge, then the process can run for Θ (n3) steps.



https://doi.org/10.1016/j.ejc.2023.103783
Eichfelder, Gabriele; Stein, Oliver
Limit sets in global multiobjective optimization. - In: Optimization, ISSN 1029-4945, Bd. 73 (2024), 1, S. 1-27

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein [A general branch-and-bound framework for continuous global multiobjective optimization. J Glob Optim. 2021;80:195-227], we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the terminal provisional nondominated set approximate the nondominated set when the termination accuracy is driven to zero. Our convergence analysis of the enclosures relies on constructions from the above paper, but is self-contained and also covers the mixed-integer case. The analysis for the provisional nondominated set is based on general convergence properties of the epsilon-nondominated set, and hence it is also applicable to other algorithms which generate such points. Furthermore, we discuss post-processing steps for the terminal enclosure and provide numerical illustrations for the cases of two and three objective functions.



https://doi.org/10.1080/02331934.2022.2092479
Grebinyk, Anna; Prylutska, Svitlana; Grebinyk, Sergii; Prylutskyy, Yuriy; Ritter, Uwe; Matyshevska, Olga; Dandekar, Thomas; Frohme, Marcus
Toward photodynamic cancer chemotherapy with C60-Doxorubicin nanocomplexes. - In: Nanomaterials for photodynamics therapy, (2023), S. 489-522

Recent progress in nanotechnology has attracted interest to a biomedical application of the carbon nanoparticle C60 fullerene (C60) due to its unique structure and versatile biological activity. The dual functionality of C60 as a photosensitizer and a drug nanocarrier sets an opportunity to improve the efficiency of chemotherapeutic drugs for cancer cells. Pristine C60 demonstrates time-dependent accumulation with predominant mitochondrial localization in cancer cells. Nanomolar amounts of C60-drug nanocomplexes in 1:1 and 2:1 molar ratios improve the efficiency of cell treatment, complementing it with photodynamic approach. The cooperative enhancement interactions between mechanisms of chemo- and photodynamic therapies contribute to the obtained synergistic effect (namely “1+1>2”). A strong synergy of treatments arising from the combination of C60-mediated drug delivery and C60 photoexcitation indicates that a combination of chemo- and photodynamic treatments with C60-drug nanoformulations could provide a promising synergetic approach for cancer treatment.



https://doi.org/10.1016/B978-0-323-85595-2.00005-0
Lüdge, Kathy;
Photonic reservoir computing for energy efficient and versatile machine learning application. - In: Proceedings of the Royal Society of Victoria, Bd. 135 (2023), 2, S. 38-40

Time-multiplexed reservoir computing is a machine learning concept which can be realised in photonic hardware systems using only one physical node. The concept can be used for various problems, ranging from classification problems to time-series prediction tasks, while being fast and energy efficient. Here, a theoretical analysis of a reservoir computer realised via delay-coupled semiconductor lasers is presented and the role of the internal system time-scales and the bifurcation structure is discussed. It is further shown that optimal performance can be reached by tailoring the coupling delays to the specific memory requirements of the given task.



https://doi.org/10.1071/rs23006
Jaster, Jonas; Dreßler, Elias; Geitner, Robert; Groß, Gregor Alexander
Synthesis and spectroscopic characterization of furan-2-carbaldehyde-d. - In: Molbank, ISSN 1422-8599, Bd. 2023 (2023), 2, M1654, S. 1-9

Here, we present a protocol for the one-step synthesis of the title compound in quantitative yield using adapted Vilsmeier conditions. The product was characterized by 1H-,2H-,13C-NMR-, as well as IR and Raman spectroscopy. Spectral data are given in detail.



https://doi.org/10.3390/M1654
Eckstein, Daniel; Schumann, Berit; Glahn, Felix; Krings, Oliver; Schober, Andreas; Foth, Heidi
Comparison of a 3D co-culture and a mini organ culture by testing barium sulphate and titanium dioxide nanoparticle aerosols. - In: Naunyn-Schmiedeberg's archives of pharmacology, ISSN 1432-1912, Bd. 396 (2023), 1, P055, S. S37

https://doi.org/10.1007/s00210-023-02397-6
Goor, Pieter; vanMahony, Robert; Schaller, Manuel; Worthmann, Karl
Reprojection methods for Koopman-based modelling and prediction. - In: IEEE Xplore digital library, ISSN 2473-2001, (2023), S. 315-321

Extended Dynamic Mode Decomposition (eDMD) is a powerful tool to generate data-driven surrogate models for the prediction and control of nonlinear dynamical systems in the Koopman framework. In eDMD a compression of the lifted system dynamics on the space spanned by finitely many observables is computed, in which the original space is embedded as a low-dimensional manifold. While this manifold is invariant for the infinite-dimensional Koopman operator, this invariance is typically not preserved for its eDMD-based approximation. Hence, an additional (re-)projection step is often tacitly incorporated to improve the prediction capability. We propose a novel framework for consistent reprojectors respecting the underlying manifold structure. Further, we present a new geometric reprojector based on maximum-likelihood arguments, which significantly enhances the approximation accuracy and preserves known finite-data error bounds.



https://doi.org/10.1109/CDC49753.2023.10383796
Yeo, Yi Lin; Kirlangic, Mehmet Eylem; Heyder, Stefan; Supriyanto, Eko; Mohamad Salim, Maheza I.; Fiedler, Patrique; Haueisen, Jens
Linear versus quadratic detrending in analyzing simultaneous changes in DC-EEG and transcutaneous pCO2. - In: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Conference (EMBC), (2023), insges. 4 S.

Physiological direct current (DC) potential shifts in electroencephalography (EEG) can be masked by artifacts such as slow electrode drifts. To reduce the influence of these artifacts, linear detrending has been proposed as a pre-processing step. We considered quadratic detrending, which has hardly been addressed for ultralow frequency components in EEG. We compared the performance of linear and quadratic detrending in simultaneously acquired DC-EEG and transcutaneous partial pressure of carbon dioxide during two activation methods: hyperventilation (HV) and apnea (AP). Quadratic detrending performed significantly better than linear detrending in HV, while for AP, our analysis was inconclusive with no statistical significance. We conclude that quadratic detrending should be considered for DC-EEG preprocessing.



https://doi.org/10.1109/EMBC40787.2023.10340855
Berger, Thomas; Lanza, Lukas
Funnel control of linear systems with arbitrary relative degree under output measurement losses. - In: IMA journal of mathematical control and information, ISSN 1471-6887, Bd. 40 (2023), 4, S. 691-713

We consider tracking control of linear minimum phase systems with known arbitrary relative degree which are subject to possible output measurement losses. We provide a control law which guarantees the evolution of the tracking error within a (shifted) prescribed performance funnel whenever the output signal is available. The result requires a maximal duration of measurement losses and a minimal time of measurement availability, which both strongly depend on the internal dynamics of the system, and are derived explicitly. The controller is illustrated by a simulation of a mass-on-car system.



https://doi.org/10.1093/imamci/dnad029
Schmitz, Philipp; Lanza, Lukas; Worthmann, Karl
Safe data-driven reference tracking with prescribed performance. - In: 2023 27th International Conference on System Theory, Control and Computing (ICSTCC), (2023), S. 454-460
ISBN 979-8-3503-3798-3

We study output reference tracking for unknown continuous-time systems with arbitrary relative degree. The control objective is to keep the tracking error within predefined time-varying bounds while measurement data is only available at discrete sampling times. To achieve the control objective, we propose a two-component controller. One part is a recently developed sampled-data zero-order hold controller, which achieves reference tracking within prescribed error bounds. To further improve the control signal, we explore the system dynamics via input-output data, and include as the second component a data-driven MPC scheme based on Willems et al.’s fundamental lemma. This combination yields significantly improved input signals as illustrated by a numerical example.



https://doi.org/10.1109/ICSTCC59206.2023.10308521
Mühlnickel, Lukas; Jaurigue, Lina; Lüdge, Kathy
Delay-based reservoir computing with spin-VCSELs: interplay between internal dynamics and performance. - In: 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), (2023), insges. 1 S.

Machine learning setups that are able to process data in the optical domain are ideal for on -chip hardware implementations [1]. Due to the fact that the training of hardware based solutions is complicated, a delay-based reservoir computing (RC) realization, where only the output weights need to be trained via linear regression, is very promising [2]. In this paper we investigate vertical cavity surface emitting laser with two mode emission (spin-VCSEL) as the nonlinear node for a delay-based RC setup. These lasers have the ability to exibit reprodicible and high speed dynamics [3] and are thus ideal candidates to increase the data injection rates which are limited by the clocktime [4], [5]. The focus of our numerical investigations is on the interplay between the internal charge carrier dynamics of the spin-VCSEL and its performance when operated in a delay-based RC setup with optically-injected phase-modulated data injection.



https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232555
Bohm, Sebastian; Grunert, Malte; Schwarz, Felix; Runge, Erich; Wang, Dong; Schaaf, Peter; Chimeh, Abbas; Lienau, Christoph
Gold nanosponges: fascinating optical properties of a unique disorder-dominated system. - In: Journal of the Optical Society of America, ISSN 1520-8540, Bd. 40 (2023), 6, S. 1491-1509

Nanoporous gold is a three-dimensional bulk material that is percolated with a random network of nanometer-sized ligaments and made by selective corrosion of bimetallic alloys. It has intriguing geometric, catalytic, and optical properties that have fascinated scientists for many decades. When such a material is made into the form of small, 100-nm-sized particles, so-called nanosponges emerge that offer much flexibility in controlling their geometric, electronic, and optical properties. Importantly, these particles act as an antenna for light that can efficiently localize optical fields on a deep subwavelength scale in certain hotspots at the particle surface. This makes such nanosponges an interesting platform for plasmonic sensing, photocatalysis, and surface-enhanced Raman spectroscopy. Since the optical properties of these nanosponges can be controlled to a large degree by tuning their geometry and/or composition, they have attracted increasing attention in recent years. Here, we provide a concise overview of the current state of the art in this field, covering their fabrication, computational modeling, and specifically the linear and nonlinear optical properties of individual and hybrid nanosponges, for example, plasmon localization in randomly disordered hotspots with a size <10 nm and a long lifetime with an exceptionally high Purcell factor. The resulting nonlinear optical and photoemission properties are discussed for individual and hybrid nanosponges. The results presented have strong implications for further applications of such nanosponges in photonics and photocatalysis.



https://doi.org/10.1364/JOSAB.479739
Bui, Van-Chien; Nguyen, Thi-Huong
Mechanics of leukemic T-cell. - In: Journal of molecular recognition, ISSN 1099-1352, Bd. 36 (2023), 7, e3019, S. 1-7

Cell mechanics is a factor that determines cell growth, migration, proliferation, or differentiation, as well as trafficking inside the cytoplasm and organization of organelles. Knowledge about cell mechanics is critical to gaining insight into these biological processes. Here, we used atomic force microscopy to examine the elasticity, an important parameter of cell mechanics, of non-adherent Jurkat leukemic T-cells in both interphase and mitotic phases. We found that the elasticity of an individual cell does not significantly change at interphase. When a cell starts to divide, its elasticity increases in the transition from metaphase to telophase during normal division while the cell is stiffened right after it enters mitosis during abnormal division. At the end of the division, the cell elasticity gradually returned to the value of the mother cell. These changes may originate from the changes in cell surface tension during modulating actomyosin at the cleavage furrow, redistributing cell organelles, and constricting the contractile ring to sever mother cell to form daughters. The difference in elasticity patterns suggests that there is a discrepancy in the redistribution of the cell organelles during normal and abnormal division.



https://doi.org/10.1002/jmr.3019
Nguyen, Thi-Huong; Wang, Hanqing; Chen, Li-Yu; Echtermeyer, Danny; Pliquett, Uwe
Modulating SARS-CoV-2 spike protein reactivity through moderate electric fields: a pathway to innovative therapies. - In: ACS omega, ISSN 2470-1343, Bd. 8 (2023), 48, S. 45952-45960

In the quest for effective COVID-19 treatments and vaccines, traditional biochemical methods have been paramount, yet the challenge of accommodating diverse viral mutants persists. Recent simulations propose an innovative physical strategy involving an external electric field applied to the SARS-CoV-2 spike protein, demonstrating a reduced viral binding potential. However, limited empirical knowledge exists regarding the characteristics of the spike protein after E-field treatment. Our study addresses this gap by employing diverse analytical techniques to elucidate the impact of low/moderate E-field intensity on the binding of the SARS-CoV-2 spike protein to the ACE2 receptor. Through comprehensive analysis, we unveil a substantial reduction in the spike protein binding capacity validated via enzyme-linked immunosorbent assay and quartz crystal microbalance experiments. Remarkably, the E-field exposure induces significant protein structure rearrangement, leading to an enhanced negative surface zeta potential confirmed by dynamic light scattering. Circular dichroism spectroscopy corroborates these structural changes, showing alterations in the secondary protein structures. This study provides insights into SARS-CoV-2 spike protein modification under an E-field pulse, potentially paving the way for nonbiochemical strategies to mitigate viral reactivity and opening avenues for innovative therapeutic and preventive approaches against COVID-19 and its evolving variants.



https://doi.org/10.1021/acsomega.3c06811
Baragaña, Itziar; Martínez Pería, Francisco; Roca, Alicia; Trunk, Carsten
The rank-one perturbation problem for linear relations. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (29 Seiten). - (Preprint ; M23,12)

We use the recently introduced Weyr characteristic of linear relations in Cn and its relation with the Kronecker canonical form of matrix pencils to describe their dimension. Then, this is applied to study one-dimensional perturbations of linear relations.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200305
Khlif, Hassen; Trunk, Carsten; Wilson, Mitsuru
On the essential spectrum of operator pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (9 Seiten). - (Preprint ; M23,11)

For a closed densely defined linear operator A and a bounded linear operator B on a Banach space X whose essential spectrums are contained in disjoint sectors, we show that the essential spectrum of the associated operator pencil λA + B is contained in a sector of the complex plane whose boundaries are determined purely by the angles that define the two sectors, which contain the essential spectrums of A and B.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200291
Hack, Jasmin; Jordan, Moritz; Schmitt, Alina; Raru, Melissa; Zorn, Hannes Sönke; Seyfarth, Alex; Eulenberger, Isabel; Geitner, Robert
Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts. - In: Journal of cheminformatics, ISSN 1758-2946, Bd. 15 (2023), 122, S. 1-12

This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations.



https://doi.org/10.1186/s13321-023-00792-y
Brockhaus, Elisabeth K.; Wolffram, Daniel; Stadler, Tanja; Osthege, Michael; Mitra, Tanmay; Littek, Jonas M.; Krymova, Ekaterina; Klesen, Anna J.; Huisman, Jana S.; Heyder, Stefan; Helleckes, Laura M.; Heiden, Matthias; Funk, Sebastian; Abbott, Sam; Bracher, Johannes
Why are different estimates of the effective reproductive number so different? : a case study on COVID-19 in Germany. - In: PLoS Computational Biology, ISSN 1553-7358, Bd. 19 (2023), 11, e1011653, S. 1-27

The effective reproductive number Rt has taken a central role in the scientific, political, and public discussion during the COVID-19 pandemic, with numerous real-time estimates of this quantity routinely published. Disagreement between estimates can be substantial and may lead to confusion among decision-makers and the general public. In this work, we compare different estimates of the national-level effective reproductive number of COVID-19 in Germany in 2020 and 2021. We consider the agreement between estimates from the same method but published at different time points (within-method agreement) as well as retrospective agreement across eight different approaches (between-method agreement). Concerning the former, estimates from some methods are very stable over time and hardly subject to revisions, while others display considerable fluctuations. To evaluate between-method agreement, we reproduce the estimates generated by different groups using a variety of statistical approaches, standardizing analytical choices to assess how they contribute to the observed disagreement. These analytical choices include the data source, data pre-processing, assumed generation time distribution, statistical tuning parameters, and various delay distributions. We find that in practice, these auxiliary choices in the estimation of Rt may affect results at least as strongly as the selection of the statistical approach. They should thus be communicated transparently along with the estimates.



https://doi.org/10.1371/journal.pcbi.1011653
Zhang, Da; Zhang, Kaiwen; Xie, Zhipeng; Xu, Bowen; Hou, Minjie; Lei, Yong; Watanabe, Takayuki; Yang, Bin; Liang, Feng
Intrinsic properties affecting the catalytic activity toward oxygen reduction reaction of nanostructured transition metal nitrides as catalysts for hybrid Na-air batteries. - In: Materials, ISSN 1996-1944, Bd. 16 (2023), 23, 7469, S. 1-13

Nanostructured transition metal nitrides (TMNs) have been considered as a promising substitute for precious metal catalysts toward ORR due to their multi-electron orbitals, metallic properties, and low cost. To design TMN catalysts with high catalytic activity toward ORR, the intrinsic features of the influencing factor on the catalytic activity toward ORR of nanostructured TMNs need to be investigated. In this paper, titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (HfN) nanoparticles (NPs) are highly efficient and synthesized in one step by the direct current arc plasma. TiN, ZrN, and HfN NPs with an oxidation layer are applied as the catalysts of hybrid sodium-air batteries (HSABs). The effect of the composition and structural attributes of TMNs on ORR catalysis is defined as follows: (i) composition effect. With the increase in the oxygen content, the catalytic ORR capability of TMNs decreases progressively due to the reduction in oxygen adsorption capacity; (ii) structure effect. The redistribution of the density of states (DOS) of ZrN indicates higher ORR activity than TiN and HfN. HSABs with ZrN exhibit an excellent cyclic stability up to 137 cycles (about 140 h), an outstanding rate performance, and a specific capacity of 2817 mAh&hahog;g−1 at 1.0 mA&hahog;cm−2.



https://doi.org/10.3390/ma16237469
Hoffmann, Matthias K.; Esterhuizen, Willem; Worthmann, Karl; Flaßkamp, Kathrin
Path planning for concentric tube robots: a toolchain with application to stereotactic neurosurgery. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 56 (2023), 2, S. 2871-2876

We present a toolchain for solving path planning problems for concentric tube robots through obstacle fields. First, ellipsoidal sets representing the target area and obstacles are constructed from labelled point clouds. Then, the nonlinear and highly nonconvex optimal control problem is solved by introducing a homotopy on the obstacle positions where at one extreme of the parameter the obstacles are removed from the operating space, and at the other extreme they are located at their intended positions. We present a detailed example (with more than a thousand obstacles) from stereotactic neurosurgery with real-world data obtained from labelled MRI scans.



https://doi.org/10.1016/j.ifacol.2023.10.1403
Schaller, Manuel; Worthmann, Karl; Philipp, Friedrich; Peitz, Sebastian; Nüske, Feliks
Towards reliable data-based optimal and predictive control using extended DMD. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 56 (2023), 1, S. 169-174

While Koopman-based techniques like extended Dynamic Mode Decomposition are nowadays ubiquitous in the data-driven approximation of dynamical systems, quantitative error estimates were only recently established. To this end, both sources of error resulting from a finite dictionary and only finitely-many data points in the generation of the surrogate model have to be taken into account. We generalize the rigorous analysis of the approximation error to the control setting while simultaneously reducing the impact of the curse of dimensionality by using a recently proposed bilinear approach. In particular, we establish uniform bounds on the approximation error of state-dependent quantities like constraints or a performance index enabling data-based optimal and predictive control with guarantees.



https://doi.org/10.1016/j.ifacol.2023.02.029
Maschke, Bernhard; Kirchhoff, Jonas
Port maps of Irreversible Port Hamiltonian Systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 56 (2023), 2, S. 6796-6800

Irreversible Port Hamiltonian Systems are a deviation from Port Hamiltonian Systems which embeds the definition of the irreversible phenomena taking place in the system. They are defined with respect to a quasi-Poisson bracket which ensures the positiveness of the entropy generation and is expressed in terms of the total entropy of the system. The port maps, however, associated with the conjugated port variables, were poorly justified and lacked any physical characterization. In this paper, we suggest a novel definition of the port maps which allows to recover not only the energy balance equation (when the Hamiltonian equals the total energy of the system) but also a entropy balance equation including the irreversible entropy creation term at the interface (the port) of the system in addition to the entropy creation term due to internal irreversible phenomena.



https://doi.org/10.1016/j.ifacol.2023.10.388
Kirchhoff, Jonas; Maschke, Bernhard
On the generating functions of irreversible port-Hamiltonian systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 56 (2023), 2, S. 10447-10452

We study the geometric structure of the drift dynamics of Irreversible port-Hamiltonian systems. This drift dynamics is defined with respect to a product of Poisson brackets, reflecting the interconnection structure and the constitutive relations of the irreversible phenomena occuring in the system. We characterise this product of Poisson brackets using a covariant 4-tensor and an associated function. We derive various conditions for which this 4-tensor and the associated function may be reduced to a product of almost Poisson brackets.



https://doi.org/10.1016/j.ifacol.2023.10.1061
Radivoievych, Aleksandar; Prylutska, Svitlana; Zolk, Oliver; Ritter, Uwe; Frohme, Marcus; Grebinyk, Anna
Comparison of sonodynamic treatment set-ups for cancer cells with organic sonosensitizers and nanosonosensitizers. - In: Pharmaceutics, ISSN 1999-4923, Bd. 15 (2023), 11, 2616, S. 1-21

Cancer sonodynamic therapy (SDT) is the therapeutic strategy of a high-frequency ultrasound (US) combined with a special sonosensitizer that becomes cytotoxic upon US exposure. The growing number of newly discovered sonosensitizers and custom US in vitro treatment solutions push the SDT field into a need for systemic studies and reproducible in vitro experimental set-ups. In the current research, we aimed to compare two of the most used and suitable SDT in vitro set-ups - “sealed well” and “transducer in well” - in one systematic study. We assessed US pressure, intensity, and temperature distribution in wells under US irradiation. Treatment efficacy was evaluated for both set-ups towards cancer cell lines of different origins, treated with two promising sonosensitizer candidates - carbon nanoparticle C60 fullerene (C60) and herbal alkaloid berberine. C60 was found to exhibit higher sonotoxicity toward cancer cells than berberine. The higher efficacy of sonodynamic treatment with a “transducer in well” set-up than a “sealed well” set-up underlined its promising application for SDT in vitro studies. The “transducer in well” set-up is recommended for in vitro US treatment investigations based on its US-field homogeneity and pronounced cellular effects. Moreover, SDT with C60 and berberine could be exploited as a promising combinative approach for cancer treatment.



https://doi.org/10.3390/pharmaceutics15112616
Huang, Tianbai; Kupfer, Stephan; Geitner, Robert; Gräfe, Stefanie
Computational modelling and mechanistic insight into light-driven CO dissociation of square-planar rhodium(I) complexes. - In: ChemPhotoChem, ISSN 2367-0932, Bd. n/a (2023), n/a, e202300219, S. 1-28

The activation step of Vaska-type Rh(I) complexes, such as the photocleavage of the Rh‑CO bond, plays an important role in the subsequent C-H activation. To elucidate the details of the photochemistry of Vaska-type Rh(I) complexes, such as trans-Rh(PMe3)2(CO)(Cl), we here present a computationally derived picture as obtained at the density functional level of theory (DFT) in combination with multireference wavefunction-based methods. We have identified that the photocleavage of CO proceeds via the metal-centered excited state, which is populated through intersystem crossing (ISC) from the dipole-allowed excited state S1. Moreover, the present study unraveled the reasons for the low C-H activation efficiency when using Rh featuring the bidentate ligand 1,2-bis(dimethylphosphino)ethane (dmpe), namely due to its unfavorable photochemical properties, i.e., the small driving force for light-induced CO loss and the fast deactivation of 3MC state back to the singlet ground state. In this study, we provide theoretical insight into mechanistic details underlying the light-induced CO dissociation process, for Rh complexes featuring PMe3 and dmpe ligands.



https://doi.org/10.1002/cptc.202300219
Calderón, Jesús A.; Barriga Gamarra, Eliseo Benjamin; Tafur Sotelo, Julio C.; Lozano Jauregui, John Hugo; Lozano Núñez, Hugo; Iglesias León, José
Wireless intelligent sensors based in nanostructures with energy self-sufficiency to study the consequences of high temperatures in combustion motors. - In: Engineering for a changing world, (2023), 1.3.073, S. 1-18

In this research are proposed the consequences of high temperatures in Internal Combustion Motors (ICM) as correlation of its performance according to give information of the ICM fault detector, which also can be useful for preventive maintenance. It was possible to achieve the proposed target because of it was designed a smart sensor based in nanostructures prepared over Anodic Aluminum Oxide (AAO) samples, which proportionated short response time and high robustness in the measurement tasks of the smart sensor, as well as, the designed sensor has the possibility to work by energy self-sufficiency and sending the measurement data to external users by wireless. In fact, it is waited that this research could be a support for researchers of ICM enhancement, who could look for new techniques of environment conditions cares in compensation to keep the balance between the useful energy obtained from ICM and the environment conditions, where are developed economical activities such as public transport or mining in Peru.



https://doi.org/10.22032/dbt.58731
Soter, Marcus; Apte, Gurunath; Madkatte, Dikshita; Nguyen, Thi-Huong
Insights into the writing process of the mask-free nanoprinting fluid force microscopy technology. - In: Engineering for a changing world, (2023), 1.2.118, S. 1-13

Platelets are activated immediately when contacting with non-physiological surfaces. Minimization of surface-induced platelet activation is important not only for platelet storage but also for other blood-contacting devices and implants. Chemical surface modification tunes the response of cells to contacting surfaces, but it requires a long process involving many regulatory challenges to transfer into a marketable product. Biophysical modification overcomes these limitations by modifying only the surface topography of already approved materials. The available large and random structures on platelet storage bags do not cause a significant impact on platelets because of their smallest size (only 1-3 μm) compared to other cells. We have recently demonstrated the feasibility of the mask-free nanoprint fluid force microscope (FluidFM) technology for writing dot-grid and hexanol structures. Here, we demonstrated that the technique allows the fabrication of nanostructures of varying features. Characteristics of nanostructures including height, width, and cross-line were analyzed and compared using atomic force microscopy imaging. Based on the results, we identified several technical issues, such as the printing direction and shape of structures that directly altered nanofeatures during printing. We confirmed that FluidFM is a powerful technique to precisely fabricate a variety of desired nanostructures for the development of platelet/blood-contacting devices if technical issues during printing are well controlled.



https://doi.org/10.22032/dbt.58725
Schima, Maximilian; Glock, Matthias; Berger, Frank; Köpf, Hendrik-Christian; Holbe, Stefan; Kaiser, Julian
Analysis of the influence of magnetic blowing field alignments on the DC switching arc :
Analyse des Einflusses magnetischer Blasfeldanordnungen auf den DC-Schaltlichtbogen. - In: Kontaktverhalten und Schalten, (2023), S. 51-60

Kröger, Jörg; Néel, Nicolas; Crampin, Simon
Quantum confinement of electrons at metal surfaces. - In: Materials lab, ISSN 2653-4878, Bd. 2 (2023), 3, 230006, S. 1-11

Scanning tunneling microscopy and spectroscopy experiments on surface-localized electron states confined to nanometer-scaled resonators are reviewed from the first observations to the recently discovered novel reflection mechanism of electron de Broglie waves. The focus of the presented work is on lateral confinement and on processes leading to finite decay rates of the confined states.



https://doi.org/10.54227/mlab.20230006
Amann, Silas; Kucska, Nóra; Lászlóffy, András; Néel, Nicolas; Újfalussy, Balázs; Rózsa, Levente; Palotás, Krisztián; Kröger, Jörg
Magnetic bound states of iron clusters on a superconductor. - In: Physical review, ISSN 2469-9969, Bd. 108 (2023), 19, 195403, S. 195403-1-195403-13

The magnetic exchange interaction of Fen (n = 1, 2, 3) clusters with the quasiparticles of superconducting Pb(111) is probed by scanning tunneling spectroscopy of Yu-Shiba-Rusinov states. The spectral weight of the Yu-Shiba-Rusinov resonances is shifted from the coherence peaks in the Fe monomer spectrum towards the Fermi energy in the Fe dimer spectrum. Unexpectedly, the linear Fe trimer does not follow this trend, as it exhibits an almost identical spectrum to the single Fe atom. Kinked Fe trimers where one of the end atoms deviates from the linear orientation, in contrast, show strong Yu-Shiba-Rusinov resonances well within the Bardeen-Cooper-Schrieffer energy gap of the substrate. First-principles simulations of the Yu-Shiba-Rusinov states reveal which adsorption geometries and magnetic structures of the clusters can reproduce the experimental spectra most accurately.



https://doi.org/10.1103/PhysRevB.108.195403
Witt, Michael; Papmahl, Eric; Genov, Ivan; Dimitrova, Anna; Gabryelczyk, Agnieszka; Krischok, Stefan; Lota, Grzegorz; Ivanov, Svetlozar
In-situ electrogravimetric detection of the cathodic process during the galvanic coupling between lithium and copper. - In: Electrochimica acta, ISSN 1873-3859, Bd. 463 (2023), 142853

With the development of the energy system transformation the quality and efficiency of the rechargeable batteries, particularly the Li ion technology, gain major importance. In spite of the enormous advances, along with many other technological challenges corrosion of the metallic battery parts is often a difficult obstacle for producers and researchers. Li-metal batteries and especially the “anode-free” battery concept could significantly increase the energy density. However, contact corrosion of the Li anode, can occur in this cell configuration since there is a high probability of a three-phase contact between Li-metal, current collector and electrolyte, a condition triggering an intensive Li corrosion. In this work, a new in-situ analytical methodology based on combining electrochemical (ZRA) and microgravimetric (QCM) techniques is proposed for studying the galvanic corrosion. The applicability of this approach is explored in three different electrolyte compositions. Beside the analysis of the conventional electrochemical parameters an in-situ gravimetric detection of the deposited electrolyte decomposition products on the cathode surface is demonstrated. Adsorbed polymer layer on the Cu surface is applied for cathodic inhibition of the galvanic corrosion process, which is studied by means of the novel ZRA-QCM approach.



https://doi.org/10.1016/j.electacta.2023.142853
Mijalkov, Mite; Gerboles, Blanca Zufiria; Vereb, Daniel; Lüdge, Kathy; Brunner, Daniel; Volpe, Giovanni; Pereira, Joana B.
Uncovering vulnerable connections in the aging brain using reservoir computing. - In: Emerging Topics in Artificial Intelligence (ETAI) 2023, (2023), PC1265508

We used reservoir computing to explore the changes in the connectivity patterns of whole-brain anatomical networks derived by diffusion-weighted imaging, and their impact on cognition during aging. The networks showed optimal performance at small densities. This performance decreased with increasing density, with the rate of decrease being strongly associated with age and performance on behavioural tasks measuring cognitive function. This suggests that a network core of anatomical hubs is crucial for optimal functioning, while weaker connections are more susceptible to aging effects. This study highlights the potential utility of reservoir computing in understanding age-related changes in cognitive function.



https://doi.org/10.1117/12.2677364
Xu, Changfan; Qiu, Jiajia; Dong, Yulian; Li, Yueliang; Shen, Yonglong; Zhao, Huaping; Kaiser, Ute; Shao, Guosheng; Lei, Yong
Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. - In: Energy & Environmental Materials, ISSN 2575-0356, Bd. n/a (2023), n/a, e12626, S. 1-10

Sodium-carbon dioxide (Na-CO2) batteries are regarded as promising energy storage technologies because of their impressive theoretical energy density and CO2 reutilization, but their practical applications are restricted by uncontrollable sodium dendrite growth and poor electrochemical kinetics of CO2 cathode. Constructing suitable multifunctional electrodes for dendrite-free anodes and kinetics-enhanced CO2 cathodes is considered one of the most important ways to advance the practical application of Na-CO2 batteries. Herein, RuO2 nanoparticles encapsulated in carbon paper (RuCP) are rationally designed and employed as both Na anode host and CO2 cathode in Na-CO2 batteries. The outstanding sodiophilicity and high catalytic activity of RuCP electrodes can simultaneously contribute to homogenous Na+ distribution and dendrite-free sodium structure at the anode, as well as strengthen discharge and charge kinetics at the cathode. The morphological evolution confirmed the uniform deposition of Na on RuCP anode with dense and flat interfaces, delivering enhanced Coulombic efficiency of 99.5% and cycling stability near 1500 cycles. Meanwhile, Na-CO2 batteries with RuCP cathode demonstrated excellent cycling stability (>350 cycles). Significantly, implementation of a dendrite-free RuCPNa anode and catalytic-site-rich RuCP cathode allowed for the construction of a symmetric Na-CO2 battery with long-duration cyclability, offering inspiration for extensive practical uses of Na-CO2 batteries.



https://doi.org/10.1002/eem2.12626
Behrndt, Jussi; Gesztesy, Fritz; Schmitz, Philipp; Trunk, Carsten
Lower bounds for self-adjoint Sturm-Liouville operators. - In: Proceedings of the American Mathematical Society, ISSN 1088-6826, Bd. 151 (2023), 12, S. 5313-5323

https://doi.org/10.1090/proc/16523
Leben, Florian; Leguizamón, Edison; Trunk, Carsten; Winklmeier, Monika
Limit point and limit circle trichotomy for Sturm-Liouville problems with complex potentials. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (15 Seiten). - (Preprint ; M23,10)

The limit point and limit circle classification of real Sturm-Liouville problems by H. Weyl more than 100 years ago was extended by A.R. Sims around 60 years ago to the case when the coefficients are complex. Here the main result is a collection of various criteria which allow us to decide to which class of Sims' scheme a given Sturm-Liouville problem with complex coefficients belongs. This is subsequently applied to a second order differential equation defined on a ray in C which is motivated by the recent intensive research connected with PT-symmetric Hamiltonians.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200258
Motuziuk, Olexandr; Nozdrenko, Dmytro; Prylutska, Svitlana; Bogutska, Kateryna; Mishchenko, Iryna; Abramchuk, Olga; Khrapatyi, Sergii; Ritter, Uwe; Prylutskyy, Yuriy
C60 fullerene reduces the level of fluctuations in the force response of muscle gastrocnemius in chronically alcoholized rats. - In: Applied nanoscience, ISSN 2190-5517, Bd. 13 (2023), 10, S. 7057-7067

The biomechanical parameters of muscle gastrocnemius contraction and biochemical parameters of blood and muscle tissue in rats after chronic alcoholization for 3, 6, and 9 months were studied. The oral administration of C60 fullerene aqueous solution (C60FAS) at doses of 0.5, 1, and 2 mg/kg throughout the experiment was used as a therapeutic agent. C60FAS in each of the experimental groups was administered in three ways: 1 h before alcohol intake, together with alcohol, and 1 h after alcohol intake. The most significant positive effects were recorded when alcohol and C60FAS were administered together at the optimal dose of 1 mg/kg. So, the increase in muscle gastrocnemius contraction force was 20 ± 1%, 33 ± 2% and 65 ± 3% (p < 0.05) compared with control at 3, 6, and 9 months alcoholization, respectively, as well as a high level of its fluctuations correction was observed throughout the experiment. Biochemical parameters such as blood levels of creatinine, creatine phosphokinase, lactate and lactate dehydrogenase as well as pro- and antioxidant balance (content of hydrogen peroxide and reduced glutathione, as well as catalase, selenium-dependent glutathione peroxidase and superoxide dismutase activities) in muscle gastrocnemius tissues decreased from 15 ± 2% (3 months of alcoholization) to 45 ± 2% (9 months of alcoholization) (p < 0.05) compared to controls. The results indicate promising prospects for the use of water-soluble C60 fullerenes, as powerful antioxidants, for the correction of pathological conditions of the muscular system arising from alcohol intoxication.



https://doi.org/10.1007/s13204-023-02874-7
Espuny Díaz, Alberto; Person, Yury
Spanning F-cycles in random graphs. - In: Combinatorics, probability & computing, ISSN 1469-2163, Bd. 32 (2023), 5, S. 833-850

We extend a recent argument of Kahn, Narayanan and Park ((2021) Proceedings of the AMS 149 3201-3208) about the threshold for the appearance of the square of a Hamilton cycle to other spanning structures. In particular, for any spanning graph, we give a sufficient condition under which we may determine its threshold. As an application, we find the threshold for a set of cyclically ordered copies of C4 that span the entire vertex set, so that any two consecutive copies overlap in exactly one edge and all overlapping edges are disjoint. This answers a question of Frieze. We also determine the threshold for edge-overlapping spanning Kr-cycles.



https://doi.org/10.1017/S0963548323000172
Albeverio, Sergio; Derkach, Volodymyr; Malamud, Mark
Functional models of symmetric and selfadjoint operators. - In: From complex analysis to operator theory: a panorama, (2023), S. 75-122

https://doi.org/10.1007/978-3-031-31139-0_7
Tang, Xinyue; Lv, Xincha; Lou, Jiayi; Fan, Tieyan; Chen, Heng; Wang, Wenxin; Zhang, Shangcong; Zhao, Huaping; Zhang, Qingcheng; Wang, Shun; Lei, Yong
Rational design of a hierarchical candied-haws-like NiCo2O4Ni,Co-(HCO3)2 heterostructure for the electrochemical performance enhancement of supercapacitors. - In: ACS applied energy materials, ISSN 2574-0962, Bd. 6 (2023), 19, S. 9905-9914

Designing core-shell heterostructures with multicomponents, more electroactive sites, hierarchical structures, and stable geometrical configurations is an effective approach to enhance the electrochemical properties of supercapacitors. Herein, we report the fabrication of a hierarchical candied-haws-like NiCo2O4NiCo-hydrocarbonate heterostructure on Ni foam (NiCo2O4@NiCo-HCs), which consists of NiCo2O4 nanowires acting as “rebars” that are tightly strung with NiCo-HC nanoparticles. The strong interfacial reaction between the NiCo2O4 “core” and the NiCo-HC “shell” accelerates the charge transfer within the heterostructure, while the hierarchical structure containing quantities of paths and pores provides fast ion diffusion throughout the whole electrode, hence remarkably boosting the electrochemical performance of a NiCo2O4@NiCo-HC electrode. As expected, the NiCo2O4@NiCo-HC electrode shows a high specific capacitance of 3216.4 F g-1 at a current density of 1 A g-1 and 2259.9 F g-1 even at 20 A g-1 (1.6-fold that of the NiCo2O4 electrode and 5.5-fold that of NiCo-HCs). In addition, an assembled asymmetric supercapacitor NiCo2O4@NiCo-HCs//AC delivers a high energy density of 47.46 Wh kg-1 at a power density of 708.94 W kg-1, together with 96.2% capacitance retention after 6000 cycles, surpassing most of the reported analogues. These results suggest that our hierarchical candied-haws-like heterostructure design is potential for the performance enhancement of supercapacitors.



https://doi.org/10.1021/acsaem.3c01421
Shen, Fengxia; Shi, Xinbo; Shi, Jin
Novel bipolar membrane electrolyzer for CO2 reduction to CO in organic electrolyte with Cl2 and NaOH produced as byproducts. - In: Journal of CO2 utilization, ISSN 2212-9839, Bd. 77 (2023), 102595, S. 1-10

Electrochemical reduction of CO2 to valuable products, powered by renewable energy, provides a promising strategy for reducing our dependence on fossil fuels. But up to now, no technology has been implemented for large-scale industrial applications. Without massive utilization of CO2, many vital practical problems, such as reducing CO2 emissions, storing renewable energy, and alleviating environmental pollution, cannot be resolved through this route. Herein, we propose a novel electrolyzer for CO2 electro-reduction, which is separated into three chambers by a bipolar membrane and a cation exchange membrane. In the cathodic chamber, CO2 is reduced to CO in organic electrolytes. In the anodic chamber, Cl- is oxidized to Cl2 in NaCl aqueous solution. In the central chamber, NaOH is obtained. The generated CO and Cl2 can be used as feedstock to produce phosgene (CO+Cl2 =COCl2). Through this route, phosgene can be produced from CO2 and NaCl, with NaOH generated as a byproduct. By substantially increasing the product value, we can promote CO2 electro-reduction technology to industrial applications.



https://doi.org/10.1016/j.jcou.2023.102595
Wieboldt, Rieke; Lindt, Kevin; Pohlmeier, Andreas; Mattea, Carlos; Stapf, Siegfried; Haber-Pohlmeier, Sabina
Effects of salt precipitation in the topmost soil layer investigated by NMR. - In: Applied magnetic resonance, ISSN 1613-7507, Bd. 54 (2023), 11/12, S. 1607-1631

The drying of highly concentrated aqueous salt solutions in sand and soil has been investigated by one-dimensional spatially resolved low-field relaxation measurements of 1H nuclei in water as well as high-field MRI of 1H and 23Na nuclei of water and sodium ions. Water evaporates until the solutions in the solid matrix reach saturation conditions, when salt begins to crystallize. Depending on salt type and conditions, such as actual soil water content and air humidity, this crystallization can occur above (efflorescent) or below (subflorescent) the soil surface. Both effects occur in nature and affect the evaporation behavior of water. The formation of salt precipitate domains is demonstrated by MRI, where the precipitate domains remain penetrable to water. Complete drying is achieved in the top 2 mm of soil with the exception of strongly hygroscopic perchlorates which maintain a constant amount of liquid water under ambient laboratory conditions and dry air. This situation is considered similar to the co-existence of perchlorates and water in strongly eutectic mixtures on Mars.



https://doi.org/10.1007/s00723-023-01568-1
Motuziuk, Olexandr; Nozdrenko, Dmytro; Prylutska, Svitlana; Vareniuk, Igor; Bogutska, Kateryna; Braniuk, Serhii; Korotkyi, Olexandr; Prylutskyy, Yuriy; Ritter, Uwe; Piosik, Jacek
The effect of C60 fullerene on the mechanokinetics of muscle gastrocnemius contraction in chronically alcoholized rats. - In: Heliyon, ISSN 2405-8440, Bd. 9 (2023), 8, e18745, S. 1-10

The C60 fullerene effect (oral administration at a dose of 1 mg kg−1) on the selected biomechanical parameters of muscle gastrocnemius contraction, biochemical indicators of blood and muscle tissue as well as histological changes in rat muscle tissue after chronic alcoholization for 3, 6 and 9 months was studied in detail. Water-soluble C60 fullerenes were shown to reduce the pathological processes development in the muscle apparatus by an average of (35-40)%. In particular, they reduced the time occurrence of fatigue processes in muscle during the long-term development of alcoholic myopathy and inhibited oxidative processes in muscle, thereby preventing its degradation. These findings open up the possibility of using C60 fullerenes as potent antioxidants for the correction of the pathological conditions of the muscle system arising from alcohol intoxication.



https://doi.org/10.1016/j.heliyon.2023.e18745
Wang, Zhongwu; Ma, Yining; Guo, Shujing; Yuan, Liqian; Hu, Yongxu; Huang, Yinan; Chen, Xiaosong; Ji, Deyang; Bi, Jinshun; Lei, Yong; Han, Cheng; Li, Liqiang; Hu, Wenping
Suppressing the intrinsic photoelectric response of organic semiconductors for highly-photostable organic transistors. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 50, 2304634, S. 1-8

Suppressing the photoelectric response of organic semiconductors (OSs) is of great significance for improving the operational stability of organic field-effect transistors (OFETs) in light environments, but it is quite challenging because of the great difficulty in precisely modulating exciton dynamics. In this work, photostable OFETs are demonstrated by designing the micro-structure of OSs and introducing an electrical double layer at the OS/polyelectrolyte dielectric interface, in which multiple exciton dynamic processes can be modulated. The generation and dissociation of excitons are depressed due to the small light-absorption area of the microstripe structure and the excellent crystallinity of OSs. At the same time, a highly efficient exciton quenching process is activated by the electrical double layer at the OS/polyelectrolyte dielectric interface. As a result, the OFETs show outstanding tolerance to the light irradiation of up to 306 mW&hahog;cm−2, which far surpasses the solar irradiance value in the atmosphere (≈138 mW&hahog;cm−2) and achieves the highest photostability ever reported in the literature. The findings promise a general and practicable strategy for the realization of photostable OFETs and organic circuits.



https://doi.org/10.1002/smll.202304634
Grüne, Lars; Worthmann, Karl
Homogeneity for control systems in discrete time. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 56 (2023), 1, S. 385-390

Homogeneity, as a generalization of linearity to nonlinear systems, has proven to be a very powerful in systems and control. Nevertheless, only recently a notion of homogeneity was proposed for discrete-time control systems. However, this so-called D-Homogeneity directly couples the stability behaviour with the degree of homogeneity - in contrast to the continuous-time case. As an alternative, we propose the notion of S-Homogeneity, which avoids this coupling. S-Homogeneity uses a state-dependent time step that is compatible with sampling and discretization in time. We show that this concept preserves a contraction property and null-controllability for state-dependent sampling. For fixed sampling time, it yields (practical/semi-global) null controllability for sufficiently fast sampling, depending on the degree of homogeneity.



https://doi.org/10.1016/j.ifacol.2023.02.065
Zavodovskiy, Danylo O.; Bulgakova, Nataliya V.; Sokolowska, Inna; Prylutskyy, Yuriy I.; Ritter, Uwe; Gonchar, Olga O.; Kostyukov, Alexander I.; Vlasenko, Oleh V.; Butowska, Kamila; Borowik, Agnieszka; Piosik, Jacek; Maznychenko, Andriy
Water-soluble pristine C60 fullerenes attenuate isometric muscle force reduction in a rat acute inflammatory pain model. - In: BMC musculoskeletal disorders, ISSN 1471-2474, Bd. 24 (2023), 606, S. 1-8

Background: Being a scavenger of free radicals, C60 fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C60 fullerene aqueous solution (C60FAS) on the muscle contractile properties under acute inflammatory pain. Methods: To induce inflammation a 2.5% formalin solution was injected into the rat triceps surae (TS) muscle. High-frequency electrical stimulation has been used to induce tetanic muscle contraction. A linear motor under servo-control with embedded semi-conductor strain gauge resistors was used to measure the muscle tension. Results: In response to formalin administration, the strength of TS muscle contractions in untreated animals was recorded at 23% of control values, whereas the muscle tension in the C60FAS-treated rats reached 48%. Thus, the treated muscle could generate 2-fold more muscle strength than the muscle in untreated rats. Conclusions: The attenuation of muscle contraction force reduction caused by preliminary injection of C60FAS is presumably associated with a decrease in the concentration of free radicals in the inflamed muscle tissue, which leads to a decrease in the intensity of nociceptive information transmission from the inflamed muscle to the CNS and thereby promotes the improvement of the functional state of the skeletal muscle.



https://doi.org/10.1186/s12891-023-06719-w
Hu, Ping; Dong, Yulian; Wu, Zhijun; Fu, Qun; Zhao, Huaping; Lei, Yong
Bimetallic-based composites for potassium-ion storage: challenges and perspectives. - In: Inorganic chemistry frontiers, ISSN 2052-1553, Bd. 10 (2023), 16, S. 4668-4694

Potassium ion batteries (PIBs) are important for the development of energy storage systems as an effective complement to lithium ion batteries (LIBs) owing to the abundance of potassium resources in the earth's crust to meet the needs of large-scale energy storage systems. To this end, numerous studies have focused on anode materials, which can provide high capacity for PIBs. Bimetallic-based compounds (ABXs) achieve higher capacity and structural diversity due to their different chemical compositions and rich spatial structures. Moreover, the synergistic effect of the two metals makes the structure of ABXs more stable. Hence, ABXs are one of the most promising anode materials. This review focuses on performance optimization strategies (such as metal base selection, structural design, voltage regulation, and electrolyte optimization) and the electrochemical properties of ABXs. Finally, the current challenges and research prospectives of ABXs are presented. This review is expected to provide new perspectives and deeper insights into the study of ABXs as anode materials for PIBs and large-scale energy storage devices.



https://doi.org/10.1039/D3QI00585B
Xu, Dongbo; Zhang, Song; Yu, Yangfei; Zhang, Shu; Ding, Qijia; Lei, Yong; Shi, Weidong
Ultrathin metal Ni layer on ZnO/TiO2 photoelectrodes with excellent photoeletrochemical performance in multiple electrolyte solutions. - In: Fuel, ISSN 1873-7153, Bd. 351 (2023), 128774

It is well known that the oxygen vacancy (Ovac) as the electron-donor dopant in semiconductor can increase the electron-holes separation in photoeletrochemical (PEC) water splitting. Furthermore, the metal Ni can promote the hydrogen evolution reaction (HER) on the surface of semiconductor. In this paper, the ZnO/TiO2 photoelectrodes with rich Ovac was synthesized by electrostatic adsorption through using ZIF-8 as the precursor. Then the ultrathin Ni layer with about 7 nm was deposited on the surface of ZnO/TiO2 (Ni/ZnO/TiO2) by vacuum thermal evaporation method. The Ni/ZnO/TiO2 photoelectrodes showed the highest photocurrent than ZnO/TiO2, Ni/ TiO2 and pure TiO2 photoelectrodes. The durability of Ni/ZnO/TiO2 photoelectrodes was keeping for 10 h in multiple electrolyte solutions under AM 1.5 G illumination and the photocurrent decline can be ignored. The UV-vis absorption spectra demonstrated that the ultrathin Ni layer showed plasma with ZnO/TiO2 for enhancing the water splitting performance. Furthermore, the ultrathin Ni layer enhanced the photogenerated charges transfer for improving the PEC performance. This work provides a new method for ultrathin metal Ni layer with Ovac semiconductor photoelectrode to improve the PEC performance in multiple electrolyte solutions.



https://doi.org/10.1016/j.fuel.2023.128774
Zeußel, Lisa; Schober, Andreas; Ullmann, Fabian; Krischok, Stefan; Heinrich, Doris; Singh, Sukhdeep
Visible-light-assisted donor-acceptor-Stenhouse-adduct-based reversible photoswitching on a laser-structurable OrmoComp substrate. - In: ACS applied polymer materials, ISSN 2637-6105, Bd. 5 (2023), 10, S. 8631-8640

Laser-assisted nanolithography of commercially available photoresists is offering a limitless designing opportunity in the micro- and nanostructuring of 3D organotypic cell culture scaffolds. Among them, chemically functionalized OrmoComp has shown promising improvement in cell adhesion that paves the way to assemble cellular entities on a desirable geometry. Establishing a photoswitchable chemistry on the OrmoComp surface may offer an additional degree of freedom to manipulate the surface chemistry locally and selectively. We have established the methods for functionalization of the photopolymerized OrmoComp surface with visible-light-switchable donor-acceptor Stenhouse adducts. Unlike other polymers, a photopolymerized OrmoComp surface appears to be optimal for reversible photothermal switching, offering the possibility to influence surface properties like absorption and hydrophilicity tremendously. Light-assisted chemical modulation between colored triene-2-ol and colorless cyclopentenone can be achieved to a size region as narrow as 20 μm. Thermal reversion to the original triene-2-ol state can be analyzed spectroscopically and observed with the naked eye.



https://doi.org/10.1021/acsapm.3c01766
¸Sen, Gök¸cen Devlet; Schaller, Manuel; Worthmann, Karl
Stage-cost design for optimal and model predictive control of linear port-Hamiltonian systems: energy efficiency and robustness. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 23 (2023), 4, e202300296, S. 1-9

We consider singular optimal control of port-Hamiltonian systems with minimal energy supply. We investigate the robustness of different stage-cost designs w.r.t. time discretization and show that alternative formulations that are equivalent in continuous time, differ strongly in view of discretization. Furthermore, we consider the impact of additional quadratic control regularization and demonstrate that this leads to a considerable increase in energy consumption. Then, we extend our results to the tracking problem within model predictive control and show that the intrinsic but singular choice of the cost functional as the supplied energy leads to a substantial improvement of the closed-loop performance.



https://doi.org/10.1002/pamm.202300296
Mathew, Sobin; Reiprich, Johannes; Narasimha, Shilpashree; Abedin, Saadman; Kurtash, Vladislav; Thiele, Sebastian; Scheler, Theresa; Hähnlein, Bernd; Schaaf, Peter; Jacobs, Heiko O.; Pezoldt, Jörg
Gate-tunable hysteresis response of field effect transistor based on sulfurized Mo. - In: AIP Advances, ISSN 2158-3226, Bd. 13 (2023), 9, 095224, S. 095224-1-095224-7

Hysteresis effects and their tuning with electric fields and light were studied in thin film molybdenum disulfide transistors fabricated from sulfurized molybdenum films. The influence of the back-gate voltage bias, voltage sweep range, illumination, and AlOx encapsulation on the hysteresis effect of the back-gated field effect transistors was studied and quantified. This study revealed the distinctive contribution of MoS2 surface, MoS2/SiO2 interface defects and their associated traps as primary sources of of hysteresis.



https://doi.org/10.1063/5.0165868
Espuny Díaz, Alberto; Hyde, Joseph
Powers of Hamilton cycles in dense graphs perturbed by a random geometric graph. - In: European journal of combinatorics, Bd. 0 (2023), 0, 103848

Let G be a graph obtained as the union of some n-vertex graph Hn with minimum degree δ (Hn) ≥ αn and a d-dimensional random geometric graph Gd (n,r). We investigate under which conditions for r the graph G will a.a.s. contain the kth power of a Hamilton cycle, for any choice of Hn. We provide asymptotically optimal conditions for r for all values of α, d and k. This has applications in the containment of other spanning structures, such as F-factors.



https://doi.org/10.1016/j.ejc.2023.103848
Hou, Minjie; Zhou, Yingjie; Liang, Feng; Zhao, Huaping; Ji, Deyang; Zhang, Da; Li, Liqiang; Lei, Yong
Research progress of solid electrolyte interphase for sodium metal anodes. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 475 (2023), 146227

Inhomogeneous and fragile solid electrolyte interphase (SEI) leads to poor battery cycle life and safety hazards, which is a key challenge that limits the practical application of low-cost sodium metal anodes. Although sodium metal batteries based on non-aqueous liquid and solid electrolytes have made great progress in terms of interfacial chemistry and SEI regulation strategies, the relevant evaluation of SEI from the perspective of the electrolyte is not well understood. This paper reviews the formation mechanism, physicochemical properties, and failure mechanism of SEI at the interface between the sodium metal and the liquid/solid electrolyte, focusing on poor stability, compatibility, interfacial ion transport problems, and influencing factors. Recent advances in SEI regulation are summarized in terms of electrolytes, artificial interphases, and electrode engineering to achieve ideal electrochemical reversibility. The effectiveness of the SEI engineering strategies was evaluated based on a comprehensive review of the interfacial stability in different electrolyte systems. Finally, the challenges associated with rational interface design for long-lasting sodium metal batteries are discussed, along with promising avenues for the same.



https://doi.org/10.1016/j.cej.2023.146227
Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems. - In: Numerische Mathematik, ISSN 0945-3245, Bd. 155 (2023), 1, S. 1-34

A dynamic iteration scheme for linear differential-algebraic port-Hamiltonian systems based on Lions-Mercier-type operator splitting methods is developed. The dynamic iteration is monotone in the sense that the error is decreasing and no stability conditions are required. The developed iteration scheme is even new for linear port-Hamiltonian systems governed by ODEs. The obtained algorithm is applied to a multibody system and an electrical network.



https://doi.org/10.1007/s00211-023-01369-5
Hou, Shengping; Xie, Zhipeng; Zhang, Da; Yang, Bin; Lei, Yong; Liang, Feng
High-purity graphene and carbon nanohorns prepared by base-acid treated waste tires carbon via direct current arc plasma. - In: Environmental research, ISSN 1096-0953, Volume 238 (2023), part 1, 117071

As the accumulation of waste tires continues to rise year by year, effectively managing and recycling these discarded materials has become an urgent global challenge. Among various potential solutions, pyrolysis stands out due to its superior environmental compatibility and remarkable efficiency in transforming waste tires into valuable products. Thus, it is considered the most potential method for disposing these tires. In this work, waste tire powder is pyrolyzed at 560 &ring;C to yield pyrolysis carbon black, and meanwhile, the purification effects of base-acid solutions on pyrolysis carbon black are discussed. High-purity few-layer graphene flakes and carbon nanohorns are synthesized by a direct current arc plasma with H2 and N2 as buffer gases and high-purity pyrolysis carbon black as raw material. Under an H2 atmosphere, hydrogen effectively terminates the suspended carbon bonds, preventing the formation of closed structures and facilitating the expansion of graphene sheets. During the preparation of carbon nanohorns, the nitrogen atoms rapidly bond with carbon atoms, forming essential C-N bonds. This nitrogen doping promotes the formation of carbon-based five-membered and seven-membered rings and makes the graphite lamellar change in the direction of towards negative curvature. Consequently, such change facilitates the formation of conical structures, ultimately yielding the coveted carbon nanohorns. This work not only provides an economical raw material for efficient large-scale synthesis of few-layer graphene and carbon nanohorns but also broadens the intrinsic worth of pyrolysis carbon black, which is beneficial to improving the recycling value of waste tires.



https://doi.org/10.1016/j.envres.2023.117071
Finkelmeyer, Sarah; Askins, Erik J.; Eichhorn, Jonas; Ghosh, Soumik; Siegmund, Carmen; Täuscher, Eric; Dellith, Andrea; Hupfer, Maximilian; Dellith, Jan; Ritter, Uwe; Strzalka, Joseph; Glusac, Ksenija; Schacher, Felix; Presselt, Martin
Tailoring the weight of surface and intralayer edge states to control LUMO energies. - In: Advanced materials, ISSN 1521-4095, Bd. 35 (2023), 40, 2305006, S. 1-11

The energies of the frontier molecular orbitals determine the optoelectronic properties in organic films, which are crucial for their application, and strongly depend on the morphology and supramolecular structure. The impact of the latter two properties on the electronic energy levels relies primarily on nearest-neighbor interactions, which are difficult to study due to their nanoscale nature and heterogeneity. Here, an automated method is presented for fabricating thin films with a tailored ratio of surface to bulk sites and a controlled extension of domain edges, both of which are used to control nearest-neighbor interactions. This method uses a Langmuir–Schaefer-type rolling transfer of Langmuir layers (rtLL) to minimize flow during the deposition of rigid Langmuir layers composed of π-conjugated molecules. Using UV–vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy, it is shown that the rtLL method advances the deposition of multi-Langmuir layers and enables the production of films with defined morphology. The variation in nearest-neighbor interactions is thus achieved and the resulting systematically tuned lowest unoccupied molecular orbital (LUMO) energies (determined via square-wave voltammetry) enable the establishment of a model that functionally relates the LUMO energies to a morphological descriptor, allowing for the prediction of the range of accessible LUMO energies.



https://doi.org/10.1002/adma.202305006
Yu, Yan; He, Guping; Zhu, Ximiao; Yu, Jiahai; Shi, Yiwen; Lei, Yong; Sun, Fengqiang
A flexible humidity sensor constructed by ordered-pore-array of slightly reduced graphene oxide with much enhanced sensing response. - In: Surfaces and Interfaces, ISSN 2468-0230, Bd. 41 (2023), 103204

Reduced graphene oxide (rGO) flexible film humidity sensor has received increasing attention, but the low sensing response caused by lack of available hydrophilic functional groups is still a limitation. Herein, a slightly reduced graphene oxide (SrGO) ordered-pore-array, fabricated via a monolayer colloid crystal template method, was introduced as a resistive humidity sensor. It was obtained based on adsorption between the GO sheets and the template microspheres, in-situ slight reduction of the GO shells and the removal of template. The reduction way allows the functional groups of GO to be retained as much as possible, and the unique structures (e.g., spherical double surfaces and small through-holes on pore-walls) facilitate the substantial exposure of functional groups, the penetration of water molecules and the utilization of buried functional groups. The available functional groups are thereby efficiently increased, giving the sensor an unprecedented high sensing response, more than 2600 times the maximum response of existing rGO sensors. The sensor also demonstrated excellent practical characteristics, and by detecting a single exhale, it could be employed in quick and quantitative evaluation of human activities and health. This strategy paves a facile and promising route to improve the sensing response and application of graphene-based humidity sensors or gas sensors.



https://doi.org/10.1016/j.surfin.2023.103204
Kumar, Niranjan; Panda, Kalpataru; Pleshkov, Roman S.; Nezhdanov, Aleksey V.; Polkovnikov, Vladimir N.; Yunin, Pavel A.; Chkhalo, Nikolay I.
High thermal stability of the reflectivity of Be/Al multilayer mirrors designed for extreme ultraviolet wavelength. - In: Surfaces and Interfaces, ISSN 2468-0230, Volume 42 (2023), part A, 103404

Superior optical contrast due to the combination of beryllium and aluminum in periodic Be/Al multilayers is the reason for effective reflectivity of these mirrors at extreme ultraviolet wavelength i.e. 17 nm. Depending on the thickness of the layers and annealing temperature, microstructure of beryllium and aluminum layers in periodic multilayers was investigated by Raman scattering spectroscopy and X-ray diffraction. Thinner film of beryllium showed more ordered structure which is qualitatively determined by narrow linewidth of optical phonon. The nucleation and grain growth of beryllium and aluminum is observed at higher annealing temperature. However, the effect of annealing on the modification of microstructure of beryllium and aluminum at lower temperature 373 K is not observed. This is the reason for almost similar value of reflectivity of ∼ 55 % for as-deposited and thermally annealed mirror at 373 K. At higher annealing temperature, the complete loss of reflectivity is observed, associated with the destruction of periodic modulation of mirrors due to interdiffusion, nucleation and grain growth of beryllium and aluminum.



https://doi.org/10.1016/j.surfin.2023.103414
Zeußel, Lisa; Singh, Sukhdeep
Meldrum’s acid furfural conjugate MAFC: a new entry as chromogenic sensor for specific amine identification. - In: Molecules, ISSN 1420-3049, Bd. 28 (2023), 18, 6627, S. 1-17

Bioactive amines are highly relevant for clinical and industrial application to ensure the metabolic status of a biological process. Apart from this, generally, amine identification is a key step in various bioorganic processes ranging from protein chemistry to biomaterial fabrication. However, many amines have a negative impact on the environment and the excess intake of amines can have tremendous adverse health effects. Thus, easy, fast, sensitive, and reliable sensing methods for amine identification are strongly searched for. In the past few years, Meldrum’s acid furfural conjugate (MAFC) has been extensively explored as a starting material for the synthesis of photoswitchable donor-acceptor Stenhouse adducts (DASA). DASA formation hereby results from the rapid reaction of MAFC with primary and secondary amines, which has so far been demonstrated through numerous publications for different applications. The linear form of the MAFC-based DASA exhibits intense pink coloration due to its linear conjugated triene-2-ol conformation, which has inspired researchers to use this easy synthesizable molecule as an optical sensor for primary, secondary, and biogenic amines. Due to its new entry into amine identification, a collection of the literature exclusively on MAFC is demanded. In this mini review, we intend to present the state-of-the-art of MAFC as an optical molecular sensor in hopes to motivate researchers to find even more applications of MAFC-based sensors and methods that pave the way to their usage in medicinal applications.



https://doi.org/10.3390/molecules28186627
Rakhmanova, Saparboy; Trunk, Carsten; Matrasulov, Davronbek
Quantum particle under dynamical confinement: from quantum Fermi acceleration to high harmonic generation. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (15 Seiten). - (Preprint ; M23,09)

Quantum dynamics of a particle confined in a box with time-dependent wall is revisited by considering some unexplored aspects of the problem. In particular, the case of dynamical confinement in a time-dependent box in the presence of purely time-varying external potential is treated by obtaining exact solution. Also, some external potentials approving separation of space and time variables in the Schrödinger equation with time-dependent boundary conditions are classified. Time-dependence of the average kinetic energy and average quantum force are analyzed. A model for optical high harmonic generation in the presence of dynamical confinement and external linearly polarized monochromatic field is proposed.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200218
Köhler, Michael; Ehrhardt, Linda; Cao-Riehmer, Jialan; Möller, Frances; Schüler, Tim; Günther, Mike
Beta-diversity enhancement by archaeological structures: bacterial communities of an historical tannery area of the city of Jena (Germany) reflect the ancient human impact. - In: Ecologies, ISSN 2673-4133, Bd. 4 (2023), 2, S. 325-343

Soil samples taken during archaeological investigations of a historical tannery area in the eastern suburb of the medieval city of Jena have been investigated by 16S r-RNA gene profiling. The analyses supplied a large spectrum of interesting bacteria, among them Patescibacteria, Methylomirabilota, Asgardarchaeota, Zixibacteria, Sideroxydans and Sulfurifustis. Samples taken from soil inside the residues of large vats show large differences in comparison to the environmental soil. The PCAs for different abundance classes clearly reflect the higher similarity between the bacterial communities of the outside-vat soils in comparison with three of the inside-vat soil communities. Two of the in-side vat soils are distinguishable from the other samples by separate use of each abundance class, but classes of lower abundance are better applicable than the highly abundant bacteria for distinguishing the sampling sites by PCA, in general. This effect could be interpreted by the assumption that less abundant types in the 16S r-RNA data tend to be more related to an earlier state of soil development than the more abundant and might be, therefore, better suited for conclusions on the state of the soils in an earlier local situation. In addition, the analyses allowed identification of specific features of each single sampling site. In one site specifically, DNA hints of animal residue-related bacteria were found. Obviously, the special situation in the in-site vat soils contributes to the diversity of the place, and enhances its Beta-diversity. Very high abundancies of several ammonia-metabolizing and of sulphur compound-oxidizing genera in the metagenomics data can be interpreted as an echo of the former tannery activities using urine and processing keratin-rich animal materials. In summary, it can be concluded that the 16S r-RNA analysis of such archaeological places can supply a lot of data related to ancient human impacts, representing a kind of “ecological memory of soil”.



https://doi.org/10.3390/ecologies4020021
Eichfelder, Gabriele; Stein, Oliver; Warnow, Leo
A solver for multiobjective mixed-integer convex and nonconvex optimization. - In: Journal of optimization theory and applications, ISSN 1573-2878, Bd. 0 (2023), 0, insges. 31 S.

This paper proposes a general framework for solving multiobjective nonconvex optimization problems, i.e., optimization problems in which multiple objective functions have to be optimized simultaneously. Thereby, the nonconvexity might come from the objective or constraint functions, or from integrality conditions for some of the variables. In particular, multiobjective mixed-integer convex and nonconvex optimization problems are covered and form the motivation of our studies. The presented algorithm is based on a branch-and-bound method in the pre-image space, a technique which was already successfully applied for continuous nonconvex multiobjective optimization. However, extending this method to the mixed-integer setting is not straightforward, in particular with regard to convergence results. More precisely, new branching rules and lower bounding procedures are needed to obtain an algorithm that is practically applicable and convergent for multiobjective mixed-integer optimization problems. Corresponding results are a main contribution of this paper. What is more, for improving the performance of this new branch-and-bound method we enhance it with two types of cuts in the image space which are based on ideas from multiobjective mixed-integer convex optimization. Those combine continuous convex relaxations with adaptive cuts for the convex hull of the mixed-integer image set, derived from supporting hyperplanes to the relaxed sets. Based on the above ingredients, the paper provides a new multiobjective mixed-integer solver for convex problems with a stopping criterion purely in the image space. What is more, for the first time a solver for multiobjective mixed-integer nonconvex optimization is presented. We provide the results of numerical tests for the new algorithm. Where possible, we compare it with existing procedures.



https://doi.org/10.1007/s10957-023-02285-2
Thurn, Andreas; Bissinger, Jochen; Meinecke, Stefan; Schmiedeke, Paul; Oh, Sang Soon; Chow, Weng W.; Lüdge, Kathy; Koblmüller, Gregor; Finley, Jonathan
Self-induced ultrafast electron-hole-plasma temperature oscillations in nanowire lasers. - In: Physical review applied, ISSN 2331-7019, Bd. 20 (2023), 3, S. 034045-1-034045-12

Nanowire lasers can be monolithically and site-selectively integrated onto silicon photonic circuits. To assess their full potential for ultrafast optoelectronic devices, a detailed understanding of their lasing dynamics is crucial. However, the roles played by their resonator geometry and the microscopic processes that mediate energy exchange between the photonic, electronic, and phononic subsystems are largely unexplored. Here, we study the dynamics of GaAs-AlGaAs core-shell nanowire lasers at cryogenic temperatures using a combined experimental and theoretical approach. Our results indicate that these NW lasers exhibit sustained intensity oscillations with frequencies ranging from 160GHz to 260GHz. As the underlying physical mechanism, we have identified self-induced electron-hole plasma temperature oscillations resulting from a dynamic competition between photoinduced carrier heating and cooling via phonon scattering. These dynamics are intimately linked to the strong interaction between the lasing mode and the gain material, which arises from the wavelength-scale dimensions of these lasers. We anticipate that our results could lead to optimised approaches for ultrafast intensity and phase modulation of chip-integrated semiconductor lasers at the nanoscale.



https://doi.org/10.1103/PhysRevApplied.20.034045
Mejia Chueca, Maria del Carmen; Graske, Marcus; Winter, Andreas; Baumer, Christoph; Stich, Michael; Mattea, Carlos; Ispas, Adriana; Isaac, Nishchay Angel; Schaaf, Peter; Stapf, Siegfried; Jacobs, Heiko O.; Bund, Andreas
Electrodeposition of reactive aluminum-nickel coatings in an AlCl3:[EMIm]Cl ionic liquid containing nickel nanoparticles. - In: Journal of the Electrochemical Society, ISSN 1945-7111, Bd. 170 (2023), 7, 072504

The electrodeposition of aluminum-nickel coatings was performed by pulsed direct current in the ionic liquid (IL) 1.5:1 AlCl3:EMIm]Cl containing nickel nanoparticles (Ni NPs), for reactive dispersion coating application. Several electrochemical and characterization techniques were used to shed more light on the mechanism of Ni particle incorporation into the Al matrix. Thus, particle incorporation at the early stage of the deposition would mainly take place via particle adsorption at the substrate. However, as the thickness of the coating increases, it seems that the main mechanism for particle incorporation is via the reduction of ions adsorbed at the particles surface. Although a considerable high incorporation of Ni NPs has been achieved from the IL containing the highest concentration of Ni NPs (i.e. ∼33 wt% from a 20 g/L of Ni NPs bath), a high concentration of NPs in the IL resulted having a negative effect in terms of quality of the coatings, due to solidification of the electrolyte in a poorly conductive compound. Moreover, almost equivalent amounts of Ni and Al (Ni ∼45 wt.%and Al ∼44 wt.%) have been detected in some areas of the coatings. Such a layer composition would be desired for the targeted application.



https://doi.org/10.1149/1945-7111/ace382
Sun, Shougang; Qi, Jiannan; Wang, Shuguang; Wang, Zhongwu; Hu, Yongxu; Huang, Yinan; Fu, Yao; Wang, Yanpeng; Du, Haiyan; Hu, Xiaoxia; Lei, Yong; Chen, Xiaosong; Li, Liqiang; Hu, Wenping
General spatial confinement recrystallization method for rapid preparation of thickness-controllable and uniform organic semiconductor single crystals. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 38, 2301421, S. 1-8

Organic semiconductor single crystals (OSSCs) are ideal materials for studying the intrinsic properties of organic semiconductors (OSCs) and constructing high-performance organic field-effect transistors (OFETs). However, there is no general method to rapidly prepare thickness-controllable and uniform single crystals for various OSCs. Here, inspired by the recrystallization (a spontaneous morphological instability phenomenon) of polycrystalline films, a spatial confinement recrystallization (SCR) method is developed to rapidly (even at several second timescales) grow thickness-controllable and uniform OSSCs in a well-controlled way by applying longitudinal pressure to tailor the growth direction of grains in OSCs polycrystalline films. The relationship between growth parameters including the growth time, temperature, longitudinal pressure, and thickness is comprehensively investigated. Remarkably, this method is applicable for various OSCs including insoluble and soluble small molecules and polymers, and can realize the high-quality crystal array growth. The corresponding 50 dinaphtho[2,3-b:2″,3″-f]thieno[3,2-b]thiophene (DNTT) single crystals coplanar OFETs prepared by the same batch have the mobility of 4.1 ± 0.4 cm2 V^−1 s^−1, showing excellent uniformity. The overall performance of the method is superior to the reported methods in term of growth rate, generality, thickness controllability, and uniformity, indicating its broad application prospects in organic electronic and optoelectronic devices.



https://doi.org/10.1002/smll.202301421
Xu, Bowen; Zhang, Da; Peng, Chao; Liang, Feng; Zhao, Huaping; Yang, Bin; Xue, Dongfeng; Lei, Yong
Gel adsorbed redox mediators tempo as integrated solid-state cathode for ultra-long life quasi-solid-state Na-air battery. - In: Advanced energy materials, ISSN 1614-6840, Bd. 13 (2023), 42, 2302325, S. 1-10

In metal-air batteries, the integrated solid-state cathode is considered a promising design because it can solve the problem of high interfacial resistance of conventional solid-state cathodes. However, solid discharge products cannot be efficiently decomposed in an integrated solid-state cathode, resulting in batteries that are unable to operate for long periods of time. Herein, an integrated solid-state cathode (Gel-Tempo cathode) of sodium-air batteries (SABs) capable of promoting efficient decomposition of discharge product Na2O2 is designed. The Gel-Tempo cathode is synthesized by cationic-π interaction of redox mediator 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) and ionic liquid with carbon nanotubes. The Gel-Tempo cathode serves multiple functions as a redox mediator, flame retardancy, and high stability to air. In quasi-solid-state SABs, the Gel-Tempo cathode reduces overpotential to 1.15 V and improves coulomb efficiency to 84.5% (at a limited discharge capacity of 3000 mAh g−1) compared to gel cathodes. Experiments and density functional theory calculations indicate that Tempo significantly reduces the Gibbs free energy in the decomposition reaction of Na2O2, and high Tempo content is more conducive to enhancing the decomposition kinetics of Na2O2 and hence resulting in an ultra-long cycle life (1746 h). This work is crucial to promote practical applications of SABs, providing guidelines for functionalization design of integrated solid-state cathodes for metal-air batteries.



https://doi.org/10.1002/aenm.202302325
Täuscher, Eric; Freiberger, Emma
Cholesterin aus Hirn. - In: Nachrichten aus der Chemie, ISSN 1439-9598, Bd. 71 (2023), 1, S. 30-32

Cholesterin hat es bis in den Alltagssprachgebrauch gebracht. Allein deshalb ist es für Praktika im Chemiestudium ein interessanter Vertreter der Steroide. Zudem ist es einfach zu gewinnen.



Täuscher, Eric; Freiberger, Emma
Cholesterin aus Hirn. - In: Nachrichten aus der Chemie, ISSN 1868-0054, Bd. 71 (2023), 1, S. 30-32

Cholesterin hat es bis in den Alltagssprachgebrauch gebracht. Allein deshalb ist es für Praktika im Chemiestudium ein interessanter Vertreter der Steroide. Zudem ist es einfach zu gewinnen.



https://doi.org/10.1002/nadc.20234132329
Tsierkezos, Nikos; Freiberger, Emma; Ritter, Uwe; Krischok, Stefan; Ullmann, Fabian; Köhler, Michael
Application of nitrogen-doped multi-walled carbon nanotubes decorated with gold nanoparticles in biosensing. - In: Journal of solid state electrochemistry, ISSN 1433-0768, Bd. 27 (2023), 10, S. 2645-2658

Novel films consisting of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) were fabricated by means of chemical vapor deposition technique and decorated with gold nanoparticles (AuNPs) possessing diameter of 14.0 nm. Electron optical microscopy analysis reveals that decoration of N-MWCNTs with AuNPs does not have any influence on their bamboo-shaped configuration. The electrochemical response of fabricated composite films, further denoted as N-MWCNTs/AuNPs, towards oxidation of dopamine (DA) to dopamine-o-quinone (DAQ) in the presence of ascorbic acid (AA) and uric acid (UA) was probed in real pig serum by means of cyclic voltammetry (CV) and square wave voltammetry (SWV). The findings demonstrate that N-MWCNTs/AuNPs exhibit slightly greater electrochemical response and sensitivity towards DA/DAQ compared to unmodified N-MWCNTs. It is, consequently, obvious that AuNPs improve significantly the electrochemical response and detection ability of N-MWCNTs. The electrochemical response of N-MWCNTs/AuNPs towards DA/DAQ seems to be significantly greater compared to that of conventional electrodes, such as platinum and glassy carbon. The findings reveal that N-MWCNTs/AuNPs could serve as powerful analytical sensor enabling analysis of DA in real serum samples.



https://doi.org/10.1007/s10008-023-05562-2
Stapf, Siegfried; Shikhov, Igor; Arns, Christoph; Gizatullin, Bulat; Mattea, Carlos
Dipolar NMR relaxation of adsorbates on surfaces of controlled wettability. - In: Magnetic resonance letters, ISSN 2772-5162, Bd. 3 (2023), 3, S. 220-231

In reservoir rocks, the term “ageing” refers to extended exposition to crude oil; a typically water-wet sandstone will then gradually become oil-wet as a consequence of the deposition of insoluble fractions of oil onto the surface grains. Rocks have been aged artificially by subjecting them to a bitumen solution at elevated temperature in order to achieve comparable surface properties for three different types of rock: Bentheimer, Berea Buff and Liège Chalk. Using saturated and aromatic model compounds as proxies for crude oil, the nuclear magnetic resonance (NMR) relaxation dispersion in native and aged rocks was compared and correlated to the properties of paramagnetic impurities in these rock types. Perfluorated liquids were found to follow the same trend as deuterated and naturally occurring oil components, suggesting they can be used as suitable tracers for wettability studies since the 19F nucleus is absent in natural sources. By combining electron paramagnetic resonance (EPR) and dynamic nuclear polarization (DNP) it becomes possible to identify and quantify the origin of the dominating relaxation processes between native and aged rocks, providing an alternative approach to assess wettability in natural rocks.



https://doi.org/10.1016/j.mrl.2023.02.001
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Radicals on the silica surface: probes for studying dynamics by means of fast field cycling relaxometry and dynamic nuclear polarization. - In: Magnetic resonance letters, ISSN 2772-5162, Bd. 3 (2023), 3, S. 256-265

Determining the dynamics of adsorbed liquids on nanoporous materials is crucial for a detailed understanding of interactions and processes on the solid-liquid interface in many materials and porous systems. Knowledge of the influence of the presence of paramagnetic species on the surface or within the porous matrices is essential for fundamental studies and industrial processes such as catalysts. Magnetic resonance methods, such as electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), are powerful tools to address these questions and to quantify dynamics, electron-nuclear interaction features and their relation to the physical-chemical parameters of the system. This paper presents an NMR study of the dynamics of polar and nonpolar adsorbed liquids, represented by water, n-decane, deuterated water and nonane-d20, on the native silica surface as well as silica modified with vanadyl porphyrins. The analysis of the frequency dependence of the nuclear spin-lattice relaxation time is carried out by separating the intra- and intermolecular contributions, which were analyzed using reorientations mediated by translational displacements (RMTD) and force-free-hard-sphere (FFHS) models, respectively.



https://doi.org/10.1016/j.mrl.2023.03.006
Wolffram, Daniel; Abbott, Sam; An der Heiden, Matthias; Funk, Sebastian; Günther, Felix; Hailer, Davide; Heyder, Stefan; Hotz, Thomas; van de Kassteele, Jan; Küchenhoff, Helmut; Müller-Hansen, Sören; Syliqi, Diell̈e; Ullrich, Alexander; Weigert, Maximilian; Schienle, Melanie; Bracher, Johannes
Collaborative nowcasting of COVID-19 hospitalization incidences in Germany. - In: PLoS Computational Biology, ISSN 1553-7358, Bd. 19 (2023), 8, e1011394, S. 1-25

Real-time surveillance is a crucial element in the response to infectious disease outbreaks. However, the interpretation of incidence data is often hampered by delays occurring at various stages of data gathering and reporting. As a result, recent values are biased downward, which obscures current trends. Statistical nowcasting techniques can be employed to correct these biases, allowing for accurate characterization of recent developments and thus enhancing situational awareness. In this paper, we present a preregistered real-time assessment of eight nowcasting approaches, applied by independent research teams to German 7-day hospitalization incidences during the COVID-19 pandemic. This indicator played an important role in the management of the outbreak in Germany and was linked to levels of non-pharmaceutical interventions via certain thresholds. Due to its definition, in which hospitalization counts are aggregated by the date of case report rather than admission, German hospitalization incidences are particularly affected by delays and can take several weeks or months to fully stabilize. For this study, all methods were applied from 22 November 2021 to 29 April 2022, with probabilistic nowcasts produced each day for the current and 28 preceding days. Nowcasts at the national, state, and age-group levels were collected in the form of quantiles in a public repository and displayed in a dashboard. Moreover, a mean and a median ensemble nowcast were generated. We find that overall, the compared methods were able to remove a large part of the biases introduced by delays. Most participating teams underestimated the importance of very long delays, though, resulting in nowcasts with a slight downward bias. The accompanying prediction intervals were also too narrow for almost all methods. Averaged over all nowcast horizons, the best performance was achieved by a model using case incidences as a covariate and taking into account longer delays than the other approaches. For the most recent days, which are often considered the most relevant in practice, a mean ensemble of the submitted nowcasts performed best. We conclude by providing some lessons learned on the definition of nowcasting targets and practical challenges.



https://doi.org/10.1371/journal.pcbi.1011394
Zhang, Chenglin; Yan, Chengzhan; Jin, Rui; Hao, Jinhui; Xing, Zihao; Zhang, Peng; Wu, Yuhan; Li, Longhua; Zhao, Huaping; Wang, Shun; Shi, Weidong; Lei, Yong
Weak interaction between cations and anions in electrolyte enabling fast dual-ion storage for potassium-ion hybrid capacitors. - In: Advanced functional materials, ISSN 1616-3028, Bd. 33 (2023), 52, 2304086, S. 1-10

Identifying an effective electrolyte is a primary challenge for hybrid ion capacitors, due to the intricacy of dual-ion storage. Here, this study demonstrates that the electrochemical behavior of graphite oxide in ether-solvent electrolyte outperforms those in ester-solvent electrolytes for the cathode of potassium-ion hybrid capacitor. The experimental and theoretical assessments verify that the anion and cation are isolated effectively in dimethyl ether, endowing a weaker interaction between cations and anions compared to that of ester-solvent electrolytes, which facilitates the dual-ion diffusion and thus enhances the electrochemical performance. This result provides a rational strategy to realize high-rate cations and anions storage on the carbon cathode. Furthermore, a new low-cost and high-performance capacitor prototype, modified graphite oxide (MGO) cathode versus pristine graphite (PG) in ether-solvent electrolyte (MGOǁDMEǁPG), is proposed. It exhibits a high energy density of 150 Wh kg^−1cathode at a high power density of 21443 W kg^−1cathode (calculation based on total mass: 60 Wh kg^−1 at 8577 W kg^−1).



https://doi.org/10.1002/adfm.202304086
Tsierkezos, Nikos; Reddmann, Eike Felix; Ritter, Uwe
Synthesis and electrochemical properties of sulfur-nitrogen-doped multi-walled carbon nanotubes. - In: Fullerenes, nanotubes & carbon nanostructures, ISSN 1536-4046, Bd. 31 (2023), 11, S. 1082-1095

Multi-walled carbon nanotubes doped with sulfur and nitrogen (S-N-MWCNTs) were grown onto silicon/silicon oxide wafer by means of chemical vapor deposition upon decomposition of dimethyl sulfoxide (DMSO) and acetonitrile (ACN) in presence of catalyst. The S-N-MWCNTs were characterized by scanning electron microscopy combined with energy dispersive X-ray spectroscopy. The findings demonstrate that S-N-MWCNTs exhibit bamboo-shaped nanostructure, quite similar to pure nitrogen-doped carbon nanotubes. The S-N-MWCNTs were investigated with respect to their electrochemical response to ferrocyanide/ferricyanide, [Fe(CN)6]4-/3- in potassium chloride aqueous solutions by means of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The recorded CVs demonstrate strong dependence of electrochemical response, electron transfer kinetics, and sensitivity of S-N-MWCNTs on concentration of decomposed DMSO precursor. Namely, upon increasing concentration of decayed DMSO up to 2% wt. the current density, the electron transfer kinetics, and the sensitivity of S-N-MWCNTs toward [Fe(CN)6]4-/3- tend to enhance. The extracted EIS results approve that when DMSO reaches the optimum concentration of 2% wt. the barrier for electron transfer decreases significantly leading, consequently, to faster electron transfer kinetics. The S-N-MWCNTs exhibit considerable stability and excellent reproducibility, and thus it can be considered suitable analytical tool for detection of redox systems at micromolar level.



https://doi.org/10.1080/1536383X.2023.2240916
Ritter, Uwe; Nikolenko, Andrii; Alieksandrov, Maksim; Strelchuk, Viktor; Chumachenko, Vasyl; Kutsevol, Nataliya; Scharff, Peter; Prylutskyy, Yu I.
Structural and optical properties of C70 fullerenes in aqueous solution. - In: Fullerenes, nanotubes & carbon nanostructures, ISSN 1536-4046, Bd. 31 (2023), 10, S. 983-988

The simple method of preparation of highly stable and purified C70 fullerene aqueous solution (C70FAS) is proposed. The features of structural stabilization of C70 fullerenes in an aqueous solution by studying their structural and optical properties using Raman, photoluminescence, infrared reflection-absorption, UV-VIS absorption, and dynamic light scattering spectroscopy methods were analyzed. The experimental results showed that the most likely mechanism for C70 fullerenes stabilization in water is surface hydroxylation with covalent attachment of water hydroxyls to C70 fullerene carbons. Raman and infrared absorption spectra of C70FAS showed characteristic vibrational bands of C70 fullerenes with a slight broadening and low-frequency shift of ∼1 cm^−1, indicating the attachment of water hydroxyls to the C70 fullerene carbons. The photoluminescence spectra showed excitonic emission bands of C70 molecules with intensity depending on their content. UV-VIS absorption spectra demonstrate the absorption bands typical for monomeric C70 fullerene. Finally, the dynamic light scattering data confirmed that C70FAS is a typical colloidal fluid containing both individual C70 molecules and their nano aggregates up to 100 nm. These findings provide insights into the stabilization mechanism of C70 fullerenes in water and may have implications for their potential application in nanobiotechnology.



https://doi.org/10.1080/1536383X.2023.2229461
Dreßler, Christian; Hänseroth, Jonas; Sebastiani, Daniel
Coexistence of cationic and anionic phosphate moieties in solids: unusual but not impossible. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 14 (2023), 32, S. 7249-7255

Phosphoric acid is commonly known either as a neutral molecule or as an anion (phosphate). We theoretically confirm by ab initio molecular dynamics simulations (AIMD) that a cationic form H4PO4+ coexists with the anionic form H2PO4- in the same salt. This paradoxical situation is achieved by partial substitution of Cs+ by H4PO4+ in CsH2PO4. Thus, HnPO4 acts simultaneously as both the positive and the negative ion of the salt. We analyze the dynamical protonation pattern within the unusual hydrogen bond network that is established between the ions. Our AIMD simulations show that a conventional assignment of protonation states of the phosphate groups is not meaningful. Instead, a better description of the protonation situation is achieved by an efficiently fractional assignment of the strongly hydrogen-bonded protons to both its nearest and next-nearest oxygen neighbors.



https://doi.org/10.1021/acs.jpclett.3c01521
Flecken, Franziska; Knapp, Anna; Grell, Toni; Dreßler, Christian; Hanf, Schirin
Acute bite angle POP- and PSP-type ligands and their trinuclear copper(I) complexes: synthesis and photo-luminescence properties. - In: Inorganic chemistry, ISSN 1520-510X, Bd. 62 (2023), 32, S. 13038-13049

In the current work, the rational synthesis of trinuclear copper complexes, incorporating acute bite angle POP- and PSP-type ligands, is reported. The in situ formation of POP (Ph2P–O–PPh2) or PSP (Ph2P–S–PPh2) ligands in the presence of a copper(I) precursor gave access to various trinuclear copper complexes of the form [Cu3(μ3-Hal)2(μ-PXP)3]PF6 [X = O; Hal = Cl (1), Br (2), I (3) and X = S; Hal = Cl (5), Br (6), I (7)]. Related iodide-containing complexes and clusters, such as [Cu4(μ3-I)4(Ph2PI)4] (4) and [Cu3(μ3-I)2(μ-I)(μ-PSP)2] (8), could also be obtained via the variation of the reaction stoichiometry. The investigation of the photo-optical properties by photo-luminescence spectroscopy has demonstrated that the phosphorescence in the visible region can be switched off through the mere change of the heteroatom in the ligand backbone (POP vs PSP ligand scaffold). Theoretical studies have been conducted to complement the experimental photo-optical data with detailed insights into the occurring electronic transitions. Consequently, this systematic study paves the way for tuning the photo-optical properties of transition metal complexes in a more rational way.



https://doi.org/10.1021/acs.inorgchem.3c01865
Bang-Jensen, Jørgen; Hörsch, Florian; Kriesell, Matthias
Complexity of (arc)-connectivity problems involving arc-reversals or deorientations. - In: Theoretical computer science, Bd. 973 (2023), 114097

By a well known theorem of Robbins, a graph G has a strongly connected orientation if and only if G is 2-edge-connected and it is easy to find, in linear time, either a cut edge of G or a strong orientation of G. A result of Durand de Gevigney shows that for every it is NP-hard to decide if a given graph G has a k-strong orientation. Thomassen showed that one can check in polynomial time whether a given graph has a 2-strong orientation. This implies that for a given digraph D we can determine in polynomial time whether we can reorient (=reverse) some arcs of to obtain a 2-strong digraph. This naturally leads to the question of determining the minimum number of such arcs to reverse before the resulting graph is 2-strong. In this paper we show that finding this number is NP-hard. If a 2-connected graph G has no 2-strong orientation, we may ask how many of its edges we may orient so that the resulting mixed graph is still 2-strong. Similarly, we may ask for a 2-edge-connected graph G how many of its edges we can orient such that the resulting mixed graph remains 2-arc-strong. We prove that when restricted to graphs satisfying suitable connectivity conditions, both of these problems are equivalent to finding the minimum number of edges we must double in a 2-edge-connected graph in order to obtain a 4-edge-connected graph. Using this, we show that all these three problems are NP-hard. Finally, we consider the operation of deorienting an arc uv of a digraph D meaning replacing it by an undirected edge between the same vertices. In terms of connectivity properties, this is equivalent to adding the opposite arc vu to D. We prove that for every it is NP-hard to find the minimum number of arcs to deorient in a digraph D in order to obtain an ℓ-strong digraph.



https://doi.org/10.1016/j.tcs.2023.114097
Omidian, Maryam; Schulte, Stefan; Néel, Nicolas; Kröger, Jörg
Scanning tunneling spectroscopy of lithium-decorated graphene. - In: Annalen der Physik, ISSN 1521-3889, Bd. 535 (2023), 11, 2300249, S. 1-8

Lithium decoration of graphene on SiC(0001) is achieved in a surface science approach by intercalation and adsorption of the alkali metal. Spectroscopy of the differential conductance with a scanning tunneling microscope at the Li-decorated graphene surfaces does not give rise to a pairing gap at the Fermi energy, which may be expected because of the previously predicted superconducting phase [Profeta et al., Nat. Phys. 2012, 8, 131]. Rather, pronounced gaps in the spectroscopic data of intercalated samples reflect the excitation of graphene phonons. Rationales that possibly explain this discrepancy between experimental findings and theoretical predictions are suggested.



https://doi.org/10.1002/andp.202300249
Ran, Yan; Ren, Jie; Yang, Zhi Chao; Zhao, Huaping; Wang, Yude; Lei, Yong
The 3D flower-like MnV12O31&hahog;10H2O as a high-capacity and long-lifespan cathode material for aqueous zinc-ion batteries. - In: Small structures, ISSN 2688-4062, Bd. 4 (2023), 11, 2300136, S. 1-11

Selecting the right cathode material is a key component to achieving high-energy and long-lifespan aqueous zinc-ion batteries (AZIBs); however, the development of cathode materials still faces serious challenges due to the high polarization of Zn2+. In this work, MnV12O31&hahog;10H2O (MnVO) synthesized via a one-step hydrothermal method is proposed as a promising cathode material for AZIBs. Because the stable layered structure and hieratical morphology of MnVO provide a large layer space for rapid ion transports, this material exhibits high specific capacity (433 mAh g−1 at 0.1 A g−1), an outstanding long-term cyclability (5000 cycles at a current density of 3 A g−1), and an excellent energy density (454.65 Wh kg−1). To illustrate the intercalation mechanism, ex situ X-Ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy are adopted, uncovering an H+/Zn2+ dual-cation co-intercalation processes. In addition, density-functional theory calculation analysis shows that MnVO has a delocalized electron cloud and the diffusion energy barrier of Zn2+ in MnVO is low, which promotes the Zn2+ transport and consequently improves the reversibility of the battery upon deep cycling. The key and enlightening insights are provided in the results for designing high-performance vanadium-oxide-based cathode materials for AZIBs.



https://doi.org/10.1002/sstr.202300136
Xie, Ting; Ehrhardt, Linda; Günther, Mike; Köhler, Michael; Cao-Riehmer, Jialan
Current to biomass: media optimization and strain selection from cathode-associated microbial communities in a two-chamber electro-cultivation reactor. - In: Environments, ISSN 2076-3298, Bd. 10 (2023), 6, 97, S. 1-19

Cathode-associated microbial communities (caMCs) are the functional key elements in the conversion of excess electrical energy into biomass. In this study, we investigated the development of electrochemical caMCs based on two-chamber microbial electrolytic cells (MECs) after optimization of media composition. Microbial communities obtained from a historical soil sample were inoculated into the cathode chamber of MECs. The inorganic medium with (A) carbon dioxide in air or (B) 100 mM sodium bicarbonate as carbon source was used in the absence of any organic carbon source. After 12 days of operation, the experimental results showed that (1) the bacterial community in group B exhibited lush growth and (2) a single strain TX168 Epilithonimonas bovis isolated from group A indicated electrochemical activity and synthesized large volumes of biomass using sodium bicarbonate. We also analyzed the caMCs of the MECs and reference samples without electro-cultivation using 16S rRNA gene sequencing. The results showed that the caMCs of MECs in groups A and B were dominated by the genera Acinetobacter and Pseudomonas. The caMCs were further inoculated and cultured on different agars to isolate specific electroactive bacterial strains. Overall, our study highlights the possibility of converting excess energy into biomass by electro-cultivation and the importance of selecting appropriate media to enrich specific microbial communities and single strains in MECs.



https://doi.org/10.3390/environments10060097
Stapf, Siegfried; Siebert, Niklas; Spalek, Timo; Hartmann, Vincent; Gizatullin, Bulat; Mattea, Carlos
Binary fluids in mesoporous materials: phase separation studied by NMR relaxation and diffusion. - In: Magnetic resonance letters, ISSN 2772-5162, Bd. 3 (2023), 2, S. 108-117

Relaxation and diffusion measurements were carried out on single and binary liquids filling the pore space of controlled porous glass Vycor with an average pore size of about 4 nm. The dispersion of the longitudinal relaxation time T1 is discussed as a means to identify liquid-surface interaction based on existing models developed for metal-free glass surfaces. In addition, the change of T1 and T2 with respect to their bulk values is discussed, in particular T2 serves as a probe for the strength of molecular interactions. As the native glass surface is polar and contains a large amount of hydroxyl groups, a pronounced interaction of polar and protic adsorbate liquids is expected; however, the T1 dispersion, and the corresponding reduction of T2, are also observed for non-polar liquids such as alkanes and cyclohexane. Deuterated liquids are employed for simplifying data analysis in binary systems, but also for separating the respective contributions of intra- and intermolecular interactions to the overall relaxation rate. Despite the lack of paramagnetic impurities in the glass material, 1H and 2H relaxation dispersions of equivalent molecules are frequently found to differ from each other, suggesting intermolecular relaxation mechanisms for the 1H nuclei. The variation of the T1 dispersion when comparing single and binary systems gives clear evidence for the preferential adsorption of one of the two liquids, suggesting complete phase separation in several cases. Measurement of the apparent tortuosity by self-diffusion experiments supports the concept of a local variation of sample composition within the porespace.



https://doi.org/10.1016/j.mrl.2023.03.002
Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten
Perturbation and spectral theory for singular indefinite Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (26 Seiten). - (Preprint ; M23,08)

We study singular Sturm-Liouville operators of the form 1/r_j (-d/dx p_j d/dx +q_j), j=0,1, in L_2((a; b); rj ), where, in contrast to the usual assumptions, the weight functions r_j have different signs near the singular endpoints a and b. In this situation the associated maximal operators become self-adjoint with respect to indefnite inner products and their spectral properties differ essentially from the Hilbert space situation. We investigate the essential spectra and accumulation properties of nonreal and real discrete eigenvalues; we emphasize that here also perturbations of the indefinite weights r_j are allowed. Special attention is paid to Kneser type results in the indefinite setting and to L_1 perturbations of periodic operators.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200208
Honecker, Maria Christine; Gernandt, Hannes; Wulff, Kai; Trunk, Carsten; Reger, Johann
Feedback rectifiable pairs and stabilization of switched linear systems. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (12 Seiten). - (Preprint ; M23,07)

We address the feedback design problem for switched linear systems. In particular we aim to design a switched state-feedback such that the resulting closed-loop switched system is in upper triangular form. To this effect we formulate and analyse the feedback rectification problem for pairs of matrices. We present necessary and sufficient conditions for the feedback rectifiability of pairs for two subsystems and give a constructive procedure to design stabilizing state-feedback for a class of switched systems. Several examples illustrate the characteristics of the problem considered and the application of the proposed constructive procedure.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200194
Selzer, Silas A.; Bauer, Fabian; Bohm, Sebastian; Runge, Erich; Bretschneider, Peter
Physics-guided machine learning techniques for improving temperature calculations of high-voltage transmission lines. - In: Die Energiewende beschleunigen, (2023), S. 353-360

The calculation of the temperature of high-voltage transmission lines is usually done by the commercially used standard models, the CIGRE Standard No. 601 and the IEEE Standard No. 738. These turn out to be prone to errors in application. Based on data analysis, new models based on machine learning techniques and their combination with physics-based models, called physics-guided machine learning techniques, were developed and compared with the results of the established physical models and measurement results. The improved models achieve a reduction of the mean absolute estimation error as well as a significant reduction of the values that deviate more than 5 K from the measured conductor temperature. Also, the mean underestimation of the conductor temperature was changed into an applicationtechnically unproblematic overestimation by the transition from the best standard to the best data-scientific model. The optimization of the models could be achieved by eliminating the incorrect determination of the physical parameters, a compensation of the conservative estimation of the physical effects as well as the consideration of the neglected thermal components of the heat balance. The investigations are based on measured data of the conductor temperature and electrical quantities from the grid area of 50Hertz Transmission GmbH.



Eichfelder, Gabriele; Warnow, Leo
A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems. - In: Mathematical methods of operations research, ISSN 1432-5217, Bd. 0 (2023), 0, insges. 30 S.

In multi-objective mixed-integer convex optimization, multiple convex objective functions need to be optimized simultaneously while some of the variables are restricted to take integer values. In this paper, we present a new algorithm to compute an enclosure of the nondominated set of such optimization problems. More precisely, we decompose the multi-objective mixed-integer convex optimization problem into several multi-objective continuous convex optimization problems, which we refer to as patches. We then dynamically compute and improve coverages of the nondominated sets of those patches to finally combine them to obtain an enclosure of the nondominated set of the multi-objective mixed-integer convex optimization problem. Additionally, we introduce a mechanism to reduce the number of patches that need to be considered in total. Our new algorithm is the first of its kind and guaranteed to return an enclosure of prescribed quality within a finite number of iterations. For selected numerical test instances we compare our new criterion space based approach to other algorithms from the literature and show that much larger instances can be solved with our new algorithm.



https://doi.org/10.1007/s00186-023-00828-x
Köster, Felix; Patel, Dhruvit; Wikner, Alexander; Jaurigue, Lina; Lüdge, Kathy
Data-informed reservoir computing for efficient time-series prediction. - In: Chaos, ISSN 1089-7682, Bd. 33 (2023), 7, 073109, S. 073109-1-073109-11

We propose a new approach to dynamical system forecasting called data-informed-reservoir computing (DI-RC) that, while solely being based on data, yields increased accuracy, reduced computational cost, and mitigates tedious hyper-parameter optimization of the reservoir computer (RC). Our DI-RC approach is based on the recently proposed hybrid setup where a knowledge-based model is combined with a machine learning prediction system, but it replaces the knowledge-based component by a data-driven model discovery technique. As a result, our approach can be chosen when a suitable knowledge-based model is not available. We demonstrate our approach using a delay-based RC as the machine learning component in conjunction with sparse identification of nonlinear dynamical systems for the data-driven model component. We test the performance on two example systems: the Lorenz system and the Kuramoto-Sivashinsky system. Our results indicate that our proposed technique can yield an improvement in the time-series forecasting capabilities compared with both approaches applied individually, while remaining computationally cheap. The benefit of our proposed approach, compared with pure RC, is most pronounced when the reservoir parameters are not optimized, thereby reducing the need for hyperparameter optimization.



https://doi.org/10.1063/5.0152311
Phi, Hai Binh; Bohm, Sebastian; Runge, Erich; Dittrich, Lars; Strehle, Steffen
3D passive microfluidic valves in silicon and glass using grayscale lithography and reactive ion etching transfer. - In: Microfluidics and nanofluidics, ISSN 1613-4990, Bd. 27 (2023), 8, 55, S. 1-12

A fabrication strategy for high-efficiency passive three-dimensional microfluidic valves with no mechanical parts fabricated in silicon and glass substrates is presented. 3D diffuser-nozzle valve structures were produced and characterized in their added value in comparison to conventional diffuser-nozzle valve designs with rectangular cross sections. A grayscale lithography approach for 3D photoresist structuring combined with a proportional transfer by reactive ion etching allowed to transfer 3D resist valve designs with high precision into the targeted substrate material. The efficiency with respect to the rectification characteristics or so-called diodicity of the studied valve designs is defined as the ratio of the pressure drops in backward and forward flow directions. The studied valve designs were characterized experimentally as well as numerically based on finite element simulations with overall matching results that demonstrate a significantly improved flow rectification of the 3D valves compared to the corresponding conventional structure. Our novel 3D valve structures show, for instance, even without systematic optimization a measured diodicity of up to 1.5 at low flow rates of only about 10 μl/s.



https://doi.org/10.1007/s10404-023-02663-2
van Steijn, Leonie; Wondergem, Joeri A. J.; Schakenraad, Koen; Heinrich, Doris; Merks, Roeland M. H.
Deformability and collision-induced reorientation enhance cell topotaxis in dense microenvironments. - In: Biophysical journal, ISSN 1542-0086, Bd. 122 (2023), 13, S. 2791-2807

In vivo, cells navigate through complex environments filled with obstacles such as other cells and the extracellular matrix. Recently, the term “topotaxis” has been introduced for navigation along topographic cues such as obstacle density gradients. Experimental and mathematical efforts have analyzed topotaxis of single cells in pillared grids with pillar density gradients. A previous model based on active Brownian particles (ABPs) has shown that ABPs perform topotaxis, i.e., drift toward lower pillar densities, due to decreased effective persistence lengths at high pillar densities. The ABP model predicted topotactic drifts of up to 1% of the instantaneous speed, whereas drifts of up to 5% have been observed experimentally. We hypothesized that the discrepancy between the ABP and the experimental observations could be in 1) cell deformability and 2) more complex cell-pillar interactions. Here, we introduce a more detailed model of topotaxis based on the cellular Potts model (CPM). To model persistent cells we use the Act model, which mimics actin-polymerization-driven motility, and a hybrid CPM-ABP model. Model parameters were fitted to simulate the experimentally found motion of Dictyostelium discoideum on a flat surface. For starved D. discoideum, the topotactic drifts predicted by both CPM variants are closer to the experimental results than the previous ABP model due to a larger decrease in persistence length. Furthermore, the Act model outperformed the hybrid model in terms of topotactic efficiency, as it shows a larger reduction in effective persistence time in dense pillar grids. Also pillar adhesion can slow down cells and decrease topotaxis. For slow and less-persistent vegetative D. discoideum cells, both CPMs predicted a similar small topotactic drift. We conclude that deformable cell volume results in higher topotactic drift compared with ABPs, and that feedback of cell-pillar collisions on cell persistence increases drift only in highly persistent cells.



https://doi.org/10.1016/j.bpj.2023.06.001
Ren, Jie; Ran, Yan; Yang, Zhi Chao; Zhao, Huaping; Wang, Yude; Lei, Yong
Boosting material utilization via direct growth of Zn2(V3O8)2 on the carbon cloth as a cathode to achieve a high-capacity aqueous zinc-ion battery. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 46, 2303307, S. 1-10

Aqueous zinc-ion batteries (AZIBs) have attracted the attention of researchers because of their high theoretical capacity and safety. Among the many vanadium-based AZIB cathode materials, zinc vanadate is of great interest as a typical phase in the dis-/charge process. Here, a remarkable method to improve the utilization rate of zinc vanadate cathode materials is reported. In situ growth of Zn2(V3O8)2 on carbon cloth (CC) as the cathode material (ZVOCC) of AZIBs. Compared with the Zn2(V3O8)2 cathode material bonded on titanium foil (ZVO@Ti), the specific capacity increases from 300 to 420 mAh g−1, and the utilization rate of the material increases from 69.60% to 99.2%. After the flexible device is prepared, it shows the appropriate specific capacity (268.4 mAh g−1 at 0.1 A g−1) and high safety. The method proposed in this work improves the material utilization rate and enhances the energy density of AZIB and also has a certain reference for the other electrochemical energy storage devices.



https://doi.org/10.1002/smll.202303307
Eichfelder, Gabriele; Gerlach, Tobias; Warnow, Leo
A test instance generator for multiobjective mixed-integer optimization. - In: Mathematical methods of operations research, ISSN 1432-5217, Bd. 0 (2023), 0, insges. 26 S.

Application problems can often not be solved adequately by numerical algorithms as several difficulties might arise at the same time. When developing and improving algorithms which hopefully allow to handle those difficulties in the future, good test instances are required. These can then be used to detect the strengths and weaknesses of different algorithmic approaches. In this paper we present a generator for test instances to evaluate solvers for multiobjective mixed-integer linear and nonlinear optimization problems. Based on test instances for purely continuous and purely integer problems with known efficient solutions and known nondominated points, suitable multiobjective mixed-integer test instances can be generated. The special structure allows to construct instances scalable in the number of variables and objective functions. Moreover, it allows to control the resulting efficient and nondominated sets as well as the number of efficient integer assignments.



https://doi.org/10.1007/s00186-023-00826-z
Peh, Katharina; Flötotto, Aaron; Lauer, Kevin; Schulze, Dirk; Bratek, Dominik; Krischok, Stefan
Calibration of low-temperature photoluminescence of boron-doped silicon with increased temperature precision. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 10, 2300300, S. 1-5

https://doi.org/10.1002/pssb.202300300
Assanova, Anar; Trunk, Carsten; Uteshova, Roza
On the solvability of boundary value problems for linear differential-algebraic equations with constant coefficients. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (7 Seiten). - (Preprint ; M23,06)

We study a two-point boundary value problem for a linear differential-algebraic equation with constant coefficients by using the method of parameterization. The parameter is set as the value of the continuously differentiable component of the solution at the left endpoint of the interval. Applying the Weierstrass canonical form to the matrix pair associated with the differential-algebraic equation, we obtain a criterion for the unique solvability of the problem.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200182
Mazétyté-Stasinskiené, Raminta; Kronfeld, Klaus-Peter; Köhler, Michael
Five-level structural hierarchy: microfluidically supported synthesis of core-shell microparticles containing nested set of dispersed metal and polymer micro and nanoparticles. - In: Particle & particle systems characterization, ISSN 1521-4117, Bd. 14 (2023), 10, 2300030, S. 1-13

This study presents the development of a hierarchical design concept for the synthesis of multi-scale polymer particles with up to five levels of organization. The synthesis of core-shell microparticles containing nested sets of dispersed metal and polymer micro- and nanoparticles is achieved through in situ photopolymerization using a double co-axial capillaries microfluidic device. The flow rates of the carrier, shell, and core phases are optimized to control particle size and result in stable core-shell particles with well-dispersed three-level composites in the shell matrix. The robustness and reversibility of these core-shell particles are demonstrated through five cycles of drying and re-swelling, showing that the size and structure of core-shell particles remain unchanged. Additionally, the permeability and mobility of dye molecules within the shell matrix are tested and showed that different molecular weight dyes have different penetration times. This study highlights the potential of microfluidics as a powerful tool for the controlled and precise synthesis of complex structured materials and demonstrates the versatility and potential of these core-shell particles for sensing applications as particle-based surface-enhanced Raman scattering (SERS).



https://doi.org/10.1002/ppsc.202300030
Mathew, Sobin; Abedin, Saadman; Kurtash, Vladislav; Lebedev, Sergei P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Jacobs, Heiko O.; Pezoldt, Jörg
Evaluation of hysteresis response in achiral edges of graphene nanoribbons on semi-insulating SiC. - In: Materials science forum, ISSN 1662-9752, Bd. 1089 (2023), S. 15-22

Hysteresis response of epitaxially grown graphene nanoribbons devices on semi-insulating 4H-SiC in the armchair and zigzag directions is evaluated and studied. The influence of the orientation of fabrication and dimensions of graphene nanoribbons on the hysteresis effect reveals the metallic and semiconducting nature graphene nanoribbons. The hysteresis response of armchair based graphene nanoribbon side gate and top gated devices implies the influence of gate field electric strength and the contribution of surface traps, adsorbents, and initial defects on graphene as the primary sources of hysteresis. Additionally, passivation with AlOx and top gate modulation decreased the hysteresis and improved the current-voltage characteristics.



https://doi.org/10.4028/p-i2s1cm
Endres, Patrick; Schütt, Timo; Kimmig, Julian; Bode, Stefan; Hager, Martin; Geitner, Robert; Schubert, Ulrich Sigmar
Oxymethylene ether (OME) fuel catalyst screening using in situ NMR spectroscopy. - In: Chemistry - a European journal, ISSN 1521-3765, Bd. 29 (2023), 33, e202203776, S. 1-9

Online NMR measurements are introduced in the current study as a new analytical setup for investigation of the oxymethylene dimethyl ether (OME) synthesis. For the validation of the setup, the newly established method is compared with state-of-the-art gas chromatographic analysis. Afterwards, the influence of different parameters, such as temperature, catalyst concentration and catalyst type on the OME fuel formation based on trioxane and dimethoxymethane is investigated. As catalysts, AmberlystTM 15 (A15) and trifluoromethanesulfonic acid (TfOH) are utilized. A kinetic model is applied to describe the reaction in more detail. Based on these results, the activation energy (A15: 48.0 kJ mol^-1 and TfOH: 72.3 kJ mol^-1) and the order in catalyst (A15: 1.1 and TfOH: 1.3) are calculated and discussed.



https://doi.org/10.1002/chem.202203776
Chao, Xin; Yan, Chengzhan; Zhao, Huaping; Wang, Zhijie; Lei, Yong
Micro-nano structural electrode architecture for high power energy storage. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 44 (2023), 5, 050201, S. 1-6

https://doi.org/10.1088/1674-4926/44/5/050201
Adamopoulos, Nikolaos D.; Tsierkezos, Nikos; Ntziouni, Afroditi; Zhang, Fu; Terrones, Mauricio; Kordatos, Konstantinos V.
Synthesis, characterization, and electrochemical performance of reduced graphene oxide decorated with Ag, ZnO, and AgZnO nanoparticles. - In: Carbon, ISSN 1873-3891, Bd. 213 (2023), 118178

Graphene oxide (GO) derived from the oxidization of graphite exhibits high specific surface area with potential in electrochemical applications. Furthermore, silver and zinc oxide nanoparticles, further denoted as AgNPs and ZnONPs, respectively, display superior physicochemical and electronic properties, that would significantly improve the electrocatalytic properties by being applied in electrochemical sensing. Consequently, in the present work, three different hybrid nanomaterials consisting of reduced graphene oxide (rGO) modified with either AgNPs, ZnONPs, or combined AgZnONPs were synthesized and characterized. The synthesis of GO was performed by a modified Hummer's method, while the decoration of GO with the nanoparticles was carried out by self-assembly solvothermal processes. The Ag-rGO, ZnO-rGO, and AgZnO-rGO nanocomposite hybrid materials were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy (EDX). Furthermore, the electrochemical responses of the fabricated nanocomposites towards the standard ferrocyanide/ferricyanide [Fe(CN)6]3-/4- redox system were investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The results have been explained in terms of structural differences between the nanoparticles formed on the surface of the fabricated nanocomposite materials. Namely, the improved electrochemical performance of ZnO-rGO can be attributed to the high surface to volume ratio of ZnO, which provides greater area of electrode/electrolyte junction and consequently, large number of sites at the electrolyte-ZnO interface. The aim of the present work is the fabrication of novel high-performance rGO-based nanomaterials for applications in electrochemical sensing.



https://doi.org/10.1016/j.carbon.2023.118178
Gravelle, Simon; Haber-Pohlmeier, Sabina; Mattea, Carlos; Stapf, Siegfried; Holm, Christian; Schlaich, Alexander
NMR investigation of water in salt crusts: insights from experiments and molecular simulations. - In: Langmuir, ISSN 1520-5827, Bd. 39 (2023), 22, S. 7548-7556

The evaporation of water from bare soil is often accompanied by the formation of a layer of crystallized salt, a process that must be understood in order to address the issue of soil salinization. Here, we use nuclear magnetic relaxation dispersion measurements to better understand the dynamic properties of water within two types of salt crusts: sodium chloride (NaCl) and sodium sulfate (Na2SO4). Our experimental results display a stronger dispersion of the relaxation time T1 with frequency for the case of sodium sulfate as compared to sodium chloride salt crusts. To gain insight into these results, we perform molecular dynamics simulations of salt solutions confined within slit nanopores made of either NaCl or Na2SO4. We find a strong dependence of the value of the relaxation time T1 on pore size and salt concentration. Our simulations reveal the complex interplay between the adsorption of ions at the solid surface, the structure of water near the interface, and the dispersion of T1 at low frequency, which we attribute to adsorption-desorption events.



https://doi.org/10.1021/acs.langmuir.3c00036
Hu, Ping; Dong, Yulian; Yang, Guowei; Chao, Xin; He, Shijiang; Zhao, Huaping; Fu, Qun; Lei, Yong
Hollow CuSbSy coated by nitrogen-doped carbon as anode electrode for high-performance potassium-ion storage. - In: Batteries, ISSN 2313-0105, Bd. 9 (2023), 5, 238, S. 1-15

As a potential anode material for potassium-ion batteries (PIBs), bimetallic sulfides are favored by researchers for their high specific capacity, low cost, and long cycle life. However, the non-ideal diffusion rate and poor cycle stability pose significant challenges in practical applications. In this work, bimetallic sulfide CuSbSyC with a yolk-shell structure was synthesized by in situ precipitation and carbonization. When CuSbSy is applied in the anode of PIBs, it can provide the desired capacity and reduce the volume expansion of the compound through the synergistic effect between copper and antimony. At the same time, the existence of the nitrogen-doped carbon shell confines the material within the shell while improving its electrical conductivity, inhibiting its volume expansion and aggregation. Therefore, CuSbSy@C exhibits a satisfactory capacity (438.8 mAh g^-1 at 100 mA g^-1 after 60 cycles) and an excellent long cycle life (174.5 mAh g^-1 at 1000 mA g^-1 after 1000 cycles).



https://doi.org/10.3390/batteries9050238
Hu, Yongxu; Wang, Zhongwu; Huang, Yinan; Shi, Rui; Wang, Shuguang; Chen, Xiaosong; Bi, Jinshun; Xuan, Yundong; Lei, Yong; Li, Liqiang; Yang, Chuluo; Hu, Wenping
Deep ultraviolet phototransistor based on thiophene-fluorobenzene oligomer with high mobility and performance. - In: Chinese journal of chemistry, ISSN 1614-7065, Bd. 41 (2023), 13, S. 1539-1544

Deep ultraviolet (UV) photodetectors have important applications in the industrial and military fields. However, little research has been reported on organic phototransistors (OPTs) in the deep ultraviolet range. Here, a novel organic semiconductor containing a small torsion angle and low π-conjugation 2,2':5',2”-terthiophene groups, oF-PTTTP, is designed and synthesized, which exhibits high carrier mobility and unique deep ultraviolet response. Accordingly, an OPT based on oF-PTTTP single crystal shows high responsivity to deep-UV light. The photodetectors achieve high photoresponsivity (R) of 857 A/W and detectivity (D*) of 3.2×10^15 Jones under 280 nm light illumination (only 95 nW&hahog;cm^-2). To the best of our knowledge, 280 nm is the deepest detection wavelength reported for organic phototransistors and this work presents a new molecule design concept for organic phototransistors with deep-UV detection.



https://doi.org/10.1002/cjoc.202200795
Niu, Wenhui; Xu, Bowen; Li, Fupeng; Hou, Minjie; Ren, Kun; Zhang, Da; Lei, Yong; Yang, Bin; Liang, Feng
Hierarchical mesoporous NiO nanosheet arrays as integrated electrode for hybrid sodium-air batteries. - In: Ceramics international, ISSN 1873-3956, Bd. 49 (2023), 13, S. 21355-21362

Attributed to its environmental friendliness, high theoretical energy density, and abundant sodium resource, rechargeable hybrid sodium-air batteries (HSABs) are expected to become a promising pioneer of the new-generation green energy storage device. However, HSABs suffer from the high voltage gap, low energy conversion efficiency, and poor cycle stability due to the low catalytic activity of catalysts caused by the degradation of polymer binders. Herein, hierarchical mesoporous NiO nanosheet arrays grown on carbon papers (CP) (NiO NACP) were synthesized by a facile and efficient hydrothermal route and calcination process, which acts as an integrated electrode for HSABs. Compared with traditional air electrodes that contain a polymer binder and conductive carbon, the integrated NiO NA@CP electrode prevents the aggregation of catalysts, improves the electronic conductivity by good electric contact and ensures its robust mechanical stability. In addition, NiO NA@CP electrode with the abundant porosity and large specific area offers plenty of active sites and shortens ion transfer length and rapid mass transport in ORR/OER process, leading to excellent oxygen catalytic activities. HSABs with NiO NA@CP electrode show a low overpotential of 0.65 V, a state-of-the-art power density (7.53 mW cm^-2), as well as an excellent cyclability of 170 cycles (over 170 h) at a current density of 0.1 mA cm^-2.



https://doi.org/10.1016/j.ceramint.2023.03.264
Faulwasser, Timm; Ou, Ruchuan; Pan, Guanru; Schmitz, Philipp; Worthmann, Karl
Behavioral theory for stochastic systems? : A data-driven journey from Willems to Wiener and back again. - In: Annual reviews in control, ISSN 1872-9088, Bd. 55 (2023), S. 92-117

The fundamental lemma by Jan C. Willems and co-workers is deeply rooted in behavioral systems theory and it has become one of the supporting pillars of the recent progress on data-driven control and system analysis. This tutorial-style paper combines recent insights into stochastic and descriptor-system formulations of the lemma to further extend and broaden the formal basis for behavioral theory of stochastic linear systems. We show that series expansions - in particular Polynomial Chaos Expansions (PCE) of L2-random variables, which date back to Norbert Wiener’s seminal work - enable equivalent behavioral characterizations of linear stochastic systems. Specifically, we prove that under mild assumptions the behavior of the dynamics of the L2-random variables is equivalent to the behavior of the dynamics of the series expansion coefficients and that it entails the behavior composed of sampled realization trajectories. We also illustrate the short-comings of the behavior associated to the time-evolution of the statistical moments. The paper culminates in the formulation of the stochastic fundamental lemma for linear time-invariant systems, which in turn enables numerically tractable formulations of data-driven stochastic optimal control combining Hankel matrices in realization data (i.e. in measurements) with PCE concepts.



https://doi.org/10.1016/j.arcontrol.2023.03.005
Hadzich, Antonella; Flores, Santiago; Masucci, Ashley E.; Gomez, Enrique D.; Groß, Gregor Alexander
NMR and GPC analysis of alkyd resins: influence of synthesis method, vegetable oil and polyol content. - In: Polymers, ISSN 2073-4360, Bd. 15 (2023), 9, 1993, S. 1-14

Alkyd resins are oil-based polymers that have been widely used for generations in the surface coating industry and beyond. Characterization of these resins is of high importance to understand the influence of its components on its behavior, compatibility with other resins, and final quality to ensure high durability. Here, NMR spectroscopy and GPC were used for characterizing differences in the chemical structure, molecular distribution, and dispersity between oil-based and fatty acid-based alkyd polymers made from sacha inchi and linseed oils. Sancha inchi (Plukentia volubilis L.) is a fruit-bearing plant native to South America and the Caribbean, and has a rich unsaturated fatty acid content. The effect of vegetable oil and polyol selection on the synthesis of alkyd resins for coating applications was analyzed. The influence of two different synthesis methods, monoglyceride and fatty acid processes, was also compared. Important structural differences were observed using NMR: one-dimensional spectra revealed the degree of unsaturated fatty acid chains along the polyester backbone, whereas, 2D NMR experiments facilitated chemical shift assignments of all signals. GPC analysis suggested that alkyd resins with homogeneous and high molecular weights can be obtained with the fatty acid process, and that resins containing pentaerythritol may have uniform chain lengths.



https://doi.org/10.3390/polym15091993
Zhang, Chenglin; Chandan Solanki, Pankaj; Cao, Dawei; Zhao, Huaping; Lei, Yong
Integration of cointercalation and adsorption enabling superior rate performance of carbon anodes for symmetric sodium-ion capacitors. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 15 (2023), 20, S. 24459-24469

Carbon materials have been the most common anodes for sodium-ion storage. However, it is well-known that most carbon materials cannot obtain a satisfactory rate performance because of the sluggish kinetics of large-sized sodium-ion intercalation in ordered carbon layers. Here, we propose an integration of co-intercalation and adsorption instead of conventional simplex-intercalation and adsorption to promote the rate capability of sodium-ion storage in carbon materials. The experiment was demonstrated by using a typical carbon material, reduced graphite oxide (RGO400) in an ether-solvent electrolyte. The ordered and disordered carbon layers efficiently store solvated sodium ions and simplex sodium ions, which endows RGO400 with enhanced reversible capacity (403 mA h g^-1 at 50 mA g^-1 after 100 cycles) and superior rate performance (166 mA h g^-1 at 20 A g^-1). Furthermore, a symmetric sodium-ion capacitor was demonstrated by employing RGO400 as both the anode and cathode. It exhibits a high energy density of 48 W h g^-1 at a very high power density of 10,896 W kg^-1. This work updates the sodium-ion storage mechanism and provides a rational strategy to realize high rate capability for carbon electrode materials.



https://doi.org/10.1021/acsami.3c02404
Peng, Xuanran; Liu, Jing; Kang, Yaru; Mao, Xu; Yan, Wei; Wang, Xiaohui; Liu, Kong; Xu, Rui; Yang, Fuhua; Li, Zhaofeng
Coupling of photonic and plasmonic modes for double nanowire cavities. - In: Photonics, ISSN 2304-6732, Bd. 10 (2023), 4, 415, S. 1-11

We analyze the coupling between double nanowire cavities for both photonic modes and plasmonic modes. When the spacing between nanowires reduces, a redshift of the resonant frequency of the symmetric mode and a blueshift of the resonant frequency of the antisymmetric mode are observed. Compared to single nanowire cavity modes, the Q factors of antisymmetric supermodes of double nanowires can be improved by 51% for photonic modes and by 24% for plasmonic modes. The mechanisms of Q factor improvement for photonic modes and plasmonic modes are studied based on the field distribution of radiations from the modes. This paper may contribute to research and applications for double nanowire lasers and nanowire laser arrays.



https://doi.org/10.3390/photonics10040415
Meinecke, Stefan; Köster, Felix; Christiansen, Dominik; Lüdge, Kathy; Knorr, Andreas; Selig, Malte
Data-driven forecasting of nonequilibrium solid-state dynamics. - In: Physical review, ISSN 2469-9969, Bd. 107 (2023), 18, 184306, S. 184306-1-184306-18

We present a data-driven approach to efficiently approximate nonlinear transient dynamics in solid-state systems. Our proposed machine-learning model combines a dimensionality reduction stage with a nonlinear vector autoregression scheme. We report an outstanding time-series forecasting performance combined with an easy-to-deploy model and an inexpensive training routine. Our results are of great relevance as they have the potential to massively accelerate multiphysics simulation software and thereby guide the future development of solid-state-based technologies.



https://doi.org/10.1103/PhysRevB.107.184306
He, Shijiang; Wang, Zidong; Wang, Zhijie; Lei, Yong
Recent progress and future prospect of novel multi-ion storage devices. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 44 (2023), 4, 040201, S. 1-5

https://doi.org/10.1088/1674-4926/44/4/040201
Chan, Tsz Lung; Kriesell, Matthias; Schmidt, Jens M.
Contractible edges in longest cycles. - In: Journal of graph theory, ISSN 1097-0118, Bd. 103 (2023), 3, S. 542-563

https://doi.org/10.1002/jgt.22935
Omidian, Maryam; Brand, Jonathan; Néel, Nicolas; Crampin, Simon; Kröger, Jörg
From a wide band gap to the superconducting proximity effect: Fe on Pb(111). - In: New journal of physics, ISSN 1367-2630, Bd. 25 (2023), 3, 033036, insges. 1-15 S.

Epitaxially grown Fe nanostructures on Pb(111) were studied by low-temperature scanning tunneling microscopy and spectroscopy. The deposited Fe assemblies are classified into two groups according to their electronic behavior close to the Fermi energy. One group exhibits a wide energy gap of 0.7 eV that is independent of the temperature ranging from 5 K to room temperature. These Fe islands indicate the absence of the superconductivity proximity effect in their interior. The other group shows a metallic behavior at the Fermi level. The substrate superconducting phase locally enters into these islands, which is evidenced by a sharp resonance at the Fermi energy presumably signaling Andreev reflection at the magnet-superconductor interface.



https://doi.org/10.1088/1367-2630/acc607
Mathew, Sobin; Reiprich, Johannes; Narasimha, Shilpashree; Abedin, Saadman; Kurtash, Vladislav; Thiele, Sebastian; Hähnlein, Bernd; Scheler, Theresa; Flock, Dominik; Jacobs, Heiko O.; Pezoldt, Jörg
Three-dimensional MoS2 nanosheet structures: CVD synthesis, characterization, and electrical properties. - In: Crystals, ISSN 2073-4352, Bd. 13 (2023), 3, 448, S. 1-14

The proposed study demonstrates a single-step CVD method for synthesizing three-dimensional vertical MoS2 nanosheets. The postulated synthesizing approach employs a temperature ramp with a continuous N2 gas flow during the deposition process. The distinctive signals of MoS2 were revealed via Raman spectroscopy study, and the substantial frequency difference in the characteristic signals supported the bulk nature of the synthesized material. Additionally, XRD measurements sustained the material’s crystallinity and its 2H-MoS2 nature. The FIB cross-sectional analysis provided information on the origin and evolution of the vertical MoS2 structures and their growth mechanisms. The strain energy produced by the compression between MoS2 islands is assumed to primarily drive the formation of vertical MoS2 nanosheets. In addition, vertical MoS2 structures that emerge from micro fissures (cracks) on individual MoS2 islands were observed and examined. For the evaluation of electrical properties, field-effect transistor structures were fabricated on the synthesized material employing standard semiconductor technology. The lateral back-gated field-effect transistors fabricated on the synthesized material showed an n-type behavior with field-effect mobility of 1.46 cm2 V^-1 s^-1 and an estimated carrier concentration of 4.5 × 10^12 cm^-2. Furthermore, the effects of a back-gate voltage bias and channel dimensions on the hysteresis effect of FET devices were investigated and quantified.



https://doi.org/10.3390/cryst13030448
Reis, Timo; Stykel, Tatjana
Passivity, port-Hamiltonian formulation and solution estimates for a coupled magneto-quasistatic system. - In: Evolution equations and control theory, ISSN 2163-2480, Bd. 12 (2023), 4, S. 1208-1232

In this paper, we study a quasilinear coupled magneto-quasistatic model from a systems theoretic perspective. First, by taking the injected voltages as input and the associated currents as output, we prove that the magneto-quasistatic system is passive. Moreover, by defining suitable Dirac and resistive structures, we show that it admits a representation as a port-Hamiltonian system. Thereafter, we consider dependence of the solution on initial and input data. We show that the current and the magnetic vector potential can be estimated by means of the initial magnetic vector potential and the voltage. We also analyse the free dynamics of the system and study the asymptotic behavior of the solutions for $ t\to\infty $.



https://doi.org/10.3934/eect.2023008
Sherratt, Katharine; Gruson, Hugo; Grah, Rok; Johnson, Helen; Niehus, Rene; Prasse, Bastian; Sandmann, Frank; Deuschel, Jannik; Wolffram, Daniel; Abbott, Sam; Ullrich, Alexander; Gibson, Graham; Ray, Evan L.; Reich, Nicholas G.; Sheldon, Daniel; Wang, Yijin; Wattanachit, Nutcha; Wang, Lijing; Trnka, Jan; Obozinski, Guillaume; Sun, Tao; Thanou, Dorina; Pottier, Loic; Krymova, Ekaterina; Meinke, Jan H.; Barbarossa, Maria Vittoria; Leithäuser, Neele; Mohring, Jan; Schneider, Johanna; Wlazło, Jarosław; Fuhrmann, Jan; Lange, Berit; Rodiah, Isti; Baccam, Prasith; Gurung, Heidi; Stage, Steven; Suchoski, Bradley; Budzinski, Jozef; Walraven, Robert; Villanueva, Inmaculada; Tucek, Vit; Smid, Martin; Zajíček, Milan; Pérez Álvarez, Cesar; Reina, Borja; Bosse, Nikos I.; Meakin, Sophie R.; Castro, Lauren; Fairchild, Geoffrey; Michaud, Isaac; Osthus, Dave; Alaimo Di Loro, Pierfrancesco; Maruotti, Antonello; Eclerová, Veronika; Kraus, Andrea; Kraus, David; Pribylova, Lenka; Dimitris, Bertsimas; Li, Michael Lingzhi; Saksham, Soni; Dehning, Jonas; Mohr, Sebastian; Priesemann, Viola; Redlarski, Grzegorz; Bejar Haro, Benjamin; Ardenghi, Giovanni; Parolini, Nicola; Ziarelli, Giovanni; Bock, Wolfgang; Heyder, Stefan; Hotz, Thomas; Singh, David E.; Guzman-Merino, Miguel; Aznarte, Jose L.; Moriña, David; Alonso, Sergio; Álvarez, Enric; López, Daniel; Prats, Clara; Burgard, Jan Pablo; Rodloff, Arne; Zimmermann, Tom; Kuhlmann, Alexander; Zibert, Janez; Pennoni, Fulvia; Divino, Fabio; Català, Marti; Lovison, Gianfranco; Giudici, Paolo; Tarantino, Barbara; Bartolucci, Francesco; Jona Lasinio, Giovanna; Mingione, Marco; Farcomeni, Alessio; Srivastava, Ajitesh; Montero-Manso, Pablo; Adiga, Aniruddha; Hurt, Benjamin; Lewis, Bryan; Marathe, Madhav; Porebski, Przemyslaw; Venkatramanan, Srinivasan; Bartczuk, Rafal P.; Dreger, Filip; Gambin, Anna; Gogolewski, Krzysztof; Gruziel-Słomka, Magdalena; Krupa, Bartosz; Moszyânski, Antoni; Niedzielewski, Karol; Nowosielski, Jedrzej; Radwan, Maciej; Rakowski, Franciszek; Semeniuk, Marcin; Szczurek, Ewa; Zieliânski, Jakub; Kisielewski, Jan; Pabjan, Barbara; Kirsten, Holger; Kheifetz, Yuri; Scholz, Markus; Biecek, Przemysław; Bodych, Marcin; Filinski, Maciej; Idzikowski, Radoslaw; Krueger, Tyll; Ozanski, Tomasz; Bracher, Johannes; Funk, Sebastian
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations. - In: eLife, ISSN 2050-084X, Bd. 12 (2023), e81916, S. 1-23, insges. 23 S.

https://doi.org/10.7554/eLife.81916
Jiang, Ting; Wang, Yiru; Zheng, Yingshuang; Wang, Le; He, Xiang; Li, Liqiang; Deng, Yunfeng; Dong, Huanli; Tian, Hongkun; Geng, Yanhou; Xie, Linghai; Lei, Yong; Ling, Haifeng; Ji, Deyang; Hu, Wenping
Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. - In: Nature Communications, ISSN 2041-1723, Bd. 14 (2023), 1, 2281, S. 1-9

Sensing and recognizing invisible ultraviolet (UV) light is vital for exploiting advanced artificial visual perception system. However, due to the uncertainty of the natural environment, the UV signal is very hard to be detected and perceived. Here, inspired by the tetrachromatic visual system, we report a controllable UV-ultrasensitive neuromorphic vision sensor (NeuVS) that uses organic phototransistors (OPTs) as the working unit to integrate sensing, memory and processing functions. Benefiting from asymmetric molecular structure and unique UV absorption of the active layer, the as fabricated UV-ultrasensitive NeuVS can detect 370 nm UV-light with the illumination intensity as low as 31 nW cm^-2, exhibiting one of the best optical figures of merit in UV-sensitive neuromorphic vision sensors. Furthermore, the NeuVS array exbibits good image sensing and memorization capability due to its ultrasensitive optical detection and large density of charge trapping states. In addition, the wavelength-selective response and multi-level optical memory properties are utilized to construct an artificial neural network for extract and identify the invisible UV information. The NeuVS array can perform static and dynamic image recognition from the original color image by filtering red, green and blue noise, and significantly improve the recognition accuracy from 46 to 90%.



https://doi.org/10.1038/s41467-023-37973-0
Néel, Nicolas; Kröger, Jörg
Orbital and skeletal structure of a single molecule on a metal surface unveiled by scanning tunneling microscopy. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 14 (2023), 16, S. 3946-3952

Atomic-scale spatial characteristics of a phthalocyanine orbital and skeleton are obtained on a metal surface with a scanning tunneling microscope and a CO-functionalized tip. Intriguingly, the high spatial resolution of the intramolecular electronic patterns is achieved without resonant tunneling into the orbital and despite the hybridization of the molecule with the reactive Cu substrate. The resolution can be fine-tuned by the tip-molecule distance, which controls the p-wave and s-wave contribution of the molecular probe to the imaging process. The detailed structure is deployed to minutely track the translation of the molecule in a reversible interconversion of rotational variants and to quantify relaxations of the adsorption geometry. Entering into the Pauli repulsion imaging mode, the intramolecular contrast loses its orbital character and reflects the molecular skeleton instead. The assignment of pyrrolic-hydrogen sites becomes possible, which in the orbital patterns remains elusive.



https://doi.org/10.1021/acs.jpclett.3c00460
Wu, Xiaocui; Néel, Nicolas; Brandbyge, Mads; Kröger, Jörg
Enhancement of graphene phonon excitation by a chemically engineered molecular resonance. - In: Physical review letters, ISSN 1079-7114, Bd. 130 (2023), 11, S. 116201-1-116201-6

The abstraction of pyrrolic hydrogen from a single phthalocyanine on graphene turns the molecule into a sensitive probe for graphene phonons. The inelastic electron transport measured with a scanning tunneling microscope across the molecular adsorbate and graphene becomes strongly enhanced for a graphene out-of-plane acoustic phonon mode. Supporting density functional and transport calculations elucidate the underlying physical mechanism. A molecular orbital resonance close to the Fermi energy controls the inelastic current while specific phonon modes of graphene are magnified due to their coupling to symmetry-equivalent vibrational quanta of the molecule.



https://doi.org/10.1103/PhysRevLett.130.116201
Dorner-Reisel, Annett; Wang, Tao; Freiberger, Emma; Ritter, Uwe; Moje, Jens; Zhao, Mengya; Scharff, Peter
Fullerene C60 films on dental implants: durability study after in vitro short-term exposure. - In: Diamond and related materials, ISSN 0925-9635, Bd. 135 (2023), 109886

The carbon fullerene C60 is an anti-inflammatory substance that reduces cellular stress levels. In this study, C60 fullerenes were deposited on complex dental implants to improve cell attachment and vitality. For the first time, fullerene C60 films were deposited via high-vacuum sublimation on complex-shaped Ti-6Al-4V dental implants with a threaded-screw design. The “as-deposited” fullerene C60 films were compared with fullerene C60 films on dental Ti-6Al-4V implants using a threaded-screw design after three weeks of incubation in Hank's balanced salt solution (HBSS). It was proven by Raman spectroscopy that the incubation in potassium and alkali-ion rich HBSS at 37 &ring;C resulted in a reduction of monomeric fullerene C60 fraction and an increase in dimer, linear chain and polymerized C60 molecules. Furthermore, the structure of the C60 films differed depending on the measurement position on dental implants with a threaded-screw design. The fraction of monomeric fullerene C60 was highest on top of the trapezoidal thread, which had a micropatterned topography. Nano-indentations were performed at this position with a maximum load of 1000 μN. The fullerene C60 films showed a nano-hardness of 0.3 ± 0.1 GPa and a Young's modulus of 7.6 ± 3.6 GPa at this position, which is typical for monomeric fullerene C60 with weak interatomic interaction in the face-centred-cubic crystal structure. The murine embryonal calvarial stem-cell line MC3T3-E1 (ECACC, UK), which is driven toward osteogenic differentiation, spread out extremely well on the fullerene C60 film, with improved cell morphology compared to uncoated Ti-6Al-4V. Cell nuclei density were determined to be 237.5 cell nuclei per mm2 for the Ti-6Al-4V dental implants with a threaded-screw design with fullerene C60 coating in “as-deposited” condition. This was approximately 40 % better than that of uncoated Ti-6Al-4V dental implants with a threaded-screw design.



https://doi.org/10.1016/j.diamond.2023.109886
Wörtge, Dennis; Parziale, Matthew; Claussen, Jan; Mohebbi, Behzad; Stapf, Siegfried; Blümich, Bernhard; Augustine, Matthew
Quantitative stray-field T1 relaxometry with the matrix pencil method. - In: Journal of magnetic resonance, ISSN 1096-0856, Bd. 351 (2023), 107435

The matrix pencil method (MPM) is tested as an approach to quantitatively process multiexponential low-field nuclear magnetic resonance T1 relaxometry data. The data is obtained by measuring T1 saturation recovery curves in the highly inhomogeneous magnetic field of a stray-field sensor. 0.9% brine solutions, doped with different concentrations of a Gd3+ containing contrast agent, serve as test liquids. Relaxation-times as a function of contrast-agent concentration along with the T1 relaxation curves for combinations of multiple different test liquids are measured, and the results from processing using MPM as well as inverse Laplace transformation as a benchmark are compared. The relaxation-time resolution limits of both procedures are probed by gradually reducing the difference between the relaxation-times of two liquids measured simultaneously. The sensitivity to quantify the relative contribution of each component to the magnetization build-up curve is explored by changing their volume ratio. Furthermore, the potential to resolve systems with more than two components is tested. For the systems under test, MPM shows superior performance in separating two or three relaxation components, respectively and effectively quantifying the time constants.



https://doi.org/10.1016/j.jmr.2023.107435
Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten
Perturbations of periodic Sturm-Liouville operators. - In: Advances in mathematics, ISSN 1090-2082, Bd. 422 (2023), 109022, S. 1-22

https://doi.org/10.1016/j.aim.2023.109022
Kleyman, Viktoria; Schaller, Manuel; Mordmüller, Mario; Wilson, Mitsuru; Brinkmann, Ralf; Worthmann, Karl; Müller, Matthias A.
State and parameter estimation for retinal laser treatment. - In: IEEE transactions on control systems technology, ISSN 1558-0865, Bd. 31 (2023), 3, S. 1366-1378

Adequate therapeutic retinal laser irradiation needs to be adapted to local absorption. This leads to time-consuming treatments as the laser power needs to be successively adjusted to avoid undertreatment and overtreatment caused by too low or too high temperatures. Closed-loop control can overcome this burden by means of temperature measurements. To allow for model predictive control schemes, the current state and the spot-dependent absorption need to be estimated. In this article, we thoroughly compare moving horizon estimator (MHE) and extended Kalman filter (EKF) designs for joint state and parameter estimation. We consider two different scenarios, the estimation of one or two unknown absorption coefficients. For one unknown parameter, both estimators perform very similarly. For two unknown parameters, we found that the MHE benefits from active parameter constraints at the beginning of the estimation, whereas after a settling time, both estimators perform again very similarly as long as the parameters are inside the considered parameter bounds.



https://doi.org/10.1109/TCST.2022.3228442
Moritz, Dominik Christian; Calvet, Wolfram; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Mayer, Thomas; Hannappel, Thomas; Hofmann, Jan Philipp; Jaegermann, Wolfram
Dangling bond defects on Si surfaces and their consequences on energy band diagrams: from a photoelectrochemical perspective. - In: Solar RRL, ISSN 2367-198X, Bd. 7 (2023), 9, 2201063, S. 1-10

Using silicon in multijunction photocells leads to promising device structures for direct photoelectrochemical water splitting. In this regard, photoelectron spectra of silicon surfaces are used to investigate the energetic condition of contact formation. It is shown that the Fermi-level position at the surface differs from the values expected from their bulk doping concentrations, indicating significant surface band bending which may limit the overall device efficiency. In this study, the influence of different surface preparation procedures for p- and n-doped Si wafers on surface band bending is investigated. With the help of photoemission and X-ray absorption spectroscopy, Si dangling bonds are identified as dominating defect centers at Si surfaces. These defects lead to an occupied defect band in the lower half and an unoccupied defect band in the upper half of the Si bandgap. However, partial oxidation of the defect centers causes a shift of defect bands, with only donor states remaining in the Si bandgap. Source-induced photovoltages at cryogenic temperatures indicate that partial surface oxidation also decreases the recombination activity of these defect centers. It is shown that defect distribution, defect concentration, and source-induced photovoltages need to be considered when analyzing Fermi-level pinning at Si surfaces.



https://doi.org/10.1002/solr.202201063
Xu, Changfan; Dong, Yulian; Zhao, Huaping; Lei, Yong
CO2 conversion toward real-world applications: electrocatalysis versus CO2 batteries. - In: Advanced functional materials, ISSN 1616-3028, Bd. 33 (2023), 32, 2300926, S. 1-38

Electrochemical carbon dioxide (CO2) conversion technologies have become new favorites for addressing environmental and energy issues, especially with direct electrocatalytic reduction of CO2 (ECO2RR) and alkali metal-CO2 (M-CO2) batteries as representatives. They are poised to create new economic drivers while also paving the way for a cleaner and more sustainable future for humanity. Although still far from practical application, ECO2RR has been intensively investigated over the last few years, with some achievements. In stark contrast, M-CO2 batteries, especially aqueous and hybrid M-CO2 batteries, offer the potential to combine energy storage and ECO2RR into an integrated system, but their research is still in the early stages. This article gives an insightful review, comparison, and analysis of recent advances in ECO2RR and M-CO2 batteries, illustrating their similarities and differences, aiming to advance their development and innovation. Considering the crucial role of well-designed functional materials in facilitating ECO2RR and M-CO2 batteries, special attention is paid to the development of rational design strategies for functional materials and components, such as electrodes/catalysts, electrolytes, and membranes/separators, at the industrial level and their impact on CO2 conversion. Moreover, future perspectives and research suggestions for ECO2RR and M-CO2 batteries are presented to facilitate practical applications.



https://doi.org/10.1002/adfm.202300926
Duan, Yu; Zhang, Sam; Yu, Yinye; Qiu, Jiajia; Feng, Shuanglong
Facile microwave plasma driven 3D-WSe2 2H-1T phase modulation for improving NO2 gas sensing performance. - In: Sensors and actuators, ISSN 0925-4005, Bd. 387 (2023), 133822

In recent years, transition metal dichalcogenides (TMDs) have been widely used for gas sensors. Here, three-dimensional (3D) WSe2 nanosheet arrays were surface treated by microwave plasma. Based on the original 3D structure, a 1T/2H hybrid phase structure was constructed by phase modulation, and Se vacancies were introduced to effectively improve its gas sensing performance. After only 60 s of treatment, the response (52.24 %), response/recovery time of the sample for 1 ppm NO2 were significantly improved with excellent stability and selectivity at room temperature. The intrinsic mechanism of its performance enhancement was elicited through various characterizations and molecular model construction. It is demonstrated that microwave plasma is a promising treatment method to improve the gas-sensitive performance of TMDs.



https://doi.org/10.1016/j.snb.2023.133822
Köhler, Michael; Ehrhardt, Linda; Günther, Mike
Archaeal and extremophilic bacteria from different archaeological excavation sites. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 24 (2023), 6, 5519, S. 1-18

Beside natural factors, human activities are important for the development of microbiomes. Thus, local soil bacterial communities are affected by recent activities such as agriculture, mining and industry. In addition, ancient human impacts dating back centuries or millennia have changed soils and can emboss the recent bacterial communities up to now, representing a certain long-term "memory of soil". Soil samples from five different archaeological excavation places were investigated for the presence of Archaea with a Next Generation Sequencing (NGS) analysis of the DNA coding for 16S r-RNA sequences. It was found that the abundance of Archaea differs strongly between less than one and more than 40 percent of bacteria. A Principal Component Analysis (PCA) of all samples shows that the archaeological excavation places can be distinguished from each other by the archaeal component of soil bacterial communities, which presents a typical pattern for each place. Most samples are marked by the dominance of Crenarchaeota, which are presented mainly by ammonia-related types. High contents of Nanoarchaeaota have been observed in one ash deposit of a historical saline and all samples of a historical tannery area. These samples are also marked by a significant presence of Dadabacteria. The specific abundancies of special Archaea - among them ammonia-oxidizing and sulphur-related types - are due obviously to former human activities and support the concept of the "ecological memory of soil".



https://doi.org/10.3390/ijms24065519
Ma, Mengmeng; Wang, Zhijie; Lei, Yong
An in-depth understanding of photophysics in organic photocatalysts. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 44 (2023), 3, 030401, S. 1-4

https://doi.org/10.1088/1674-4926/44/3/030401
Xu, Huimin; Xu, Dongbo; Deng, Shuang; Li, Dan; Jiang, Tianyao; Li, Longhua; Fan, Weiqiang; Lei, Yong; Shi, Weidong
Photochemical and electrochemical co-regulation of the BiVO4 photoanode for water splitting. - In: Chemical communications, ISSN 1364-548X, Bd. 59 (2023), 23, S. 3435-3438

A novel pretreatment strategy that can regulate the amount of oxygen vacancies (Ovac) across the wormlike-BiVO4 photoanode by photochemical and electrochemical co-processing. Upon decorating NiFeOx as an oxygen evolution cocatalyst for promoting the surface oxidation kinetics, a record-high photocurrent density of 6.42 mA cm^-2 is obtained at 1.23 vs. RHE (100 mW cm^-2).



https://doi.org/10.1039/D2CC07093F
Nandy, Manali; Paszuk, Agnieszka; Hanke, Kai Daniel; Kleinschmidt, Peter; Hannappel, Thomas
Optical in situ studies of Ge(100) interfacial exchange reactions in GaAs-rich MOVPE reactors for low-defect III-P growth. - In: ACS applied electronic materials, ISSN 2637-6113, Bd. 5 (2023), 2, S. 1295-1301

For vertical-cavity surface-emitting lasers (VCSELs) or photoelectrochemical devices and high efficient III-V/Ge(100) photovoltaics, preparation of double-atomic steps on Ge(100) substrates is highly recommended in order to avoid anti-phase boundaries in the III-V buffer layers. These Ge(100) surfaces were investigated in detail under As- and GaAs-rich MOVPE reactor conditions. During initial growth of III-P buffer layers, however, on an atomically well-ordered Ge(100):As surface, As-P exchange takes place, during which double-layer steps should be preserved. Here, we apply in situ monitoring to study the interaction of P with vicinal Ge(100):As surfaces under realistic, GaAs-rich CVD reactor conditions at growth temperature. In situ optical spectroscopy in combination with surface science techniques in ultra-high vacuum ambience is used to investigate the Ge(100) surface. We show that different Ge(100):As/P heterointerfaces are formed depending on the applied molar flow of phosphorus precursors. Despite the lattice-matched quality of the probing III-P layer, this critical heterointerface impacts significantly the surface roughness and the formation of crystal defects in the subsequently grown III-P buffer layers.



https://doi.org/10.1021/acsaelm.2c01775
Caragea, Andrei; Lee, Dae Gwan; Philipp, Friedrich; Voigtlaender, Felix
A Balian-Low type theorem for Gabor Riesz sequences of arbitrary density. - In: Mathematische Zeitschrift, ISSN 1432-1823, Bd. 303 (2023), 2, 48, S. 1-22

https://doi.org/10.1007/s00209-022-03182-6
Qiao, Yu; Zhao, Huaping; Shen, Yonglong; Li, Liqiang; Rao, Zhonghao; Shao, Guosheng; Lei, Yong
Recycling of graphite anode from spent lithium-ion batteries: advances and perspectives. - In: EcoMat, ISSN 2567-3173, Bd. 5 (2023), 4, e12321, S. 1-27

There is growing production for lithium-ion batteries (LIBs) to satisfy the booming development renewable energy storage systems. Meanwhile, amounts of spent LIBs have been generated and will become more soon. Therefore, the proper disposal of these spent LIBs is of significant importance. Graphite is the dominant anode in most commercial LIBs. This review specifically focuses on the recent advances in the recycling of graphite anode (GA) from spent LIBs. It covers the significance of GA recycling from spent LIBs, the introduction of the GA aging mechanisms in LIBs, the summary of the developed GA recovery strategies, and the highlight of reclaimed GA for potential applications. In addition, the prospect related to the future challenges of GA recycling is given at the end. It is expected that this review will provide practical guidance for researchers engaged in the field of spent LIBs recycling.



https://doi.org/10.1002/eom2.12321
Roos, Aycke; Meinecke, Stefan; Lüdge, Kathy
Spontaneous emission noise resilience of coupled nanolasers. - In: Frontiers in photonics, ISSN 2673-6853, Bd. 4 (2023), 1169988, S. 01-06

We investigate the spontaneous emission noise resilience of the phase-locked operation of two delay-coupled nanolasers. The system is modeled by semi-classical Maxwell-Bloch rate equations with stochastic Langevin-type noise sources. Our results reveal that a polarization dephasing time of two to three times the cavity photon lifetime maximizes the system’s ability to remain phase-locked in the presence of noise-induced perturbations. The Langevin noise term is caused by spontaneous emission processes which change both the intensity auto-correlation properties of the solitary lasers and the coupled system. In an experimental setup, these quantities are measurable and can be directly compared to our numerical data. The strong parameter dependence of the noise tolerance that we find may show possible routes for the design of robust on-chip integrated networks of nanolasers.



https://doi.org/10.3389/fphot.2023.1169988
Eichfelder, Gabriele; Warnow, Leo
Advancements in the computation of enclosures for multi-objective optimization problems. - In: European journal of operational research, ISSN 0377-2217, Bd. 310 (2023), 1, S. 315-327

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. For that computation one often makes use of so-called local upper bounds. In this paper we present a generalization of this concept. For the first time, this allows to apply a warm start strategy to the computation of an enclosure. We also show how this generalized concept allows to remove empty areas of an enclosure by deleting certain parts of the lower and upper bound sets which has not been possible in the past. We demonstrate how to apply our ideas to the box approximation algorithm, a general framework to compute an enclosure, as recently used in the solver called BAMOP. We show how that framework can be simplified and improved significantly, especially concerning its practical numerical use. In fact, we show for selected numerical instances that our new approach is up to eight times faster than the original one. Hence, our new framework is not only of theoretical but also of practical use, for instance for continuous convex or mixed-integer quadratic optimization problems.



https://doi.org/10.1016/j.ejor.2023.02.032
âCurgus, Branko; Derkach, Volodymyr; Trunk, Carsten
Indefinite Sturm-Liouville operators in polar form. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (49 Seiten). - (Preprint ; M23,05)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200114
Kunze, Thomas; Dreßler, Christian; Sebastiani, Daniel
Secondary structure formation in hybrid synthetic/peptide polymers: insights from molecular dynamics simulations. - In: Macromolecular theory and simulations, ISSN 1521-3919, Bd. 32 (2023), 3, 2200070, S. 1-8

Proteins and peptides exhibit an immense variety of structures, which are generally classified according to simple structural motifs (mainly α helices and β sheets). Considerable efforts have been invested in understanding the relationship between chemical structure (primary structure) of peptides and their spatial motifs (secondary structure). However, little is known about the possibility to interfere intentionally in these structural driving forces, for example, by inserting (short) artificial polymer chains in the peptide backbone. Structure formation on such hybrid synthetic/biochemical polymers is still an emerging field of research. Here, molecular dynamics simulations are used to illustrate the influence of inserted polyethylene segments on the secondary structure of several peptide homopolymers. A loss of structure of ≈50% when the peptide chain length drops to ten amino acids and a practically complete absence for even shorter peptide segments.



https://doi.org/10.1002/mats.202200070
Wu, Xiaofeng; Oropeza, Freddy E.; den Boer, Daan; Kleinschmidt, Peter; Hannappel, Thomas; Hetterscheid, Dennis Gerardus Hendrikus; Hensen, Emiel J. M.; Hofmann, Jan Philipp
Thermally induced oxygen vacancies in BiOCl nanosheets and their impact on photoelectrochemical performance. - In: ChemPhotoChem, ISSN 2367-0932, Bd. 7 (2023), 3, e202200192, S. 1-9

Oxygen vacancies (OVs) have been reported to significantly alter the photocatalytic properties of BiOCl nanosheets. However, their formation mechanism and their role in the enhancement of photoelectrochemical performance remain unclear. In this work, thermally induced oxygen vacancies are introduced in BiOCl nanosheets by annealing in He atmosphere at various temperatures and their formation mechanism is investigated by in-situ diffuse reflectance infrared (DRIFTS) measurements. The influence of OVs on band offset, carrier concentrations and photoelectrochemical performance are systematically studied. The results show that (1) the surface of BiOCl nanosheets is extremely sensitive to temperature and defects are formed at temperatures as low as 200 &ring;C in inert atmosphere. (2) The formation of surface and bulk OVs in BiOCl is identified by a combination of XPS, in-situ DRIFTS, and EPR experiments. (3) The photocurrent of BiOCl is limited by the concentration of charge carriers and shallow defect states induced by bulk oxygen vacancies, while the modulation of these parameters can effectively increase light absorption and carrier concentration leading to an enhancement of photoelectrochemical performance of BiOCl.



https://doi.org/10.1002/cptc.202200192
Aschenbruck, Tim; Dickert, Jörg; Esterhuizen, Willem; Filipecki, Bartosz; Grundel, Sara; Helmberg, Christoph; Ritschel, Tobias K. S.; Sauerteig, Philipp; Streif, Stefan; Wasserrab, Andreas; Worthmann, Karl
Hierarchical power systems: optimal operation using grid flexibilities. - Cham : Springer International Publishing, 2023. - 1 Online-Ressource (viii, 55 Seiten). - (SpringerBriefs in Energy) ISBN 978-3-031-25699-8

Introduction -- Preliminary theory -- Providing flexibility via residential batteries -- Flexibility in the distribution grid -- Security and stability on the transmission grid -- Implementation in the distribution grid and the microgrids -- Numerical example -- Conclusion.



https://doi.org/10.1007/978-3-031-25699-8
Meßner, Leon; Robertson, Elizabeth; Esguerra, Luisa; Lüdge, Kathy; Wolters, Janik
Multiplexed random-access optical memory in warm cesium vapor. - In: Optics express, ISSN 1094-4087, Bd. 31 (2023), 6, S. 10150-10158

The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum computation and communication technologies. However, research for multiplexed quantum memories has been focused on systems that show good performance only after an elaborate preparation of the storage media. This makes it generally more difficult to apply outside a laboratory environment. In this work, we demonstrate a multiplexed random-access memory to store up to four optical pulses using electromagnetically induced transparency in warm cesium vapor. Using a Λ-System on the hyperfine transitions of the Cs D1 line, we achieve a mean internal storage efficiency of 36% and a 1/e lifetime of 3.2 µs. In combination with future improvements, this work facilitates the implementation of multiplexed memories in future quantum communication and computation infrastructures.



https://doi.org/10.1364/OE.483642
Chill, Ralph; Reis, Timo; Stykel, Tatjana
Analysis of a quasilinear coupled magneto-quasistatic model: solvability and regularity of solutions. - In: Journal of mathematical analysis and applications, ISSN 1096-0813, Bd. 523 (2023), 2, 127033

We consider a quasilinear model arising from dynamical magnetization. This model is described by a magneto-quasistatic (MQS) approximation of Maxwell's equations. Assuming that the medium consists of a conducting and a non-conducting part, the derivative with respect to time is not fully entering, whence the system can be described by an abstract differential-algebraic equation. Furthermore, via magnetic induction, the system is coupled with an equation which contains the induced electrical currents along the associated voltages, which form the input of the system. The aim of this paper is to study well-posedness of the coupled MQS system and regularity of its solutions. Thereby, we rely on the classical theory of gradient systems on Hilbert spaces combined with the concept of E-subgradients using in particular the magnetic energy. The coupled MQS system precisely fits into this general framework.



https://doi.org/10.1016/j.jmaa.2023.127033
Grunert, Malte; Bohm, Sebastian; Honig, Hauke; Wang, Dong; Lienau, Christoph; Runge, Erich; Schaaf, Peter
Structural and optical properties of gold nanosponges revealed via 3D nano-reconstruction and phase-field models. - In: Communications materials, ISSN 2662-4443, Bd. 4 (2023), 1, 20, S. 1-13

Nanosponges are subject of intensive research due to their unique morphology, which leads among other effects to electrodynamic field localization generating a strongly nonlinear optical response at hot spots and thus enable a variety of applications. Accurate predictions of physical properties require detailed knowledge of the sponges’ chaotic nanometer-sized structure, posing a metrological challenge. A major goal is to obtain computer models with equivalent structural and optical properties. Here, to understand the sponges’ morphology, we present a procedure for their accurate 3D reconstruction using focused ion beam tomography. Additionally, we introduce a simulation method to create nanoporous sponge models with adjustable geometric properties. It is shown that if certain morphological parameters are similar for computer-generated and experimental sponges, their optical response, including magnitudes and hot spot locations, are also similar. Finally, we analyze the anisotropy of experimental sponges and present an easy-to-use method to reproduce arbitrary anisotropies in computer-generated sponges.



https://doi.org/10.1038/s43246-023-00346-7
Schulte, Stefan; Néel, Nicolas; Rózsa, Levente; Palotás, Krisztián; Kröger, Jörg
Changing the interaction of a single-molecule magnetic moment with a superconductor. - In: Nano letters, ISSN 1530-6992, Bd. 23 (2023), 4, S. 1622-1628

The exchange interaction of a brominated Co-porphyrin molecule with the Cooper pair condensate of Pb(111) is modified by reducing the Co-surface separation. The stepwise dehalogenation and dephenylation change the Co adsorption height by a few picometers. Only the residual Co-porphine core exhibits a Yu-Shiba-Rusinov bound state with low binding energy in the Bardeen-Cooper-Schrieffer energy gap. Accompanying density functional calculations reveal that the Co dz2 orbital carries the molecular magnetic moment and is responsible for the intragap state. The calculated spatial evolution of the Yu-Shiba-Rusinov wave function is compatible with the experimentally observed oscillatory attenuation of the electron-hole asymmetry with increasing lateral distance from the magnetic porphine center.



https://doi.org/10.1021/acs.nanolett.2c03952
Dong, Yulian; Xu, Changfan; Li, Yueliang; Zhang, Chenglin; Zhao, Huaping; Kaiser, Ute; Lei, Yong
Ultrahigh-rate and ultralong-duration sodium storage enabled by sodiation-driven reconfiguration. - In: Advanced energy materials, ISSN 1614-6840, Bd. 13 (2023), 6, 2204324, S. 1-12

Despite their variable valence and favorable sodiation/desodiation potential, vanadium sulfides (VSx) used as anode materials of sodium-ion batteries (SIBs) have been held back by their capacity decline and low cycling capability, associated with the structure distortion volume expansion and pulverization. This study reports an accessible process to tackle these challenges via fabricating a 3D-VSx anode for SIBs with ultrahigh-rate and ultralong-duration stable sodium storage. The sodiation-driven reactivation of micro-nano 3D-VSx activates the reconfiguration effect, effectively maintaining structural integrity. Interestingly, the mechanical degradation of 3D-VSx over the sodiation process can be controlled by fine-tuning the operating voltage. The self-reconfigured open nanostructures with large void space not only effectively withstand repetitive volume changes and mitigate the damaging mechanical stresses, but also in turn construct a self-optimized shortened ion diffusion pathway. Moreover, the sodiation-driven reconfiguration excites many active sites and optimizes a stable solid-electrolyte interface, thereby delivering a reversible capacity of 961.4 mA h g^-1 after 1500 cycles at a high rate of 2 A g^-1. This work provides new insight into the rational design of electrodes toward long-lived SIBs through sodiation-driven reconfiguration.



https://doi.org/10.1002/aenm.202204324
Ma, Mengmeng; Zhao, Huaping; Wang, Zhijie; Lei, Yong
Designing atomic interfaces in chalcogenides for boosting photocatalysis. - In: Solar RRL, ISSN 2367-198X, Bd. 7 (2023), 9, 2300025, S. 1-25

A deeper understanding of interfaces comes after the rapid development of nano-hybrids. Atomic interfaces with atomic-level thickness, intimate bonds, inferior charge-transport resistance, and robust stability have received escalating interest in the field of photocatalysis. Taking into account the fact that the carrier dynamics and spectrum response of candidate photocatalysts like chalcogenides remain suffering, sustained efforts are devoted. Hybridization, which is accompanied by interface designing, behaves as a supportive strategy to enlarge the photocatalytic output. Hence, the comprehensive survey for recent empirical studies on atomic interfaces in chalcogenides is highly desirable. Precisely, the fundamental of atomic interfaces, the devised approaches to design atomic interfaces in chalcogenides and their feasible roles for maneuvering photocatalysis, and the auxiliary advanced characterization are enumerated and summarized. The multifarious interaction of structure, chemical environment, optical and electric properties, and photocatalytic performance in chalcogenides with atomic interfaces is highlighted. Meanwhile, perspectives of atomic interfaces benefiting photocatalysis are given with a summary, and outlooks related to controllable architecture, nucleation mechanism, calculation, and the correlation between atomic interfaces and amended photocatalysis are presented discreetly. Herein, the review is meant to provide the first systematic account of designing atomic interfaces in chalcogenides served for ultimate photocatalytic applications.



https://doi.org/10.1002/solr.202300025
Maheu, Clément; Zare Pour, Mohammad Amin; Damestoy, Iban; Ostheimer, David; Mellin, Maximilian; Moritz, Dominik Christian; Paszuk, Agnieszka; Jaegermann, Wolfram; Mayer, Thomas; Hannappel, Thomas; Hofmann, Jan Philipp
Tapered cross section photoelectron spectroscopy provides insights into the buried interfaces of III-V semiconductor devices. - In: Advanced materials interfaces, ISSN 2196-7350, Bd. 10 (2023), 3, 2201648, S. 1-9

Interfaces are key elements that define electronic properties of the final device. Inevitably, most of the active interfaces of III-V semiconductor devices are buried and it is therefore not straightforward to characterize them. The Tapered Cross Section Photoelectron Spectroscopy (TCS-PES) approach is promising to address such a challenge. That the TCS-PES can be used to study the relevant heterojunction in epitaxial III-V architectures prepared by metalorganic chemical vapor deposition is demonstrated here. A MULTIPREP polishing system that enables controlling the angle between the sample holder and the polishing plate has been employed to improve the reproducibility of the polishing procedure. With this procedure, that preparing the TCS of III-V semiconductor devices with tapering angles lower than 0.02&ring; is possible is demonstrated. The PES provides then information about the buried interfaces of Ge|GaInP and GaAs|GaInP layer stacks. Both, chemical and electronic properties have been measured by PES. It evidences that the preparation of the TCSs under an uncontrolled atmosphere modifies the pristine properties of the critical buried heterointerfaces. Surface states and reaction layers are created on the TCS surface, which restrict unambiguous conclusions on buried interface energetics.



https://doi.org/10.1002/admi.202201648
Hu, Yongxu; Zheng, Lei; Li, Jie; Huang, Yinan; Wang, Zhongwu; Lu, Xueying; Yu, Li; Wang, Shuguang; Sun, Yajing; Ding, Shuaishuai; Ji, Deyang; Lei, Yong; Chen, Xiaosong; Li, Liqiang; Hu, Wenping
Organic phase-change memory transistor based on an organic semiconductor with reversible molecular conformation transition. - In: Advanced science, ISSN 2198-3844, Bd. 10 (2023), 4, 2205694, S. 1-8

Phase-change semiconductor is one of the best candidates for designing nonvolatile memory, but it has never been realized in organic semiconductors until now. Here, a phase-changeable and high-mobility organic semiconductor (3,6-DATT) is first synthesized. Benefiting from the introduction of electrostatic hydrogen bond (S&hahog;&hahog;&hahog;H), the molecular conformation of 3,6-DATT crystals can be reversibly modulated by the electric field and ultraviolet irradiation. Through experimental and theoretical verification, the tiny difference in molecular conformation leads to crystalline polymorphisms and dramatically distinct charge transport properties, based on which a high-performance organic phase-change memory transistor (OPCMT) is constructed. The OPCMT exhibits a quick programming/erasing rate (about 3 s), long retention time (more than 2 h), and large memory window (i.e., large threshold voltage shift over 30 V). This work presents a new molecule design concept for organic semiconductors with reversible molecular conformation transition and opens a novel avenue for memory devices and other functional applications.



https://doi.org/10.1002/advs.202205694
Radivoievych, Aleksandar; Kolp, Benjamin; Grebinyk, Sergii; Prylutska, Svitlana; Ritter, Uwe; Zolk, Oliver; Glökler, Jörn Felix; Frohme, Marcus; Grebinyk, Anna
Silent death by sound: C60 fullerene sonodynamic treatment of cancer cells. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 24 (2023), 2, 1020, S. 1-17

The acoustic pressure waves of ultrasound (US) not only penetrate biological tissues deeper than light, but they also generate light emission, termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low-intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng/106 cells). Half of extranuclear C60 is localized within mitochondria. The efficiency of the C60 nanostructure’s sonoexcitation with 1 MHz US was tested with cell-based assays. A significant proapoptotic sonotoxic effect of C60 was found for HeLa cells. C60′s ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.



https://doi.org/10.3390/ijms24021020
Derkach, Volodymyr; Trunk, Carsten
PT-symmetric couplings of dual pairs. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (24 Seiten). - (Preprint ; M23,03)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200049
Eichfelder, Gabriele; Gerlach, Tobias; Rocktäschel, Stefan
Convexity and continuity of specific set-valued maps and their extremal value functions. - In: Journal of applied and numerical optimization, ISSN 2562-5535, Bd. 5 (2023), 1, S. 71-92

In this paper, we study several classes of set-valued maps, which can be used in set-valued optimization and its applications, and their respective maximum and minimum value functions. The definitions of these maps are based on scalar-valued, vector-valued, and cone-valued maps. Moreover, we consider those extremal value functions which are obtained when optimizing linear functionals over the image sets of the set-valued maps. Such extremal value functions play an important role for instance for derivative concepts for set-valued maps or for algorithmic approaches in set-valued optimization. We formulate conditions under which the set-valued maps and their extremal value functions inherit properties like (Lipschitz-)continuity and convexity.



https://doi.org/10.23952/jano.5.2023.1.05
Zhao, Junping; Wang, Yahui; Qian, Yudan; Jin, Huile; Tang, Xinyue; Huang, Zaimei; Lou, Jiayi; Zhang, Qingcheng; Lei, Yong; Wang, Shun
Hierarchical design of cross-linked NiCo2S4 nanowires bridged NiCo-hydrocarbonate polyhedrons for high-performance asymmetric supercapacitor. - In: Advanced functional materials, ISSN 1616-3028, Bd. 33 (2023), 4, 2210238, S. 1-14

Engineering core-shell materials with rationally designed architectures and components is an effective strategy to fulfill the high-performance requirements of supercapacitors. Herein, hierarchical candied-haws-like NiCo2S4NiCo(HCO3)2 core-shell heterostructure (NiCo2S4@HCs) is designed with NiCo(HCO3)2 polyhedrons being tightly strung by cross-linked NiCo2S4 nanowires. This rational design not only creates more electroactive sites but also suppresses the volume expansion during the charge-discharge processes. Meanwhile, density functional theory calculations ascertain that the formation of NiCo2S4@HCs heterostructure simultaneously facilitates OH− adsorption/desorption and accelerates electron transfer within the electrode, boosting fast and efficient redox reactions. Ex situ X-ray diffraction and Raman measurements reveal that gradual phase transformations from NiCo(HCO3)2 to NiCo(OH)2CO3 and then to highly-active NiCoOOH take place during the cycles. Therefore, NiCo2S4@HCs demonstrates an ultrahigh capacitance of 3178.2 F g−1 at 1 A g−1 and a remarkable rate capability of 2179.3 F g−1 at 30 A g−1. In addition, the asymmetric supercapacitor NiCo2S4@HCs//AC exhibits a high energy density of 69.6 W h kg−1 at the power density of 847 W kg−1 and excellent cycling stability with 90.2% retained capacitance after 10 000 cycles. Therefore, this novel structural design has effectively manipulated the interface charge states and guaranteed the structural integrity of electrode materials to achieve superior electrochemical performances.



https://doi.org/10.1002/adfm.202210238
Hähnlein, Bernd; Honig, Hauke; Schaaf, Peter; Krischok, Stefan; Tonisch, Katja
Effect of poly-crystallinity on the magnetoelectric behavior of TiN/AlN/Ni MEMS cantilevers investigated by finite element methods. - In: Physica status solidi, ISSN 1862-6319, Bd. 220 (2023), 16, 2200839, S. 1-6

Herein, magnetoelectric microelectromechanical system (MEMS) cantilevers are investigated on basis of a TiN/AlN/Ni laminate derived from experimental sensors using finite-element simulations. With the anisotropic ΔE effect as an implication of the magnetocrystalline anisotropy, the lateral sensitivity of the sensor is studied for different nickel layer thicknesses and boundary conditions. It is found that above 60% of the cantilever length, the nickel is effectively not contributing to the sensor sensitivity anymore which is supported by the investigation of sensors with partial nickel coverage. The boundary condition of the magnetostrictive layer is found to affect the sensitivity of thick layers while it is negligible for thinning layers. Further investigations on basis of polycrystalline untextured nickel with slightly preferred orientations reveal a stronger effect on thin layers than on thicker ones. It is found to arise from relatively large crystals in the high-sensitivity region near the clamping of the sensor. For thicker polycrystalline layers, the ΔE effect reproduces a characteristic based mainly on the (110) and (111) orientations while the (100) orientation appears to be underrepresented.



https://doi.org/10.1002/pssa.202200839
Ma, Mengmeng; Liu, Jun; Zhao, Huaping; Yue, Shizhong; Zhong, Li; Huang, Yanbin; Jia, Xiaohao; Liu, Kong; Li, Xiaobao; Wang, Zhijie; Qu, Shengchun; Lei, Yong
Broadened photocatalytic capability to near-infrared for CdS hybrids and positioning hydrogen evolution sites. - In: Applied catalysis, ISSN 1873-3883, Bd. 325 (2023), 122327

Wide-spectrum light harvesting is critical in determining practical photocatalysis water splitting. Hybridization presents a viable strategy to broaden photocatalytic capability, yet the direct conversion of near-infrared (NIR) light remains a matter of great concern. Herein, a state-of-art ternary Au nanorodsMoS2-CdS (AMC) hybrid is designed to address this challenge. AMC achieves a leap-forward apparent quantum yield (AQY) of 1.06% at 700 nm and an AQY of 35.7% at 450 nm, extending the hydrogen evolution reaction (HER) capability of CdS hybrids to the NIR region firstly. It is revealed that the energetic hot electrons supplied by Au nanorods (NRs) are responsible for this extension. Indispensable, MoS2 performs a platform to collect the hot electrons from Au NRs and the photoinduced electrons from CdS. The HER active sites are positioned as MoS2-CdS interfaces both from experimental and theoretical viewpoints. This work opens up a new horizon for the forward of the wide-spectrum photocatalysis design.



https://doi.org/10.1016/j.apcatb.2022.122327
Qi, Yaru; Qiu, Wenwen; Trunk, Carsten; Wilson, Mitsuru
Spectral inclusion property for a class of block operator matrices. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (12 Seiten). - (Preprint ; M23,02)

The numerical range and the quadratic numerical range is used to study the spectrum of a class of block operator matrices. We show that the approximate point spectrum is contained in the closure of the quadratic numerical range. In particular, the spectral enclosures yield a spectral gap. It is shown that these spectral bounds are tighter than classical numerical range bounds.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200026
Behrndt, Jussi; Gesztesy, Fritz; Schmitz, Philipp; Trunk, Carsten
Lower bounds for self-adjoint Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2023. - 1 Online-Ressource (11 Seiten). - (Preprint ; M23,01)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2023200011
Hörsch, Florian;
Globally balancing spanning trees. - In: European journal of combinatorics, Bd. 109 (2023), 103644

https://doi.org/10.1016/j.ejc.2022.103644
Schuett, Timo; Anufriev, Ilya; Endres, Patrick; Stumpf, Steffi; Nischang, Ivo; Höppener, Stephanie; Bode, Stefan; Schubert, Ulrich Sigmar; Geitner, Robert
A user-guide for polymer purification using dialysis. - In: Polymer chemistry, ISSN 1759-9962, Bd. 14 (2023), 1, S. 92-101

Dialysis diffusion kinetics are investigated via in situ NMR spectroscopy for numerous different raw polymeric solutions to result in a general guideline for polymer purification using dialysis. In several approaches, a polymer was on purpose contaminated with its respective monomer, regenerated conducting conventional dialysis and monitored online utilizing in situ NMR spectroscopy. Consequently, polymer type and molar mass, monomer type, molar mass cut-off of the dialysis tubing and type of solvent were varied resulting in 29 different purification approaches and over 40 000 NMR-spectra. As a result, several major parameters were identified affecting the purification process significantly such as the chosen solvent, viscosity and alpha value. On the contrary, parameters such as dialysis tubing molar mass cut-off and molar mass of the polymer did not affect the purification in a significant manner. Furthermore, physical properties such as density, viscosity, alpha value, and dipole moment of the ingredients were combined in a principal component analysis in order to identify the most important parameters.



https://doi.org/10.1039/D2PY00972B
Xu, Changfan; Dong, Yulian; Shen, Yonglong; Zhao, Huaping; Li, Liqiang; Shao, Guosheng; Lei, Yong
Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: challenges and perspectives. - In: Small, ISSN 1613-6829, Bd. 19 (2023), 15, 2206445, S. 1-30

Alkali metal-CO2 batteries, which combine CO2 recycling with energy conversion and storage, are a promising way to address the energy crisis and global warming. Unfortunately, the limited cycle life, poor reversibility, and low energy efficiency of these batteries have hindered their commercialization. Li-CO2 battery systems have been intensively researched in these aspects over the past few years, however, the exploration of Na-CO2 batteries is still in its infancy. To improve the development of Na-CO2 batteries, one must have a full picture of the chemistry and electrochemistry controlling the operation of Na-CO2 batteries and a full understanding of the correlation between cell configurations and functionality therein. Here, recent advances in CO2 chemical and electrochemical mechanisms on nonaqueous Na-CO2 batteries and hybrid Na-CO2 batteries (including O2-involved Na-O2/CO2 batteries) are reviewed in-depth and comprehensively. Following this, the primary issues and challenges in various battery components are identified, and the design strategies for the interfacial structure of Na anodes, electrolyte properties, and cathode materials are explored, along with the correlations between cell configurations, functional materials, and comprehensive performances are established. Finally, the prospects and directions for rationally constructing Na-CO2 battery materials are foreseen.



https://doi.org/10.1002/smll.202206445
Espuny Díaz, Alberto; Girao, Antonio
Hamiltonicity of graphs perturbed by a random regular graph. - In: Random structures & algorithms, ISSN 1098-2418, Bd. 62 (2023), 4, S. 857-886

https://doi.org/10.1002/rsa.21122
Espuny Díaz, Alberto;
Hamiltonicity of graphs perturbed by a random geometric graph. - In: Journal of graph theory, ISSN 1097-0118, Bd. 103 (2023), 1, S. 12-22

We study Hamiltonicity in graphs obtained as the union of a deterministic n-vertex graph H with linear degrees and a d-dimensional random geometric graph G d (n, r) for any d ≥ 1. We obtain an asymptotically optimal bound on the minimum r for which a.a.s. H ∪ G d (n, r) is Hamiltonian. Our proof provides a linear time algorithm to find a Hamilton cycle in such graphs.



https://doi.org/10.1002/jgt.22901
Philipp, Friedrich;
Relatively bounded perturbations of J-non-negative operators. - In: Complex analysis and operator theory, ISSN 1661-8262, Bd. 17 (2023), 1, 14, insges. 30 S.

We improve known perturbation results for self-adjoint operators in Hilbert spaces and prove spectral enclosures for diagonally dominant J-self-adjoint operator matrices. These are used in the proof of the central result, a perturbation theorem for J-non-negative operators. The results are applied to singular indefinite Sturm-Liouville operators with Lp-potentials. Known bounds on the non-real eigenvalues of such operators are improved.



https://doi.org/10.1007/s11785-022-01263-2
Hörsch, Florian; Szigeti, Zoltán
On the complexity of finding well-balanced orientations with upper bounds on the out-degrees. - In: Journal of combinatorial optimization, ISSN 1573-2886, Bd. 45 (2023), 1, 30, S. 1-14

https://doi.org/10.1007/s10878-022-00962-y
Lee, Dae Gwan; Philipp, Friedrich; Voigtlaender, Felix
A note on the invertibility of the Gabor frame operator on certain modulation spaces. - In: The journal of Fourier analysis and applications, ISSN 1531-5851, Bd. 29 (2023), 1, 3, S. 1-20

We consider Gabor frames generated by a general lattice and a window function that belongs to one of the following spaces: the Sobolev space $$V_1 = H^1(\mathbb {R}^d)$$, the weighted $$L^2$$-space $$V_2 = L_{1 + |x|}^2(\mathbb {R}^d)$$, and the space $$V_3 = \mathbb {H}^1(\mathbb {R}^d) = V_1 \cap V_2$$consisting of all functions with finite uncertainty product; all these spaces can be described as modulation spaces with respect to suitable weighted $$L^2$$spaces. In all cases, we prove that the space of Bessel vectors in $$V_j$$is mapped bijectively onto itself by the Gabor frame operator. As a consequence, if the window function belongs to one of the three spaces, then the canonical dual window also belongs to the same space. In fact, the result not only applies to frames, but also to frame sequences.



https://doi.org/10.1007/s00041-022-09980-0
Ilchmann, Achim; Kirchhoff, Jonas
Relative genericity of controllablity and stabilizability for differential-algebraic systems. - In: Mathematics of control, signals, and systems, ISSN 1435-568X, Bd. 35 (2023), 1, S. 45-76

https://doi.org/10.1007/s00498-022-00332-3
Viehweg, Johannes; Worthmann, Karl; Mäder, Patrick
Parameterizing echo state networks for multi-step time series prediction. - In: Neurocomputing, ISSN 1872-8286, Bd. 522 (2023), S. 214-228

Prediction of multi-dimensional time-series data, which may represent such diverse phenomena as climate changes or financial markets, remains a challenging task in view of inherent nonlinearities and non-periodic behavior In contrast to other recurrent neural networks, echo state networks (ESNs) are attractive for (online) learning due to lower requirements w.r.t.training data and computational power. However, the randomly-generated reservoir renders the choice of suitable hyper-parameters as an open research topic. We systematically derive and exemplarily demonstrate design guidelines for the hyper-parameter optimization of ESNs. For the evaluation, we focus on the prediction of chaotic time series, an especially challenging problem in machine learning. Our findings demonstrate the power of a hyper-parameter-tuned ESN when auto-regressively predicting time series over several hundred steps. We found that ESNs’ performance improved by 85.1%-99.8% over an already wisely chosen default parameter initialization. In addition, the fluctuation range is considerably reduced such that significantly worse performance becomes very unlikely across random reservoir seeds. Moreover, we report individual findings per hyper-parameter partly contradicting common knowledge to further, help researchers when training new models.



https://doi.org/10.1016/j.neucom.2022.11.044
Karagianni, Alexandra; Tsierkezos, Nikos; Prato, Maurizio; Terrones, Mauricio; Kordatos, Konstantinos V.
Application of carbon-based quantum dots in photodynamic therapy. - In: Carbon, ISSN 1873-3891, Bd. 203 (2023), S. 273-310

Photodynamic Therapy (PDT) is a non-invasive therapeutic modality that can treat a wide variety of cancer types by means of photosensitizer drug, light, and oxygen. Due to enhanced specificity and fewer side effects, PDT can be an alternative approach for cancer treatments. However, conventional photosensitizers (PSs) exhibit low selectivity, hydrophobicity, and limited photophysical properties. Nanotechnology emerges as a potential solution to these issues and improves PDT efficiency. Nanomaterials such as Carbon Quantum Dots (CQDs) and Graphene Quantum Dots (GrQDs) have been widely applied on PDT research recently, regarding their excellent photoluminescence properties, biocompatibility, as well as their hydrophilicity. The present review article summarizes the main features of PDT and carbon-based quantum dots with an emphasis on used PSs and methods for synthesis of carbon dots. Additionally, the most recent applications of CQDs and GrQDs in PDT have been extensively discussed. The main conclusion that arises is that carbon-based quantum dots seem to be a powerful tool in cancer diagnosis and treatment.



https://doi.org/10.1016/j.carbon.2022.11.026
Nüske, Feliks; Peitz, Sebastian; Philipp, Friedrich; Schaller, Manuel; Worthmann, Karl
Finite-data error bounds for Koopman-based prediction and control. - In: Journal of nonlinear science, ISSN 1432-1467, Bd. 33 (2023), 1, 14, S. 1-34

The Koopman operator has become an essential tool for data-driven approximation of dynamical (control) systems, e.g., via extended dynamic mode decomposition. Despite its popularity, convergence results and, in particular, error bounds are still scarce. In this paper, we derive probabilistic bounds for the approximation error and the prediction error depending on the number of training data points, for both ordinary and stochastic differential equations while using either ergodic trajectories or i.i.d. samples. We illustrate these bounds by means of an example with the Ornstein-Uhlenbeck process. Moreover, we extend our analysis to (stochastic) nonlinear control-affine systems. We prove error estimates for a previously proposed approach that exploits the linearity of the Koopman generator to obtain a bilinear surrogate control system and, thus, circumvents the curse of dimensionality since the system is not autonomized by augmenting the state by the control inputs. To the best of our knowledge, this is the first finite-data error analysis in the stochastic and/or control setting. Finally, we demonstrate the effectiveness of the bilinear approach by comparing it with state-of-the-art techniques showing its superiority whenever state and control are coupled.



https://doi.org/10.1007/s00332-022-09862-1
Wang, Cai; Zheng, Chunfang; Zhao, Huaping; Fu, Qun; Lei, Yong
TiO2 thickness-dependent charge transfer effect in p-aminothiophenol molecules chemisorbed on TiO2/Ni substrates. - In: Applied surface science, Bd. 610 (2023), 155573

Semiconductors have been modulated in thickness to optimize their surface-enhanced Raman scattering (SERS) activity in noble metal/semiconductor SERS substrates. However, the charge transfer (CT) resonance mechanism caused by the change of the semiconductor thickness has not been fully clarified yet, due to the influence of the strong surface plasmon resonance (SPR) effect from the noble metals. Here, systems of p-aminothiophenol (PATP) molecules chemisorbed on TiO2/Ni nanopillar array films with precisely controlled TiO2 thicknesses (PATP/TiO2/Ni) were developed to systematically evaluate the TiO2 thickness-dependent CT mechanism on the premise of minimizing the SPR influence. Ultraviolet-visible, photoluminescence and X-ray photoelectron spectroscopy results demonstrated that four parts that ascribed to the SERS enhancement, photo-induced CT from Ni to TiO2, resonance excitation of TiO2, CT from TiO2 surface states to PATP molecules, and the molecular resonance of PATP molecules, are highly TiO2-thickness dependent. Hence the whole system exhibits a strong TiO2-thickness-dependent CT effect (at the two interfaces of Ni-TiO2 and TiO2-PATP) and SERS activity with a maximum SERS intensity at a TiO2 thickness of 40 nm. This work shall be valuable for future developing an optimal metal/semiconductor SERS substrates and obtaining an in-depth understanding of the semiconductor-thickness-dependent charge transfer mechanism for SERS applications.



https://doi.org/10.1016/j.apsusc.2022.155573
Großmann, Max; Bohm, Sebastian; Heyder, Stefan; Schwarzburg, Klaus; Kleinschmidt, Peter; Runge, Erich; Hannappel, Thomas
Generalized modeling of photoluminescence transients. - In: Physica status solidi, ISSN 1521-3951, Bd. 260 (2023), 1, 2200339, S. 1-12

Time-resolved photoluminescence (TRPL) measurements and the extraction of meaningful parameters involve four key ingredients: a suitable sample such as a semiconductor double heterostructure, a state-of-the-art measurement setup, a kinetic model appropriate for the description of the sample behavior, and a general analysis method to extract the model parameters of interest from the measured TRPL transients. Until now, the last ingredient is limited to single curve fits, which are mostly based on simple models and least-squares fits. These are often insufficient for the parameter extraction in real-world applications. The goal of this article is to give the community a universal method for the analysis of TRPL measurements, which accounts for the Poisson distribution of photon counting events. The method can be used to fit multiple TRPL transients simultaneously using general kinematic models, but should also be used for single transient fits. To demonstrate this approach, multiple TRPL transients of a GaAs/AlGaAs heterostructure are fitted simultaneously using coupled rate equations. It is shown that the simultaneous fits of several TRPL traces supplemented by systematic error estimations allow for a more meaningful and more robust parameter determination. The statistical methods also quantify the quality of the description by the underlying physical model.



https://doi.org/10.1002/pssb.202200339
Wang, Zidong; Hong, Ping; Zhao, Huaping; Lei, Yong
Recent developments and future prospects of transition metal compounds as electrode materials for potassium-ion hybrid capacitors. - In: Advanced Materials Technologies, ISSN 2365-709X, Bd. 8 (2023), 3, 2200515, insges. 18 S.

Potassium-ion hybrid capacitors (PIHCs) have attracted considerable attention as emerging electrochemical energy storage devices for simultaneously achieving high energy and power density, which the key to success is the development of compatible electrode materials for both battery-type anode and capacitive cathode. Among numerous electrode materials, transition metal compounds (including oxides, chalcogenide, carbides, and nitrides) show great potential owing to their high theoretical capacity to achieve high energy density, but their sluggish reaction kinetics restrict the attainable power density. Hence, in the last few years, different strategies are proposed to improve the performance of transition metal compounds as electrode materials for PIHCs, and significant progress is achieved. Herein, this review outlines recent advances of employing transition metal compounds as electrode materials for PIHCs. The performance and challenges of different transition metal compounds are discussed in detail. Finally, the future prospects of practical applications of transition metal compounds in PIHCs are briefly discussed.



https://doi.org/10.1002/admt.202200515
Hülser, Tobias; Köster, Felix; Lüdge, Kathy; Jaurigue, Lina
Deriving task specific performance from the information processing capacity of a reservoir computer. - In: Nanophotonics, ISSN 2192-8614, Bd. 12 (2023), 5, S. 937-947

In the reservoir computing literature, the information processing capacity is frequently used to characterize the computing capabilities of a reservoir. However, it remains unclear how the information processing capacity connects to the performance on specific tasks. We demonstrate on a set of standard benchmark tasks that the total information processing capacity correlates poorly with task specific performance. Further, we derive an expression for the normalized mean square error of a task as a weighted function of the individual information processing capacities. Mathematically, the derivation requires the task to have the same input distribution as used to calculate the information processing capacities. We test our method on a range of tasks that violate this requirement and find good qualitative agreement between the predicted and the actual errors as long as the task input sequences do not have long autocorrelation times. Our method offers deeper insight into the principles governing reservoir computing performance. It also increases the utility of the evaluation of information processing capacities, which are typically defined on i.i.d. input, even if specific tasks deliver inputs stemming from different distributions. Moreover, it offers the possibility of reducing the experimental cost of optimizing physical reservoirs, such as those implemented in photonic systems.



https://doi.org/10.1515/nanoph-2022-0415
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Electrochemical deposition of silicon in organic electrolytes. - In: Reference module in chemistry, molecular sciences and chemical engineering, (2023)

Electrodeposition is a versatile instrumental technique, already applied in many industrial fields. However, the deposition of silicon and other reactive elements is still challenging and requires further research and improvement. Accomplishing an efficient electrodeposition of silicon at room temperature is very attractive due to the high number of manufacturing technologies that would benefit from this approach. This work provides an overview of the electrochemical approaches for silicon deposition performed in organic electrolytes. The main factors that impact this process are individually discussed and exemplified with appropriately updated literature sources. Furthermore, the previously available research on characterization of electrodeposited silicon containing layers is provided. These studies are presented in the context of better understanding the structure, composition, and functional properties of the deposited silicon material, which may attract the attention of young academic scientists and process engineers.



https://doi.org/10.1016/B978-0-323-85669-0.00005-2
Prylutskyy, Yuriy; Nozdrenko, Dmytro; Gonchar, Olga; Prylutska, Svitlana; Bogutska, Kateryna; Täuscher, Eric; Scharff, Peter; Ritter, Uwe
The residual effect of C60 fullerene on biomechanical and biochemical markers of the muscle soleus fatigue development in rats. - In: Journal of nanomaterials, ISSN 1687-4129, Bd. 2023 (2023), e2237574, S. 1-11

Muscle fatigue as a defense body mechanism against overload is a result of the products of incomplete oxygen oxidation such as reactive oxygen species. Hence, C60 fullerene as a powerful nanoantioxidant can be used to speed up the muscle recovery process after fatigue. Here, the residual effect of C60 fullerene on the biomechanical and biochemical markers of the development of muscle soleus fatigue in rats for 2 days after 5 days of its application was studied. The known antioxidant N-acetylcysteine (NAC) was used as a comparison drug. The atomic force microscopy to determine the size distribution of C60 fullerenes in an aqueous solution, the tensiometry of skeletal muscles, and the biochemical analysis of their tissues and rat blood were used in this study. It was found that after the cessation of NAC injections, the value of the integrated muscle power is already slightly different from the control (5%-7%) on the first day, and on the second day, it does not significantly differ from the control. At the same time, after the cessation of C60 fullerene injections, its residual effect was 45%-50% on the first day, and 17%-23% of the control on the second one. A significant difference (more than 25%) between the pro- and antioxidant balance in the studied muscles and blood of rats after the application of C60 fullerene and NAС plays a key role in the long-term residual effect of C60 fullerene. This indicates prolonged kinetics of C60 fullerenes elimination from the body, which contributes to their long-term (at least 2 days) compensatory activation of the endogenous antioxidant system in response to muscle stimulation, which should be considered when developing new therapeutic agents based on these nanoparticles.



https://doi.org/10.1155/2023/2237574
Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten
Relative oscillation theory and essential spectra of Sturm-Liouville operators. - In: Journal of mathematical analysis and applications, ISSN 1096-0813, Bd. 518 (2023), 1, 126673

https://doi.org/10.1016/j.jmaa.2022.126673
Aigner-Horev, Elad; Person, Yury
An asymmetric random Rado theorem: 1-statement. - In: Journal of combinatorial theory, Bd. 193 (2023), 105687, S. 1-32

A classical result by Rado characterises the so-called partition-regular matrices A, i.e. those matrices A for which any finite colouring of the positive integers yields a monochromatic solution to the equation Ax=0. We study the asymmetric random Rado problem for the (binomial) random set [n]p in which one seeks to determine the threshold for the property that any r-colouring, r≥2, of the random set has a colour i∈[r] admitting a solution for the matrical equation Aix=0, where A1,…,Ar are predetermined partition-regular matrices pre-assigned to the colours involved. We prove a 1-statement for the asymmetric random Rado property. In the symmetric setting our result retrieves the 1-statement of the symmetric random Rado theorem established in a combination of results by Rödl and Ruciânski [34] and by Friedgut, Rödl and Schacht [11]. We conjecture that our 1-statement in fact unveils the threshold for the asymmetric random Rado property, yielding a counterpart to the so-called Kohayakawa-Kreuter conjecture concerning the threshold for the asymmetric random Ramsey problem in graphs. We deduce the aforementioned 1-statement for the asymmetric random Rado property after establishing a broader result generalising the main theorem of Friedgut, Rödl and Schacht from [11]. The latter then serves as a combinatorial framework through which 1-statements for Ramsey-type problems in random sets and (hyper)graphs alike can be established in the asymmetric setting following a relatively short combinatorial examination of certain hypergraphs. To establish this framework we utilise a recent approach put forth by Mousset, Nenadov and Samotij [26] for the Kohayakawa-Kreuter conjecture.



https://doi.org/10.1016/j.jcta.2022.105687
Eichfelder, Gabriele; Grüne, Lars; Krügel, Lisa; Schießl, Jonas
Relaxed dissipativity assumptions and a simplified algorithm for multiobjective MPC. - In: Computational optimization and applications, ISSN 1573-2894, Bd. 86 (2023), 3, S. 1081-1116

We consider nonlinear model predictive control (MPC) with multiple competing cost functions. In each step of the scheme, a multiobjective optimal control problem with a nonlinear system and terminal conditions is solved. We propose an algorithm and give performance guarantees for the resulting MPC closed loop system. Thereby, we significantly simplify the assumptions made in the literature so far by assuming strict dissipativity and the existence of a compatible terminal cost for one of the competing objective functions only. We give conditions which ensure asymptotic stability of the closed loop and, what is more, obtain performance estimates for all cost criteria. Numerical simulations on various instances illustrate our findings. The proposed algorithm requires the selection of an efficient solution in each iteration, thus we examine several selection rules and their impact on the results. and we also examine numerically how different selection rules impact the results



https://doi.org/10.1007/s10589-022-00398-4
Eichfelder, Gabriele; Rocktäschel, Stefan
Solving set-valued optimization problems using a multiobjective approach. - In: Optimization, ISSN 1029-4945, Bd. 72 (2023), 3, S. 789-820

Set-valued optimization using the set approach is a research topic of high interest due to its practical relevance and numerous interdependencies to other fields of optimization. However, it is a very difficult task to solve these optimization problems even for specific cases. In this paper, we study set-valued optimization problems and develop a multiobjective optimization problem that is strongly related to it. We prove that the set of weakly minimal solutions of this subproblem is closely related to the set of weakly minimal elements of the set-valued optimization problem and that these sets can get arbitrarily close in a certain sense. Subsequently, we introduce a concept of approximations of the solution set of the set-valued optimization problem. We define a quality measure in the image space that can be used to compare finite approximations of this kind and outline a procedure to enhance a given approximation. We conclude the paper with some numerical examples.



https://doi.org/10.1080/02331934.2021.1988596
Apte, Gurunath; Hirtz, Michael Manfred; Nguyen, Thi-Huong
FluidFM-based fabrication of nanopatterns: promising surfaces for platelet storage application. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 21, S. 24133-24143

Platelets are cell fragments from megakaryocytes devoid of the cell nucleus. They are highly sensitive and easily activated by nonphysiological surfaces. Activated platelets have an intrinsic mechanism to release various proteins that participate in multiple pathways, initiating the platelet activation cascade. Surface-induced platelet activation is a challenge encountered during platelet storage, which eventually leads to aggregation of platelets and can thereby result in the degradation of the platelet concentrates. We have previously reported that surface-induced platelet activation can be minimized by either modifying their contact surfaces with polymers or introducing nanogroove patterns underneath the platelets. Here, we investigated the response of platelets to various nanotopographical surfaces printed using fluidic force microscopy (FluidFM). We found that the hemispherical array (grid) and hexagonal tile (hive) structures caused a reduction of surface stiffness, which leads to an inhibition of platelet adhesion. Our results reveal that nanopatterns enable the inhibition of platelet activation on surfaces, thus implying that development in nanotexturing of storage bags can extend the lifetime of platelet concentrates.



https://doi.org/10.1021/acsami.2c03459
Chen, Li-Yu; Khan, Nida; Lindenbauer, Annerose; Nguyen, Thi-Huong
When will Fondaparinux induce thrombocytopenia?. - In: Bioconjugate chemistry, ISSN 1520-4812, Bd. 33 (2022), 8, S. 1574-1583

The pentasaccharide Fondaparinux, a synthetic selective factor Xa inhibitor, is one of the safest anticoagulants in the heparin family that is recommended as an alternative drug for patients with hypersensitivity to other drugs such as heparin-induced thrombocytopenia (HIT). However, some observations of Fondaparinux-induced thrombocytopenia (FIT) have been reported while others claimed that FIT does not occur in patients with fondaparinux therapy, indicating that the mechanism of FIT remains controversial. Here, we utilized different methodologies including dynamic light scattering, immunosorbent and platelet aggregation assays, confocal laser scanning microscopy, and flow cytometry to gain insights into FIT. We found that at a certain concentration, Fondaparinux formed sufficient large and stable complexes with PF4 that facilitated binding of the HIT-like monoclonal KKO antibody and enhanced platelet aggregation and activation. We proposed a model to describe the role of Fondaparinux concentration in the formation of complexes with platelet factor 4 and how it promotes the binding of KKO. Our results clarify controversial observations of FIT in patients as each contains a dissimilar PF4:Fondaparinux concentration ratio.



https://doi.org/10.1021/acs.bioconjchem.2c00316
Chen, Li-Yu; Schirmer, Uwe; Widder, Miriam; Gruel, Yves; Rollin, Jérôme; Zipfel, Peter F.; Nguyen, Thi-Huong
Breast cancer cell-based ELISA: a potential material for better detection of heparin-induced thrombocytopenia antibodies. - In: Journal of materials chemistry, ISSN 2050-7518, Bd. 10 (2022), 38, S. 7708-7716

Heparin-induced thrombocytopenia (HIT) is caused by newly formed platelet-activating antibodies against complexes formed between platelet factor 4 (PF4) and heparin (H). HIT can result in life-threatening complications; thus, early detection of HIT antibodies is crucial for the treatment of the disease. The enzyme-linked immune absorbance assay (ELISA) for the identification of HIT antibodies is widely used in many laboratories, but in general, this test provides only ∼50% accuracy while other methods show multiple limitations. Here, we developed a new cell-based ELISA to improve the detection of HIT antibodies. Instead of immobilizing PF4 or PF4/H complexes directly onto a plate as in the standard ELISA, we added the complexes on breast cancer cells, i.e., cell line MDA-MB-231, and applied the same protocol for antibody detection. Using confocal laser scanning microscopy and flow cytometry for the characterization of bound complexes, we identified two types of HIT-mimicked antibodies (KKO and 1E12), which were able to differentiate from the non-HIT antibody (RTO). PF4-treated MDA-MB-231 cells allowed binding of HIT-mimicked antibodies better than PF4/H complexes. With human sera, the cell-based ELISA allowed better differentiation of clinically relevant from non-clinically relevant HIT antibodies as compared with the standard ELISA. Our findings provide a potential approach that contributes to the development of better assays for the detection of HIT antibodies.



https://doi.org/10.1039/D2TB01228F
Schemberg, Jörg; El Abbassi, Abdelouahad; Lindenbauer, Annerose; Chen, Li-Yu; Grodrian, Andreas; Nakos, Xenia; Apte, Gurunath; Khan, Nida; Kraupner, Alexander; Nguyen, Thi-Huong; Gastrock, Gunter
Synthesis of biocompatible superparamagnetic iron oxide nanoparticles (SPION) under different microfluidic regimes. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 42, S. 48011-48028

Superparamagnetic iron oxide nanoparticles (SPION) have a great potential in both diagnostic and therapeutic applications as they provide contrast in magnetic resonance imaging techniques and allow magnetic hyperthermia and drug delivery. Though various types of SPION are commercially available, efforts to improve the quality of SPION are highly in demand. Here, we describe a strategy for optimization of SPION synthesis under microfluidics using the coprecipitation approach. Synthesis parameters such as temperature, pH, iron salt concentration, and coating materials were investigated in continuous and segmented flows. Continuous flow allowed synthesizing particles of a smaller size and higher stability than segmented flow, while both conditions improved the quality of particles compared to batch synthesis. The most stable particles were obtained at a synthesis condition of 6.5 M NH4OH base, iron salt (Fe2+/Fe3+) concentration ratio of 4.3/8.6, carboxymethyl dextran coating of 20 mg/mL, and temperature of 70 &ring;C. The synthesized SPION exhibited a good efficiency in labeling of human platelets and did not impair cells. Our study under flow conditions provides an optimal protocol for the synthesis of better and biocompatible SPION that contributes to the development of nanoparticles for medical applications.



https://doi.org/10.1021/acsami.2c13156
Berganza, Eider; Apte, Gurunath; Vasantham, Srivatsan K.; Nguyen, Thi-Huong; Hirtz, Michael Manfred
Integration of biofunctional molecules into 3D-printed polymeric micro-/nanostructures. - In: Polymers, ISSN 2073-4360, Bd. 14 (2022), 7, 1327, S. 1-12

Three-dimensional printing at the micro-/nanoscale represents a new challenge in research and development to achieve direct printing down to nanometre-sized objects. Here, FluidFM, a combination of microfluidics with atomic force microscopy, offers attractive options to fabricate hierarchical polymer structures at different scales. However, little is known about the effect of the substrate on the printed structures and the integration of (bio)functional groups into the polymer inks. In this study, we printed micro-/nanostructures on surfaces with different wetting properties, and integrated molecules with different functional groups (rhodamine as a fluorescent label and biotin as a binding tag for proteins) into the base polymer ink. The substrate wetting properties strongly affected the printing results, in that the lateral feature sizes increased with increasing substrate hydrophilicity. Overall, ink modification only caused minor changes in the stiffness of the printed structures. This shows the generality of the approach, as significant changes in the mechanical properties on chemical functionalization could be confounders in bioapplications. The retained functionality of the obtained structures after UV curing was demonstrated by selective binding of streptavidin to the printed structures. The ability to incorporate binding tags to achieve specific interactions between relevant proteins and the fabricated micro-/nanostructures, without compromising the mechanical properties, paves a way for numerous bio and sensing applications. Additional flexibility is obtained by tuning the substrate properties for feature size control, and the option to obtain functionalized printed structures without post-processing procedures will contribute to the development of 3D printing for biological applications, using FluidFM and similar dispensing techniques.



https://doi.org/10.3390/polym14071327
Dennstädt, Dario;
Towards Funnel MPC for nonlinear systems with relative degree two. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 656-659

Funnel MPC, a novel Model Predictive Control (MPC) scheme, allows guaranteed output tracking of smooth reference signals with prescribed error bounds for nonlinear multi-input multi-output systems. To this end, the stage cost resembles the high-gain idea of funnel control. Without imposing additional output constraints or terminal conditions, the Funnel MPC scheme is initially and recursively feasible for systems with relative degree one and stable internal dynamics. Using an additional funnel for the derivative as a penalty term in the stage cost, these results can be also extended to single-input single-output systems with relative degree two.



https://doi.org/10.15495/EPub_UBT_00006809
Schaller, Manuel; Worthmann, Karl; Philipp, Friedrich; Peitz, Sebastian; Nüske, Feliks
A note on efficient and reliable prediction-based control in the Koopman framework. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 584-587

Extended Dynamic Mode Decomposition, embedded in the Koopman framework, is a widely-applied technique to predict the evolution of an observable along the flow of a dynamical (control) system. However, despite its popularity, the error analysis for control systems is still fragmentary. Here, we provide a complete and rigorous analysis of the approximation error for control systems. To this end, the approximation error is split up according to its two sources of error: the finite dictionary size (projection) and the finite amount of i.i.d. data used to generate the surrogate model (estimation). Then, invoking - among others - finite-elements techniques and the Chebyshev inequality, probabilistic error bounds are derived. Finally, we demonstrate the applicability of the novel error bounds in optimal control with state and control constraints.



https://doi.org/10.15495/EPub_UBT_00006809
Philipp, Friedrich; Reis, Timo; Schaller, Manuel
Port-Hamiltonian system nodes. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 441-444

We present a framework to formulate infinite dimensional port-Hamiltonian systems by means of system nodes, which provide a very general and powerful setting for unbounded input and output operators that appear, e.g., in the context of boundary control or observation. One novelty of our approach is that we allow for unbounded and not necessarily coercive Hamiltonian energies. To this end, we construct finite energy spaces to define the port-Hamiltonian dynamics and give an application in case of multiplication operator Hamiltonians where the Hamiltonian density does not need to be positive or bounded. In order to model systems involving differential operators on these finite energy spaces, we show that if the total mass w.r.t. the Hamiltonian density (and its inverse) is finite, one can define a unique weak derivative.



https://doi.org/10.15495/EPub_UBT_00006809
Reis, Timo;
Systems theoretic properties of linear RLC circuits. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 108-111

We consider the differential-algebraic systems obtained by modified nodal analysis of linear RLC circuits from a systems theoretic viewpoint. We derive expressions for the set of consistent initial values and show that the properties of controllability at infinity and impulse controllability do not depend on parameter values but rather on the interconnection structure of the circuit. We further present circuit topological criteria for behavioral stabilizability. This extended abstract is a shortened version of the full paper Glazov and Reis (2020) which has been accepted for the cancelled MTNS 2020 in Cambridge.



https://doi.org/10.15495/EPub_UBT_00006809
Eichfelder, Gabriele; Grüne, Lars; Krügel, Lisa; Schießl, Jonas
New results in multiobjective model predictive control. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 105-107

In model predictive control, it is a natural idea that not only one but multiple objectives have to be optimized. This leads to the formulation of a multiobjective optimal control problem (MO OCP). In this talk we introduce a multiobjective MPC algorithm, which yields on the one hand performance estimates for all considered objective functions and on the other hand stability results of the closed-loop solution. To this end, we build on the results in Zavala and Flores-Tlacuahuac (2012); Grüne and Stieler (2019) and introduce a simplified version of the algorithm presented in Grüne and Stieler (2019). Compared to Grüne and Stieler (2019), we allow for more general MO OCPs than in Grüne and Stieler (2019) and get rid of restrictive assumption on the existence of stabilizing stage and terminal costs in all cost components. Compared to Zavala and Flores-Tlacuahuac (2012), we obtain rigorous performance estimate for the MPC closed loop.



https://doi.org/10.15495/EPub_UBT_00006809
Berger, Thomas; Reis, Timo; Wagner, Leonie
Flat outputs for funnel control of non-minimum-phase systems. - In: Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022, (2022), S. 85-86

We consider adaptive ouput feedback tracking control of linear time-invariant systems which are not necessarily minimum phase. The zero dynamics is split into a stable and an unstable part, we show that a flat output of the unstable part can contribute to the design of a funnel controller of the system. More precisely, we consider an auxiliary output based of the ”true output” of the system and the flat output of the unstable part of the zero dynamics. The funnel controller is designed for this auxiliary output, and the consequences for the true output are discussed.



https://doi.org/10.15495/EPub_UBT_00006809
Wüster, Julian; Reetz, Andreas; Schmidt-Grund, Rüdiger; Knauer, Andrea; Sinzinger, Stefan
Approaches for the RCWA-based non-destructive characterization of subwavelength-structured gratings. - In: EOS Annual Meeting (EOSAM 2022), (2022), 05012, S. 1-2

Nano-structuring enables us to add additional degrees of freedom to the design of optical elements. Especially the possibility of controlling the polarization is of great interest in the field of nano-structured optics. For being able to exploit the whole range of form-birefringent phase shifts, the aspect ratios of the resulting element are typically much higher than the aspect ratios of conventional diffractive optical elements (DOEs), which does not only pose a challenge on fabrication but also on characterization. We evaluate several well-established approaches for the nondestructive characterization, including Müller-Matrix-Ellipsometry, measurement of the diffraction efficiencies, scattering measurements and calibration with rigorous coupled-wave modelling. The goal is to understand the challenges with all these techniques and combine them to a reliable method for structural reconnaisance of high aspect ratio nanostructures.



https://doi.org/10.1051/epjconf/202226605012
Worthmann, Karl; Hotz, Thomas
Verbund: 05M2018 - KONSENS : Schlussbericht : Förderzeitraum: 01.01.2018-30.06.2021. - Ilmenau : Technische Universität Ilmenau. - 1 Online-Ressource (16 Seiten, 450,82 KB)Förderkennzeichen BMBF 05M18SIA

https://edocs.tib.eu/files/e01fb23/1870887948.pdf
Burgold-Voigt, Sindy; Müller, Elke; Zopf, David; Monecke, Stefan; Braun, Sascha D.; Frankenfeld, Katrin; Kiehntopf, Michael; Weis, Sebastian; Schumacher, Thomas; Pletz, Mathias; Ehricht, Ralf
Development of a new antigen-based microarray platform for screening and detection of human IgG antibodies against SARS-CoV-2. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 8067, S. 1-15
The CoNAN Study Group: Thomas Hotz, Petra Enders, Renate Koch, Steffen Mai, Matthias Ullrich, Cora Richert, Cornelius Eibner, Bettina Meinung, Kay Stötzer, Julia Köhler, Michael Kiehntopf, Hans Cipowicz, Christine Pinkwart, Hans Proquitté, Michael Bauer, Petra Dickmann, Annika Licht, Juliane Scholz, Wibke Wetzker, Anita Hartung, Daniel Weiß, Lara Thieme, Gabi Hanf, Clara Schnizer, Jasmin Müller, Jennifer Kosenkow, Franziska Röstel, Joel Guerra, Oliwia Makarewicz, Steffi Kolanos, Juliane Ankert, Stefan Hagel, Christina Bahrs, Nico Andreas, Raphaela Marquardt, Thomas Kamradt, Sabine Baumgart, Stefanie Deinhardt-Emmer, Sebastian Kuhn, Bettina Löffler, Michael Baier, Stefan Glöckner, André Scherag & Mathias W. Pletz

Strategies to contain the current SARS-CoV-2 pandemic rely, beside vaccinations, also on molecular and serological testing. For any kind of assay development, screening for the optimal antigen is essential. Here we describe the verification of a new protein microarray with different commercially available preparations significant antigens of SARS-CoV-2 that can be used for the evaluation of the performance of these antigens in serological assays and for antibody screening in serum samples. Antigens of other pathogens that are addressed by widely used vaccinations were also included. To evaluate the accuracy of 21 different antigens or antigen preparations on the microarray, receiver operating characteristics (ROC) curve analysis using ELISA results as reference were performed. Except for a single concentration, a diagnostic sensitivity of 1 was determined for all antigen preparations. A diagnostic specificity, as well as an area under the curve (AUC) of 1 was obtained for 16 of 21 antigen preparations. For the remaining five, the diagnostic specificity ranged from 0.942 to 0.981 and AUC from 0.974 to 0.999. The optimized assay was subsequently also applied to determine the immune status of previously tested individuals and/or to detect the immunization status after COVID-19 vaccination. Microarray evaluation of the antibody profiles of COVID-19 convalescent and post vaccination sera showed that the IgG response differed between these groups, and that the choice of the test antigen is crucial for the assay performance. Furthermore, the results showed that the immune response is highly individualized, depended on several factors (e.g., age or sex), and was not directly related to the severity of disease. The new protein microarray provides an ideal method for the parallel screening of many different antigens of vaccine-preventable diseases in a single sample and for reliable and meaningful diagnostic tests, as well as for the development of safe and specific vaccines.



https://doi.org/10.1038/s41598-022-10823-7
Cao, Yu; Wu, Yanjie; Tang, Xin; Zhou, Qi; Stapf, Siegfried; Mattea, Carlos; Li, Wei
Long-term efficiency for reducing entanglements of nascent polyethylene by a polystyrene-modified Ziegler-Natta catalyst. - In: Journal of applied polymer science, ISSN 1097-4628, Bd. 139 (2022), 11, 51790, S. 1-10

The weakly entangled ultrahigh molecular weight polyethylene (UHMWPE) was synthesized by a Ziegler-Natta catalyst, where the titanium tetrachloride was anchored on the polystyrene (PS)-modified silica. The PS chains were successfully incorporated into silica hierarchical pores even with the size less than 10 nm through the in situ free-radical polymerization of styrene. The self-diffusion coefficient and crystallization of probing molecules inside the pores were investigated by the pulsed field gradient NMR and thermoporosimetry to address the swollen behavior of incorporated PS blocks. This PS blocks compartmentalized the polyethylene chains, where the less entangled UHMWPE was synthesized with an exceptional activity at 70&ring;C. The ubiquitous PS isolators effectively hindered the formation of chains overlaps during the polymerization, showing a long-term efficiency to reduce the entanglements of nascent UHMWPE even at 4 h of polymerization The toughness/stiffness/strength balance of weakly entangled UHMWPE was significantly improved.



https://doi.org/10.1002/app.51790
Calderón, Jesús A.; Tafur, Julio; Barriga, Benjamín; Alencastre, Jorge; Solano, Gonzalo; Urbizagástegui, Rodrigo; Lozano, John; Chancán, Marvin
Optimal plant growth through thermo mechatronic analysis. - In: , (2022), S. 65-70

This work is described as a proposal to apply modern control techniques and automation tools for optimal plant growth, also it was based on key agricultural strategies that were developed by ancient civilizations such as the Inca Empire. Many of them ancient techniques including the Inca engineering of andenes were forgotten or set aside through time. In this research, however, some of these key techniques are revisited to analyze and evaluate optimal plant growth using sensors and actuators that were not available in ancient civilizations. In addition, predictive and adaptive mathematical models are used for plant growth analysis of thermodynamic parameters such as temperature, humidity and potential of Hydrogen (pH). Furthermore, there were compared performances of sensors (electromechanical sensors) with designed sensors that were based in nanostructures, because of better study of the plant growth techniques.



Baumann, Michael; Grüne, Lars; Jacob, Birgit; Worthmann, Karl
Extended abstracts presented at the 25th International Symposium on Mathematical Theory of Networks and Systems MTNS 2022 : held 12-16 September 2022 in Bayreuth, Germany. - Bayreuth : Universität Bayreuth, 2022. - 1 Online-Ressource

Foreword: After more than two years of limited social and scientific interactions due to the Covid-19 pandemic, it was a pleasure to welcome more than 300 participants in person and about 60 online participants at MTNS 2022 in Bayreuth. Submissions to MTNS 2022 were possible as extended abstracts and full papers. The accepted full papers that were presented at the conference are published in IFAC PapersOnline https://www.sciencedirect.com/journal/ifacpapersonline/vol/55/issue/30. In this volume you find the extended abstracts that were presented at the conference. Further, you also find the titles of the plenary and semi-plenary talks as well as their abstracts resp. links to the corresponding full papers. We hope you enjoy these abstracts and to see you in person at MTNS in the future. The Editors M. H. Baumann, L. Grüne, B. Jacob, and K. Worthmann



https://doi.org/10.15495/EPub_UBT_00006809
Calderón, Jesús A.; Barriga G., E. Benjamín; Tafur, Julio C.; Ccarita, Alan; Lozano, John; Urbizagástegui, Rodrigo
Intelligent sensors based on amorphous nanostructures according to achieve an optimal waste collection in Lima Peru. - In: ICIEA 2022, (2022), S. 1606-1611

An optimal waste collection is a very complicated task in different countries. However, this task is more intricate, when there is not an organized procedure between people, government and technology. In this research it was studied and proposed strategies, to optimize the waste collection by technical suggestions, that were based on mathematical analysis and new technologies applications of sensors based on nanostructures due to this kind of sensors have good performance to measure physical variables in not simple places and conditions, such as around waste. Hence the reason, this work is prepared to contribute in the development of sensors based on nanostructures according to detect the physical variables: temperature, humidity, infrared reflection, moreover carbon dioxide (CO2) and methane (CH4) gases, which help to monitor the consequences of a not correct waste collection.As dependence on central and local government rules of waste management, it could be possible to find solution about organized waste collection, in which every family and walkers in streets would have the task to select the organic and inorganic garbage before the government trucks take the contents of the garbage trash cans to the landfill garbage dumps. However, many times the trash cans are not taken on time by the government trucks and garbage from them are producing gases and decomposition that causes contamination that damages health. Therefore, in this work there are proposed designed intelligent sensors, which are fixed in the trash cans due to measure physical parameters to give alarm for administrators controllers of boxes and to enhance the garbage selections from homes and streets to the main garbage landfills of the city. In other side, there will not be right solution in the waste collection, no matter the high advantage technologies, while humans could not be sensitive under this problematic. There are cleaned areas in cities, as for example touristic places, nevertheless, there are plenty places, where are not cared and people in streets through residual solids around, hence the technical solution will be useful only whether humans can get the environment caring condition compromise.



https://doi.org/10.1109/ICIEA54703.2022.10006092
Bohm, Sebastian; Runge, Erich
Multiphysics simulation of fluid interface shapes in microfluidic systems driven by electrowetting on dielectrics. - In: Journal of applied physics, ISSN 1089-7550, Bd. 132 (2022), 22, S. 224702-1-224702-17

We present a highly efficient simulation method for the calculation of three-dimensional quasi-static interface shapes under the influence of electric fields. The method is especially useful for the simulation of microfluidic systems driven by electrowetting on dielectrics because it accounts automatically and inherently for the highly non-trivial interface shape in the vicinity of the triple-phase contact. In particular, the voltage independence of the local contact angle predicted based on analytical considerations is correctly reproduced in all our simulations. For the calculation of the shape of the interface, the geometry is triangulated and the mesh nodes are shifted until the system energy becomes minimal. The same mesh is also used to calculate the electric field using the boundary-element method. Therefore, only the surface of the geometry needs to be meshed, and no volume meshes are involved. The method can be used for the simulation of closed systems with a constant volume (e.g., droplet-based microfluidics) while preserving the volume very precisely as well as open systems (e.g., the liquid-air interface within micro-cavities or capillaries). Additional effects, such as the influence of gravitational forces, can easily be taken into account. In contrast to other efficient simulations, such as the volume-of-fluid, level-set, or phase-field methods, ideally, sharp interfaces are obtained. We calculate interface shapes for exemplary systems and compare with analytical as well as experimental results.



https://doi.org/10.1063/5.0110149
Xie, Ting; Köhler, Michael; Heyder, Stefan; Günther, Mike; Cao-Riehmer, Jialan
Microfluidically-assisted isolation and characterization of Achromobacter spanius from soils for microbial degradation of synthetic polymers and organic solvents. - In: Environments, ISSN 2076-3298, Bd. 9 (2022), 12, 147, S. 1-17

A micro segmented-flow approach was utilized for the isolation soil bacteria that can degrade synthetic polymers as polyethylene glycols (PEG) and polyacrylamide (PAM). We had been able to obtain many strains; among them, five Achromobacter spanius strains from soil samples of specific sampling sites that were connected with ancient human impacts. In addition to the characterization of community responses and isolating single strains, this microfluidic approach allowed for investigation of the susceptibility of Achromobacter spanius strains against three synthetic polymers, including PEG, PAM, and Polyvinylpyrrolidone (PVP) and two organic solvents known as 1,4-dioxane and diglyme. The small stepwise variation of effector concentrations in 500 nL droplets provides a detailed reflection of the concentration-dependent response of bacterial growth and endogenous autofluorescence activity. As a result, all five strains can use PEG600 as carbon source. Furthermore, all strains showed similar dose-response characteristics in 1,4-dioxane and diglyme. However, significantly different PAM- and PVP-tolerances were found for these strains. Samples from the surface soil of prehistorical rampart areas supplied a strain capable of degradation of PEG, PVP, and PAM. This study demonstrates on the one hand, the potential of microsegment flow for miniaturized dose-response screening studies and its ability to detect novel strains, and on the other hand, two of five isolated Achromobacter spanius strains may be useful in providing optimal growth conditions in bioremediation and biodegradation processes.



https://doi.org/10.3390/environments9120147
Berger, Thomas; Dennstädt, Dario; Ilchmann, Achim; Worthmann, Karl
Funnel model predictive control for nonlinear systems with relative degree one. - In: SIAM journal on control and optimization, ISSN 1095-7138, Bd. 60 (2022), 6, S. 3358-3383

We show that Funnel MPC, a novel model predictive control (MPC) scheme, allows tracking of smooth reference signals with prescribed performance for nonlinear multi-input multioutput systems of relative degree one with stable internal dynamics. The optimal control problem solved in each iteration of funnel MPC resembles the basic idea of penalty methods used in optimization. To this end, we present a new stage cost design to mimic the high-gain idea of (adaptive) funnel control. We rigorously show initial and recursive feasibility of funnel MPC without imposing terminal conditions or other requirements like a sufficiently long prediction horizon.



https://doi.org/10.1137/21M1431655
Brekotkin, I. V.; Fatkullin, Nail F.; Lindt, Kevin; Mattea, Carlos; Stapf, Siegfried
On the theory of the spin I = 1/2 double quantum NMR: effects of spins spatial displacements between RF pulses. - In: The journal of chemical physics, ISSN 1089-7690, Bd. 157 (2022), 22, S. 224108-1-224108-7

Spatial displacements of spins between radio frequency pulses in a Double-Quantum (DQ) nuclear magnetic resonance pulse sequence generate additional terms in the effective DQ Hamiltonian. We derive a simple expression that allows the estimation and control of these contributions to the initial rise of the DQ build up function by variation of experimental parameters in systems performing anomalous diffusion. The application of polymers is discussed.



https://doi.org/10.1063/5.0124510
Jaurigue, Lina; Robertson, Elizabeth; Wolters, Janik; Lüdge, Kathy
Photonic reservoir computing with non-linear memory cells: interplay between topology, delay and delayed input. - In: Emerging Topics in Artificial Intelligence (ETAI) 2022, (2022), 1220408, S. 1220408-1-1220408-7

Photonic reservoir computing is an emerging topic due to the possibility to realize very fast devices with minimal training effort. We will discuss the reservoir computing performance of memory cells with a focus on the impact of delay lines and the interplay between coupling topology and performance for various benchmark tasks. We will further show that additional delayed input can be beneficial for reservoir computing setups in general, as it provides an easy tuning parameter, which can improve the performance of a reservoir on a range of tasks.



https://doi.org/10.1117/12.2633339
Meinecke, Stefan; Lüdge, Kathy
Optimizing the cavity-arm ratio of V-shaped semiconductor disk lasers. - In: Physical review applied, ISSN 2331-7019, Bd. 18 (2022), 6, S. 064070

Passively mode-locked semiconductor disk lasers have received tremendous attention from both science and industry. Their relatively inexpensive production combined with excellent pulse performance and great emission-wavelength flexibility make them suitable laser candidates for applications ranging from frequency-comb tomography to spectroscopy. However, due to the interaction of the active medium dynamics and the device geometry, emission instabilities occur at high pump powers and thereby limit their performance potential. Hence, understanding those instabilities becomes critical for an optimal laser design. Using a delay-differential equation model, we are able to detect, understand, and classify three distinct instabilities that limit the maximum achievable pump power for the fundamental mode-locking state and link them to characteristic positive-net-gain windows. We furthermore derive a simple analytic approximation in order to quantitatively describe the stability boundary. Our results enable us to predict the optimal laser-cavity configuration with respect to positive-net-gain instabilities and therefore may be of great relevance for the future development of passively mode-locking semiconductor disk lasers.



https://doi.org/10.1103/PhysRevApplied.18.064070
Köster, Felix; Yanchuk, Serhiy; Lüdge, Kathy
Master memory function for delay-based reservoir computers with single-variable dynamics. - In: IEEE transactions on neural networks and learning systems, ISSN 2162-2388, Bd. 0 (2022), 0, S. 1-14

We show that many delay-based reservoir computers considered in the literature can be characterized by a universal master memory function (MMF). Once computed for two independent parameters, this function provides linear memory capacity for any delay-based single-variable reservoir with small inputs. Moreover, we propose an analytical description of the MMF that enables its efficient and fast computation. Our approach can be applied not only to single-variable delay-based reservoirs governed by known dynamical rules, such as the Mackey-Glass or Stuart-Landau-like systems, but also to reservoirs whose dynamical model is not available.



https://doi.org/10.1109/TNNLS.2022.3220532
Geitner, Robert;
Physikalische Chemie : Trendbericht. - In: Nachrichten aus der Chemie, ISSN 1868-0054, Bd. 70 (2022), 5, S. 64-67

Die Aufklärung von Reaktionsmechanismen ist in der Katalyse wichtig, um die geschwindigkeitsbegrenzende Schritte zu verstehen und zu beschleunigen. Mit maschinellem Lernen lassen dann sich auf Basis der Mechanismen neue Katalysatoren entwickeln. Photochemische Umsetzungen in weichen Membranen folgen einer anderen Kinetik als Reaktionen in Lösung. Mikroschwimmer, Mikromotoren oder Phototaxis zählen zu aktiver Materie. Sie wandeln kontinuierlich Energie aus ihrer Umgebung um und bewegen sich autonom.



https://doi.org/10.1002/nadc.20224122539
Hou, ShengPing; Zhang, Da; Xie, ZhiPeng; Kang, Yao; Tang, ZhengGang; Dai, YongNian; Lei, Yong; Chen, Jian; Liang, Feng
Activated carbon prepared from waste tire pyrolysis carbon black via CO2/KOH activation used as supercapacitor electrode. - In: Science China, ISSN 1869-1900, Bd. 65 (2022), 10, S. 2337-2347

As the quantity of waste tires increases, more pyrolysis carbon black (CBp), a type of low value-added carbon black, is being produced. However, the application of CBp has been limited. Therefore, it is necessary to identify and expand applications of CBp. This work focuses on the preparation of activated carbon (AC) from CBp using the physicochemical activation of carbon dioxide (CO2) and potassium hydroxide (KOH). Thereafter, AC is applied to the electrode of the electrical double-layer capacitor (EDLC). The AC prepared by CO2/KOH activation exhibited a hierarchical pore structure. The specific surface area increased from 415 to 733 m^2 g^-1, and in combination with low ash content of 1.51%, ensured abundant ion diffusion channels and active sites to store charge. The EDLC comprising the AC (AC-2) electrode prepared by excitation of CO2 (300 sccm) and KOH had a reasonable gravimetric specific capacitance of 192 F g^-1 at 0.5 A g^-1, and exhibited a good rate capability of 73% at 50 A g^-1 in a three-electrode system. Moreover, the EDLC device comprising the AC-2 electrode delivered excellent cycling stability (capacitance retention of 106% after 10000 cycles at 2 A g^-1 in a two-electrode system). Furthermore, a symmetric supercapacitor based on an AC electrode that exhibits a supreme energy density of 4.7 Wh kg^-1 and a maximum power density of 6362.6 W kg^-1 is demonstrated.



https://doi.org/10.1007/s11431-021-2032-3
Prylutskyy, Yuriy; Nozdrenko, Dmytro; Gonchar, Olga; Prylutska, Svitlana; Bogutska, Kateryna; Franskevych, Daria; Hromovyk, Bohdan; Scharff, Peter; Ritter, Uwe
C60 fullerene attenuates muscle force reduction in a rat during fatigue development. - In: Heliyon, ISSN 2405-8440, Bd. 8 (2022), 12, e12449, S. 1-9

C60 fullerene (C60) as a nanocarbon particle, compatible with biological structures, capable of penetrating through cell membranes and effectively scavenging free radicals, is widely used in biomedicine. A protective effect of C60 on the biomechanics of fast (m. gastrocnemius) and slow (m. soleus) muscle contraction in rats and the pro- and antioxidant balance of muscle tissue during the development of muscle fatigue was studied compared to the same effect of the known antioxidant N-acetylcysteine (NAC). C60 and NAC were administered intraperitoneally at doses of 1 and 150 mg kg−1, respectively, daily for 5 days and 1 h before the start of the experiment. The following quantitative markers of muscle fatigue were used: the force of muscle contraction, the level of accumulation of secondary products of lipid peroxidation (TBARS) and the oxygen metabolite H2O2, the activity of first-line antioxidant defense enzymes (superoxide dismutase (SOD) and catalase (CAT)), and the condition of the glutathione system (reduced glutathione (GSH) content and the activity of the glutathione peroxidase (GPx) enzyme). The analysis of the muscle contraction force dynamics in rats against the background of induced muscle fatigue showed, that the effect of C60, 1 h after drug administration, was (15-17)% more effective on fast muscles than on slow muscles. A further slight increase in the effect of C60 was revealed after 2 h of drug injection, (7-9)% in the case of m. gastrocnemius and (5-6)% in the case of m. soleus. An increase in the effect of using C60 occurred within 4 days (the difference between 4 and 5 days did not exceed (3-5)%) and exceeded the effect of NAC by (32-34)%. The analysis of biochemical parameters in rat muscle tissues showed that long-term application of C60 contributed to their decrease by (10-30)% and (5-20)% in fast and slow muscles, respectively, on the 5th day of the experiment. At the same time, the protective effect of C60 was higher compared to NAC by (28-44)%. The obtained results indicate the prospect of using C60 as a potential protective nano agent to improve the efficiency of skeletal muscle function by modifying the reactive oxygen species-dependent mechanisms that play an important role in the processes of muscle fatigue development.



https://doi.org/10.1016/j.heliyon.2022.e12449
Faulwasser, Timm; Maschke, Bernhard; Philipp, Friedrich; Schaller, Manuel; Worthmann, Karl
Optimal control of port-Hamiltonian descriptor systems with minimal energy supply. - In: SIAM journal on control and optimization, ISSN 1095-7138, Bd. 60 (2022), 4, S. 2132-2158

We consider the singular optimal control problem of minimizing the energy supply of linear dissipative port-Hamiltonian descriptor systems. We study the reachability properties of the system and prove that optimal states exhibit a turnpike behavior with respect to the conservative subspace. Further, we derive a input-state turnpike toward a subspace for optimal control of port-Hamiltonian ordinary differential equations with a feed-through term and a turnpike property for the corresponding adjoint states toward zero. In an appendix we characterize the class of dissipative Hamiltonian matrices and pencils.



https://doi.org/10.1137/21M1427723
Grüne, Lars; Philipp, Friedrich; Schaller, Manuel
Strict dissipativity for generalized linear-quadratic problems in infinite dimensions. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 55 (2022), 30, S. 311-316

We analyze strict dissipativity of generalized linear quadratic optimal control problems on Hilbert spaces. Here, the term “generalized” refers to cost functions containing both quadratic and linear terms. We characterize strict pre-dissipativity with a quadratic storage function via coercivity of a particular Lyapunov-like quadratic form. Further, we show that under an additional algebraic assumption, strict pre-dissipativity can be strengthened to strict dissipativity. Last, we relate the obtained characterizations of dissipativity with exponential detectability.



https://doi.org/10.1016/j.ifacol.2022.11.071
Schmitz, Philipp; Engelmann, Alexander; Faulwasser, Timm; Worthmann, Karl
Data-driven MPC of descriptor systems: a case study for power networks. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 55 (2022), 30, S. 359-364

Recently, data-driven predictive control of linear systems has received wide-spread research attention. It hinges on the fundamental lemma by Willems et al. In a previous paper, we have shown how this framework can be applied to predictive control of linear time-invariant descriptor systems. In the present paper, we present a case study wherein we apply data-driven predictive control to a discrete-time descriptor model obtained by discretization of the power-swing equations for a nine-bus system. Our results show the efficacy of the proposed control scheme and they underpin the prospect of the data-driven framework for control of descriptor systems.



https://doi.org/10.1016/j.ifacol.2022.11.079
Maschke, Bernhard; Philipp, Friedrich; Schaller, Manuel; Worthmann, Karl; Faulwasser, Timm
Optimal control of thermodynamic port-Hamiltonian systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 55 (2022), 30, S. 55-60

We consider the problem of minimizing the entropy, energy, or exergy production for state transitions of irreversible port-Hamiltonian systems subject to control constraints. Via a dissipativity-based analysis we show that optimal solutions exhibit the manifold turnpike phenomenon with respect to the manifold of thermodynamic equilibria. We illustrate our analytical findings via numerical results for a heat exchanger.



https://doi.org/10.1016/j.ifacol.2022.11.028
Borkenhagen, Benjamin; Paszuk, Agnieszka; Knoop, Franz Niklas; Supplie, Oliver; Nandy, Manali; Lilienkamp, Gerhard; Kleinschmidt, Peter; Hannappel, Thomas; Daum, Winfried
Structure and origin of antiphase domains and related defects in thin GaP epilayers on As-modified Si(100). - In: Crystal growth & design, ISSN 1528-7505, Bd. 22 (2022), 12, S. 7040-7049

We study the origin and formation of antiphase domains (APDs) and related defects in 7 nm thin, lattice-matched GaP buffer layers deposited by metal-organic chemical vapor deposition (MOCVD) on well-defined, nearly single-domain, double-layer stepped, low-miscut Si(100) substrates obtained by specific treatment with arsenic. Using dark-field imaging modes in low-energy electron microscopy (LEEM), the minority reconstruction domains of Si(100):As and the APDs of the deposited GaP epilayer are identified, quantified, and compared. We show that residual (2x1)-reconstructed terraces of the minority domain on the Si substrate cause the formation of APDs and that the fraction of the minority domain of the substrate (≅0.07) entails a comparable fraction of APDs in thin GaP epilayers. The topographies of APDs are revealed by atomic force microscopy (AFM) and by scanning tunneling microscopy (STM). We observe two very different APD-related defects in the GaP epilayer, both pinned to residual monolayer steps of the substrate. GaP growth on minority domain terraces with widths in the range of 40-100 nm gives rise to APDs of comparable lateral dimensions. Minority domain terraces of the substrate with widths <20 nm cause the formation of 7-20 nm wide trenches in the GaP layer with rampart-like mounds along their rims. Using nanoscale Auger electron spectroscopy (AES), we provide evidence that these trenches extend through the GaP layer down to the exposed, uncovered Si substrate. We conclude that nucleation of GaP on small minority domain terraces is largely inhibited as most Ga and P atoms deposited on these terraces diffuse across the domain boundary and side walls of emerging trenches to adjacent majority domain terraces where they form the observed mounds. Nucleation of GaP does take place on minority domain terraces with widths ≥40 nm and leads to the growth of APDs.



https://doi.org/10.1021/acs.cgd.2c00697
Qiao, Yu; Zhao, Huaping; Rao, Zhonghao; Lei, Yong
High adsorption graphene oxide prepared by graphite anode from spent lithium-ion batteries for methylene blue removal. - In: Batteries, ISSN 2313-0105, Bd. 8 (2022), 11, 249, S. 1-13

Limited by the service life, a large amount of spent lithium-ion batteries (LIBs) have been produced in recent years. Without proper disposal, spent LIBs can cause environmental pollution and waste of resources. In this paper, we focus on the recycling of the graphite anode (GA) in spent LIBs. GAs from spent LIBs were converted to graphene oxide (GO) through a modified Hummers method. Then the prepared GO was applied to absorb methylene blue in dyeing wastewater under different reaction conditions. The experimental results indicate that GO can quickly and effectively adsorb methylene blue, which also exhibits thermal stability. The maximum adsorption capacity and removal rate are about 833.11 mg/g and 99.95%, respectively. The adsorption kinetics and isotherms were investigated; the adsorption process of GO is more consistent with the pseudo-second-order adsorption kinetic model while the isotherm is close to the Langmuir isotherm. This study is of great significance for the economy and environment. The reaction can turn waste into wealth and is a win-win approach for both spent LIBs recycling and dyeing wastewater cleaning.



https://doi.org/10.3390/batteries8110249
Khan, Nida Zaman; Martin, Daniel; Pliquett, Uwe; Zaikou, Yahor; Thomas, Nacke; Heinrich, Doris; Köhler, Michael; Nguyen, Thi-Huong
High-frequency contactless sensor for the detection of heparin-induced thrombocytopenia antibodies via platelet aggregation. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 23 (2022), 22, 14395, S. 1-13

Heparin-induced thrombocytopenia (HIT), a severe autoimmune disorder, occurs in patients undergoing heparin therapy. The presence of platelet-activating antibodies against platelet factor 4/Heparin in the blood confirms patients suffering from HIT. The most widely used methods for HIT diagnosis are immunoassays but the results only suit to rule out HIT as the assays provide only around 50% specificity. To confirm HIT, samples with positive results in immunoassays are retested in functional assays (>98% specificity) that track platelet-activating antibodies via platelet aggregation. However, the protocols in functional assays are either time-consuming (due to the requirement of the detection of serotonin release) or require highly trained staff for the visualization of platelets. Here, we applied a cheap and easy-to-use contactless sensor, which employs high-frequency microwaves to detect the changes in the resonant frequency caused by platelet aggregation/activation. Analysis of change in conductivity and permittivity allowed us to distinguish between HIT-like (KKO) and non-HIT-like (RTO) antibodies. KKO caused a stronger reduction of conductivity of platelet samples than RTO. Our results imply that the high-frequency contactless sensor can be a promising approach for the development of a better and easier method for the detection of HIT.



https://doi.org/10.3390/ijms232214395
Schaller, Manuel; Kleyman, Viktoria; Mordmüller, Mario; Schmidt, Christian; Wilson, Mitsuru; Brinkmann, Ralf; Müller, Matthias A.; Worthmann, Karl
Model predictive control for retinal laser treatment at 1 kHz. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 70 (2022), 11, S. 992-1002

Laser photocoagulation is a technique applied in the treatment of retinal disease, which is often done manually or using simple control schemes. We pursue an optimization-based approach, namely Model Predictive Control (MPC), to enforce bounds on the peak temperature and, thus, to ensure safety during the medical treatment procedure - despite the spot-dependent absorption of the tissue. The desired laser repetition rate of 1 kHz is renders the requirements on the computation time of the MPC feedback a major challenge. We present a tailored MPC scheme using parametric model reduction, an extended Kalman filter for the parameter and state estimation, and suitably tuned stage costs and verify its applicability both in simulation and experiments with porcine eyes. Moreover, we give some insight on the implementation specifically tailored for fast numerical computations.



https://doi.org/10.1515/auto-2022-0030
Grebinyk, Anna; Prylutska, Svitlana; Grebinyk, Sergii; Ponomarenko, Stanislav; Virych, Pavlo; Chumachenko, Vasyl; Kutsevol, Nataliya; Prylutskyy, Yuriy; Ritter, Uwe; Frohme, Marcus
Drug delivery with a pH-sensitive star-like dextran-graft polyacrylamide copolymer. - In: Nanoscale advances, ISSN 2516-0230, Bd. 4 (2022), 23, S. 5077-5088

The development of precision cancer medicine relies on novel formulation strategies for targeted drug delivery to increase the therapeutic outcome. Biocompatible polymer nanoparticles, namely dextran-graft-polyacrylamide (D-g-PAA) copolymers, represent one of the innovative non-invasive approaches for drug delivery applications in cancer therapy. In this study, the star-like D-g-PAA copolymer in anionic form (D-g-PAAan) was developed for pH-triggered targeted drug delivery of the common chemotherapeutic drugs - doxorubicin (Dox) and cisplatin (Cis). The initial D-g-PAA copolymer was synthesized by the radical graft polymerization method, and then alkaline-hydrolyzed to get this polymer in anionic form for further use for drug encapsulation. The acidification of the buffer promoted the release of loaded drugs. D-g-PAAan nanoparticles increased the toxic potential of the drugs against human and mouse lung carcinoma cells (A549 and LLC), but not against normal human lung cells (HEL299). The drug-loaded D-g-PAAan-nanoparticles promoted further oxidative stress and apoptosis induction in LLC cells. D-g-PAAan-nanoparticles improved Dox accumulation and drugs’ toxicity in a 3D LLC multi-cellular spheroid model. The data obtained indicate that the strategy of chemotherapeutic drug encapsulation within the branched D-g-PAAan nanoparticle allows not only to realize pH-triggered drug release but also to potentiate its cytotoxic, prooxidant and proapoptotic effects against lung carcinoma cells.



https://doi.org/10.1039/D2NA00353H
Bracher, Johannes; Wolffram, Daniel; Deuschel, Jannik; Görgen, Konstantin; Ketterer, Jakob L.; Ullrich, Alexander; Abbott, Sam; Barbarossa, Maria Vittoria; Bertsimas, Dimitris; Bhatia, Sangeeta; Bodych, Marcin; Bosse, Nikos I.; Burgard, Jan Pablo; Castro, Lauren; Fairchild, Geoffrey; Fiedler, Jochen; Fuhrmann, Jan; Funk, Sebastian; Gambin, Anna; Gogolewski, Krzysztof; Heyder, Stefan; Hotz, Thomas; Kheifetz, Yuri; Kirsten, Holger; Krueger, Tyll; Krymova, Ekaterina; Leithäuser, Neele; Li, Michael L.; Meinke, Jan H.; Miasojedow, Błażej; Michaud, Isaac J.; Mohring, Jan; Nouvellet, Pierre; Nowosielski, Jedrzej M.; Ozanski, Tomasz; Radwan, Maciej; Rakowski, Franciszek; Scholz, Markus; Soni, Saksham; Srivastava, Ajitesh; Gneiting, Tilmann; Schienle, Melanie
National and subnational short-term forecasting of COVID-19 in Germany and Poland during early 2021. - In: Communications medicine, ISSN 2730-664X, Bd. 2 (2022), 136, S. 1-17

During the COVID-19 pandemic there has been a strong interest in forecasts of the short-term development of epidemiological indicators to inform decision makers. In this study we evaluate probabilistic real-time predictions of confirmed cases and deaths from COVID-19 in Germany and Poland for the period from January through April 2021.



https://doi.org/10.1038/s43856-022-00191-8
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Three mechanisms of room temperature dynamic nuclear polarization occur simultaneously in an ionic liquid. - In: Physical chemistry, chemical physics, ISSN 1463-9084, Bd. 24 (2022), 44, S. 27004-27008

Dynamic nuclear polarization is a versatile approach to increasing the sensitivity of NMR measurements and is achieved by any of four different mechanisms which dominate for either liquids or solids, depending on temperature and radical density. In this work, we unequivocally demonstrate for the first time the coexistence, at a comparable magnitude, of several mechanisms, namely the Overhauser effect, solid effect, and cross-effect/thermal mixing in a viscous ionic liquid at ambient temperatures.



https://doi.org/10.1039/D2CP03437A
Faulwasser, Timm; Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Schaller, Manuel; Worthmann, Karl
Manifold turnpikes, trims, and symmetries. - In: Mathematics of control, signals, and systems, ISSN 1435-568X, Bd. 34 (2022), 4, S. 759-788

Classical turnpikes correspond to optimal steady states which are attractors of infinite-horizon optimal control problems. In this paper, motivated by mechanical systems with symmetries, we generalize this concept to manifold turnpikes. Specifically, the necessary optimality conditions projected onto a symmetry-induced manifold coincide with those of a reduced-order problem defined on the manifold under certain conditions. We also propose sufficient conditions for the existence of manifold turnpikes based on a tailored notion of dissipativity with respect to manifolds. Furthermore, we show how the classical Legendre transformation between Euler-Lagrange and Hamilton formalisms can be extended to the adjoint variables. Finally, we draw upon the Kepler problem to illustrate our findings.



https://doi.org/10.1007/s00498-022-00321-6
Glahn, Luis Joel; Ruiz Alvarado, Isaac Azahel; Neufeld, Sergej; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Ostheimer, David; Shekarabi, Sahar; Romanyuk, Oleksandr; Moritz, Dominik Christian; Hofmann, Jan Philipp; Jaegermann, Wolfram; Hannappel, Thomas; Schmidt, W. Gero
Clean and hydrogen-adsorbed AlInP(001) surfaces: structures and electronic properties. - In: Physica status solidi, ISSN 1521-3951, Bd. 259 (2022), 11, 2200308, S. 1-6

Total energy and electronic structure calculations based on density functional theory are performed in order to determine the atomic structure and electronic properties of clean and hydrogen-adsorbed Al0.5In0.5P(001) surfaces. It is found that most of the stable surfaces obey the electron-counting rule and are characterized by surface atom dimerization. The dimer-related surface states are predicted to occur in the vicinity of the bulk band edges. For a very narrow range of preparation conditions, ab initio thermodynamics predicts metal atomic wires formed by surface cations. A surface covered with a monolayer of buckled phosphorus dimers, where half of the phosphorus atoms are hydrogen saturated, is found to be stable for metal-organic vapor-phase epitaxy growth conditions. The occurrence of this structure is confirmed by low-energy electron diffraction and X-ray photoelectron spectroscopy data measured on epitaxially grown Al0.52In0.48P(001) epilayers lattice matched to GaAs.



https://doi.org/10.1002/pssb.202200308
Kurtash, Vladislav; Mathew, Sobin; Thiele, Sebastian; Scheler, Theresa; Reiprich, Johannes; Hähnlein, Bernd; Stauffenberg, Jaqueline; Manske, Eberhard; Narasimha, Shilpashree; Abedin, Saadman; Jacobs, Heiko O.; Pezoldt, Jörg
Hysteresis associated with intrinsic-oxide traps in gate-tunable tetrahedral CVD-MoS2 memristor. - In: IEEE 22nd International Conference on Nanotechnology (NANO), (2022), S. 527-530

We introduce back gated memristor based on CVD-grown 30-40 nm thick MoS2 channel. The device demonstrates bipolar behaviour and the measurements are consistent with the simulations performed within the intrinsic-oxide traps model. This confirms the theory that the source of hysteresis in thin-film MoS2 memristors is charge trapping on MoS2/SiO2 interface and the grain boundaries. The impact of back gate voltage bias, voltage sweep range and channel area on memristive effect was studied and quantified using hysteresis area. Hysteresis in bipolar memristors can be tuned by back gate voltage, which makes these devices promising for neuromorphic computing.



https://doi.org/10.1109/NANO54668.2022.9928717
Richter, Felix; Chen, Minqian; Schaub, Patrick; Wüst, Florian; Zhang, Di; Schneider, Steffen; Groß, Gregor Alexander; Mäder, Patrick; Dovzhenko, Oleksandr; Palme, Klaus; Köhler, Michael; Cao-Riehmer, Jialan
Induction of embryogenic development in haploid microspore stem cells in droplet-based microfluidics. - In: Lab on a chip, ISSN 1473-0189, Bd. 22 (2022), 22, S. 4292-4305

This work presents the application of droplet-based microfluidics for the cultivation of microspores from Brassica napus using the doubled haploid technology. Under stress conditions (e.g. heat shock) or by chemical induction a certain fraction of the microspores can be reprogrammed and androgenesis can be induced. This process is an important approach for plant breeding because desired plant properties can be anchored in the germline on a genetic level. However, the reprogramming rate of the microspores is generally very low, increasing it by specific stimulation is, therefore, both a necessary and challenging task. In order to accelerate the optimisation and development process, the application of droplet-based microfluidics can be a promising tool. Here, we used a tube-based microfluidic system for the generation and cultivation of microspores inside nL-droplets. Different factors like cell density, tube material and heat shock conditions were investigated to improve the yield of vital plant organoids. Evaluation and analysis of the stimuli response were done on an image base aided by an artificial intelligence cell detection algorithm. Droplet-based microfluidics allowed us to apply large concentration programs in small test volumes and to screen the best conditions for reprogramming cells by the histone deacetylase inhibitor trichostatin A and for enhancing the yield of vital microspores in droplets. An enhanced reprogramming rate was found under the heat shock conditions at 32 &ring;C for about 3 to 6 days. In addition, the comparative experiment with MTP showed that droplet cultivation with lower cell density (<10 cells per droplet) or adding media after 3 or 6 days significantly positively affects the microspore growth and embryo rate inside 120 nL droplets. Finally, the developed embryos could be removed from the droplets and further grown into mature plants. Overall, we demonstrated that the droplet-based tube system is suitable for implementation in an automated, miniaturized system to achieve the induction of embryogenic development in haploid microspore stem cells of Brassica napus.



https://doi.org/10.1039/D2LC00788F
Zare Pour, Mohammad Amin; Romanyuk, Oleksandr; Moritz, Dominik Christian; Paszuk, Agnieszka; Maheu, Clément; Shekarabi, Sahar; Hanke, Kai Daniel; Ostheimer, David; Mayer, Thomas; Hofmann, Jan Philipp; Jaegermann, Wolfram; Hannappel, Thomas
Band energy diagrams of n-GaInP/n-AlInP(100) surfaces and heterointerfaces studied by X-ray photoelectron spectroscopy. - In: Surfaces and Interfaces, ISSN 2468-0230, Bd. 34 (2022), 102384, S. 1-7

Lattice matched n-type AlInP(100) charge selective contacts are commonly grown on n-p GaInP(100) top absorbers in high-efficiency III-V multijunction solar or photoelectrochemical cells. The cell performance can be greatly limited by the electron selectivity and valance band offset at this heterointerface. Understanding of the atomic and electronic properties of the GaInP/AlInP heterointerface is crucial for the reduction of photocurrent losses in III-V multijunction devices. In our paper, we investigated chemical composition and electronic properties of n-GaInP/n-AlInP heterostructures by X-ray photoelectron spectroscopy (XPS). To mimic an in-situ interface experiment with in-situ stepwise deposition of the contact material, 1 nm -50 nm thick n-AlInP(100) epitaxial layers were grown on n-GaInP(100) buffer layer on n-GaAs(100) substrates by metal organic vapor phase epitaxy. We observed (2 × 2)/c(4 × 2) low-energy electron diffraction patterns with characteristic diffuse streaks along the [011¯] direction due to PP dimers on both AlInP(100) and GaInP(100) as-prepared surfaces. Atomic composition analysis confirmed P-rich termination on both surfaces. Angle-resolved XPS measurements revealed a surface core level shift of 0.9 eV in P 2p peaks and the absence of interface core level shifts. We assigned the surface chemical shift in the P 2p spectrum to PP bonds on a surface. We found an upward surface band bending on the (2 × 2)/c(4 × 2) surfaces most probably caused by localized mid-gap electronic states. Pinning of the Fermi level by localized electronic states remained in n-GaInP/n-AlInP heterostructures. A valence band offset of 0.2 eV was derived by XPS and band alignment diagram models for the n-n junctions were suggested.



https://doi.org/10.1016/j.surfin.2022.102384
Koch, Juliane; Liborius, Lisa; Kleinschmidt, Peter; Weimann, Nils; Prost, Werner; Hannappel, Thomas
Electrical properties of the base-substrate junction in freestanding core-shell nanowires. - In: Advanced materials interfaces, ISSN 2196-7350, Bd. 9 (2022), 30, 2200948, S. 1-8

Well-defined hetero-interfaces with controlled properties are crucial for any high-performance, semiconductor-based, (opto-)electronic device. They are particularly important for device structures on the nanoscale with increased interfacial areas. Utilizing a ultrahigh-vacuum based multi-tip scanning tunneling microscope, this work reveals inadvertent conductivity channels between the nanowire (NW) base and the substrate, when measuring individual vertical core-shell III-V-semiconductor NWs. For that, four-terminal probing is applied on freestanding, epitaxially grown coaxial p-GaAs/i-GaInP/n-GaInP NWs without the need of nanoscale lithography or deposition of electrical contacts. This advanced analysis, carried out after composition-selective wet chemical etching, reveals a substantially degraded electrical performance of the freestanding NWs compared to detached ones. In an electron beam induced current mode of the nanosensor, charge separation at the substrate-to-NW base junction is demonstrated. An energy dispersive X-ray spectroscopic linescan shows an unintended compositional change of the epitaxially grown NW toward the planar layers caused by different incorporation mechanisms of Ga and In at the NW base. This approach provides direct insight into the NW-substrate transition area and leads to a model of the conductivity channels at the NW base, which should, in principle, be considered in the fabrication of all NW heterostructures grown bottom-up on heterogeneous substrate materials.



https://doi.org/10.1002/admi.202200948
Marx-Blümel, Lisa; Marx, Christian; Schober, Andreas; Beck, James F.
In vitro-Amplifikation humaner hämatopoetischer Stammzellen im 3D-System. - In: Biospektrum, ISSN 1868-6249, Bd. 28 (2022), 5, S. 489-492

A promising strategy to increase the numbers of hematopoietic stem cells (HSCs) for clinical applications, like stem cell transplantation, is offered by advanced in vitro culture systems. We developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) mimicking the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized culture medium allow the amplification of high numbers of undifferentiated HSCs by activating specific molecular signaling pathways.



https://doi.org/10.1007/s12268-022-1798-2
Moritz, Dominik Christian; Ruiz Alvarado, Isaac Azahel; Zare Pour, Mohammad Amin; Paszuk, Agnieszka; Frieß, Tilo; Runge, Erich; Hofmann, Jan Philipp; Hannappel, Thomas; Schmidt, W. Gero; Jaegermann, Wolfram
P-terminated InP (001) surfaces: surface band bending and reactivity to water. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 41, S. 47255-47261

Stable InP (001) surfaces are characterized by fully occupied and empty surface states close to the bulk valence and conduction band edges, respectively. The present photoemission data show, however, a surface Fermi level pinning only slightly below the midgap energy which gives rise to an appreciable surface band bending. By means of density functional theory calculations, it is shown that this apparent discrepancy is due to surface defects that form at finite temperature. In particular, the desorption of hydrogen from metalorganic vapor phase epitaxy grown P-rich InP (001) surfaces exposes partially filled P dangling bonds that give rise to band gap states. These defects are investigated with respect to surface reactivity in contact with molecular water by low-temperature water adsorption experiments using photoemission spectroscopy and are compared to our computational results. Interestingly, these hydrogen-related gap states are robust with respect to water adsorption, provided that water does not dissociate. Because significant water dissociation is expected to occur at steps rather than terraces, surface band bending of a flat InP (001) surface is not affected by water exposure.



https://doi.org/10.1021/acsami.2c13352
Rothe, Karl; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Tracking the interaction between a CO-functionalized probe and two Ag-phthalocyanine conformers by local vertical force spectroscopy. - In: The journal of physical chemistry, ISSN 1520-5215, Bd. 126 (2022), 39, S. 6890-6897

Intentionally terminating scanning probes with a single atom or molecule belongs to a rapidly growing field in the quantum chemistry and physics at surfaces. However, the detailed understanding of the coupling between the probe and adsorbate is in its infancy. Here, an atomic force microscopy probe functionalized with a single CO molecule is approached with picometer control to two conformational isomers of Ag-phthalocyanine adsorbed on Ag(111). The isomer with the central Ag atom pointing to CO exhibits a complex evolution of the distance-dependent interaction, while the conformer with Ag bonded to the metal surface gives rise to a Lennard-Jones behavior. By virtue of spatially resolved force spectroscopy and the comparison with results obtained from microscope probes terminated with a single Ag atom, the mutual coupling of the protruding O atom of the tip and the Ag atom of the phthalocyanine molecule is identified as the cause for the unconventional variation of the force. Simulations of the entire junction within density functional theory unveil the presence of ample relaxations in the case of one conformer, which represents a rationale for the peculiar vertical-distance evolution of the interaction. The simulations highlight the role of physisorption, chemisorption, and unexpected junction distortions at the verge of bond formation in the interpretation of the distance-dependent force between two molecules.



https://doi.org/10.1021/acs.jpca.2c04760
Rothe, Karl; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Extraction of chemical reactivity and structural relaxations of an organic dye from the short-range interaction with a molecular probe. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 13 (2022), 37, S. 8660-8665

A CO-functionalized atomic force microscope tip is used to locally probe local chemical reactivity and subtle structural relaxations of a single phthalocyanine molecule at different stages of pyrrolic-H abstraction. Spatially resolved vertical force spectroscopy unveils a variation of the maximum short-range attraction between CO and intramolecular sites, which is interpreted as a measure for the local chemical reactivity. In addition, the vertical position of the point of maximum attraction is observed to vary across the molecules. These changes follow the calculated adsorption heights of the probed molecular atoms.



https://doi.org/10.1021/acs.jpclett.2c02140
Gizatullin, Bulat; Mattea, Carlos; Shikhov, Igor; Arns, Christoph; Stapf, Siegfried
Modeling molecular interactions with wetting and non-wetting rock surfaces by combining electron paramagnetic resonance and NMR relaxometry. - In: Langmuir, ISSN 1520-5827, Bd. 38 (2022), 36, S. 11033-11053

Three types of natural rocks - Bentheimer and Berea sandstones, as well as Liège Chalk - have been aged by immersion in a bitumen solution for extended periods of time in two steps, changing the surface conditions from water-wet to oil-wet. NMR relaxation dispersion measurements were carried out on water and oil constituents, with saturated and aromatic molecules considered individually. In order to separate the different relaxation mechanisms discussed in the literature, 1H and 19F relaxation times were compared to 2H for fully deuterated liquids: while 2H relaxes predominantly by quadrupolar coupling, which is an intramolecular process, the remaining nuclei relax by dipolar coupling, which potentially consists of intra- and intermolecular contributions. The wettability change becomes evident in an increase of relaxation rates for oil and a corresponding decrease for water. However, this expected behavior dominates only for the spin-lattice relaxation rate R1 at very low field strengths and for the spin-spin relaxation rate R2, while high-field longitudinal relaxation shows a much weaker or even reverse trend. This is attributed in part to a change of radical concentration on the pore surface upon coverage of the native rock surface by bitumen as well as by the change of surface chemistry and roughness. EPR and DNP measurements quantify the change of volume vs surface radical concentration in the rocks, and an improved understanding of the role of relaxation via paramagnetic centers is obtained. By means of comparing different fluids and nuclei in combination with a defined wettability change of natural rocks, a refined model for molecular dynamics in conjunction with NMR relaxation dispersion is proposed.



https://doi.org/10.1021/acs.langmuir.2c01681
Mathew, Sobin; Narasimha, Shilpashree; Reiprich, Johannes; Scheler, Theresa; Hähnlein, Bernd; Thiele, Sebastian; Stauffenberg, Jaqueline; Kurtash, Vladislav; Abedin, Saadman; Manske, Eberhard; Jacobs, Heiko O.; Pezoldt, Jörg
Formation and characterization of three-dimensional tetrahedral MoS2 thin films by chemical vapor deposition. - In: Crystal growth & design, ISSN 1528-7505, Bd. 22 (2022), 9, S. 5229-5238

A method to synthesize the three-dimensional arrangement of bulk tetrahedral MoS2 thin films by solid source chemical vapor deposition of MoO3 and S is presented. The developed synthesizing recipe uses a temperature ramping with a constant N2 gas flow in the deposition process to grow tetrahedral MoS2 thin film layers. The study analyses the time-dependent growth morphologies, and the results are combined and presented in a growth model. A combination of optical, electron, atomic force microscopy, Raman spectroscopy, and X-ray diffraction are used to study the morphological and structural features of the tetrahedral MoS2 thin layers. The grown MoS2 is c-axis oriented 2H-MoS2. Additionally, the synthesized material is further used to fabricate back-gated field-effect transistors (FETs). The fabricated FET devices on the tetrahedral MoS2 show on/off current ratios of 10^6 and mobility up to ∼56 cm^2 V^-1 s^-1 with an estimated carrier concentration of 4 × 10^16 cm-3 for VGS = 0 V.



https://doi.org/10.1021/acs.cgd.2c00333
Calderón, Jesús A.; Tafur Sotelo, Julio C.; Barriga Gamarra, Benjamín; Alencastre, Jorge; Lozano, John; Urbizagástegui, Rodrigo; Solano, Gonzalo; Menacho, Daniel
Optimization for vibration analysis in rotating machines. - In: Renewable energy & power quality journal, ISSN 2172-038X, Bd. 20 (2022), 315, S. 369-373

A not stable mechanical movement transmission between systems produces equilibrium losses, such as a rotor of motors that are coupled in rotating machines. This can be studied as a disturbance “vibration” either as characteristic of the movement transmission due to controlled displacement over rotors, which transmits the movement. Therefore, in this research is presented an analysis for an optimal control of the rotor axis displacement that includes “vibration” as the part of the movement transmission. It implies mathematical modelling and specific sensors selections to correlate the vibration in this control task. Furthermore, in order to verify the proposed analysis, it was simulated and tested in a hybrid magnetic bearing system.



https://doi.org/10.24084/repqj20.315
Berger, Thomas; Snoo, Hendrik S. V. de; Trunk, Carsten; Winkler, Henrik
A Jordan-like decomposition for linear relations in finite-dimensional spaces. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (34 Seiten). - (Preprint ; M22,05)

A square matrix A has the usual Jordan canonical form that describes the structure of A via eigenvalues and the corresponding Jordan blocks. If A is a linear relation in a finite-dimensional linear space H (i.e., A is a linear subspace of H × H and can be considered as a multivalued linear operator), then there is a richer structure. In addition to the classical Jordan chains (interpreted in the Cartesian product H × H), there occur three more classes of chains: chains starting at zero (the chains for the eigenvalue infinity), chains starting at zero and also ending at zero (the singular chains), and chains with linearly independent entries (the shift chains). These four types of chains give rise to a direct sum decomposition (a Jordan-like decomposition) of the linear relation A. In this decomposition there is a completely singular part that has the extended complex plane as eigenvalues; a usual Jordan part that corresponds to the finite proper eigenvalues; a Jordan part that corresponds to the eigenvalue infinity; and a multishift, i.e., a part that has no eigenvalues at all. Furthermore, the Jordan-like decomposition exhibits a certain uniqueness, closing a gap in earlier results. The presentation is purely algebraic, only the structure of linear spaces is used. Moreover, the presentation has a uniform character: each of the above types is constructed via an appropriately chosen sequence of quotient spaces. The dimensions of the spaces are the Weyr characteristics, which uniquely determine the Jordan-like decomposition of the linear relation.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200249
Cheng, Wen-Hui; Richter, Matthias H.; Müller, Ralph; Kelzenberg, Michael; Yalamanchili, Sisir; Jahelka, Phillip R.; Perry, Andrea N.; Wu, Pin Chieh; Saive, Rebecca; Dimroth, Frank; Brunschwig, Bruce S.; Hannappel, Thomas; Atwater, Harry A.
Integrated solar-driven device with a front surface semitransparent catalysts for unassisted CO2 reduction. - In: Advanced energy materials, ISSN 1614-6840, Bd. 12 (2022), 36, 2201062, S. 1-9

Monolithic integrated photovoltaic-driven electrochemical (PV-EC) artificial photosynthesis is reported for unassisted CO2 reduction. The PV-EC structures employ triple junction photoelectrodes with a front mounted semitransparent catalyst layer as a photocathode. The catalyst layer is comprised of an array of microscale triangular metallic prisms that redirect incoming light toward open areas of the photoelectrode to reduce shadow losses. Full wave electromagnetic simulations of the prism array (PA) structure guide optimization of geometries and length scales. An integrated device is constructed with Ag catalyst prisms covering 35% of the surface area. The experimental device has close to 80% of the transmittance with a catalytic surface area equivalent 144% of the glass substrate area. Experimentally this photocathode demonstrates a direct solar-to-CO conversion efficiency of 5.9% with 50 h stability. Selective electrodeposition of Cu catalysts onto the surface of the Ag triangular prisms allows CO2 conversion to higher value products enabling demonstration of a solar-to-C2+ product efficiency of 3.1%. This design featuring structures that have a semitransparent catalyst layer on a PV-EC cell is a general solution to light loss by shadowing for front surface mounted metal catalysts, and opens a route for the development of artificial photosynthesis based on this scalable design approach.



https://doi.org/10.1002/aenm.202201062
Mühlenhoff, Julian; Körbner, Thorben; Miccoli, Giovanni; Keiner, Dörthe; Hoffmann, Matthias K.; Sauerteig, Philipp; Worthmann, Karl; Flaßkamp, Kathrin; Urbschat, Steffi; Oertel, Joachim; Sattel, Thomas
A manually actuated continuum robot research platform for deployable shape-memory curved cannulae in stereotactic neurosurgery. - In: ACTUATOR 2022: International Conference and Exhibition on New Actuator Systems and Applications, (2022), S. 10-13

In this paper, a research platform for concentric tube continuum robots is developed in order to enable advances in deploying curved cannulae for stereotactic neurosurgery. The system consists of a manually operated high-precision actuation apparatus and a photogrammetric system with measurement errors in the range of 100 micrometer. With this platform, previously planned curved paths can be analyzed ex-situ w.r.t., e.g., target precision, follow-the-leader-behavior, and hysteretic phenomena. Regarding research towards an in-vivo application in human brains, first tests with porcine brain cadavers inside an intraoperative CT are conducted in order to pave the way for histological as well as target reachability studies.



https://ieeexplore.ieee.org/document/9899155
Sauerteig, Philipp; Hoffmann, Matthias K.; Mühlenhoff, Julian; Miccoli, Giovanni; Keiner, Dörthe; Urbschat, Steffi; Oertel, Joachim; Sattel, Thomas; Flaßkamp, Kathrin; Worthmann, Karl
Optimal path planning for stereotactic neurosurgery based on an elastostatic cannula model. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 55 (2022), 20, S. 600-605

In this paper, we propose a path-planning problem for stereotactic neurosurgery using concentric tube robots. The main goal is to reach a given region of interest inside the brain, e.g. a tumor, starting from a feasible point on the skull with an ideally short path avoiding certain sensitive brain areas. To describe the shape of the entire cannula from an entry point to the point of interest we use an existing mechanical model for continuum robots. We show numerically that our approach enables the surgeon to reach areas within the brain that would be impossible with a straight cannula as it is currently state of the art.



https://doi.org/10.1016/j.ifacol.2022.09.161
Lauer, Kevin; Peh, Katharina; Schulze, Dirk; Ortlepp, Thomas; Runge, Erich; Krischok, Stefan
The ASi-Sii defect model of light-induced degradation (LID) in silicon: a discussion and review. - In: Physica status solidi, ISSN 1862-6319, Bd. 219 (2022), 19, 2200099, S. 1-10

The ASi-Sii defect model as one possible explanation for light-induced degradation (LID) in typically boron-doped silicon solar cells, detectors, and related systems is discussed and reviewed. Starting from the basic experiments which led to the ASi-Sii defect model, the ASi-Sii defect model (A: boron, or indium) is explained and contrasted to the assumption of a fast-diffusing so-called “boron interstitial.” An LID cycle of illumination and annealing is discussed within the conceptual frame of the ASi-Sii defect model. The dependence of the LID defect density on the interstitial oxygen concentration is explained within the ASi-Sii defect picture. By comparison of electron paramagnetic resonance data and minority carrier lifetime data related to the assumed fast diffusion of the “boron interstitial” and the annihilation of the fast LID component, respectively, the characteristic EPR signal Si-G28 in boron-doped silicon is related to a specific ASi-Sii defect state. Several other LID-related experiments are found to be consistent with an interpretation by an ASi-Sii defect.



https://doi.org/10.1002/pssa.202200099
Qiu, Jiajia; Zhao, Huaping; Lei, Yong
Emerging smart design of electrodes for micro-supercapacitors: a review. - In: SmartMat, ISSN 2688-819X, Bd. 3 (2022), 3, S. 447-473

Owing to high power density and long cycle life, micro-supercapacitors (MSCs) are regarded as a prevalent energy storage unit for miniaturized electronics in modern life. A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life. To this end, designing electrodes in a “smart” way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs. In the past few years, considerable research efforts have been devoted to exploring new electrode materials for high capacitance, but designing clever configurations for electrodes has rarely been investigated from a structural point of view, which is also important for MSCs within a limited footprint area, in particular. This review article categorizes and arranges these “smart” design strategies of electrodes into three design concepts: layer-by-layer, scaffold-assisted and rolling origami. The corresponding strengths and challenges are comprehensively summarized, and the potential solutions to resolve these challenges are pointed out. Finally, the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined.



https://doi.org/10.1002/smm2.1094
Zimmermann, Armin; Hotz, Thomas; Hädicke, Volker; Friebe, Martin
Analysis of safety-critical cloud architectures with multi-trajectory simulation. - In: 2022 Annual Reliability and Maintainability Symposium (RAMS), (2022), insges. 7 S.

Dynamic safety-critical systems require model-based techniques and tools for their systems design. The paper presents a stochastic Petri net model of an industrial safetycritical cloud server architecture for train control. Its reliability has to be evaluated to assess tradeoffs in architecture and level of fault tolerance. Simulation methods are too slow for such rare-event problems, while numerical analysis techniques suffer from the state-space explosion problem. The paper extends a recently developed multi-trajectory simulation algorithm combining elements of simulation and numerical analysis such that it increases the accuracy of rare-event simulations within a given computation time budget. Simulation experiments have been carried out with a prototype tool.



https://doi.org/10.1109/RAMS51457.2022.9893923
Hähnlein, Bernd; Kellner, Maria; Krey, Maximilian; Nikpourian, Alireza; Pezoldt, Jörg; Michael, Steffen; Töpfer, Hannes; Krischok, Stefan; Tonisch, Katja
The angle dependent ΔE effect in TiN/AlN/Ni micro cantilevers. - In: Sensors and actuators, ISSN 1873-3069, Bd. 345 (2022), 113784, S. 1-12

In this work, magnetoelectric MEMS sensors based on a TiN/AlN/Ni laminate are investigated for the first time in regards of the anisotropic elastic properties when using hard magnetic Nickel as magnetostrictive layer. The implications of crystalline, uniaxial and shape anisotropy are analysed arising from the anisotropic ΔE effect in differently oriented cantilevers with 25 µm length and 15&ring; spacing. The ΔE effect is derived analytically to consider the angular dependency of the different anisotropies within the sensors. In the measured frequency spectra complex profiles are observable consisting of contributions from neighbouring structures which are connected by a common electrode. The crosstalk effect is strongly depending on the cantilever orientation and reflects the anisotropic mechanical properties of the material stack. The intensity of the crosstalk effect is increasing for shortened cantilevers and narrowing distance between structures. The ΔE effect is investigated based on cantilevers of different angular spacing and of a single cantilever that is rotated in the magnetic field. The derived peak sensitivities are reaching values of 1.15 and 1.31T-1. The angular dependency of the sensitivity is found to be approximately constant for differently oriented cantilevers. In contrast, for a singly rotated cantilever an angular dependency of the 4th order is observed.



https://doi.org/10.1016/j.sna.2022.113784
Saenz, Theresa E.; Nandy, Manali; Paszuk, Agnieszka; Ostheimer, David; Koch, Juliane; McMahon, William E.; Zimmerman, Jeramy D.; Hannappel, Thomas; Warren, Emily L.
MOCVD surface preparation of V-groove Si for III-V growth. - In: Journal of crystal growth, Bd. 597 (2022), 126843

V-groove nanopatterning of Si substrates has recently demonstrated promise for achieving high-quality III-V-on-Si epitaxy while providing a lower-cost processing route than chemo-mechanical polishing to produce epi-ready planar wafers. A key factor in determining the crystalline quality of III-V buffer layers is the Si surface structure and its chemical composition. Unlike planar Si surfaces, the surfaces of V-grooves prior to growth have not been studied in detail. Here, we study the surface of V-groove Si prepared for GaP nucleation via X-ray photoelectron spectroscopy and low-energy electron diffraction. We identify several pretreatments, using both 830&ring;C and 1000&ring;C annealing under an As background pressure, as being suitable for deoxidizing and cleaning the V-groove Si surface. The V-groove Si was found to behave similarly to reference Si(0 0 1) and Si(1 1 1) planar samples, demonstrating that in situ techniques such as reflection anisotropy spectroscopy can be used on reference samples to infer the state of the V-groove surface, and indicating that the extensive research on planar Si surfaces can be directly applied to V-grooves.



https://doi.org/10.1016/j.jcrysgro.2022.126843
Schaller, Manuel; Wilson, Mitsuru; Kleyman, Viktoria; Mordmüller, Mario; Brinkmann, Ralf; Müller, Matthias A.; Worthmann, Karl
Parameter estimation and model reduction for model predictive control in retinal laser treatment. - In: Control engineering practice, ISSN 1873-6939, Bd. 128 (2022), 105320

Laser photocoagulation is one of the most frequently used treatment approaches for retinal diseases such as diabetic retinopathy and macular edema. The use of model-based control, such as Model Predictive Control (MPC), enhances a safe and effective treatment by guaranteeing temperature bounds. In general, real-time requirements for model-based control designs are not met since the temperature distribution in the eye fundus is governed by a heat equation with a nonlinear parameter dependency. This issue is circumvented by representing the model by a lower-dimensional system which well-approximates the original model, including the parametric dependency. We combine a global-basis approach with the discrete empirical interpolation method, tailor its hyperparameters to laser photocoagulation, and show its superiority in comparison to a recently proposed method based on Taylor-series approximation. Its effectiveness is measured in computation time for MPC. We further present a case study to estimate the range of absorption parameters in porcine eyes, and by means of a theoretical and numerical sensitivity analysis we show that the sensitivity of the temperature increase is higher with respect to the absorption coefficient of the retinal pigment epithelium (RPE) than of the choroid’s.



https://doi.org/10.1016/j.conengprac.2022.105320
Romanyuk, Oleksandr; Paszuk, Agnieszka; Gordeev, Ivan; Wilks, Regan G.; Ueda, Shigenori; Hartmann, Claudia; Félix, Roberto; Bär, Marcus; Schlueter, Christoph; Gloskovskii, Andrei; Bartoš, I.; Nandy, Manali; Houdková, Jana; Jiříček, Petr; Jaegermann, Wolfram; Hofmann, Jan Philipp; Hannappel, Thomas
Combining advanced photoelectron spectroscopy approaches to analyse deeply buried GaP(As)/Si(100) interfaces : Interfacial chemical states and complete band energy diagrams. - In: Applied surface science, Bd. 605 (2022), 154630

The epitaxial growth of the polar GaP(100) on the nonpolar Si(100) substrate suffers from inevitable defects at the antiphase domain boundaries (APDs), resulting from mono-atomic steps on the Si(100) surface. Stabilization of Si(100) substrate surfaces with As is a promising technological step enabling the preparation of Si substrates with double atomic steps and reduced density of the APDs. In this paper, 4-50-nm-thick GaP epitaxial films were grown on As-terminated Si(100) substrates with different types of doping, miscuts, and As-surface termination by metalorganic vapor phase epitaxy (MOVPE). The GaP(As)/Si(100) heterostructures were investigated by X-ray photoelectron spectroscopy (XPS) combined with gas cluster ion beam (GCIB) sputtering and by hard X-ray photoelectron spectroscopy (HAXPES). We found residuals of As atoms in the GaP lattice (∼0.2-0.3 at.%) and a localization of As atoms at the GaP(As)/Si(100) interface (∼1 at.%). Deconvolution of core level peaks revealed interface core level shifts. In As core levels, chemical shifts between 0.5 and 0.8 eV were measured and identified by angle-resolved XPS measurements. Similar valence band offset (VBO) values of 0.6 eV were obtained, regardless of the doping type of Si substrate, Si substrate miscut or type of As-terminated Si substrate surface. The band alignment diagram of the GaP(As)/Si(1 0 0) heterostructure was deduced.



https://doi.org/10.1016/j.apsusc.2022.154630
Huang, Tianbai; Kupfer, Stephan; Richter, Martin; Gräfe, Stefanie; Geitner, Robert
Bidentate Rh(I)-phosphine complexes for the C-H activation of alkanes: computational modelling and mechanistic insight. - In: ChemCatChem, ISSN 1867-3899, Bd. 14 (2022), 18, e202200854, S. 1-9

The C-H activation and subsequent carbonylation mediated by metal complexes, i. e., Rh(I) complexes, has drawn considerable attention in the past. To extend the mechanistic insight from Rh complexes featuring monodentate ligands like P(Me)3 towards more active bisphosphines (PLP), a computationally derived fully conclusive mechanistic picture of the Rh(I)-catalyzed C-H activation and carbonylation is presented here. Depending on the nature of the bisphosphine ligand, the highest lying transition state (TS) is associated either to the initial C-H activation in [Rh(PLP)(CO)(Cl)] or to the rearrangement of the chloride in [Rh(PLP)(H)(R)(Cl)]. The chloride rearrangement was found to play a key role in the subsequent carbonylation. A set of 20 complexes of different architectures was studied, in order to fine tune the C-H activation in a knowledge-driven approach. The computational analysis suggests that a flexible ligand architecture with aromatic rings can potentially increase the performance of Rh-based catalysts for the C-H activation.



https://doi.org/10.1002/cctc.202200854
Cao-Riehmer, Jialan; Russo, David A.; Xie, Ting; Groß, Gregor Alexander; Zedler, Julie
A droplet-based microfluidic platform enables high-throughput combinatorial optimization of cyanobacterial cultivation. - In: Scientific reports, ISSN 2045-2322, Bd. 12 (2022), 15536, S. 1-12

Cyanobacteria are fast-growing, genetically accessible, photoautotrophs. Therefore, they have attracted interest as sustainable production platforms. However, the lack of techniques to systematically optimize cultivation parameters in a high-throughput manner is holding back progress towards industrialization. To overcome this bottleneck, here we introduce a droplet-based microfluidic platform capable of one- (1D) and two-dimension (2D) screening of key parameters in cyanobacterial cultivation. We successfully grew three different unicellular, biotechnologically relevant, cyanobacteria: Synechocystis sp. PCC 6803, Synechococcus elongatus UTEX 2973 and Synechococcus sp. UTEX 3154. This was followed by a highly-resolved 1D screening of nitrate, phosphate, carbonate, and salt concentrations. The 1D screening results suggested that nitrate and/or phosphate may be limiting nutrients in standard cultivation media. Finally, we use 2D screening to determine the optimal N:P ratio of BG-11. Application of the improved medium composition in a high-density cultivation setup led to an increase in biomass yield of up to 15.7%. This study demonstrates that droplet-based microfluidics can decrease the volume required for cyanobacterial cultivation and screening up to a thousand times while significantly increasing the multiplexing capacity. Going forward, microfluidics have the potential to play a significant role in the industrial exploitation of cyanobacteria.



https://doi.org/10.1038/s41598-022-19773-6
Cao-Riehmer, Jialan; Pliquett, Uwe; Yang, Lin; Wiedemeier, Stefan; Cahill, Brian; Köhler, Michael
Contactless optical and impedimetric sensing for droplet-based dose-response investigations of microorganisms. - In: Sensors and actuators, ISSN 0925-4005, Bd. 372 (2022), 132688

The principle of droplet-based microfluidics was used for the characterization of dose/response functions of the soil bacteria Rhodococcus sp. and Chromobacterium vaccinii using a combination of optical and electrical sensors for the detection of bacterial growth and metabolic activity. For electrical characterization, a micro flow-through impedance module was developed which assessed the response of bacterial populations inside 500 nL fluid segments without direct galvanic contact between the electrodes and the electrolyte. It was found that the impedance sensor can detect an increase in cell density and is particularly suited for monitoring the metabolic response due to changes in the cultivation medium inside the separated fluid segments. Due to this sensitivity, the sensor is useful for investigating growing bacteria or cell cultures in small fluid compartments and obtaining highly resolved dose-response functions by microfluid segment sequences. The impedimetric data agree well with the optical data concerning the characteristic response of bacteria populations in the different concentration regions of heavy metal ions. However, the sensor supplies valuable complementary data on metabolic activity in case of low or negligible cell division rates.



https://doi.org/10.1016/j.snb.2022.132688
Gernandt, Hannes; Trunk, Carsten
Eigenvalues of parametric rank one perturbations of matrix pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (37 Seiten). - (Preprint ; M22,04)

The behavior of eigenvalues of regular matrix pencils under rank one perturbations which depend on a scalar parameter is studied. In particular we address the change of the algebraic multiplicities, the change of the eigenvalues for small parameter variations as well as the asymptotic eigenvalue behavior as the parameter tends to infinity. Besides that, an interlacing result for rank one perturbations of matrix pencils is obtained. Finally, we apply the result to a redesign problem for electrical circuits.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200237
Bohm, Sebastian; Phi, Hai Binh; Moriyama, Ayaka; Runge, Erich; Strehle, Steffen; König, Jörg; Cierpka, Christian; Dittrich, Lars
Highly efficient passive Tesla valves for microfluidic applications. - In: Microsystems & nanoengineering, ISSN 2055-7434, Bd. 8 (2022), 1, 97, S. 1-12

A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s^-1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed.



https://doi.org/10.1038/s41378-022-00437-4
Liu, Jun; Zhao, Huaping; Wang, Zhijie; Hannappel, Thomas; Kramm, Ulrike; Etzold, Bastian; Lei, Yong
Tandem nanostructures: a prospective platform for photoelectrochemical water splitting. - In: Solar RRL, ISSN 2367-198X, Bd. 6 (2022), 9, 2200181, S. 1-33

A platform for efficient photoelectrochemical (PEC) water splitting must fulfil different requirements: the absorption of the solar spectrum should be maximized in use for charge carrier generation. To avoid recombination, fast separation of charge carriers is required and the energetic positions of the band structure(s) must be optimized with respect to the water splitting reactions. In these respects, constructing tandem nanostructures with rationally designed nanostructured units offers a potential opportunity to break the performance bottleneck imposed by the unitary nanostructure. So far, quite a few tandem nanostructures have been designed, fabricated, and employed to improve the efficiency of PEC water splitting, and significant achievements have been realized. This review focuses on the current advances in tandem nanostructures for PEC water splitting. Firstly, the state of the art for tandem nanostructures applied in PEC water splitting is summarized. Secondly, the advances in this field and advantages arising of employing tandem nanostructures for PEC water splitting are outlined. Subsequently, different types of tandem nanostructures are reviewed, including core-shell tandem nanostructured photoelectrode, the two-photoelectrode tandem cell, and the tandem nanostructures of plasmon related devices for PEC water splitting. Based on this, the future perspective of this field is proposed.



https://doi.org/10.1002/solr.202200181
Menzel, Roberto; Maier, Tanja; Täuscher, Eric; Spruner von Mertz, Franziska; Freiberger, Emma; Golz, Christopher; Fruth, Lothar; Pahl, Ina; Hauk, Armin
Structure elucidation and toxicological evaluation of cyclic Polyethersulfone oligomers present in extracts of membrane filters. - In: Polymer engineering & science, ISSN 1548-2634, Bd. 62 (2022), 9, S. 2817-2825

Polyethersulfone (PES) is a widely used polymer in consumer and technical products. An important application is PES membranes used in the biopharmaceutical industry for sterilizing-grade filtration and for filtration of food and beverages. For both uses, detailed information about migrating compounds that can be extracted from the polymeric material into a liquid must be gathered. In the pharmaceutical industry, comprehensive extractables studies are required for contact materials, and the data is used in the qualification of the process equipment. PES is generated via polycondensation, which forms cyclic oligomers as a by-product of the reaction. However, no structural information is available for these cyclic oligomers so far. In this publication, we present the analytical determination of PES cyclic oligomers. Their presence in extracts of PES membrane filters is confirmed. The structure of the PES cyclic trimer is elucidated by X-ray and NMR investigation, obtained as crystals from the sublimation of the PES raw material. A strategy is shown to assess the toxicity of such cyclic oligomers and to derive a permitted daily exposure (PDE). The data will reduce the levels of unknowns in extractables and leachables screenings and supports the risk assessment of PES sterile filters.



https://doi.org/10.1002/pen.26064
Lauer, Kevin; Peh, Katharina; Krischok, Stefan; Reiß, Stephanie; Hiller, Erik; Ortlepp, Thomas
Development of low-gain avalanche detectors in the frame of the acceptor removal phenomenon. - In: Physica status solidi, ISSN 1862-6319, Bd. 219 (2022), 17, 2200177, S. 1-7

Low-gain avalanche detectors (LGAD) suffer from an acceptor removal phenomenon due to irradiation. This acceptor removal phenomenon is investigated in boron, gallium, and indium implanted samples by 4-point-probe (4pp) measurements, low-temperature photoluminescence spectroscopy (LTPL), and secondary ion mass spectrometry (SIMS) before and after irradiation with electrons and protons. Different co-implantation species are evaluated with respect to their ability to reduce the acceptor removal phenomenon. In case of boron, the beneficial effect is found to be most pronounced for the low-dose fluorine and high-dose nitrogen co-implantation. In case of gallium, the low-dose implantations of carbon and oxygen are found to be beneficial. For indium, the different co-implantation species have no beneficial effect. SIMS boron concentration depth profiles measured before and after irradiation show no indication of a fast movement of boron at room temperature. Hence, the discussed BSi-Sii-defect explanation approach of the acceptor removal phenomenon seems to be more likely than the other discussed Bi-Oi-defect explanation approach.



https://doi.org/10.1002/pssa.202200177
Peh, Katharina; Lauer, Kevin; Flötotto, Aaron; Schulze, Dirk; Krischok, Stefan
Low-temperature photoluminescence investigation of light-induced degradation in boron-doped CZ silicon. - In: Physica status solidi, ISSN 1862-6319, Bd. 219 (2022), 17, 2200180, S. 1-9

Light-induced degradation (LID) in boron-doped Czochralski grown (CZ) silicon is a severe problem for silicon devices such as solar cells or radiation detectors. Herein, boron-doped CZ silicon is investigated by low-temperature photoluminescence (LTPL) spectroscopy. An LID-related photoluminescence peak is already found while analyzing indium-doped p-type silicon samples and is associated with the ASi-Sii defect model. Herein, it is investigated whether a similar peak is present in the spectra of boron-doped p-type CZ silicon samples. The presence of change in the photoluminescence signal intensity due to activation of the boron defect is investigated as well. Numerous measurements on boron-doped samples are made. For this purpose, samples with four different boron doping concentrations are analyzed. The treatments for activation of the boron defect are based on the LID cycle. During an LID cycle, an additional peak or shoulder neither in the areas of the boron-bound exciton transverse acoustic and nonphonon-assisted peaks (BTA, BNP) nor in the area of the boron-bound exciton transverse optical phonon-assisted peak (BTO) is found. The defect formation also does not lead to a lower photoluminescence (PL) intensity ratio BTO(BE)/ITO(FE).



https://doi.org/10.1002/pssa.202200180
Ehrhardt, Linda; Günther, Mike; Böhme, Manfred; Köhler, Michael; Cao-Riehmer, Jialan
Three soil bacterial communities from an archaeological excavation site of an ancient coal mine near Bennstedt (Germany) characterized by 16S r-RNA sequencing. - In: Environments, ISSN 2076-3298, Bd. 9 (2022), 9, 115, S. 1-19

This metagenomics investigation of three closely adjacent sampling sites from an archaeological excavation of a pre-industrial coal mining exploration shaft provides detailed information on the composition of the local soil bacterial communities. The observed significant differences between the samples, reflected in the 16S r-RNA analyses, were consistent with the archaeologically observed situation distinguishing the coal seam, the rapidly deposited bright sediment inside an exploration shaft, and the topsoil sediment. In general, the soils were characterized by a dominance of Proteobacteria, Actinobacteria, Acidobacteria, and Archaea, whereas the coal seam was characterized by the highest proportion of Proteobacteria; the topsoil was characterized by very high proportions of Archaea - in particular, Nitrosotaleaceae - and Acidobacteria, mainly of Subgroup 2. Interestingly, the samples of the fast-deposited bright sediment showed a rank function of OTU abundances with disproportional values in the lower abundance range. This could be interpreted as a reflection of the rapid redeposition of soil material during the refilling of the exploration shaft in the composition of the soil bacterial community. This interpretation is supported by the observation of a comparatively high proportion of reads relating to bacteria known to be alkaliphilic in this soil material. In summary, these investigations confirm that metagenomic analyses of soil material from archaeological excavations can provide valuable information about the local soil bacterial communities and the historical human impacts on them.



https://doi.org/10.3390/environments9090115
Sauerteig, Philipp; Esterhuizen, Willem; Wilson, Mitsuru; Ritschel, Tobias K. S.; Worthmann, Karl; Streif, Stefan
Model predictive control tailored to epidemic models. - In: 2022 European Control Conference (ECC), (2022), S. 743-748

We propose a model predictive control (MPC) approach for minimising the social distancing and quarantine measures during a pandemic while maintaining a hard infection cap. To this end, we study the admissible and the maximal robust positively invariant set (MRPI) of the standard SEIR compartmental model with control inputs. Exploiting the fact that in the MRPI all restrictions can be lifted without violating the infection cap, we choose a suitable subset of the MRPI to define terminal constraints in our MPC routine and show that the number of infected people decays exponentially within this set. Furthermore, under mild assumptions we prove existence of a uniform bound on the time required to reach this terminal region (without violating the infection cap) starting in the admissible set. The findings are substantiated based on a numerical case study.



https://doi.org/10.23919/ECC55457.2022.9838589
Radivoievych, Alexandar; Kolp, Benjamin; Grebinyk, Sergii; Prylutska, Svitlana; Ritter, Uwe; Zolk, Oliver; Glökler, Jörn Felix; Frohme, Marcus; Grebinyk, Anna
Prestine C60 fullerene as a novel agent in sonodynamic treatment of cancer cells. - In: FEBS Open Bio, ISSN 2211-5463, Bd. 12 (2022), S. 74

https://doi.org/10.1002/2211-5463.13440
Calderón, Jesús A.; Ruiz, Carlos Gianpaul Rincón; Gómez Amador, Ana María; Cardenas, Bray Jesús Martin Agreda; Anaya, Sebastián Calero; Lozano Jauregui, John Hugo; Hinostroza, Alexandr Toribio; Jiménez de Cisneros y Fonfría, Juan José
Mathematical analysis of a low cost mechanical ventilator respiratory dynamics enhanced by a sensor transducer (ST) based in nanostructures of Anodic Aluminium Oxide (AAO). - In: Mathematics, ISSN 2227-7390, Bd. 10 (2022), 14, 2403, S. 1-32

Mechanical ventilation systems require a device for measuring the air flow provided to a patient in order to monitor and ensure the correct quantity of air proportionated to the patient, this device is the air flow sensor. At the beginning of the COVID-19 pandemic, flow sensors were not available in Peru because of the international supply shortage. In this context, a novel air flow sensor based on an orifice plate and an intelligent transducer was developed to form an integrated device. The proposed design was focused on simple manufacturing requirements for mass production in a developing country. CAD and CAE techniques were used in the design stage, and a mathematical model of the device was proposed and calibrated experimentally for the measured data transduction. The device was tested in its real working conditions and was therefore implemented in a breathing circuit connected to a low-cost mechanical ventilation system. Results indicate that the designed air flow sensor/transducer is a low-cost complete medical device for mechanical ventilators that is able to provide all the ventilation parameters by an equivalent electrical signal to directly display the following factors: air flow, pressure and volume over time. The evaluation of the designed sensor transducer was performed according to sundry transducer parameters such as geometrical parameters, material parameters and adaptive coefficients in the main transduction algorithm; in effect, the variety of the described results were achieved by the faster response time and robustness proportionated by transducers of nanostructures based on Anodic Aluminum Oxide (AAO), which enhanced the designed sensor/transducer (ST) during operation in intricate geographic places, such as the Andes mountains of Peru.



https://doi.org/10.3390/math10142403
Meng, Chao; He, Weidong; Kong, Zhen; Liang, Zhenyan; Zhao, Huaping; Lei, Yong; Wu, Yongzhong; Hao, Xiaopeng
Multifunctional water-organic hybrid electrolyte for rechargeable zinc ions batteries. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 450 (2022), 3, 138265

Uncontrollable dendrite growth and parasitic reactions are the fundamental obstacles to achieve large-scale application of aqueous Zn-ion batteries. Herein, a new strategy of tuning the electrolyte solvation structure and electrode interface is demonstrated for highly reversible zinc plating/stripping. Acetonitrile (AN) is introduced into Zn(OTf)2 electrolyte as co-solvent, the interaction between Zn2+ and acetonitrile attenuates the Zn2+ solvation and water activity. Concomitantly, theoretical calculations demonstrate that acetonitrile molecules tend to adsorb on the surface of zinc electrode to form an adaptive zinc-electrolyte interface. Such an electrolyte engineering significantly prevents water hydrogen evolution, suppresses vanadium dissolution and modulates Zn deposition behavior. As proof of concept, Zn//Zn symmetric cells with acetonitrile additive exhibit a ultra-long cycling of 2100 h at a high current density of 5 mA cm^-2. In particular, the university of the acetonitrile-water co-solvent (AWCS) electrolyte is demonstrated, multiple battery systems (Zn//Al-V-O, Zn//Zn-V-O, Zn//VOOH, and Zn//Mn-V-O) deliver markedly improved cycling stability and rate performance. The mechanism of action of AWCS electrolyte on performance indicators is discussed in detail, which provides a promising insight for energy storage devices.



https://doi.org/10.1016/j.cej.2022.138265
Schmidt-Grund, Rüdiger; Sturm, Chris; Hertwig, Andreas
Ellipsometry and polarimetry - classical measurement techniques with always new developments, concepts, and applications. - In: Advanced Optical Technologies, ISSN 2192-8584, Bd. 11 (2022), 3/4, S. 57-58

https://doi.org/10.1515/aot-2022-0025
Mazétyté-Stasinskiené, Raminta; Freiberger, Emma; Täuscher, Eric; Köhler, Michael
Four-level structural hierarchy: microfluidically supported synthesis of polymer particle architectures incorporating fluorescence-labeled components and metal nanoparticles. - In: Langmuir, ISSN 1520-5827, Bd. 38 (2022), 29, S. 8794-8804

Hierarchical assemblies of functional polymer particles are promising due to their surface as well as physicochemical properties. However, hierarchical composites are complex and challenging to form due to the many steps necessary for integrating different components into one system. Highly structured four-level composite particles were formed in a four-step process. First of all, gold (Au) nanoparticles, poly(methyl methacrylate) (PMMA) nanoparticles, and poly(tripropylene glycol diacrylate) (poly-TPGDA) microparticles were individually synthesized. By applying microfluidic techniques, polymer nano- and microparticles were formed with tunable size and surface properties. Afterwards, the negatively charged gold nanoparticles and PMMA particles functionalized with a positively charged surface were mixed to form Au/PMMA assemblies. The Au/PMMA composites were mixed and incubated with poly-TPGDA microparticles to form ternary Au/PMMA/poly-TPGDA assemblies. For the formation of composite-containing microparticles, Au/PMMA/poly-TPGDA composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution. Monomer droplets were formed in a co-flow microfluidic device and photopolymerized by UV light. In this way, hierarchically structured four-level composites consisting of four different size ranges - 0.025/0.8/30/1000 μm - were obtained. By functionalizing polymer nano- and microparticles with different fluorescent dyes, it was possible to visualize the same composite particle under two different excitation modes (λex = 395-440 and λex = 510-560 nm). The Au/PMMA/poly-TPGDA composite-embedded polyacrylamide microparticles can be potentially used as a model for the creation of composite particles for sensing, catalysis, multilabeling, and biomedical applications.



https://doi.org/10.1021/acs.langmuir.2c00686
Zhang, Yi; Zhang, Chenglin; Fu, Qun; Zhao, Huaping; Lei, Yong
Modified polydopamine derivatives as high-performance organic anodes for potassium-ion batteries. - In: Sustainable energy & fuels, ISSN 2398-4902, Bd. 6 (2022), 15, S. 3527-3535

Polydopamine (PDA) as a carbon source and a versatile coating material has been widely studied in rechargeable battery electrodes. However, it is rare to directly utilize PDA as an organic anode for ion storage, especially in potassium-ion batteries (PIBs). In this work, modified PDA (MPDA-350) with a porous structure is synthesized by collective methods of template-assisted and low-temperature pyrolysis, which endows PDA with large ion diffusion tunnels and increased active sites for K+ ion storage. Moreover, contrast experiments demonstrate that the annealing process with an appropriate temperature can increase the content and activity of electroactive groups in MPDA-350. The prepared MPDA-350 is first applied to PIBs that deliver high reversible capacity (384.9 mA h g^-1 at 100 mA g^-1) and very stable cyclability (99.94% capacity retention after 500 cycles). This work provides a new insight for the expansion of high-performance organic anodes for PIBs.



https://doi.org/10.1039/D2SE00684G
Xu, Bowen; Zhang, Da; Chang, Shilei; Hou, Minjie; Peng, Chao; Xue, Dongfeng; Yang, Bin; Lei, Yong; Liang, Feng
Fabrication of long-life quasi-solid-state Na-CO2 battery by formation of Na2C2O4 discharge product. - In: Cell reports, ISSN 2666-3864, Bd. 3 (2022), 7, 100973, S. 1-15

Rechargeable Na-CO2 batteries are promising energy-storage devices due to their high energy density, environmental friendliness, and cost effectiveness. However, the insulating nature and irreversibility of the Na2CO3 discharge product cause large polarization and poor cyclicity. Here, we report a reversible quasi-solid-state Na-CO2 battery that is constructed by the synergistic action of a Co-encapsulated N-doped carbon framework catalyst and gel electrolyte to ensure the formation of a highly reversible Na2C2O4 discharge product. Experiments and density functional theory calculations indicate that the electron-agglomeration effect of Co nanoparticles enhances CO2 adsorption and lowers energy barrier, as well as promotes Na2C2O4 generation. A gel electrolyte containing an imidazole organic cation is used to inhibit the decomposition of the thermodynamically unstable Na2C2O4. The fabricated Na-CO2 battery exhibits a high discharge capacity of 3,094 mAh g^-1, a high-rate performance of 1,777 mAh g^-1 at a current density of 0.5 mA cm^-2, and excellent cycling performance of 366 cycles (2,200 h).



https://doi.org/10.1016/j.xcrp.2022.100973
Yang, Guowei; Yan, Chengzhan; Hu, Ping; Fu, Qun; Zhao, Huaping; Lei, Yong
Synthesis of CoSe2 reinforced nitrogen-doped carbon composites as advanced anodes for potassium-ion batteries. - In: Inorganic chemistry frontiers, ISSN 2052-1553, Bd. 9 (2022), 15, S. 3719-3727

Potassium-ion batteries (PIBs) are considered potential candidates for large-scale energy storage applications with cost superiority. However, the development of PIBs is severely restricted by the sluggish electrochemical kinetics and severe volume expansion of anode materials. Herein, CoSe2 reinforced nitrogen-doped carbon composites (CoSe2C) are synthesized via a simple solution-based etching-coating method and further studied as high-performance anodes for PIBs. Electrochemical characterization studies indicate that the potassium storage performance of CoSe2@C composite anodes relies on the initial mass ratio of CoSe2 nanosheets and carbon precursors (that is dopamine hydrochloride) during the synthesis process. In the case of the mass ratio of CoSe2 nanosheets and dopamine hydrochloride being 1 : 1, the as-obtained CoSe2@C-1 : 1 anode exhibits a high reversible capacity (366.1 mA h g^-1 at 0.1 A g^-1 after 100 cycles), an excellent long-cycle stability (237.6 mA h g^-1 at 1.0 A g^-1 after 1000 cycles), and a good rate capability (281.5 mA h g^-1 at 5.0 A g^-1). The optimum performance of CoSe2@C-1 : 1 as a PIB anode in terms of cycling stability and kinetics is attributed to the uniform distribution of CoSe2 nanoparticles inside the carbon matrix.



https://doi.org/10.1039/D2QI00848C
Konkin, Alexander; Ritter, Uwe; Konkin, Aleksei A.; Knauer, Andrea; Krinichnyi, Victor I.; Klochkov, Vladimir; Aganov, Albert; Gafurov, Marat; Wendler, Frank; Scharff, Peter
PPDN and NTCDA radical anions formation in EMIM-DCA, BMIM-BF4 EMIM-Ac ionic liquid solutions under the steady state UV and Vis light illumination: a combined X-, K-band EPR and DFT study. - In: Journal of molecular liquids, ISSN 1873-3166, Bd. 362 (2022), 119631

The radical anion of Pyrazino[2,3-f][1,10]phenanthroline-2,3-dicarbonitrile (PPDN) in blends with imidazolium based room temperature ionic liquids (RTIL): EMIM-DCA, BMIM-BF4, EMIM-Ac has been detected by X-band continues wave (CW) electron paramagnetic resonance (EPR) under steady state Xe-lamp illumination in the temperature interval from 190 to 340 K. The radical anion of 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTCDA) was registered by X- and K-band CW EPR at room temperature under the visible light CW diode laser operated at 532 nm, and Xe-lamp as well. The experimental hyperfine coupling data of both anion radicals were confirmed by DFT calculation. The formation of PPDN•- NTCDA•- and fullerene derivative (FD) radical anions is attributed to the photoelectron transfer from an IL anion to PPDN, NTCDA and FD electron acceptors. Here, the electron transfer leads to an irreversibility of these reactions due to photo-induced decomposition of the IL anions in the presence of an effective electron acceptor and is supported in the above RTILs solutions by means of EPR. For the indirect confirmation of the EMIM-DCA, EMIM-AC, BMIM-BF4 anion degradation in solutions with PPDN and NTCDA up to the transient radical state, similar data of acetate anion [OCOCH3]- decomposition, under CW Xe-Lamp photolysis resulting in •CH3 formation and its stabilization at 77 K in EMIM-Ac suspension with some FD dissolved in DCB are introduced as well. However, the main goal of this study is dedicated to the features of rotational and translational diffusion kinetics of PPDN and NTCDA radical anions in IL solutions as well to the evaluation of their application as a spin probes in ILs study in liquid phase.



https://doi.org/10.1016/j.molliq.2022.119631
Segev, Gideon; Kibsgaard, Jakob; Hahn, Christopher; Xu, Zhichuan J.; Cheng, Wen-Hui (Sophia); Deutsch, Todd G.; Xiang, Chengxiang; Zhang, Jenny Z.; Hammarström, Leif; Nocera, Daniel G.; Weber, Adam Z.; Agbo, Peter; Hisatomi, Takashi; Osterloh, Frank E.; Domen, Kazunari; Abdi, Fatwa F.; Haussener, Sophia; Miller, Daniel J.; Ardo, Shane; McIntyre, Paul C.; Hannappel, Thomas; Hu, Shu; Atwater, Harry; Gregoire, John M.; Ertem, Mehmed Z.; Sharp, Ian; Choi, Kyoung-Shin; Lee, Jae Sung; Ishitani, Osamu; Ager, Joel W.; Prabhakar, Rajiv Ramanujam; Bell, Alexis T.; Boettcher, Shannon W.; Vincent, Kylie; Takanabe, Kazuhiro; Artero, Vincent; Napier, Ryan; Roldán Cuenya, Beatriz; Koper, Marc T. M.; Van De Krol, Roel; Houle, Frances
The 2022 solar fuels roadmap. - In: Journal of physics, ISSN 1361-6463, Bd. 55 (2022), 32, 323003, S. 1-52

Renewable fuel generation is essential for a low carbon footprint economy. Thus, over the last five decades, a significant effort has been dedicated towards increasing the performance of solar fuels generating devices. Specifically, the solar to hydrogen efficiency of photoelectrochemical cells has progressed steadily towards its fundamental limit, and the faradaic efficiency towards valuable products in CO2 reduction systems has increased dramatically. However, there are still numerous scientific and engineering challenges that must be overcame in order to turn solar fuels into a viable technology. At the electrode and device level, the conversion efficiency, stability and products selectivity must be increased significantly. Meanwhile, these performance metrics must be maintained when scaling up devices and systems while maintaining an acceptable cost and carbon footprint. This roadmap surveys different aspects of this endeavor: system benchmarking, device scaling, various approaches for photoelectrodes design, materials discovery, and catalysis. Each of the sections in the roadmap focuses on a single topic, discussing the state of the art, the key challenges and advancements required to meet them. The roadmap can be used as a guide for researchers and funding agencies highlighting the most pressing needs of the field.



https://doi.org/10.1088/1361-6463/ac6f97
Hähnlein, Bernd; Sagar, Neha; Honig, Hauke; Krischok, Stefan; Tonisch, Katja
Anisotropy of the ΔE effect in Ni-based magnetoelectric cantilevers: a finite element method analysis. - In: Sensors, ISSN 1424-8220, Bd. 22 (2022), 13, 4958, S. 1-16

In recent investigations of magnetoelectric sensors based on microelectromechanical cantilevers made of TiN/AlN/Ni, a complex eigenfrequency behavior arising from the anisotropic ΔE effect was demonstrated. Within this work, a FEM simulation model based on this material system is presented to allow an investigation of the vibrational properties of cantilever-based sensors derived from magnetocrystalline anisotropy while avoiding other anisotropic contributions. Using the magnetocrystalline ΔE effect, a magnetic hardening of Nickel is demonstrated for the (110) as well as the (111) orientation. The sensitivity is extracted from the field-dependent eigenfrequency curves. It is found, that the transitions of the individual magnetic domain states in the magnetization process are the dominant influencing factor on the sensitivity for all crystal orientations. It is shown, that Nickel layers in the sensor aligned along the medium or hard axis yield a higher sensitivity than layers along the easy axis. The peak sensitivity was determined to 41.3 T−1 for (110) in-plane-oriented Nickel at a magnetic bias flux of 1.78 mT. The results achieved by FEM simulations are compared to the results calculated by the Euler-Bernoulli theory.



https://doi.org/10.3390/s22134958
Lindt, Kevin; Mattea, Carlos; Stapf, Siegfried; Ostrovskaya, I. K.; Fatkullin, Nail F.
The deuteron NMR Hahn echo decay in polyethylene oxide melts. - In: AIP Advances, ISSN 2158-3226, Bd. 12 (2022), 7, S. 075219-1-075219-12

The deuteron transverse relaxation properties of polyethylene oxide melts of four different molecular weights, covering the range from the onset of entanglements to the regime of fully entangled chains, are investigated using Hahn echo decays over an extensive time interval up to ten times the effective transverse spin relaxation time. The results are compared to predictions based on the Rouse and reptation formalisms, taking into account the dynamical heterogeneity of linear polymer chains produced by the end segments. The experimental results can be described qualitatively by a combination of both models, with the contribution of reptation dynamics increasing with growing chain length. The transition is continuous, rather than being characterized by sharp regime boundaries. Up to a molecular weight of 300.000 g/mol, the predicted limit of pure reptation dynamics is not yet reached. Quantitative deviations from the predicted decays as computed by numerical procedures become observable toward the long-time limit of the Hahn echo decays and are being discussed in terms of shortcomings of the available reptation theories.



https://doi.org/10.1063/5.0099293
Emminger, Carola; Espinoza, Shirly; Richter, Steffen; Rebarz, Mateusz; Herrfurth, Oliver; Zahradník, Martin; Schmidt-Grund, Rüdiger; Andreasson, Jakob; Zollner, Stefan
Coherent acoustic phonon oscillations and transient critical point parameters of Ge from femtosecond pump-probe ellipsometry. - In: Physica status solidi, ISSN 1862-6270, Bd. 16 (2022), 7, 2200058, S. 1-7

Herein, the complex pseudodielectric function of Ge and Si from femtosecond pump-probe spectroscopic ellipsometry with 267, 400, and 800 nm pump-pulse wavelengths is analyzed by fitting analytical lineshapes to the second derivatives of the pseudodielectric function with respect to energy. This yields the critical point parameters (threshold energy, lifetime broadening, amplitude, and excitonic phase angle) of E 1 and E 1 + Δ 1 in Ge and E 1 in Si as functions of delay time. Coherent longitudinal acoustic phonon oscillations with a period of about 11 ps are observed in the transient critical point parameters of Ge. From the amplitude of these oscillations, the laser-induced strain is found to be on the order of 0.03% for Ge measured with the 800 nm pump pulse, which is in reasonable agreement with the strain calculated from theory.



https://doi.org/10.1002/pssr.202200058
Aigner-Horev, Elad; Person, Yury
On sparse random combinatorial matrices. - In: Discrete mathematics, Bd. 345 (2022), 11, 113017

Let Qn,d denote the random combinatorial matrix whose rows are independent of one another and such that each row is sampled uniformly at random from the subset of vectors in {0,1}n having precisely d entries equal to 1. We present a short proof of the fact that P[det⁡(Qn,d)=0]=O(n1/2log3/2⁡nd)=o(1), whenever ω(n1/2log3/2⁡n)=d≤n/2. In particular, our proof accommodates sparse random combinatorial matrices in the sense that d=o(n) is allowed. We also consider the singularity of deterministic integer matrices A randomly perturbed by a sparse combinatorial matrix. In particular, we prove that P[det⁡(A+Qn,d)=0]=O(n1/2log3/2⁡nd), again, whenever ω(n1/2log3/2⁡n)=d≤n/2 and A has the property that (1,-d) is not an eigenpair of A.



https://doi.org/10.1016/j.disc.2022.113017
Hörsch, Florian; Szigeti, Zoltán
Reachability in arborescence packings. - In: Discrete applied mathematics, ISSN 1872-6771, Bd. 320 (2022), S. 170-183

Fortier et al. proposed several research problems on packing arborescences and settled some of them. Others were later solved by Matsuoka and Tanigawa and by Gao and Yang. The last open problem is settled in this article. We show how to turn an inductive idea used in the latter two articles into a simple proof technique that allows to relate previous results on arborescence packings. We prove that a strong version of Edmonds’ theorem on packing spanning arborescences implies Kamiyama, Katoh and Takizawa’s result on packing reachability arborescences and that Durand de Gevigney, Nguyen and Szigeti’s theorem on matroid-based packing of arborescences implies Király’s result on matroid-reachability-based packing of arborescences. Further, we deduce a new result on matroid-reachability-based packing of mixed hyperarborescences from a theorem on matroid-based packing of mixed hyperarborescences due to Fortier et al.. Finally, we deal with the algorithmic aspects of the problems considered. We first obtain algorithms to find the desired packings of arborescences in all settings and then apply Edmonds’ weighted matroid intersection algorithm to also find solutions minimizing a given weight function.



https://doi.org/10.1016/j.dam.2022.05.018
Henkel, Thomas; Mayer, Günter; Hampl, Jörg; Cao-Riehmer, Jialan; Ehrhardt, Linda; Schober, Andreas; Groß, Gregor Alexander
From microtiter plates to droplets - there and back again. - In: Micromachines, ISSN 2072-666X, Bd. 13 (2022), 7, 1022, S. 1-13

Droplet-based microfluidic screening techniques can benefit from interfacing established microtiter plate-based screening and sample management workflows. Interfacing tools are required both for loading preconfigured microtiter-plate (MTP)-based sample collections into droplets and for dispensing the used droplets samples back into MTPs for subsequent storage or further processing. Here, we present a collection of Digital Microfluidic Pipetting Tips (DMPTs) with integrated facilities for droplet generation and manipulation together with a robotic system for its operation. This combination serves as a bidirectional sampling interface for sample transfer from wells into droplets (w2d) and vice versa droplets into wells (d2w). The DMPT were designed to fit into 96-deep-well MTPs and prepared from glass by means of microsystems technology. The aspirated samples are converted into the channel-confined droplets’ sequences separated by an immiscible carrier medium. To comply with the demands of dose-response assays, up to three additional assay compound solutions can be added to the sample droplets. To enable different procedural assay protocols, four different DMPT variants were made. In this way, droplet series with gradually changing composition can be generated for, e.g., 2D screening purposes. The developed DMPT and their common fluidic connector are described here. To handle the opposite transfer d2w, a robotic transfer system was set up and is described briefly.



https://doi.org/10.3390/mi13071022
Bang-Jensen, Jørgen; Kriesell, Matthias
Good acyclic orientations of 4-regular 4-connected graphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 100 (2022), 4, S. 698-720

An st-ordering of a graph G=(V,E) is an ordering v1,v2,…,vn of its vertex set such that s=v1,t=vn and every vertex vi with i=2,3,…,n-1 has both a lower numbered and a higher numbered neighbor. Such orderings have played an important role in algorithms for planarity testing. It is well-known that every 2-connected graph has an st-ordering for every choice of distinct vertices s,t. An st-ordering of a graph G corresponds directly to a so-called bipolar orientation of G, that is, an acyclic orientation D of G in which s is the unique source and t is the unique sink. Clearly every bipolar orientation of a graph has an out-branching rooted at the source vertex and an in-branching rooted at the sink vertex. In this paper, we study graphs which admit a bipolar orientation that contains an out-branching and in-branching which are arc-disjoint (such an orientation is called good). A 2T-graph is a graph whose edge set can be decomposed into two edge-disjoint spanning trees. Clearly a graph has a good orientation if and only if it contains a spanning 2T-graph with a good orientation, implying that 2T-graphs play a central role. It is a well-known result due to Tutte and Nash-Williams, respectively, that every 4-edge-connected graph contains a spanning 2T-graph. Vertex-minimal 2T-graphs with at least two vertices, also known as generic circuits, play an important role in rigidity theory for graphs. Recently with Bessy and Huang we proved that every generic circuit has a good orientation. In fact, we may specify the roots of the two branchings arbitrarily as long as they are distinct. Using this, several results on good orientations of 2T-graphs were obtained. It is an open problem whether there exists a polynomial algorithm for deciding whether a given 2T-graph has a good orientation. Complex constructions of 2T-graphs with no good orientation were given in work by Bang-Jensen, Bessy, Huang and Kriesell (2021) indicating that the problem might be very difficult. In this paper, we focus on so-called quartics which are 2T-graphs where every vertex has degree 3 or 4. We identify a sufficient condition for a quartic to have a good orientation, give a polynomial algorithm to recognize quartics satisfying the condition and a polynomial algorithm to produce a good orientation when this condition is met. As a consequence of these results we prove that every 4-regular and 4-connected graph has a good orientation, where, as for generic circuits, we may specify the roots of the two branchings arbitrarily as long as they are distinct. We also provide evidence that even for quartics it may be difficult to find a characterization of those instances which have a good orientation. We also show that every graph on n≥8 vertices and of minimum degree at least has a good orientation. Finally we pose a number of open problems.



https://doi.org/10.1002/jgt.22803
Cao-Riehmer, Jialan; Chande, Charmi; Köhler, Michael
Microtoxicology by microfluidic instrumentation: a review. - In: Lab on a chip, ISSN 1473-0189, Bd. 22 (2022), 14, S. 2600-2623

Microtoxicology is concerned with the toxic effects of small amounts of substances. This review paper discusses the application of small amounts of noxious substances for toxicological investigation in small volumes. The vigorous development of miniaturized methods in microfluidics over the last two decades involves chip-based devices, micro droplet-based procedures, and the use of micro-segmented flow for microtoxicological studies. The studies have shown that the microfluidic approach is particularly valuable for highly parallelized and combinatorial dose-response screenings. Accurate dosing and mixing of effector substances in large numbers of microcompartments supplies detailed data of dose-response functions by highly concentration-resolved assays and allows evaluation of stochastic responses in case of small separated cell ensembles and single cell experiments. The investigations demonstrate that very different biological targets can be studied using miniaturized approaches, among them bacteria, eukaryotic microorganisms, cell cultures from tissues of multicellular organisms, stem cells, and early embryonic states. Cultivation and effector exposure tests can be performed in small volumes over weeks and months, confirming that the microfluicial strategy is also applicable for slow-growing organisms. Here, the state of the art of miniaturized toxicology, particularly for studying antibiotic susceptibility, drug toxicity testing in the miniaturized system like organ-on-chip, environmental toxicology, and the characterization of combinatorial effects by two and multi-dimensional screenings, is discussed. Additionally, this review points out the practical limitations of the microtoxicology platform and discusses perspectives on future opportunities and challenges.



https://doi.org/10.1039/D2LC00268J
Nolte, Oliver; Geitner, Robert; Volodin, Ivan A.; Rohland, Philip; Hager, Martin; Schubert, Ulrich Sigmar
State of charge and state of health assessment of viologens in aqueous-organic redox-flow electrolytes using in situ IR spectroscopy and multivariate curve resolution. - In: Advanced science, ISSN 2198-3844, Bd. 9 (2022), 17, 2200535, S. 1-10

Aqueous-organic redox flow batteries (RFBs) have gained considerable interest in recent years, given their potential for an economically viable energy storage at large scale. This, however, strongly depends on both the robustness of the underlying electrolyte chemistry against molecular decomposition reactions as well as the device's operation. With regard to this, the presented study focuses on the use of in situ IR spectroscopy in combination with a multivariate curve resolution approach to gain insight into both the molecular structures of the active materials present within the electrolyte as well as crucial electrolyte state parameters, represented by the electrolyte's state of charge (SOC) and state of health (SOH). To demonstrate the general applicability of the approach, methyl viologen (MV) and bis(3-trimethylammonium)propyl viologen (BTMAPV) are chosen, as viologens are frequently used as negolytes in aqueous-organic RFBs. The study's findings highlight the impact of in situ spectroscopy and spectral deconvolution tools on the precision of the obtainable SOC and SOH values. Furthermore, the study indicates the occurrence of multiple viologen dimers, which possibly influence the electrolyte lifetime and charging characteristics.



https://doi.org/10.1002/advs.202200535
Derkach, Volodymyr; Hassi, Seppo; Malamud, Mark
Generalized boundary triples, II : some applications of generalized boundary triples and form domain invariant Nevanlinna functions. - In: Mathematische Nachrichten, ISSN 1522-2616, Bd. 295 (2022), 6, S. 1113-1162

The paper is a continuation of Part I and contains several further results on generalized boundary triples, the corresponding Weyl functions, and applications of this technique to ordinary and partial differential operators. We establish a connection between Post's theory of boundary pairs of closed nonnegative forms on the one hand and the theory of generalized boundary triples of nonnegative symmetric operators on the other hand. Applications to the Laplacian operator on bounded domains with smooth, Lipschitz, and even rough boundary, as well as to mixed boundary value problem for the Laplacian are given. Other applications concern with the momentum, Schrödinger, and Dirac operators with local point interactions. These operators demonstrate natural occurrence of ES$ES$-generalized boundary triples with domain invariant Weyl functions and essentially selfadjoint reference operators A0.



https://doi.org/10.1002/mana.202000049
Kirchhoff, Jonas;
Linear port-Hamiltonian systems are generically controllable. - In: IEEE transactions on automatic control, ISSN 1558-2523, Bd. 67 (2022), 6, S. 3220-3222

The new concept of relative generic subsets is introduced. It is shown that the set of controllable linear finite-dimensional port-Hamiltonian systems is a relative generic subset of the set of all linear finite-dimensional port-Hamiltonian systems. This implies that a random, continuously distributed port-Hamiltonian system is almost surely controllable.



https://doi.org/10.1109/TAC.2021.3098176
Mathew, Sobin; Lebedev, Sergey P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Manske, Eberhard; Pezoldt, Jörg
Silicon carbide - graphene nano-gratings on 4H and 6H semi-insulating SiC. - In: Materials science forum, ISSN 1662-9752, Bd. 1062 (2022), S. 170-174

A technical methodology of fabrication of hierarchically scaled multitude graphene nanogratings with varying pitches ranging from the micrometer down to sub 40 nm scale combined with sub 10 nm step heights on 4H and 6H semi-insulating SiC for length scale measurements is proposed. The nanogratings were fabricated using electron-beam lithography combined with dry etching of graphene, incorporating a standard semiconductor processing technology. A scientific evaluation of critical dimension, etching step heights, and surface characterization of graphene nanograting on both polytypes were compared and evaluated.



https://doi.org/10.4028/p-wn4zya
Berger, Thomas; Dennstädt, Dario
Funnel MPC with feasibility constraints for nonlinear systems with arbitrary relative degree. - In: IEEE control systems letters, ISSN 2475-1456, Bd. 6 (2022), S. 2804-2809

We study tracking control for nonlinear systems with known relative degree and stable internal dynamics by the recently introduced technique of Funnel MPC. The objective is to achieve the evolution of the tracking error within a prescribed performance funnel. We propose a novel stage cost for Funnel MPC, extending earlier designs to the case of arbitrary relative degree, and show that the control objective as well as initial and recursive feasibility are always achieved - without requiring any terminal conditions or a sufficiently long prediction horizon. We only impose an additional feasibility constraint in the optimal control problem.



https://doi.org/10.1109/LCSYS.2022.3178478
Strutynska, Nataliia Yu.; Grynyuk, Iryna I.; Vasyliuk, Olga M.; Prylutska, Svitlana V.; Vovchenko, Ludmila L.; Kraievska, I. A.; Slobodyanik, Nikolai S.; Ritter, Uwe; Prylutskyy, Yury I.
Novel whitlockite/alginate/C60 fullerene composites: synthesis, characterization and properties for medical application. - In: The Arabian journal for science and engineering, ISSN 2191-4281, Bd. 47 (2022), 6, S. 7093-7104

The hybrid composite materials in form of spheres based on whitlockite-related calcium phosphate, Alginate (20, 30 or 50 wt.%) and C60 Fullerene (C60; 2 or 5 wt.%) were fabricated. According to XRD, elemental analysis and SEM data, the whitlockite-related (hexagonal system, space group R3c) calcium phosphate containing 0.42 wt.% of sodium was obtained in the form of particles with size 50-80 nm. It has been found that the addition of Alginate (20 wt.%) to prepared calcium phosphate leads to an increase in the compressive strength of composite by two times (from 137 to 358 MPa), and value of Young's modulus on 20% (from 460 to 558 MPa), while the presence of C60 in composition did not significant influence on this characteristic. The antibacterial activity of prepared composites with different composition and amounts (2.5, 5 or 10 mM) against Lactobacillus rhamnosus, Lactobacillus salivarius, Staphylococcus aureus and Pseudomonas aeruginosa was studied. All prepared samples did not effect on Lactobacillus. The addition of 5 wt.% C60 to phosphate-Alginate (30 wt.%) composite resulted in a tenfold decrease in the survival rate of the S. aureus strain at 5 and 10 mM of samples while P. aeruginosa was less sensitive to action of this sample and inhibition of bacteria growth was occurred only at its amount 10 mM. Thus, the results of mechanical properties and impact of created nanostructured hybrid composites on normal human microbiota (Lactobacillus) as well as pathogenic strain (S. aureus and P. aeruginosa) indicate the suitability of these promising materials for further biological test for bone therapy.



https://doi.org/10.1007/s13369-021-06552-0
Yang, Xiecheng; Peng, Chao; Hou, Minjie; Zhang, Da; Yang, Bin; Xue, Dongfeng; Lei, Yong; Liang, Feng
Rational design of electrolyte solvation structures for modulating 2e-/4e- transfer in sodium-air batteries. - In: Advanced functional materials, ISSN 1616-3028, Bd. 32 (2022), 23, 2201258, S. 1-11

In sodium-air batteries (SABs), achieving the regulation of the electron transfer number during oxygen reduction reactions (ORRs) in the same electrolyte system remains a significant challenge. In this work, a promising strategy is proposed to dynamically modulate 2e-/4e- transfer in ORRs by regulating the electrolyte structures to realize the different performances of SABs. The 4e- ORR can be realized by decreasing the electrolyte concentration. The solvation sheath of Na+ at dilute concentrations consists mainly of water molecules that hinder the access of Na+ to the cathode surface due to the high solvation energies indicated by theoretical calculations, thereby impeding the 2e- reaction. In contrast, excess free water can easily access the cathode surface and trigger the 4e- ORR. The solvation energies of Na+ can be remarkably reduced by increasing the electrolyte concentration, forming a water-in-salt unit, in which the Na+ mainly coordinates with the bis(fluorosulfonyl)imide anion and can be easily released from the solvation sheath. Hence, the 2e- ORR is significantly promoted and becomes the dominant reaction. The SAB based on the 2e- reaction exhibits excellent energy density (15980 Wh kg-1) and good cycle performance (300 times), and the 4e- reaction exhibits excellent power density (12.09 mW cm-2).



https://doi.org/10.1002/adfm.202201258
Eichfelder, Gabriele; Quintana, Ernest; Rocktäschel, Stefan
A vectorization scheme for nonconvex set optimization problems. - In: SIAM journal on optimization, ISSN 1095-7189, Bd. 32 (2022), 2, S. 1184-1209

In this paper, we study a solution approach for set optimization problems with respect to the lower set less relation. This approach can serve as a base for numerically solving set optimization problems by using established solvers from multiobjective optimization. Our strategy consists of deriving a parametric family of multiobjective optimization problems whose optimal solution sets approximate, in a specific sense, that of the set-valued problem with arbitrary accuracy. We also examine particular classes of set-valued mappings for which the corresponding set optimization problem is equivalent to a multiobjective optimization problem in the generated family. Surprisingly, this includes set-valued mappings with a convex graph.



https://doi.org/10.1137/21M143683X
Zhang, Yi; Sha, Mo; Fu, Qun; Zhao, Huaping; Lei, Yong
An overview of metal-organic frameworks-derived carbon as anode materials for sodium- and potassium-ion batteries. - In: Materials Today Sustainability, ISSN 2589-2347, Bd. 18 (2022), 100156

With the decreasing abundance of lithium and the increasing cost of lithium-ion batteries (LIBs), exploring alternative metal-ion batteries has been a hotspot in the energy storage research area. Among next-generation batteries, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as competitive alternatives to LIBs due to the earth abundance of sodium and potassium. Metal-organic frameworks (MOFs)-derived carbon materials with high porosity, unique architectures, and abundant heteroatoms have been demonstrated as promising anode materials in SIBs and PIBs with high capacity and long cycling stability due to the adsorption energy storage mechanism. In this review, we highlight the advantages of carbon materials derived from MOFs as anode materials in SIBs and PIBs. In addition, the typical works and recent achievements are also introduced. Finally, the challenges and perspectives for further developing MOFs-derived carbon anode materials for SIBs and PIBs are also discussed.



https://doi.org/10.1016/j.mtsust.2022.100156
Nozdrenko, Dmytro; Prylutska, Svitlana; Bogutska, Kateryna; Cherepanov, Vsevolod; Senenko, Anton; Vygovska, Oksana; Khrapatyi, Sergii; Ritter, Uwe; Prylutskyy, Yuriy; Piosik, Jacek
Analysis of biomechanical and biochemical markers of rat muscle soleus fatigue processes development during long-term use of C60 fullerene and N-acetylcysteine. - In: Nanomaterials, ISSN 2079-4991, Bd. 12 (2022), 9, 1552, S. 1-15

The development of an effective therapy aimed at restoring muscle dysfunctions in clinical and sports medicine, as well as optimizing working activity in general remains an urgent task today. Modern nanobiotechnologies are able to solve many clinical and social health problems, in particular, they offer new therapeutic approaches using biocompatible and bioavailable nanostructures with specific bioactivity. Therefore, the nanosized carbon molecule, C60 fullerene, as a powerful antioxidant, is very attractive. In this study, a comparative analysis of the dynamic of muscle soleus fatigue processes in rats was conducted using 50 Hz stimulation for 5 s with three consistent pools after intraperitoneal administration of the following antioxidants: C60 fullerene (a daily dose of 1 mg/kg one hour prior to the start of the experiment) and N-acetylcysteine (NAC; a daily dose of 150 mg/kg one hour prior to the start of the experiment) during five days. Changes in the integrated power of muscle contraction, levels of the maximum and minimum contraction force generation, time of reduction of the contraction force by 50% of its maximum value, achievement of the maximum force response, and delay of the beginning of a single contraction force response were analyzed as biomechanical markers of fatigue processes. Levels of creatinine, creatine phosphokinase, lactate, and lactate dehydrogenase, as well as pro- and antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, reduced glutathione, and catalase activity) in the blood of rats were analyzed as biochemical markers of fatigue processes. The obtained data indicate that applied therapeutic drugs have the most significant effects on the 2nd and especially the 3rd stimulation pools. Thus, the application of C60 fullerene has a (50-80)% stronger effect on the resumption of muscle biomechanics after the beginning of fatigue than NAC on the first day of the experiment. There is a clear trend toward a positive change in all studied biochemical parameters by about (12-15)% after therapeutic administration of NAC and by (20-25)% after using C60 fullerene throughout the experiment. These findings demonstrate the promise of using C60 fullerenes as potential therapeutic nanoagents that can reduce or adjust the pathological conditions of the muscular system that occur during fatigue processes in skeletal muscles.



https://doi.org/10.3390/nano12091552
Dorner-Reisel, Annett; Ritter, Uwe; Moje, Jens; Freiberger, Emma; Scharff, Peter
Effect of fullerene C60 thermal and tribomechanical loading on Raman signals. - In: Diamond and related materials, ISSN 0925-9635, Bd. 126 (2022), 109036, S. 1-14

Fullerene C60 powder was loaded by 1 N normal force and exposed to sliding under different frequencies for 15 min. It is shown that the velocity of the sliding movement determines the stability of the fullerene C60 powder. At slow velocity of movement with a frequency of 1 Hz under 1 N normal force, the fullerene C60 structure remains undamaged after 15 min sliding. On the contrary, high sliding velocities of 10 Hz and 50 Hz affected fragmentation of the fullerene C60, which resulted in a reduction of the coefficient of friction (COF). During sliding with 1 Hz, the friction reached the highest level with an average COF of 0.59 ± 0.03. The faster relative motion under 1 N normal force gave a lower average COF with 0.39 ± 0.03. The initial fullerene C60 powder formed a thick compressed layer in the tribomechanical loaded zone. As proven by Raman spectroscopy, operating the tribomechanical sliding test at 50 Hz stimulated the re-attraction of fresh C60 fullerene island onto the fragmented layer from outside of the loaded powder regions. The COF was increasing again up to 0.44 ± 0.04 for 1 N normal force and 50 Hz frequency. The fragmentation and decomposition of fullerene C60 with increasing sliding velocity is attributed to thermal heating up during fast relative movement. Raman spectra of the tribomechanical loaded fullerene C60 are compared with Raman spectra from slowly heated up C60 in air and with Raman spectra of laser irradiated fullerene C60.



https://doi.org/10.1016/j.diamond.2022.109036
Öztürk, Emrah; Rheinberger, Klaus; Faulwasser, Timm; Worthmann, Karl; Preißinger, Markus
Aggregation of demand-side flexibilities: a comparative study of approximation algorithms. - In: Energies, ISSN 1996-1073, Bd. 15 (2022), 7, 2501, S. 1-14

Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households' privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.



https://doi.org/10.3390/en15072501
Mai, Patrick; Hampl, Jörg; Bača, Martin; Brauer, Dana; Singh, Sukhdeep; Weise, Frank; Borowiec, Justyna; Schmidt, André; Küstner, Johanna Merle; Klett, Maren; Gebinoga, Michael; Schroeder, Insa S.; Markert, Udo R.; Glahn, Felix; Schumann, Berit; Eckstein, Diana; Schober, Andreas
MatriGrid® based biological morphologies: tools for 3D cell culturing. - In: Bioengineering, ISSN 2306-5354, Bd. 9 (2022), 5, 220, S. 1-41

Recent trends in 3D cell culturing has placed organotypic tissue models at another level. Now, not only is the microenvironment at the cynosure of this research, but rather, microscopic geometrical parameters are also decisive for mimicking a tissue model. Over the years, technologies such as micromachining, 3D printing, and hydrogels are making the foundation of this field. However, mimicking the topography of a particular tissue-relevant substrate can be achieved relatively simply with so-called template or morphology transfer techniques. Over the last 15 years, in one such research venture, we have been investigating a micro thermoforming technique as a facile tool for generating bioinspired topographies. We call them MatriGrid®s. In this research account, we summarize our learning outcome from this technique in terms of the influence of 3D micro morphologies on different cell cultures that we have tested in our laboratory. An integral part of this research is the evolution of unavoidable aspects such as possible label-free sensing and fluidic automatization. The development in the research field is also documented in this account.



https://doi.org/10.3390/bioengineering9050220
Hörsch, Florian;
Checking the admissibility of odd-vertex pairings is hard. - In: Discrete applied mathematics, ISSN 1872-6771, Bd. 317 (2022), S. 42-48

Nash-Williams proved that every graph has a well-balanced orientation. A key ingredient in his proof is admissible odd-vertex pairings. We show that for two slightly different definitions of admissible odd-vertex pairings, deciding whether a given odd-vertex pairing is admissible is co-NP-complete. This resolves a question of Frank. We also show that deciding whether a given graph has an orientation that satisfies arbitrary local arc-connectivity requirements is NP-complete.



https://doi.org/10.1016/j.dam.2022.04.004
Rothe, Karl; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Quantifying force and energy in single-molecule metalation. - In: Journal of the American Chemical Society, ISSN 1520-5126, Bd. 144 (2022), 16, S. 7054-7057

An atomic force microscope is used to determine the attractive interaction at the verge of adding a Ag atom from the probe to a single free-base phthalocyanine molecule adsorbed on Ag(111). The experimentally extracted energy for the spontaneous atom transfer can be compared to the energy profile determined by density functional theory using the nudged-elastic-band method at a defined probe-sample distance.



https://doi.org/10.1021/jacs.2c00900
De Santis, Marianna; Eichfelder, Gabriele; Patria, Daniele
On the exactness of the ε-constraint method for biobjective nonlinear integer programming. - In: Operations research letters, ISSN 0167-6377, Bd. 50 (2022), 3, S. 356-361

The ε-constraint method is a well-known scalarization technique used for multiobjective optimization. We explore how to properly define the step size parameter of the method in order to guarantee its exactness when dealing with biobjective nonlinear integer problems. Under specific assumptions, we prove that the number of subproblems that the method needs to address to detect the complete Pareto front is finite. We report numerical results on portfolio optimization instances built on real-world data and show a comparison with an existing criterion space algorithm.



https://doi.org/10.1016/j.orl.2022.04.007
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Ivanov, Svetlozar
Reversible sodiation of electrochemically deposited binder- and conducting additive-free Si-O-C composite layers. - In: Energy technology, ISSN 2194-4296, Bd. 10 (2022), 5, 2101164, S. 1-9

Binder- and conducting additive-free Si-O-C composite layers are deposited electrochemically under potentiostatic conditions from sulfolane-based organic electrolyte. Quartz crystal microbalance with damping monitoring is used for evaluation of the layer growth and its physical properties. The sodiation-desodiation performance of the material is afterward explored in Na-ion electrolyte. In terms of specific capacity, rate capability, and long-term electrochemical stability, the experiments confirm the advantages of applying the electrochemically formed Si-O-C structure as anode for Na-ion batteries. The material displays high (722 mAh g^-1) initial reversible capacity at j = 70 mA g^-1 and preserves stable long-term capacity of 540 mAh g^-1 for at least 400 galvanostatic cycles, measured at j = 150 mA g^-1. The observed high performance can be attributed to its improved mechanical stability and accelerated Na-ion transport in the porous anode structure. The origin of the material electroactivity is revealed based on X-Ray photoelectron spectroscopic analysis of pristine (as deposited), sodiated, and desodiated Si-O-C layers. The evaluation of the spectroscopic data indicates reversible activity of the material due to the complex contribution of carbon and silicon redox centers.



https://doi.org/10.1002/ente.202101164
Grundel, Sara; Heyder, Stefan; Hotz, Thomas; Ritschel, Tobias K. S.; Sauerteig, Philipp; Worthmann, Karl
How much testing and social distancing is required to control COVID-19? : some insight based on an age-differentiated compartmental model. - In: SIAM journal on control and optimization, ISSN 1095-7138, Bd. 60 (2022), 2, S. S145-S169

In this paper, we provide insights on how much testing and social distancing is required to control COVID-19. To this end, we develop a compartmental model that accounts for key aspects of the disease: incubation time, age-dependent symptom severity, and testing and hospitalization delays; the model's parameters are chosen based on medical evidence, and, for concreteness, adapted to the German situation. Then, optimal mass-testing and age-dependent social distancing policies are determined by solving optimal control problems both in open loop and within a model predictive control framework. We aim to minimize testing and/or social distancing until herd immunity sets in under a constraint on the number of available intensive care units. We find that an early and short lockdown is inevitable but can be slowly relaxed over the following months.



https://doi.org/10.1137/20M1377783
Yang, Guowei; Wu, Yuhan; Fu, Qun; Zhao, Huaping; Lei, Yong
Nanostructured metal selenides as anodes for potassium-ion batteries. - In: Sustainable energy & fuels, ISSN 2398-4902, Bd. 6 (2022), 9, S. 2087-2112

In next-generation rechargeable batteries, potassium-ion batteries (KIBs) have been deemed to be one of the most promising candidates as a complement for lithium-ion batteries. Anodes as a component of ion batteries have a great effect on the safety and electrochemical performance. Among various developed anode materials, metal selenides (MSs) have been a popular option by merits of their superior material properties and high specific capacities. However, they are restricted by some intrinsic problems, such as large volume expansion and severe side reactions during electrochemical reactions, which limit their application to a certain degree. The strategy of structural design can endow MSs with superior material and electrochemical properties, making MSs exhibit better electrochemical performance. In this review, we summarize the recent advances in nanostructured MCs as KIB anodes. Meanwhile, their electrochemical reaction mechanisms and material synthesis methods are introduced briefly. Finally, the present challenges and future research directions are discussed.



https://doi.org/10.1039/D2SE00067A
Zhang, Ying; Tao, Jie; Zhang, Chenglin; Zhao, Huaping; Lei, Yong
KOH activated nitrogen and oxygen co-doped tubular carbon clusters as anode material for boosted potassium-ion storage capability. - In: Nanotechnology, ISSN 1361-6528, Bd. 33 (2022), 29, 295403, S. 1-9

Carbon nanomaterials have become a promising anode material for potassium-ion batteries (KIBs) due to their abundant resources, low cost, and excellent conductivity. However, among carbon materials, the sluggish reaction kinetics and inferior cycle life severely restrict their commercial development as KIBs anodes. It is still a huge challenge to develop carbon materials with various structural advantages and ideal electrochemical properties. Therefore, it is imperative to find a carbon material with heteroatom doping and suitable nanostructure to achieve excellent electrochemical performance. Benefiting from a Na2SO4 template-assisted method and KOH activation process, the KOH activated nitrogen and oxygen co-doped tubular carbon (KNOCTC) material with a porous structure exhibits an impressive reversible capacity of 343 mAh g^-1 at 50 mA g^-1 and an improved cyclability of 137 mAh g^-1 at 2 A g^-1 after 3000 cycles with almost no capacity decay. The kinetic analysis indicates that the storage mechanism in KNOCTC is attributed to the pseudocapacitive process during cycling. Furthermore, the new synthesis route of KNOCTC provides a new opportunity to explore carbon-based potassium storage anode materials with high capacity and cycling performance.



https://doi.org/10.1088/1361-6528/ac6527
Bača, Martin; Brauer, Dana; Klett, Maren; Fernekorn, Uta; Singh, Sukhdeep; Hampl, Jörg; Groß, Gregor Alexander; Mai, Patrick; Friedel, Karin; Schober, Andreas
Automated analysis of acetaminophen toxicity on 3D HepaRG cell culture in microbioreactor. - In: Bioengineering, ISSN 2306-5354, Bd. 9 (2022), 5, 196, S. 1-16

Real-time monitoring of bioanalytes in organotypic cell cultivation devices is a major research challenge in establishing stand-alone diagnostic systems. Presently, no general technical facility is available that offers a plug-in system for bioanalytics in diversely available organotypic culture models. Therefore, each analytical device has to be tuned according to the microfluidic and interface environment of the 3D in vitro system. Herein, we report the design and function of a 3D automated culture and analysis device (3D-ACAD) which actively perfuses a custom-made 3D microbioreactor, samples the culture medium and simultaneously performs capillary-based flow ELISA. A microstructured MatriGrid® has been explored as a 3D scaffold for culturing HepaRG cells, with albumin investigated as a bioanalytical marker using flow ELISA. We investigated the effect of acetaminophen (APAP) on the albumin secretion of HepaRG cells over 96 h and compared this with the albumin secretion of 2D monolayer HepaRG cultures. Automated on-line monitoring of albumin secretion in the 3D in vitro mode revealed that the application of hepatotoxic drug-like APAP results in decreased albumin secretion. Furthermore, a higher sensitivity of the HepaRG cell culture in the automated 3D-ACAD system to APAP was observed compared to HepaRG cells cultivated as a monolayer. The results support the use of the 3D-ACAD model as a stand-alone device, working in real time and capable of analyzing the condition of the cell culture by measuring a functional analyte. Information obtained from our system is compared with conventional cell culture and plate ELISA, the results of which are presented herein.



https://doi.org/10.3390/bioengineering9050196
Grüne, Lars; Schaller, Manuel; Schiela, Anton
Efficient model predictive control for parabolic PDEs with goal oriented error estimation. - In: SIAM journal on scientific computing, ISSN 1095-7197, Bd. 44 (2022), 1, S. A471-A500

We show how a posteriori goal oriented error estimation can be used to efficiently solve the subproblems occurring in a model predictive control (MPC) algorithm. In MPC, only an initial part of a computed solution is implemented as a feedback, which motivates grid refinement particularly tailored to this context. To this end, we present a truncated cost functional as an objective for goal oriented adaptivity and prove under stabilizability assumptions that error indicators decay exponentially outside the support of this quantity. This leads to very efficient time and space discretizations for MPC, which we will illustrate by means of various numerical examples.



https://doi.org/10.1137/20M1356324
Tong, Ciqing; Wondergem, Joeri A. J.; van den Brink, Marijn; Kwakernaak, Markus C.; Chen, Ying; Hendrix, Marco M. R. M.; Voets, Ilja K.; Danen, Erik Hendrik Julius; Le Dévédec, Sylvia; Heinrich, Doris; Kieltyka, Roxanne E.
Spatial and temporal modulation of cell instructive cues in a filamentous supramolecular biomaterial. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 14 (2022), 15, S. 17042-17054

Supramolecular materials provide unique opportunities to mimic both the structure and mechanics of the biopolymer networks that compose the extracellular matrix. However, strategies to modify their filamentous structures in space and time in 3D cell culture to study cell behavior as encountered in development and disease are lacking. We herein disclose a multicomponent squaramide-based supramolecular material whose mechanics and bioactivity can be controlled by light through co-assembly of a 1,2-dithiolane (DT) monomer that forms disulfide cross-links. Remarkably, increases in storage modulus from ∼200 Pa to >10 kPa after stepwise photo-cross-linking can be realized without an initiator while retaining colorlessness and clarity. Moreover, viscoelasticity and plasticity of the supramolecular networks decrease upon photo-irradiation, reducing cellular protrusion formation and motility when performed at the onset of cell culture. When applied during 3D cell culture, force-mediated manipulation is impeded and cells move primarily along earlier formed channels in the materials. Additionally, we show photopatterning of peptide cues in 3D using either a photomask or direct laser writing. We demonstrate that these squaramide-based filamentous materials can be applied to the development of synthetic and biomimetic 3D in vitro cell and disease models, where their secondary cross-linking enables mechanical heterogeneity and shaping at multiple length scales.



https://doi.org/10.1021/acsami.1c24114
Schmitz, Philipp; Faulwasser, Timm; Worthmann, Karl
Willems' fundamental lemma for linear descriptor systems and its use for data-driven output-feedback MPC. - In: IEEE control systems letters, ISSN 2475-1456, Bd. 6 (2022), S. 2443-2448

In this letter we investigate data-driven predictive control of discrete-time linear descriptor systems. Specifically, we give a tailored variant of Willems' fundamental lemma, which shows that for descriptor systems the non-parametric modeling via a Hankel matrix requires less data compared to linear time-invariant systems without algebraic constraints. Moreover, we use this description to propose a data-driven framework for optimal control and predictive control of discrete-time linear descriptor systems. For the latter, we provide a sufficient stability condition for receding-horizon control before we illustrate our findings with an example.



https://doi.org/10.1109/LCSYS.2022.3161054
Zhang, Junxi; Zhao, Huaping; Gong, Ming; Zhang, Lide; Yan, Zhijun; Xie, Kang; Fei, Guangtao; Zhu, Xiaoguang; Kong, Mingguang; Zhang, Shuyuan; Zhang, Lin; Lei, Yong
Revealing the truncated conical geometry of nanochannels in anodic aluminium oxide membranes. - In: Nanoscale, ISSN 2040-3372, Bd. 14 (2022), 14, S. 5356-5368

Anodic aluminium oxide (AAO) membranes with self-ordered nanochannels have become promising candidates for applications in the aspects such as structural coloration, photonic crystals, upconversion luminescence and nanofluidic transport. Also, self-ordered AAO membranes have been extensively used for the fabrication of functional nanostructures such as nanowires, nanotubes, nanoparticles, nanorods and nanopillars. Geometries of nanochannels are crucial for the applications of AAO membranes as well as controlling growth (e.g., nucleation, direction and morphology) and in applications (e.g., optics, magnetics, thermoelectrics, biology, medicine, sensing, and energy conversion and storage) of the functional nanostructures fabricated via AAO template-based methods. However, observation of whole nanochannels with nanometer-resolution in thick AAO membranes remains a fundamental challenge, and the nanochannel geometry has not yet been sufficiently elucidated. Here, for the first time, we use depth-profiling transmission electron microscopy to reveal the truncated conical geometry of whole nanochannels of 70 [my]m in length. Such shape nonuniformity of the nanochannels leads to different reflectance properties of the different depths of the nanochannels along their long axis for one AAO membrane, which suggests that the nonuniformity result in some effects on applications of the nanostructures. Furthermore, we introduce a shape factor to evaluate the shape nonuniformity and demonstrate that the nonuniformity can be remarkably removed by an effective etching method based on a temperature gradient regime.



https://doi.org/10.1039/D2NR01006B
Xu, Rui; Zeng, Zhiqiang; Lei, Yong
Well-defined nanostructuring with designable anodic aluminum oxide template. - In: Nature Communications, ISSN 2041-1723, Bd. 13 (2022), 2435, S. 1-11

Well-defined nanostructuring over size, shape, spatial configuration, and multi-combination is a feasible concept to reach unique properties of nanostructure arrays, while satisfying such broad and stringent requirements with conventional techniques is challenging. Here, we report designable anodic aluminium oxide templates to address this challenge by achieving well-defined pore features within templates in terms of in-plane and out-of-plane shape, size, spatial configuration, and pore combination. The structural designability of template pores arises from designing of unequal aluminium anodization rates at different anodization voltages, and further relies on a systematic blueprint guiding pore diversification. Starting from the designable templates, we realize a series of nanostructures that inherit equal structural controllability relative to their template counterparts. Proof-of-concept applications based on such nanostructures demonstrate boosted performance. In light of the broad selectivity and high controllability, designable templates will provide a useful platform for well-defined nanostructuring.



https://doi.org/10.1038/s41467-022-30137-6
Babovsky, Hans; Bold, Lea
Balanced states and closure relations: the fluid dynamic limit of kinetic models. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (20 Seiten). - (Preprint ; M22,03)

The paper is concerned with closure relations for moment hierarchies of gaskinetic systems in the uid dynamic limit. We develop the concept of balanced solutions which provides a more detailed description of kinetic solutions that the classical approaches. This allows to compare di_erent models in use like the nonlinear Boltzmann equation, its linearization, and the BGK model and their relation to the classical Navier-Stokes equations.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200188
Visaveliya, Nikunjkumar R.; Mazétyté-Stasinskiené, Raminta; Köhler, Michael
Stationary, continuous, and sequential surface-enhanced raman scattering sensing based on the nanoscale and microscale polymer-metal composite sensor particles through microfluidics: a review. - In: Advanced optical materials, ISSN 2195-1071, Bd. 10 (2022), 7, 2102757, S. 1-25

Surface-enhanced Raman scattering (SERS) is a label-free and accurate analytical technique for the detection of a broad range of various analytes such as, biomolecules, pesticides, petrochemicals, as well as, cellular and other biological systems. A key component for the SERS analysis is the substrate which is required to be equipped with plasmonic features of metal nanostructures that directly interact with light and targeted analytes. Either metal nanoparticles can be deposited on the solid support (glass or silicon) which is suitable for stationary SERS analysis or dispersed in the solution (freely moving nanoparticles). Besides these routinely utilizing SERS substrates, polymer-metal composite particles are promising for sustained SERS analysis where metal nanoparticles act as plasmon-active (hence SERS-active) components and polymer particles act as support to the metal nanoparticles. Composite sensor particles provide 3D interaction possibilities for analytes, suitable for stationary, continuous, and sequential analysis, and they are reusable/regenerated. Therefore, this review is focused on the experimental procedures for the development of multiscale, uniform, and reproducible composite sensor particles together with their application for SERS analysis. The microfluidic reaction technique is highly versatile in the production of uniform and size-tunable composite particles, as well as, for conducting SERS analysis.



https://doi.org/10.1002/adom.202102757
Mathew, Sobin; Lebedev, Sergey P.; Lebedev, Alexander A.; Hähnlein, Bernd; Stauffenberg, Jaqueline; Udas, Kashyap; Jacobs, Heiko O.; Manske, Eberhard; Pezoldt, Jörg
Nanoscale surface morphology modulation of graphene - i-SiC heterostructures. - In: Materials today, ISSN 2214-7853, Bd. 53 (2022), 2, S. 289-292

A multitude gratings design consists of gratings with different pitches ranging from the micrometre down to sub 40 nm scale combined with sub 10 nm step heights modulating the surface morphology for length scale measurements is proposed. The surface morphology modulation was performed using electron beam lithography incorporating a standard semiconductor processing technology. The critical dimension, edge roughness, step heights and line morphology in dependence on the grating pitch is studied.



https://doi.org/10.1016/j.matpr.2021.06.427
Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten
Relative oscillation theory and essential spectra of Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (15 Seiten). - (Preprint ; M22,02)

The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank one perturbations.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200169
Gernandt, Hannes; Martínez Pería, Francisco; Philipp, Friedrich; Trunk, Carsten
On characteristic invariants of matrix pencils and linear relations. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2022. - 1 Online-Ressource (35 Seiten). - (Preprint ; M22,01)

The relationship between linear relations and matrix pencils is investigated. Given a linear relation, we introduce its Weyr characteristic. If the linear relation is the range (or the kernel) representation of a given matrix pencil, we show that there is a correspondence between this characteristic and the Kronecker canonical form of the pencil. This relationship is exploited to obtain estimations on the invariant characteristics of matrix pencils under rank one perturbations.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2022200140
Nozdrenko, Dmytro; Matvienko, Tatiana; Vygovska, Oksana; Soroca, Vasil; Bogutska, Kateryna; Zholos, Alexander; Scharff, Peter; Ritter, Uwe; Prylutskyy, Yuriy
Post-traumatic recovery of muscle soleus in rats is improved via synergistic effect of C60 fullerene and TRPM8 agonist menthol. - In: Applied nanoscience, ISSN 2190-5517, Bd. 12 (2022), 3, S. 467-478

Functional biomechanical parameters of muscle soleus contraction in rats as well as selected blood biochemical parameters were studied during the first 3 days of post-traumatic syndrome progression caused by the destruction of muscle cells by compression. Single administration of the antioxidant C60 fullerene and the selective agonist of TRPM8 channels menthol were used as therapeutic agents. Injection of C60 fullerene at a concentration of 1 mg/kg into the damaged muscle improved its contractile function by 25-28%. The use of combined injections of C60 fullerene and menthol (at the concentration 1 mg/kg) improved this index by additional 27-39% and simultaneously stabilized the decrease in muscle strength observed throughout the experiment. A tendency towards a decrease in the indexes of the above described biochemical parameters by 10-15% were found with the therapeutic administration of C60 fullerene. With combined injections of C60 fullerene and menthol, the above described biochemical parameters decreased by an additional 17-24%. The synergism between the action of menthol and C60 fullerene on the post-traumatic recovery of skeletal muscle function opens up new perspectives for the clinical application of this combination therapy.



https://doi.org/10.1007/s13204-021-01703-z
Dong, Yulian; Yan, Chengzhan; Zhao, Huaping; Lei, Yong
Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries. - In: Small structures, ISSN 2688-4062, Bd. 3 (2022), 3, 2100221, insges. 19 S.

Owing to the cost-effectiveness, Earth abundance, and suitable redox potential, potassium-ion batteries (PIBs) stand out as one of the best candidates for large-scale energy storage systems. However, the large radius of K+ and the unsatisfied specific capacity are the main challenges for their commercial applications. To address these challenges, constructing heterostructures by selecting and integrating 2D materials as host and other materials as guest are proposed as an emerging strategy to obtain electrode materials with high capacity and long lifespan, thus improving the energy storage capability of PIBs. Recently, numerous studies are devoted to developing 2D-based heterostructures as electrode materials for PIBs, and significant progress is achieved. However, there is a lack of a review article for systematically summarizing the recent advances and profoundly understanding the relationship between heterostructure electrodes and their performance. In this sense, it is essential to outline the promising advanced features, to summarize the electrochemical properties and performances, and to discuss future research focuses about 2D-based heterostructures in PIBs.



https://doi.org/10.1002/sstr.202100221
Visaveliya, Nikunjkumar R.; Mazétyté-Stasinskiené, Raminta; Köhler, Michael
General background of SERS sensing and perspectives on polymer-supported plasmon-active multiscale and hierarchical sensor particles. - In: Advanced optical materials, ISSN 2195-1071, Bd. 10 (2022), 4, 2102001, S. 1-27

Surface-enhanced Raman scattering (SERS) is one of the most powerful analytical techniques for the identification of molecules. The substrate, on which SERS is dependent, contains regions of nanoscale gaps (hotspots) that hold the ability to concentrate incident electromagnetic fields and effectively amplify vibrational scattering signals of adsorbed analytes. While surface plasmon resonance from metal nanostructures is a central focus for the SERS effect, the support of polymers can be significantly advantageous to provide larger exposure of structured metal surfaces for efficient interactions with analytes. Characteristics of the polymer particles such as softness, flexibility, swellability, porosity, optical transparency, metal-loading ability, and high surface area can allow diffusion of analytes and penetrating light deeply that can enormously amplify sensing outcomes. As polymer-supported plasmon-active sensor particles can emerge as versatile SERS substrates, the microfluidic platform is promising for the generation of sensor particles as well as for performing sequential SERS analysis of multiple analytes. Therefore, in this perspective article, the development of multifunctional polymer-metal composite particles, and their applications as potential sensors for SERS sensing through microfluidics are presented. A detailed background from the beginning of the SERS field and perspectives for the multifunctional sensor particles for efficient SERS sensing are provided.



https://doi.org/10.1002/adom.202102001
Hülser, Tobias; Köster, Felix; Jaurigue, Lina; Lüdge, Kathy
Role of delay-times in delay-based photonic reservoir computing. - In: Optical materials express, ISSN 2159-3930, Bd. 12 (2022), 3, S. 1214-1231

Delay-based reservoir computing has gained a lot of attention due to the relative simplicity with which this concept can be implemented in hardware. However, unnecessary constraints are commonly placed on the relationship between the delay-time and the input clock-cycle, which can have a detrimental effect on the performance. We review the existing literature on this subject and introduce the concept of delay-based reservoir computing in a manner that demonstrates that no predefined relationship between the delay-time and the input clock-cycle is required for this computing concept to work. Choosing the delay-times independent of the input clock-cycle, one gains an important degree of freedom. Consequently, we discuss ways to improve the computing performance of a reservoir formed by delay-coupled oscillators and show the impact of delay-time tuning in such systems.



https://doi.org/10.1364/OME.451016
Karmo, Marsel; Ruiz Alvarado, Isaac Azahel; Schmidt, W. Gero; Runge, Erich
Reconstructions of the As-terminated GaAs(001) surface exposed to atomic hydrogen. - In: ACS omega, ISSN 2470-1343, Bd. 7 (2022), 6, S. 5064-5068

We explore the atomic structures and electronic properties of the As-terminated GaAs(001) surface in the presence of hydrogen based on ab initio density functional theory. We calculate a phase diagram dependent on the chemical potentials of As and H, showing which surface reconstruction is the most stable for a given set of chemical potentials. The findings are supported by the calculation of energy landscapes of the surfaces, which indicate possible H bonding sites as well as the density of states, which show the effect of hydrogen adsorption on the states near the fundamental band gap.



https://doi.org/10.1021/acsomega.1c06019
Nozdrenko, Dmytro; Prylutska, Svitlana; Bogutska, Kateryna; Nurishchenko, Natalia Y.; Abramchuk, Olga; Motuziuk, Olexandr; Prylutskyy, Yuriy; Scharff, Peter; Ritter, Uwe
Effect of C60 fullerene on recovery of muscle soleus in rats after atrophy induced by achillotenotomy. - In: Life, ISSN 2075-1729, Bd. 12 (2022), 3, 332, S. 1-13

Biomechanical and biochemical changes in the muscle soleus of rats during imitation of hind limbs unuse were studied in the model of the Achilles tendon rupture (Achillotenotomy). Oral administration of water-soluble C60 fullerene at a dose of 1 mg/kg was used as a therapeutic agent throughout the experiment. Changes in the force of contraction and the integrated power of the muscle, the time to reach the maximum force response, the mechanics of fatigue processes development, in particular, the transition from dentate to smooth tetanus, as well as the levels of pro- and antioxidant balance in the blood of rats on days 15, 30 and 45 after injury were described. The obtained results indicate a promising prospect for C60 fullerene use as a powerful antioxidant for reducing and correcting pathological conditions of the muscular system arising from skeletal muscle atrophy.



https://doi.org/10.3390/life12030332
Ilchmann, Achim; Witschel, Jonas; Worthmann, Karl
Model predictive control for singular differential-algebraic equations. - In: International journal of control, ISSN 1366-5820, Bd. 95 (2022), 8, S. 2141-2150

We study model predictive control for singular differential-algebraic equations with higher index. This is a novelty when compared to the literature where only regular differential-algebraic equations with additional assumptions on the index and/or controllability are considered. By regularisation techniques, we are able to derive an equivalent optimal control problem for an ordinary differential equation to which well-known model predictive control techniques can be applied. This allows the construction of terminal constraints and costs such that the origin is asymptotically stable w.r.t. the resulting closed-loop system.



https://doi.org/10.1080/00207179.2021.1900604
Mytiliniou, Maria; Wondergem, Joeri A. J.; Schmidt, Thomas; Heinrich, Doris
Impact of neurite alignment on organelle motion. - In: Interface, ISSN 1742-5662, Bd. 19 (2022), 187, 20210617, S. 1-13

Intracellular transport is pivotal for cell growth and survival. Malfunctions in this process have been associated with devastating neurodegenerative diseases, highlighting the need for a deeper understanding of the mechanisms involved. Here, we use an experimental methodology that leads neurites of differentiated PC12 cells into either one of two configurations: a one-dimensional configuration, where the neurites align along lines, or a two-dimensional configuration, where the neurites adopt a random orientation and shape on a flat substrate. We subsequently monitored the motion of functional organelles, the lysosomes, inside the neurites. Implementing a time-resolved analysis of the mean-squared displacement, we quantitatively characterized distinct motion modes of the lysosomes. Our results indicate that neurite alignment gives rise to faster diffusive and super-diffusive lysosomal motion than the situation in which the neurites are randomly oriented. After inducing lysosome swelling through an osmotic challenge by sucrose, we confirmed the predicted slowdown in diffusive mobility. Surprisingly, we found that the swelling-induced mobility change affected each of the (sub-/super-)diffusive motion modes differently and depended on the alignment configuration of the neurites. Our findings imply that intracellular transport is significantly and robustly dependent on cell morphology, which might in part be controlled by the extracellular matrix.



https://doi.org/10.1098/rsif.2021.0617
Bang-Jensen, Jørgen; Havet, Frederic; Kriesell, Matthias; Yeo, Anders
Low chromatic spanning sub(di)graphs with prescribed degree or connectivity properties. - In: Journal of graph theory, ISSN 1097-0118, Bd. 99 (2022), 4, S. 615-636

https://doi.org/10.1002/jgt.22755
Gao, Yueyue; Cui, Minghuan; Qu, Shengchun; Zhao, Huaping; Shen, Zhitao; Tan, Furui; Dong, Yulian; Qin, Chaochao; Wang, Zhijie; Zhang, Weifeng; Wang, Zhangguo; Lei, Yong
Efficient organic solar cells enabled by simple non-fused electron donors with low synthetic complexity. - In: Small, ISSN 1613-6829, Bd. 18 (2022), 3, 2104623, insges. 10 S.

https://doi.org/10.1002/smll.202104623
Köhler, Michael;
Vaccination, immunity and breakthrough: quantitative effects in individual immune responses illustrated by a simple kinetic model. - In: Applied Sciences, ISSN 2076-3417, Bd. 12 (2022), 1, 31, S. 1-15

The personal risks of infection, as well as the conditions for achieving herd immunity, are strongly dependent on an individual’s response to the infective agents on the one hand, and the individual’s reactions to vaccination on the other hand. The main goal of this work is to illustrate the importance of quantitative individual effects for disease risk in a simple way. The applied model was able to illustrate the quantitative effects, in the cases of different individual reactions, after exposition to viruses or bacteria and vaccines. The model was based on simple kinetic equations for stimulation of antibody production using different concentrations of the infective agent, vaccine and antibodies. It gave a qualitative explanation for the individual differences in breakthrough risks and different requirements concerning a second, third or further vaccinations, reconsidering different efficiencies of the stimulation of an immune reaction.



https://doi.org/10.3390/app12010031
Zeußel, Lisa; Hampl, Jörg; Weise, Frank; Singh, Sukhdeep; Schober, Andreas
Bio-inspired 3D micro structuring of a liver lobule via direct laser writing: a comparative study with SU-8 and SUEX. - In: Journal of laser applications, ISSN 1938-1387, Bd. 34 (2022), 1, 012007, S. 012007-1-012007-12

Real biological tissues show a great variety of different geometric morphologies with special features on different geometric scales. An interesting example is the liver lobule that is the basic subunit of a liver. The lobule is a quasihexagonal macroscopic structure with periodic like so-called sinusoidal elements with structural features on the micro- and macroscale made of proteins, cells, and fluids. Various tools from micromachining and nanotechnology have demonstrated their capabilities to construct micromorphologies precisely, but even the reconstruction of such a system in technical polymers is challenging. In this work, the rapidly evolving technique of multiphoton polymerization has been explored for the construction of a scaffold that mimics the micromorphology of the liver with high resolution and detail up to the millimeter scale. At the end, a highly complex fluidically perfusable structure was achieved and simulations showed that the occurring shear stress, fluid velocity, and stream lines are comparable to the native liver lobule. Hereby, the photoresists SU-8 and SUEX TDFS were compared in terms of their processability, achievable resolution, and suitability for the intended application. Our results have shown that SUEX needs lower writing velocities but is easier to process and achieves a considerable higher resolution than SU-8. The scaffold could provide a base frame with a geometrically defined morphology for hepatic cells to adhere to, which could act as a starting point for cells to build new liver tissue for further integration in more complex systems.



https://doi.org/10.2351/7.0000433
Jaurigue, Lina; Lüdge, Kathy
Connecting reservoir computing with statistical forecasting and deep neural networks. - In: Nature Communications, ISSN 2041-1723, Bd. 13 (2022), 227, S. 1-3

Among the existing machine learning frameworks, reservoir computing demonstrates fast and low-cost training, and its suitability for implementation in various physical systems. This Comment reports on how aspects of reservoir computing can be applied to classical forecasting methods to accelerate the learning process, and highlights a new approach that makes the hardware implementation of traditional machine learning algorithms practicable in electronic and photonic systems.



https://doi.org/10.1038/s41467-021-27715-5
Prylutskyy, Yuriy; Matyshevska, Olga; Prylutska, Svitlana; Grebinyk, Anna; Evstigneev, Maxim; Grebinyk, Sergii; Skivka, Larysa; Cherepanov, Vsevolod; Senenko, Anton; Stoika, Rostyslav; Ritter, Uwe; Scharff, Peter; Dandekar, Thomas; Frohme, Marcus
A novel water-soluble C60 fullerene-based nano-platform enhances efficiency of anticancer chemotherapy. - In: Biomedical nanomaterials, (2022), S. 59-93
Im Titel ist "60" tiefgestellt

Noncovalent water-soluble nanocomplexes of C60 fullerene (C60) with chemotherapeutic drugs (Doxorubicin (Dox), Cisplatin (Cis), and herbal alkaloid Berberine (Ber)) were created. Their anticancer action toward various tumor cells was studied in vitro, addressing specifically their biological synergy, compared with the action of these drugs in the non-immobilized form. Different theoretical and experimental (SEM and AFM microscopy, UV-Vis, DLS, NMR and SANS spectroscopy, ITC calorimetry) methods were applied for getting insight into the nature of the nanocomplexes with drug molecules, as well as into the physical forces enabling stabilization of these complexes. Physicochemical mechanisms were proposed for drug interaction with C60. An enhancement of the toxic action of the created water-soluble C60-drug nanocomplexes toward cancer cells, compared to the action of free drug, was found. Specifically, the C60-Dox nanocomplexes demonstrated ˜3.5 higher cytotoxic potential in the leukemic cell lines (CCRF-CEM, Jurkat, THP1, and Molt-16) in comparison with free Dox in the nanometer range of concentrations. Besides, C60 doubled the intracellular level of the up-taken Dox, which also evidenced its function as a nanocarrier. The toxic effect of C60-Cis nanocomplex toward Lewis lung carcinoma (LLC) cells was shown to be higher with IC50 values 3.3 and 4.5 times at 48 h and 72 h, respectively, as compared to the IC50 of free drug. 12.5 [my] Cis had no effect on LLC cells' viability. The C60-Cis nanocomplex in Cis-equivalent concentration substantially decreased the viability of tumor cells, impaired their shape and adhesion, inhibited migration, and induced their accumulation in the pro-apoptotic sub-G1 phase of cell cycle. An induction of apoptosis by the C60-Cis nanocomplex was confirmed by the activation of caspase 3/7 and externalization of phosphatidylserine on the outer membrane of LLC cells after their double staining with the Annexin V-FITC/PI. The complexation with C60 promoted intracellular uptake of the Ber. An increase in C60 concentration in the C60-Ber nanocomplexes was accompanied by the elevation of their antiproliferative potential toward CCRF-CEM cells in the order: free Ber < 1:2 < 1:1 < 2:1.These findings suggest a universal potential of water-soluble pristine C60 as a unique nano-platform for the delivery of the chemotherapeutic drugs in cytotoxic effect of these drugs.



Eichfelder, Gabriele; Groetzner, Patrick
A note on completely positive relaxations of quadratic problems in a multiobjective framework. - In: Journal of global optimization, ISSN 1573-2916, Bd. 82 (2022), 3, S. 615-626

In a single-objective setting, nonconvex quadratic problems can equivalently be reformulated as convex problems over the cone of completely positive matrices. In small dimensions this cone equals the cone of matrices which are entrywise nonnegative and positive semidefinite, so the convex reformulation can be solved via SDP solvers. Considering multiobjective nonconvex quadratic problems, naturally the question arises, whether the advantage of convex reformulations extends to the multicriteria framework. In this note, we show that this approach only finds the supported nondominated points, which can already be found by using the weighted sum scalarization of the multiobjective quadratic problem, i.e. it is not suitable for multiobjective nonconvex problems.



https://doi.org/10.1007/s10898-021-01091-2
Eichfelder, Gabriele; Warnow, Leo
An approximation algorithm for multi-objective optimization problems using a box-coverage. - In: Journal of global optimization, ISSN 1573-2916, Bd. 83 (2022), 2, S. 329-357

For a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the nondominated set. However, often these approximations are used for further evaluations. For those applications a polyhedron is a structure that is not easy to handle. In this paper, we introduce an approximation with a simpler structure respecting the natural ordering. In particular, we compute a box-coverage of the nondominated set. To do so, we use an approach that, in general, allows us to update not only one but several boxes whenever a new nondominated point is found. The algorithm is guaranteed to stop with a finite number of boxes, each being sufficiently thin.



https://doi.org/10.1007/s10898-021-01109-9
Li, Yangguang; Yan, Chengzhan; Chen, Xuan; Lei, Yong; Ye, Bang-Ce
A highly robust self-supporting nickel nanoarray based on anodic alumina oxide template for determination of dopamine. - In: Sensors and actuators, ISSN 0925-4005, Bd. 350 (2022), 130835

Ratiometric electrochemical sensors can effectively reduce system errors and environmental interference during the detection of a target, affording good sensitivity, reproducibility, and a linear response range. However, traditional proportional electrochemical sensors are limited by the need for complex modifications and the lack of internal reference probes. In this study, we developed a ratiometric electrochemical sensing platform based on nickel nanoarrays as a self-supporting electrode (NiNASSE) by using an anodic alumina oxide template method. An internal reference probe was developed based on nickel nanoparticles (NiNPs) as nickel nanoarrays, presenting a facile modification process and stable redox signal. Furthermore, the highly ordered nanoarray structure expands the specific surface area of NiNASSE and accelerates the electron transfer rate. This new self-supporting proportional electrochemical sensor was successfully applied for the detection of dopamine and displayed good electrocatalytic ability, stability, and feasibility.



https://doi.org/10.1016/j.snb.2021.130835
Zhou, Yujia; Wang, Zidong; Zheng, Chunfang; Fu, Qun; Wu, Minghong; Zhao, Huaping; Lei, Yong
Construction of Co0.85Se@nickel nanopores array hybrid electrode for high-performance asymmetric supercapacitors. - In: Chemical engineering science, Bd. 247 (2022), 117081, insges. 9 S.

Nanostructured current collectors have larger specific surface area and short ion/electron transport path, which are highly desirable for supercapacitors applications. Herein, Co0.85SeNiNPs (Co0.85Se@NiNP) hybrid electrodes are proposed and fabricated, in which NiNP is served as nanostructured current collectors. NiNP has a vertical pore structure and a large specific surface area, which could effectively promote the ion/electron transport efficiency and reduce internal electrical resistance. Compared with Ni foam and Ni foil as current collectors, NiNP enables Co0.85Se@NiNP electrodes show significantly improved specific capacity, rate performance and cycle stability. Finally, an asymmetric supercapacitor device was assembled with Co0.85Se@NiNP hybrid electrode as the binder-free positive electrode and activated carbon (AC) coated on nickel foam as negative electrode. The Co0.85Se@NiNP//AC asymmetric supercapacitors can work in a wide potential window of 0 - 1.6 V with an ultrahigh specific capacity of 182.3 F g^-1 at 1 A g^-1. Most importantly, Co0.85Se@NiNP//AC has a high energy density of 64.81 Wh kg^-1 at 800 W kg^-1 and an outstanding cycle stability of up to 12000 cycles, indicating that Co0.85Se@NiNP electrode has great application potential in supercapacitors.



https://doi.org/10.1016/j.ces.2021.117081
Baier, Robert; Eichfelder, Gabriele; Gerlach, Tobias
Optimality conditions for set optimization using a directional derivative based on generalized Steiner sets. - In: Optimization, ISSN 1029-4945, Bd. 71 (2022), 8, S. 2273-2314

Set-optimization has attracted increasing interest in the last years, as for instance uncertain multiobjective optimization problems lead to such problems with a set-valued objective function. Thereby, from a practical point of view, most of all the so-called set approach is of interest. However, optimality conditions for these problems, for instance using directional derivatives, are still very limited. The key aspect for a useful directional derivative is the definition of a useful set difference for the evaluation of the numerator in the difference quotient. We present here a new set difference which avoids the use of a convex hull and which applies to arbitrary convex sets, and not to strictly convex sets only. The new set difference is based on the new concept of generalized Steiner sets. We introduce the Banach space of generalized Steiner sets as well as anembedding of convex sets in this space using Steiner points.In this Banach space we can easily define a difference and a directional derivative. We use the latter for new optimality conditions for set optimization. Numerical examples illustrate the new concepts.



https://doi.org/10.1080/02331934.2020.1812605
Chen, Li-Yu; Apte, Gurunath; Lindenbauer, Annerose; Frant, Marion; Nguyen, Thi-Huong
Effect of HIT components on the development of breast cancer cells. - In: Life, ISSN 2075-1729, Bd. 11 (2021), 8, 832, S. 1-13

Cancer cells circulating in blood vessels activate platelets, forming a cancer cell encircling platelet cloak which facilitates cancer metastasis. Heparin (H) is frequently used as an anticoagulant in cancer patients but up to 5% of patients have a side effect, heparin-induced thrombocytopenia (HIT) that can be life-threatening. HIT is developed due to a complex interaction among multiple components including heparin, platelet factor 4 (PF4), HIT antibodies, and platelets. However, available information regarding the effect of HIT components on cancers is limited. Here, we investigated the effect of these materials on the mechanical property of breast cancer cells using atomic force microscopy (AFM) while cell spreading was quantified by confocal laser scanning microscopy (CLSM), and cell proliferation rate was determined. Over time, we found a clear effect of each component on cell elasticity and cell spreading. In the absence of platelets, HIT antibodies inhibited cell proliferation but they promoted cell proliferation in the presence of platelets. Our results indicate that HIT complexes influenced the development of breast cancer cells.



https://doi.org/10.3390/life11080832
Wu, Yanjie; Yang, Huaqin; Li, Wei; Mattea, Carlos; Stapf, Siegfried; Zhang, Letian; Ye, Chunlin; Ye, Xiaofeng
Tailored crystalline order of nascent polyethylene from metallocene supported on confined polystyrene. - In: Catalysis today, ISSN 1873-4308, Bd. 368 (2021), S. 272-280

Building the desirable superstructure of polyethylene is one of the important topics for developing high value-added products, which brings potential benefits for society and sustainable development. Crystalline order is the ubiquitous superstructure for enhancing mechanical properties of polymeric materials. In this work, polystyrene copolymers (c-PS) are incorporated into pores of silica through the wet-impregnation procedure of styrene and p-chloromethyl styrene followed by the in-situ free-radical copolymerization. Metallocene catalyst is further immobilized on supported silica. This incorporated c-PS is proved to be coated on the surface of silica pore walls rather than blocking the interparticle channels. The swelling behavior of c-PS inside the pores are performed by pulsed field gradient NMR (PFG-NMR) and thermoporosimetry (TPM-DSC), where a swelling behavior is shown in the toluene owing to the matched solubility parameters between the c-PS and toluene. According to the swelling behavior of c-PS confined in the pores, a compartmentalization is created hindering the formation of chain overlaps and increasing the crystallinity order of nascent polymers. As a result, the nascent polyethylene with a high crystallinity (i.e., bulk crystallinity Xc,DSC=72.9 % and linear crystallinity Xc,WAXD=90.5 %) is synthesized. There is a considerable activity (i.e., 3.8×106 g PE&hahog;(molZr&hahog;h)^-1) at 70&ring;C. Finally, the particle morphology of the nascent polyethylene is investigated based on the swelling behavior of c-PS.



https://doi.org/10.1016/j.cattod.2019.12.032
Selzer, Silas Aaron; Bauer, Fabian; Bohm, Sebastian; Bretschneider, Peter; Runge, Erich
Physik-geführte NARXnets (PGNARXnets) zur Zeitreihenvorhersage. - In: Proceedings 31. Workshop Computational Intelligence, (2021), S. 235-261

Wagner, Christoph; Gläser, Georg; Sasse, Thomas; Kell, Gerald; Del Galdo, Giovanni
Make some noise: energy-efficient 38 Gbit/s wide-range fully-configurable linear feedback shift register. - In: SMACD / PRIME 2021, (2021), S. 384-387

https://ieeexplore.ieee.org/document/9547997
Hurmach, Vasyl; Platonov, Maxim; Prylutska, Svitlana; Klestova, Zinaida; Cherepanov, Vsevolod; Prylutskyy, Yuriy; Ritter, Uwe
Anticoronavirus activity of water-soluble pristine C60 fullerenes: in vitro and in silico screenings. - In: Basic science and therapy development, (2021), S. 159-172

Introduction: The emergence of a new member of the Coronaviridae family, which caused the 2020 pandemic, requires detailed research on the evolution of coronaviruses, their structure and properties, and interaction with cells. Modern nanobiotechnologies can address the many clinical challenges posed by the COVID-19 pandemic. In particular, they offer new therapeutic approaches using biocompatible nanostructures with “specific” antiviral activity. Therefore, the nanosized spherical-like molecule (0.72 nm in diameter) composed of 60 carbon atoms, C60 fullerene, is of interest in terms of fighting coronaviruses due to its high biological activity. In here, we aim to evaluate the effectiveness of anticoronavirus action of water-soluble pristine C60 fullerene in the model and in vitro systems. As a model, apathogenic for human coronavirus, we used transmissible gastroenteritis virus of swine (TGEV), which we adapted to the BHK-21 cell culture (kidney cells of a newborn Syrian hamster).Methods: The shape and size of the particles present in C60 fullerene aqueous colloidal solution (C60FAS) of given concentration, as well as C60FAS stability (value of zeta potential) were studied using microscopic (STM, scanning tunneling microscopy, and AFM, atomic force microscopy) and spectroscopic (DLS, dynamic light scattering) methods. The cytopathic effect of TGEV was determined with the help of a Leica DM 750 microscope and the degree of monolayer changes in cells was assessed. The microscopy of the viral suspension was performed using a high resolution transmission electron microscope (HRTEM; JEM-1230, Japan). Finally, the search for and design of optimal possible complexes between C60 fullerene and target proteins in the structure of SARS-CoV-2 coronavirus, evaluation of their stability in the simulated cellular environment were performed using molecular dynamics and docking methods.Results: It was found that the maximum allowable cytotoxic concentration of C60 fullerene is 37.5 ± 3.0 [my]g/ml. The investigated C60FAS reduces the titer of coronavirus infectious activity by the value of 2.00 ± 0.08 TCID50/ml. It was shown that C60 fullerene interacts directly with SARS-CoV-2 proteins, such as RdRp (RNA-dependent RNA polymerase) and 3CLpro (3-chymotrypsin-like protease), which is critical for the life cycle of the coronavirus and, thus, inhibits its functional activity. In both cases, C60 fullerene fills the binding pocket and gets stuck there through stacking and steric interactions.Conclusion: Pioneer in vitro study to identify the anticoronavirus activity of water-soluble pristine C60 fullerenes indicates that they are highly promising for further preclinical studies, since a significant inhibition of the infectious activity of swine coronavirus of transmissible gastroenteritis in BHK-21 cell culture was found. According to molecular modeling results, it was shown that C60 fullerene can create the stable complexes with 3CLpro and RdRp proteins of SARS-CoV-2 coronavirus and, thus, suppress its functional activity.



Bouza, Gemayqzel; Quintana, Ernest; Tammer, Christiane
On Clarke's subdifferential of marginal functions. - In: Applied set-valued analysis and optimization, ISSN 2562-7783, Bd. 3 (2021), 3, S. 281-292

In this paper, we derive an upper estimate of the Clarke subdifferential of marginal functions in Banach spaces. The structure of the upper estimate is very similar to other results already obtained in the literature. The novelty lies on the fact that we derive our assertions in general Banach spaces, and avoid the use of the Asplund assumption.



https://doi.org/10.23952/asvao.3.2021.3.03
Mordmüller, Mario; Kleyman, Viktoria; Schaller, Manuel; Wilson, Mitsuru; Worthmann, Karl; Müller, Matthias A.; Brinkmann, Ralf
Towards model-based control techniques for retinal laser treatment using only one laser. - In: Opto-Acoustic Methods and Applications in Biophotonics V, (2021), S. 1192305-1-1192305-3

Repetitively applied laser pulses are used for tissue heating and temperature measurement. The potential of model-based control techniques for temperature regulation by adjusting the energy of the heating pulses is explored.



https://doi.org/10.1117/12.2615851
Zheng, Yan; Yi, Jue-Min; Wang, Wenxin; Silies, Martin; Zhang, Yufeng; Lienau, Christoph; Lei, Yong
Centimeter-scale gold nanoparticle arrays for spatial mapping of the second harmonic and two-photon luminescence. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 4 (2021), 11, S. 11563-11572

Fabricating highly homogeneous plasmonic nanostructures over a large area and optically evaluating their structural quality are challenging. Here, we propose an elegant approach to achieve various dense nanoparticle arrays with tunable symmetries over centimeter-scale dimensions and optically evaluate the structural quality by spatially mapping nonlinear emissions from L-, U-, and O-shaped individual nanoparticles. In particular, the spectral overlapping of the second harmonic (SH) and two-photon luminescence (TPL) emissions is separated, and excitation polarization dependence and spatial fluctuations of the nonlinear signal across the nanostructures are investigated. Narrow Gaussian-distributed peaks in the intensity histogram of SH and TPL emissions confirm the high-level uniformity of the fabricated arrays. Distinct spatial distributions of SH and TPL emissions are observed, and their spatial correlation is very weak over large-area nanostructures. Furthermore, SH signals are demonstrated as a more sensitive indicator of the structural quality of nanoparticle arrays. Our findings not only offer an efficient way of constructing versatile large-scale nanostructures but also enable spatial nonlinear optics tailoring for applications of nano-optics and quantum information.



https://doi.org/10.1021/acsanm.1c02020
Duan, Yu; Feng, Shuanglong; Zhang, Kun; Qiu, Jiajia; Zhang, Sam
Vertical few-layer WSe2 nanosheets for NO2 sensing. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 4 (2021), 11, S. 12043-12050

WSe2 has been widely used in NO2 gas sensors in recent years, but it still suffers from low responsiveness and slow reaction kinetics. Herein, we used the chemical vapor deposition method to synthesize a vertically grown few-layer WSe2 (3D-WSe2) nanosheet film. Three-dimensional-WSe2 is transformed into vertical growth by introducing a TiO2 buffer layer and exposes much more edge active sites to improve gas sensitivity. As a result, it has not only high crystallinity and few defects but also a high response to NO2 (34.6% at 1 ppm), a fast response time (66 s), a short recovery time (17 min), a low limit of detection (4 ppb), excellent stability, and gas selectivity at room temperature.



https://doi.org/10.1021/acsanm.1c02603
Sauerteig, Philipp; Baumann, Manuel; Dickert, Jörg; Grundel, Sara; Worthmann, Karl
Reducing transmission losses via reactive power control. - In: Mathematical modeling, simulation and optimization for power engineering and management, (2021), S. 219-232

Modern smart grids are required to transport electricity along transmission lines from the renewable energy sources to the customer’s demand in an efficient manner. It is inevitable that power is lost along these lines due to active as well as reactive power flows. However, the losses caused by reactive power flows can be reduced by optimizing the power factor. Therefore, we propose a power flow optimization problem aiming to reduce losses by controlling the power factors within the low-voltage electricity grid online. Furthermore, we show the potential of the proposed scheme in a numerical case study for two scenarios based on real-world data provided by a German distribution system operator.



Aschenbruck, Tim; Baumann, Manuel; Esterhuizen, Willem; Filipecki, Bartosz; Grundel, Sara; Helmberg, Christoph; Ritschel, Tobias K. S.; Sauerteig, Philipp; Streif, Stefan; Worthmann, Karl
Optimization and stabilization of hierarchical electrical networks. - In: Mathematical modeling, simulation and optimization for power engineering and management, (2021), S. 171-198

Triggered by the increasing number of renewable energy sources, the German electricity grid is undergoing a fundamental change from mono to bidirectional power flow. This paradigm shift confronts grid operators with new problems but also new opportunities. In this chapter we point out some of these problems arising on different layers of the grid hierarchy and sketch mathematical methods to handle them. While the transmission system operator’s main concern is stability and security of the system in case of contingencies, the distribution system operator aims to exploit inherent flexibilities. We identify possible interconnections among the layers to make the flexibility from the distribution grid available within the whole network. Our presented approaches include: the distributed control of energy storage devices on a residential level; transient stability analysis via a new set-based approach; a new clustering-based model-order reduction technique; and a modeling framework for the power flow problem on the transmission level which incorporates new grid technologies.



Mordmüller, Mario; Kleyman, Viktoria; Schaller, Manuel; Wilson, Mitsuru; Theisen-Kunde, Dirk; Worthmann, Karl; Müller, Matthias A.; Brinkmann, Ralf
Towards temperature controlled retinal laser treatment with a single laser at 10 kHz repetition rate. - In: Advanced Optical Technologies, ISSN 2192-8584, Bd. 10 (2021), 6, S. 423-431

Laser photocoagulation is one of the most frequently used treatment approaches in ophthalmology for a variety of retinal diseases. Depending on indication, treatment intensity varies from application of specific micro injuries down to gentle temperature increases without inducing cell damage. Especially for the latter, proper energy dosing is still a challenging issue, which mostly relies on the physician's experience. Pulsed laser photoacoustic temperature measurement has already proven its ability for automated irradiation control during laser treatment but suffers from a comparatively high instrumental effort due to combination with a conventional continuous wave treatment laser. In this paper, a simplified setup with a single pulsed laser at 10 kHz repetition rate is presented. The setup combines the instrumentation for treatment as well as temperature measurement and control in a single device. In order to compare the solely pulsed heating with continuous wave (cw) tissue heating, pulse energies of 4 [my]J were applied with a repetition rate of 1 kHz to probe the temperature rise, respectively. With the same average laser power of 60 mW an almost identical temporal temperature course was retrieved in both irradiation modes as expected. The ability to reach and maintain a chosen aim temperature of 41 &ring;C is demonstrated by means of model predictive control (MPC) and extended Kalman filtering at a the measurement rate of 250 Hz with an accuracy of less than ±0.1 &ring;C. A major advantage of optimization-based control techniques like MPC is their capability of rigorously ensuring constraints, e.g., temperature limits, and thus, realizing a more reliable and secure temperature control during retinal laser irradiation.



https://doi.org/10.1515/aot-2021-0041
Philipp, Friedrich; Schaller, Manuel; Faulwasser, Timm; Maschke, Bernhard; Worthmann, Karl
Minimizing the energy supply of infinite-dimensional linear port-Hamiltonian systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 19, S. 155-160

We consider the problem of minimizing the supplied energy of infinite-dimensional linear port-Hamiltonian systems and prove that optimal trajectories exhibit the turnpike phenomenon towards certain subspaces induced by the dissipation of the dynamics. The theoretical foundations are illustrated by means of numerical examples concerning a Timoshenko beam and the heat equation.



https://doi.org/10.1016/j.ifacol.2021.11.071
Kleyman, Viktoria; Schaller, Manuel; Wilson, Mitsuru; Mordmüller, Mario; Brinkmann, Ralf; Worthmann, Karl; Müller, Matthias A.
State and parameter estimation for model-based retinal laser treatment. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 6, S. 244-250

We present an approach for state and parameter estimation in retinal laser treatment by a novel setup where both measurement and heating is performed by a single laser. In this medical application, the temperature that is induced by the laser in the patients eye is critical for a successful and safe treatment. To this end, we pursue a model-based approach using a model given by a heat diffusion equation on a cylindrical domain, where the source term is given by the absorbed laser power. The model is parametric in the sense that it involves an absorption coefficient, which depends on the treatment spot and plays a central role in the input-output behavior of the system. After discretization, we apply a particularly suited parametric model order reduction to ensure real-time tractability while retaining parameter dependence. We augment known state estimation techniques, i.e., extended Kalman filtering and moving horizon estimation, with parameter estimation to estimate the absorption coefficient and the current state of the system. Eventually, we show first results for simulated and experimental data from porcine eyes. We find that, regarding convergence speed, the moving horizon estimation slightly outperforms the extended Kalman filter on measurement data in terms of parameter and state estimation, however, on simulated data the results are very similar.



https://doi.org/10.1016/j.ifacol.2021.08.552
Faulwasser, Timm; Grüne, Lars; Humaloja, Jukka-Pekka; Schaller, Manuel
Inferring the adjoint turnpike property from the primal turnpike property. - In: 60th IEEE Conference on Decision and Control, (2021), S. 2578-2583

This paper investigates an interval turnpike result for the adjoints/costates of finite- and infinite-dimensional nonlinear optimal control problems under the assumption of an interval turnpike on states and controls. We consider stabilizable dynamics governed by a generator of a semigroup with finite-dimensional unstable part satisfying a spectral decomposition condition and show the desired turnpike property under continuity assumptions on the first-order optimality conditions. We further provide a numerical example with a semilinear heat equation to illustrate the results.



https://doi.org/10.1109/CDC45484.2021.9683079
Grüne, Lars; Muff, David; Schaller, Manuel
Conditions for strict dissipativity of infinite-dimensional generalized linear-quadratic problems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 19, S. 302-306

We derive sufficient conditions for strict dissipativity for optimal control of linear evolution equations on Hilbert spaces with a cost functional including linear and quadratic terms. We show that strict dissipativity with a particular storage function is equivalent to ellipticity of a Lyapunov-like operator. Further we prove under a spectral decomposition assumption of the underlying generator and an orthogonality condition of the resulting subspaces that this ellipticity property holds under a detectability assumption. We illustrate our result by means of an example involving a heat equation on a one-dimensional domain.



https://doi.org/10.1016/j.ifacol.2021.11.094
Kleyman, Viktoria; Schaller, Manuel; Wilson, Mitsuru; Mordmüller, Mario; Brinkmann, Ralf; Worthmann, Karl; Müller, Matthias A.
Towards model-based temperature-control for retinal laser therapies. - In: Zenodo, (2021), insges. 2 S.

Sophisticated control designs for retinal laser therapies, such as model predictive control, allow for safer treatment and a uniform outcome irrespective of spatially varying parameters such as the absorption coefficient. To enable model-based control, the internal states and unknown parameters need to be estimated, which can be done using non-invasive temperature measurements. We present experimental results for joint state and parameter estimation using an extended Kalman filter and a moving horizon estimator. The experiments were conducted on ex vivo porcine eye's explants.



https://doi.org/10.5281/zenodo.4925803
Lu, Zhong Xu; Mu, Ke Wen; Zhang, Zhi Yong; Luo, Qin; Yin, Yan Hong; Liu, Xian Bin; Li, Ye Sheng; Lei, Yong; Wu, Zi Ping
A porous current collector cleaner enables thin cathode electrolyte interphase on LiCoO2 for stable high-voltage cycling. - In: Journal of materials chemistry, ISSN 2050-7496, Bd. 9 (2021), 47, S. 26989-26998

LiCoO2 (LCO) is the most successful commercial cathode for lithium-ion batteries due to its high theoretical specific capacity (274 mA h g^-1). However, LCO-based batteries show a significantly high degree of instability in cycling performance and severe capacity fading as voltages exceed 4.35 V versus Li/Li+. Herein, a carbon nanotube macrofilm (CMF) was used as a current collector for addressing the long-standing issues, which demonstrate LCO with the first specific capacities of 191.1 and 180.1 mA h g^-1 after 300 cycles, at 4.5 V. The excellent results are ascribed to the interactions between decomposed electrolytes and carbon nanotubes, which ensure that decomposition products around the cathode are cleaned timely by the current collector cleaner. Therefore an ultrathin cathode electrolyte interphase is obtained and keeps the feature in the subsequent cycles. The assembled LCO-based pouch cell also indicates a high energy density of 523 W h kg^-1 after 200 cycles. This work presents novel insights into cathodes with stable cycling at high voltages.



https://doi.org/10.1039/D1TA07268D
Labrousse, Jean-Philippe; Sandovici, Adrian; Snoo, Hendrik S. V. de; Winkler, Henrik
Idempotent relations, semi-projections, and generalized inverses. - In: Contributions to mathematics and statistics, (2021), S. 87-110

Derkach, Volodymyr; Schmitz, Philipp; Trunk, Carsten
PT-symmetric Hamiltonians as couplings of dual pairs. - In: Contributions to mathematics and statistics, (2021), S. 55-68

Bohm, Sebastian; Grunert, Malte; Honig, Hauke; Wang, Dong; Schaaf, Peter; Runge, Erich; Zhong, Jinhui; Lienau, Christoph
Optical properties of nanoporous gold sponges using model structures obtained from three-dimensional phase-field Simulation. - In: 2021 Photonics & Electromagnetics Research Symposium (PIERS), (2021), S. 517-523

Nanoporous sponge structures show fascinating optical properties related to a strong spatial localization of field modes and a resulting strong field enhancement. In this work, a novel efficient method for the generation of three-dimensional nanoporous sponge structures using time-resolved phase-field simulations is presented. The algorithm for creating the geometries and the underlying equations are discussed. Different sponge geometries are generated and compared with sponges that have been experimentally measured using FIB tomography. Meaningful parameters are defined for the comparison of the geometric properties of the random sponge structures. In addition, the optical properties of the simulated sponges are compared with the experimentally measured sponges. It is shown that a description using effective media does not provide a good agreement to the actual spectra. This shows that the optical properties are largely determined by the local structures. In contrast, the numerically obtained spectra of the phase-field sponge models accounting for the real-space structure show excellent agreement with the spectra of the experimentally measured sponges.



https://doi.org/10.1109/PIERS53385.2021.9694971
Eichfelder, Gabriele;
Twenty years of continuous multiobjective optimization in the twenty-first century. - In: EURO journal on computational optimization, ISSN 2192-4414, Bd. 9 (2021), 100014, insges. 15 S.

The survey highlights some of the research topics which have attracted attention in the last two decades within the area of mathematical optimization of multiple objective functions. We give insights into topics where a huge progress can be seen within the last years. We give short introductions to the specific sub-fields as well as some selected references for further reading. Primarily, the survey covers the progress in the development of algorithms. In particular, we discuss publicly available solvers and approaches for new problem classes such as non-convex and mixed integer problems. Moreover, bilevel optimization problems and the handling of uncertainties by robust approaches and their relation to set optimization are presented. In addition, we discuss why numerical approaches which do not use scalarization techniques are of interest.



https://doi.org/10.1016/j.ejco.2021.100014
Calderón, Jesús A.; Lozano, John; Barriga, Benjamín; Tafur, Julio; Lengua, Juan Carlos; Solano, Gonzalo; Menacho, Daniel
Optimal vibration analysis for a combustion motor. - In: Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications (ICIEA 2021), (2021), S. 166-170

Combustion motors have quite important uses in Peru due to capacity of energy that is achieved to solve multiple tasks, such as for example public transport, mining and factories. However, a big disadvantage is given owing to pollution that is produced through them. Therefore, there are many proposal solutions as for example, optimal control over physical variables, which have information of consumed fuel. Nevertheless, it gets complications in interesting (but longer) algorithms as strategies. That is the reason, why in this research is proposed a mathematical procedure that is correlated with faster and robust sensors/actuators according to achieve an enhancement performance over the efficiency of combustion motors.



https://doi.org/10.1109/ICIEA51954.2021.9516132
Calderón, Jesús A.; Lozano, John; Barriga, Benjamín; Tafur, Julio; Lengua, Juan Carlos; Solano, Gonzalo
Active noise cancellation techniques to enhance audition in noisy cities. - In: 2021 IEEE International Conference on Mechatronics and Automation, (2021), S. 148-151

It is proposed in this research some suggestions and applications to enhance and care of the hearing health in noisy cities, such as for example, the noise that is caused by traffic, engines from factories and imprudent behavior from drivers and street sellers (as it happens in Peruvian cities). In this research, it was analyzed many techniques according to propose enhancement of the health audition by engineering analysis of the noise cancellation and advanced sensors/actuators (microphones and loudspeakers) that were based in nanostructures, because to achieve this objective. Therefore, it is expected that this research could be a support for institutions, which need technical analysis results, regarding to study the necessity to care the hearing health in noisy cities, such as for example, many hospitals, homes, universities and schools that are located near noisy avenues cannot get attenuation of noise, if there are not noise cancellation systems to care the hearing health.



https://doi.org/10.1109/ICMA52036.2021.9512571
Al Kury, Lina T.; Papandreou, Dimitrios; Hurmach, Vasyl V.; Dryn, Dariia O.; Melnyk, Mariia I.; Platonov, Maxim O.; Prylutskyy, Yuriy I.; Ritter, Uwe; Scharff, Peter; Zholos, Alexander V.
Single-walled carbon nanotubes inhibit TRPC4-mediated muscarinic cation current in mouse ileal myocytes. - In: Nanomaterials, ISSN 2079-4991, Bd. 11 (2021), 12, 3410, S. 1-15

Single-walled carbon nanotubes (SWCNTs) are characterized by a combination of rather unique physical and chemical properties, which makes them interesting biocompatible nanostructured materials for various applications, including in the biomedical field. SWCNTs are not inert carriers of drug molecules, as they may interact with various biological macromolecules, including ion channels. To investigate the mechanisms of the inhibitory effects of SWCNTs on the muscarinic receptor cation current (mICAT), induced by intracellular GTPys (200 [my]M), in isolated mouse ileal myocytes, we have used the patch-clamp method in the whole-cell configuration. Here, we use molecular docking/molecular dynamics simulations and direct patch-clamp recordings of whole-cell currents to show that SWCNTs, purified and functionalized by carboxylation in water suspension containing single SWCNTs with a diameter of 0.5-1.5 nm, can inhibit mICAT, which is mainly carried by TRPC4 cation channels in ileal smooth muscle cells, and is the main regulator of cholinergic excitation-contraction coupling in the small intestinal tract. This inhibition was voltage-independent and associated with a shortening of the mean open time of the channel. These results suggest that SWCNTs cause a direct blockage of the TRPC4 channel and may represent a novel class of TRPC4 modulators.



https://doi.org/10.3390/nano11123410
Stolle, Heike Lisa Kerstin Stephanie; Kluitmann, Jonas; Csáki, Andrea; Köhler, Michael; Fritzsche, Wolfgang
Shape-dependent catalytic activity of gold and bimetallic nanoparticles in the reduction of methylene blue by sodium borohydride. - In: Catalysts, ISSN 2073-4344, Bd. 11 (2021), 12, 1442, S. 1-20

In this study the catalytic activity of different gold and bimetallic nanoparticle solutions towards the reduction of methylene blue by sodium borohydride as a model reaction is investigated. By utilizing differently shaped gold nanoparticles, i.e., spheres, cubes, prisms and rods as well as bimetallic gold–palladium and gold-platinum core-shell nanorods, we evaluate the effect of the catalyst surface area as available gold surface area, the shape of the nanoparticles and the impact of added secondary metals in case of bimetallic nanorods. We track the reaction by UV/Vis measurements in the range of 190-850 nm every 60 s. It is assumed that the gold nanoparticles do not only act as a unit transferring electrons from sodium borohydride towards methylene blue but can promote the electron transfer upon plasmonic excitation. By testing different particle shapes, we could indeed demonstrate an effect of the particle shape by excluding the impact of surface area and/or surface ligands. All nanoparticle solutions showed a higher methylene blue turnover than their reference, whereby gold nanoprisms exhibited 100% turnover as no further methylene blue absorption peak was detected. The reaction rate constant k was also determined and revealed overall quicker reactions when gold or bimetallic nanoparticles were added as a catalyst, and again these were highest for nanoprisms. Furthermore, when comparing gold and bimetallic nanorods, it could be shown that through the addition of the catalytically active second metal platinum or palladium, the dye turnover was accelerated and degradation rate constants were higher compared to those of pure gold nanorods. The results explore the catalytic activity of nanoparticles, and assist in exploring further catalytic applications.



https://doi.org/10.3390/catal11121442
Dorschky, Ines; Reis, Timo; Voigt, Matthias
Balanced truncation model reduction for symmetric second order systems - a passivity-based approach. - In: SIAM journal on matrix analysis and applications, ISSN 1095-7162, Bd. 42 (2021), 4, S. 1602-1635

We introduce a model reduction approach for linear time-invariant second order systems based on positive real balanced truncation. Our method guarantees to preserve asymptotic stability and passivity of the reduced order model as well as the positive definiteness of the mass and stiffness matrices. Moreover, we receive an a priori gap metric error bound. Finally we show that our method based on positive real balanced truncation preserves the structure of overdamped second order systems.



https://doi.org/10.1137/20M1346109
Zeußel, Lisa; Aziz, Carlos; Schober, Andreas; Singh, Sukhdeep
pH-dependent selective colorimetric detection of proline and hydroxyproline with Meldrum's acid-furfural conjugate. - In: Chemosensors, ISSN 2227-9040, Bd. 9 (2021), 12, 343, S. 1-13

Activated 2-furfural gives intense color formation when reacted with amines, due to a ring opening reaction cascade that furnishes a conjugated molecular system. Unique colorimetric characteristic of this reaction makes it an interesting candidate for developing chemosensors operating in visible range. Among many activated 2-furfural derivatives, Meldrum's acid furfural conjugate (MAFC) recently gained significant interest as colorimetric chemosensor. MAFC has been explored as selective chemosensor for detecting amines in solution, secondary amines on polymer surfaces and even nitrogen rich amino acids (AA) in aqueous solution. In this work, the pH dependency of MAFC-AA reaction is explored. It was found that proline gives an exceptionally fast colored reaction at pH 11, whereas at other pHs, no naked eye color product formation was observed. The reaction sequence including ring opening reaction upon nucleophilic addition of cyclic amine of proline resulting in a conjugated triene was confirmed by NMR titrations. The highly pH dependent reaction can e.g., potentially be used to detect proline presence in biological samples. An even more intense color formation takes place in the reaction of natural proline derivative 4-hydroxyproline. The detection limit of proline and 4-hydroxyproline with MAFC solution was found to be 11 [my]M and 6 [my)M respectively.



https://doi.org/10.3390/chemosensors9120343
Wu, Yuhan; Xu, Rui; Wang, Zhijie; Hao, Xiaorui; Zhang, Chenglin; Zhao, Huaping; Li, Wei; Wang, Shouzhi; Dong, Yulian; Huang, Zhitao; Lei, Yong
Carbon-free crystal-like Fe1-xS as an anode for potassium-ion batteries. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 46, S. 55218-55226
Im Titel ist "1-x" tiefgestellt

Potassium-ion batteries (PIBs) as a new electrochemical energy storage system have been considered as a desirable candidate in the post-lithium-ion battery era. Nevertheless, the study on this realm is in its infancy; it is urgent to develop electrode materials with high electrochemical performance and low cost. Iron sulfides as anode materials have aroused wide attention by virtue of their merits of high theoretical capacities, environmental benignity, and cost competitiveness. Herein, we constructed carbon-free crystal-like Fe1-xS and demonstrated its feasibility as a PIB anode. The unique structural feature endows the prepared Fe1-xS with plentiful active sites for electrochemical reactions and short transmission pathways for ions/electrons. The Fe1-xS electrode retained capacities of 420.8 mAh g-1 after 100 cycles at 0.1 A g-1 and 212.9 mAh g-1 after 250 cycles at 1.0 A g-1. Even at a high rate of 5.0 A g-1, an average capacity of 167.6 mAh g-1 was achieved. In addition, a potassium-ion full cell is assembled by employing Fe1-xS as an anode and potassium Prussian blue as a cathode; it delivered a discharge capacity of 127.6 mAh g-1 at 100 mA g-1 after 50 cycles.



https://doi.org/10.1021/acsami.1c17799
Condon, Padraig; Espuny Díaz, Alberto; Girão, António; Kühn, Daniela; Osthus, Deryk
Hamiltonicity of random subgraphs of the hypercube. - In: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, (2021), S. 889-898

https://dl.acm.org/doi/10.5555/3458064.3458120
Phi, Hai Binh; Bohm, Sebastian; Runge, Erich; Strehle, Steffen; Dittrich, Lars
Wafer-level fabrication of an EWOD-driven micropump. - In: MikroSystemTechnik, (2021), S. 574-577

Bohm, Sebastian; Phi, Hai Binh; Moriyama, Ayaka; Dittrich, Lars; Runge, Erich
Dimensioning and characterisation of an EWOD-driven chipintegrated micropump using time-resolved simulations. - In: MikroSystemTechnik, (2021), S. 531-534

Handte, Thomas; Bohm, Sebastian; Goj, Boris; Dittrich, Lars; Mollenhauer, Olaf; Sinzinger, Stefan; Runge, Erich
Simulation model and dimensioning of a photoacoustic sensor for the detection of radiation-induced pressure surges. - In: MikroSystemTechnik, (2021), S. 523-526

Faulwasser, Timm; Mehrez, Mohamed; Worthmann, Karl
Predictive path following control without terminal constraints. - In: Recent advances in model predictive control, (2021), S. 1-26

Hasselmann, Sebastian; Hahn, Lukas; Lorson, Thomas; Schätzlein, Eva; Sébastien, Isabelle; Beudert, Matthias; Lühmann, Tessa; Neubauer, Julia C.; Sextl, Gerhard; Luxenhofer, Robert; Heinrich, Doris
Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. - In: Materials Horizons, ISSN 2051-6355, Bd. 8 (2021), 12, S. 3334-3344

In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.



https://doi.org/10.1039/D1MH00925G
Jaurigue, Lina; Robertson, Elizabeth; Wolters, Janik; Lüdge, Kathy
Reservoir computing with delayed input for fast and easy optimisation. - In: Entropy, ISSN 1099-4300, Bd. 23 (2021), 12, 1560, S. 1-13

Reservoir computing is a machine learning method that solves tasks using the response of a dynamical system to a certain input. As the training scheme only involves optimising the weights of the responses of the dynamical system, this method is particularly suited for hardware implementation. Furthermore, the inherent memory of dynamical systems which are suitable for use as reservoirs mean that this method has the potential to perform well on time series prediction tasks, as well as other tasks with time dependence. However, reservoir computing still requires extensive task-dependent parameter optimisation in order to achieve good performance. We demonstrate that by including a time-delayed version of the input for various time series prediction tasks, good performance can be achieved with an unoptimised reservoir. Furthermore, we show that by including the appropriate time-delayed input, one unaltered reservoir can perform well on six different time series prediction tasks at a very low computational expense. Our approach is of particular relevance to hardware implemented reservoirs, as one does not necessarily have access to pertinent optimisation parameters in physical systems but the inclusion of an additional input is generally possible.



https://doi.org/10.3390/e23121560
Faulwasser, Timm; Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Worthmann, Karl
A dissipativity characterization of velocity turnpikes in optimal control problems for mechanical systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 9, S. 624-629

Turnpikes have recently gained significant research interest in optimal control, since they allow for pivotal insights into the structure of solutions to optimal control problems. So far, mainly steady state solutions which serve as optimal operation points, are studied. This is in contrast to time-varying turnpikes, which are in the focus of this paper. More concretely, we analyze symmetry-induced velocity turnpikes, i.e. controlled relative equilibria, called trim primitives, which are optimal operation points regarding the given cost criterion. We characterize velocity turnpikes by means of dissipativity inequalities. Moreover, we study the equivalence between optimal control problems and steady-state problems via the corresponding necessary optimality conditions. An academic example is given for illustration.



https://doi.org/10.1016/j.ifacol.2021.06.125
Reis, Timo;
Some notes on port-Hamiltonian systems on Banach spaces. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 19, S. 223-229

We consider port-Hamiltonian systems from a functional analytic perspective. Dirac structures and Hamiltonians on Banach spaces are introduced, and an energy balance is proven. Further, we consider port-Hamiltonian systems on Banach manifolds, and we present some physical examples that fit into the presented theory.



https://doi.org/10.1016/j.ifacol.2021.11.082
Rußwurm, Franz; Esterhuizen, Willem; Worthmann, Karl; Streif, Stefan
On MPC without terminal conditions for dynamic non-holonomic robots. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 54 (2021), 6, S. 133-138

We consider an input-constrained differential-drive robot with actuator dynamics. For this system, we establish asymptotic stability of the origin on arbitrary compact, convex sets using Model Predictive Control (MPC) without stabilizing terminal conditions despite the presence of state constraints and actuator dynamics. We note that the problem without those two additional ingredients was essentially solved beforehand, despite the fact that the linearization is not stabilizable. We propose an approach successfully solving the task at hand by combining the theory of barriers to characterize the viability kernel and an MPC framework based on so-called cost controllability. Moreover, we present a numerical case study to derive quantitative bounds on the required length of the prediction horizon. To this end, we investigate the boundary of the viability kernel and a neighbourhood of the origin, i.e. the most interesting areas.



https://doi.org/10.1016/j.ifacol.2021.08.535
Schütt, Timo; Geitner, Robert; Bode, Stefan; Schubert, Ulrich Sigmar
Dialysis diffusion kinetics in polymer purification. - In: Macromolecules, ISSN 1520-5835, Bd. 54 (2021), 20, S. 9410-9417

Diffusion kinetics of a prior developed automated dialysis system are investigated via in situ NMR spectroscopy for an optimization of conventional and advanced polymer purification. Using a polymeric solution, mixed with the respective monomer, several parameters like starting concentration, solvent volume, and solvent exchange by flow or complete one-time exchange are varied, resulting in a significant decrease of purification time for the automated setup. With an increased solvent flow (from 0.9 to 5.5 mL/min), 5.4 h and 2000 mL of solvent are required to decrease the monomer concentration to the detection limit. Without solvent flow, which corresponds to conventional dialysis, only 9 h and 250 mL of solvent are required for the same result, which is a time- and solvent-saving development for common purification of polymers.



https://doi.org/10.1021/acs.macromol.1c01241
Kronfeld, Klaus-Peter; Mazétyté-Stasinskiené, Raminta; Zheng, Xuejiao; Köhler, Michael
Textured and hierarchically constructed polymer micro- and nanoparticles. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 21, 10421, S. 1-17

Microfluidic techniques allow for the tailored construction of specific microparticles, which are becoming increasingly interesting and relevant. Here, using a microfluidic hole-plate-device and thermal-initiated free radical polymerization, submicrometer polymer particles with a highly textured surface were synthesized. Two types of monomers were applied: (1) methylmethacrylate (MMA) combined with crosslinkers and (2) divinylbenzene (DVB). Surface texture and morphology can be influenced by a series of parameters such as the monomer-crosslinker-solvent composition, surfactants, and additives. Generally, the most structured surfaces with the simultaneously most uniform particles were obtained in the DVB-toluene-nonionic-tensides system. In a second approach, poly-MMA (PMMA) particles were used to build aggregates with bigger polymer particles. For this purpose, tripropyleneglycolediacrylate (TPGDA) particles were synthesized in a microfluidic co-flow arrangement and polymerized by light- irradiation. Then, PMMA particles were assembled at their surface. In a third step, these composites were dispersed in an aqueous acrylamide-methylenebisacrylamide solution, which again was run through a co-flow-device and photopolymerized. As such, entities consisting of particles of three different size ranges - typically 0.7/30/600 [my]m - were obtained. The particles synthesized by both approaches are potentially suitable for loading with or incorporation of analytic probes or catalysts such as dyes or metals.



https://doi.org/10.3390/app112110421
Schweser, Thomas; Stiebitz, Michael
Vertex partition of hypergraphs and maximum degenerate subhypergraphs. - In: Electronic Journal of Graph Theory and Applications, ISSN 2338-2287, Bd. 9 (2021), 1, S. 1-9

https://doi.org/10.5614/ejgta.2021.9.1.1
Sha, Mo; Zhao, Huaping; Lei, Yong
Updated insights into 3D architecture electrodes for micropower sources. - In: Advanced materials, ISSN 1521-4095, Bd. 33 (2021), 45, 2103304, insges. 17 S.

Microbatteries (MBs) and microsupercapacitors (MSCs) are primary on-chip micropower sources that drive autonomous and stand-alone microelectronic devices for implementation of the Internet of Things (IoT). However, the performance of conventional MBs and MSCs is restricted by their 2D thin-film electrode design, and these devices struggle to satisfy the increasing IoT energy demands for high energy density, high power density, and long lifespan. The energy densities of MBs and MSCs can be improved significantly through adoption of a 2D thick-film electrode design; however, their power densities and lifespans deteriorate with increased electrode thickness. In contrast, 3D architecture electrodes offer remarkable opportunities to simultaneously improve MB and MSC energy density, power density, and lifespan. To date, various 3D architecture electrodes have been designed, fabricated, and investigated for MBs and MSCs. This review provides an update on the principal superiorities of 3D architecture electrodes over 2D thick-film electrodes in the context of improved MB and MSC energy density, power density, and lifespan. In addition, the most recent and representative progress in 3D architecture electrode development for MBs and MSCs is highlighted. Finally, present challenges are discussed and key perspectives for future research in this field are outlined.



https://doi.org/10.1002/adma.202103304
Liang, Feng; Zhang, Kaiwen; Zhang, Lei; Zhang, Yingjie; Lei, Yong; Sun, Xueliang
Recent development of electrocatalytic CO2 reduction application to energy conversion. - In: Small, ISSN 1613-6829, Bd. 17 (2021), 44, 2100323, insges. 29 S.
Im Titel ist "2" tiefgestellt

Carbon dioxide (CO2) emission has caused greenhouse gas pollution worldwide. Hence, strengthening CO2 recycling is necessary. CO2 electroreduction reaction (CRR) is recognized as a promising approach to utilize waste CO2. Electrocatalysts in the CRR process play a critical role in determining the selectivity and activity of CRR. Different types of electrocatalysts are introduced in this review: noble metals and their derived compounds, transition metals and their derived compounds, organic polymer, and carbon-based materials, as well as their major products, Faradaic efficiency, current density, and onset potential. Furthermore, this paper overviews the recent progress of the following two major applications of CRR according to the different energy conversion methods: electricity generation and formation of valuable carbonaceous products. Considering electricity generation devices, the electrochemical properties of metal-CO2 batteries, including Li-CO2, Na-CO2, Al-CO2, and Zn-CO2 batteries, are mainly summarized. Finally, different pathways of CO2 electroreduction to carbon-based fuels is presented, and their reaction mechanisms are illustrated. This review provides a clear and innovative insight into the entire reaction process of CRR, guiding the new electrocatalysts design, state-of-the-art analysis technique application, and reaction system innovation.



https://doi.org/10.1002/smll.202100323
Schaller, Manuel; Philipp, Friedrich; Faulwasser, Timm; Worthmann, Karl; Maschke, Bernhard
Control of port-Hamiltonian systems with minimal energy supply. - In: European journal of control, ISSN 1435-5671, Bd. 62 (2021), S. 33-40

We investigate optimal control of linear port-Hamiltonian systems with control constraints, in which one aims to perform a state transition with minimal energy supply. Decomposing the state space into dissipative and non-dissipative (i.e. conservative) subspaces, we show that the set of reachable states is bounded w.r.t. the dissipative subspace. We prove that the optimal control problem exhibits the turnpike property with respect to the non-dissipative subspace, i.e., for varying initial conditions and time horizons optimal state trajectories evolve close to the conservative subspace most of the time. We analyze the corresponding steady-state optimization problem and prove that all optimal steady states lie in the non-dissipative subspace. We conclude this paper by illustrating these results by a numerical example from mechanics.



https://doi.org/10.1016/j.ejcon.2021.06.017
Marx-Blümel, Lisa; Marx, Christian; Sonnemann, Jürgen; Weise, Frank; Hampl, Jörg; Frey, Jessica; Rothenburger, Linda; Cirri, Emilio; Rahnis, Norman; Koch, Philipp; Groth, Marco; Schober, Andreas; Wang, Zhao-Qi; Beck, James F.
Molecular characterization of hematopoietic stem cells after in vitro amplification on biomimetic 3D PDMS cell culture scaffolds. - In: Scientific reports, ISSN 2045-2322, Bd. 11 (2021), 21163, S. 1-14

Hematopoietic stem cell (HSC) transplantation is successfully applied since the late 1950s. However, its efficacy can be impaired by insufficient numbers of donor HSCs. A promising strategy to overcome this hurdle is the use of an advanced ex vivo culture system that supports the proliferation and, at the same time, maintains the pluripotency of HSCs. Therefore, we have developed artificial 3D bone marrow-like scaffolds made of polydimethylsiloxane (PDMS) that model the natural HSC niche in vitro. These 3D PDMS scaffolds in combination with an optimized HSC culture medium allow the amplification of high numbers of undifferentiated HSCs. After 14 days in vitro cell culture, we performed transcriptome and proteome analysis. Ingenuity pathway analysis indicated that the 3D PDMS cell culture scaffolds altered PI3K/AKT/mTOR pathways and activated SREBP, HIF1α and FOXO signaling, leading to metabolic adaptations, as judged by ELISA, Western blot and metabolic flux analysis. These molecular signaling pathways can promote the expansion of HSCs and are involved in the maintenance of their pluripotency. Thus, we have shown that the 3D PDMS scaffolds activate key molecular signaling pathways to amplify the numbers of undifferentiated HSCs ex vivo effectively.



https://doi.org/10.1038/s41598-021-00619-6
Espuny Díaz, Alberto; Girão, António
Hamiltonicity of randomly perturbed graphs. - In: Extended abstracts EuroComb 2021, (2021), S. 38-44

The theory of randomly perturbed graphs deals with the properties of graphs obtained as the union of a deterministic graph H and a random graph G. We study Hamiltonicity in two distinct settings. In both of them, we assume H is some deterministic graph with minimum degree at least αn, for some α (possibly depending on n). We first consider the case when G is a random geometric graph, and obtain an asymptotically optimal result. We then consider the case when G is a random regular graph, and obtain different results depending on the regularity.



Espuny Díaz, Alberto; Patel, Viresh; Stroh, Fabian
Path decompositions of random directed graphs. - In: Extended abstracts EuroComb 2021, (2021), S. 702-706

In this work we consider extensions of a conjecture due to Alspach, Mason, and Pullman from 1976. This conjecture concerns edge decompositions of tournaments into as few paths as possible. There is a natural lower bound for the number paths needed in an edge decomposition of a directed graph in terms of its degree sequence; the conjecture in question states that this bound is correct for tournaments of even order. The conjecture was recently resolved for large tournaments, and here we investigate to what extent the conjecture holds for directed graphs in general. In particular, we prove that the conjecture holds with high probability for the random directed graph Dn,pDn,pD_{n,p} for a large range of p.



Horak, Iryna; Prylutska, Svitlana; Krysiuk, Iryna; Luhovskyi, Serhii; Hrabovsky, Oleksii; Tverdokhleb, Nina; Franskevych, Daria; Rumiantsev, Dmytro; Senenko, Anton; Evstigneev, Maxim; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe; Piosik, Jacek; Prylutskyy, Yuriy
Nanocomplex of Berberine with C60 fullerene is a potent suppressor of Lewis lung carcinoma cells invasion in vitro and metastatic activity in vivo. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 20, 6114, insges. 15 S.
Im Titel ist "60" tiefgestellt

Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.



https://doi.org/10.3390/ma14206114
Calderón, Jesús A.; Rincón, Carlos; Agreda, Martin; Jiménez de Cisneros, Juan José
Design and analysis of a mechanical ventilation system based on cams. - In: Heliyon, ISSN 2405-8440, Bd. 7 (2021), 10, e08195, S. 1-16

Low-cost mechanical ventilators have been developed in order to deal with the shortage of traditional ventilators whose quantity is not sufficient in an emergency context in Perú. Protofy, a company from Spain, designed one of the first low-cost mechanical ventilation systems OxyGEN which was approved by a medicine agency in its country in special context of COVID 19. Therefore, as main of this article, a redesign of this system named OxygenIP.PE was carried out according to local requirements and available technology, but maintaining its working concept based on compression mechanism by cams. Sensors were added and a control algorithm of the respiratory rate was developed. Ventilation curves monitoring over time was implemented; in this sense, a mathematical model of the whole system was developed. OxygenIP.PE was redesigned, fabricated, and tested measuring its ventilation curves over time. Results indicate that this redesign provides a sturdy equipment able to work during a longer lifetime than the original. The replicability of the ventilation curves behavior is ensured, while the mechanism dimensions are adapted for a particular airbag resuscitator. The mathematical model of the whole system can satisfactorily determine the ventilation curves over time and is used to show the air pressure, volume, and flow as a function of the compression arm's angular position and differential pressure through the breathing circuit measurement, furthermore the algorithms designed as a consequence of the mathematical model were implemented for Raspberry and ARDUINO microcontrollers. There were obtained parameters of pressure 10-65 cmH2O, airflow 50-65 l/m, volume 0-0.5 l, at two values of beat per minute (BPM) 15 and 25.



https://doi.org/10.1016/j.heliyon.2021.e08195
Nandy, Manali; Paszuk, Agnieszka; Feifel, Markus; Koppka, Christian; Kleinschmidt, Peter; Dimroth, Frank; Hannappel, Thomas
A route to obtaining low-defect III-V epilayers on Si(100) utilizing MOCVD. - In: Crystal growth & design, ISSN 1528-7505, Bd. 21 (2021), 10, S. 5603-5613

Low-defect III-V multilayer structures grown on Si(100) open opportunities for a wide range of cost-effective high-performance photovoltaic and optoelectronic devices. For that, (Al)GaP epilayers prepared almost lattice-matched on Si(100) substrates can serve as high-quality virtual substrates for subsequent heteroepitaxial growth. The evolution of crystal defects, such as stacking fault pyramids or threading dislocations, needs to be impeded already during the first preparation step, the III-V-on-Si nucleation, as they tend to propagate into the subsequently grown layers and increase nonradiative electron-hole recombination rates, which finally degrade the device performance. We establish a ternary GaP/AlP pulsed nucleation process on Si(100) substrates fabricated by metalorganic chemical vapor deposition, and compare it to the defect evolution from pure GaP nucleation layers (NLs). The entire procedure was optically monitored in situ using reflection anisotropy spectroscopy. Crystal defects were investigated by electron channeling contrast imaging. GaP grown on GaP/AlP NLs exhibits drastically reduced densities of threading dislocations and stacking faults by 1 and 2 orders of magnitude, respectively, compared to buffer layers grown on binary GaP NLs. We observed that the surface morphology at the initial stage of growth of these buffer layers is significantly smoother compared to the buffer layers grown on pure GaP NLs using atomic force microscopy. The proposed nucleation procedure here is supposed to substantially improve the crystalline quality of III-V buffer layers integrated on Si(100) wafers.



https://doi.org/10.1021/acs.cgd.1c00410
Khan, Nida Zaman; Chen, Li-Yu; Lindenbauer, Annerose; Pliquett, Uwe; Rothe, Holger; Nguyen, Thi-Huong
Label-free detection and characterization of heparin-induced thrombocytopenia (HIT)-like antibodies. - In: ACS omega, ISSN 2470-1343, Bd. 6 (2021), 40, S. 25926-25939

Heparin-induced thrombocytopenia (HIT) antibodies (Abs) can mediate and activate blood cells, forming blood clots. To detect HIT Abs, immunological assays with high sensitivity (≥95%) and fast response are widely used, but only about 50% of these tests are accurate as non-HIT Abs also bind to the same antigens. We aim to develop biosensor-based electrical detection to better differentiate HIT-like from non-HIT-like Abs. As a proof of principle, we tested with two types of commercially available monoclonal Abs including KKO (inducing HIT) and RTO (noninducing HIT). Platelet factor 4/Heparin antigens were immobilized on gold electrodes, and binding of antibodies on the chips was detected based on the change in the charge transfer resistance (Rct). Binding of KKO on sensors yielded a significantly lower charge transfer resistance than that of RTO. Bound antibodies and their binding characteristics on the sensors were confirmed and characterized by complementary techniques. Analysis of thermal kinetics showed that RTO bonds are more stable than those of KKO, whereas KKO exhibited a higher negative ζ potential than RTO. These different characteristics made it possible to electrically differentiate these two types of antibodies. Our study opens a new avenue for the development of sensors for better detection of pathogenic Abs in HIT patients.



https://doi.org/10.1021/acsomega.1c02496
Ovsiienko, Iryna V.; Tsaregradskaya, Tatiana L.; Shpylka, D. O.; Matzui, Lyudmila Yu.; Saenko, Galina V.; Ritter, Uwe; Len, Tatiana A.; Prylutskyy, Yuriy I.
Magnetoresistance of carbon nanotubes filled by iron. - In: Proceedings of the 2021 IEEE 11th International Conference "Nanomaterials: Applications & Properties" (NAP-2021), (2021), S. NMM05-1-NMM05-5

Paper presents the results of experimental investigations of magnetoresistance of filled with iron multi-walled carbon nanotubes. Multi-walled carbon nanotubes have been prepared by pyrolysis of benzene in a tubular quartz furnace at a temperature of 950&ring;C with use ferrocene as a source of iron. The obtained by this method carbon nanotubes contain in the inner cavity the particles of the magnetic phase, namely iron, iron carbide and iron oxides in various concentrations. The electrical resistance of bulk specimens of modified carbon nanotubes have been carried out in the temperature interval from 4.2 K to 293 K and in magnetic field up to 2 T. It is shown that magnetoresistance of modified carbon nanotubes is determined by a combination of two effects: the giant magnetoresistance effect and anisotropic magnetoresistance effect, moreover, the relative contribution of each effect depends on the concentration of the magnetic phase.



https://doi.org/10.1109/NAP51885.2021.9568395
Alam, Shahidul; Nádaždy, Vojtech; Váry, Tomáš; Friebe, Christian; Meitzner, Rico; Ahner, Johannes; Anand, Aman; Karuthedath, Safakath; Castro, Catherine S. P. De; Göhler, Clemens; Dietz, Stefanie; Cann, Jonathan; Kästner, Christian; Konkin, Alexander; Beenken, Wichard J. D.; Anton, Arthur Markus; Ulbricht, Christoph; Sperlich, Andreas; Hager, Martin; Ritter, Uwe; Kremer, Friedrich; Brüggemann, Oliver; Schubert, Ulrich Sigmar; Ayuk Mbi Egbe, Daniel; Welch, Gregory C.; Dyakonov, Vladimir; Deibel, Carsten; Laquai, Frédéric; Hoppe, Harald
Uphill and downhill charge generation from charge transfer to charge separated states in organic solar cells. - In: Journal of materials chemistry, ISSN 2050-7534, Bd. 9 (2021), 40, S. 14463-14489

It is common knowledge that molecular energy level offsets of a type II heterojunction formed at the donor-acceptor interface are considered to be the driving force for photoinduced charge transfer in organic solar cells. Usually, these offsets - present between molecular energy levels of the donor and acceptor - are obtained via cyclic voltammetry (CV) measurements of organic semiconductors cast in a film or dissolved in solution. Simply transferring such determined energy levels from solution or film of single materials to blend films may be obviously limited and not be possible in full generality. Herein, we report various cases of material combinations in which novel non-fullerene acceptors did not yield successful charge transfer, although energy levels obtained by CV on constituting single materials indicate a type II heterojunction. Whilst the integer charge transfer (ICT) model provides one explanation for a relative rise of molecular energy levels of acceptors, further details and other cases have not been studied so far in great detail. By applying energy-resolved electrochemical impedance spectroscopy (ER-EIS) on several donor-acceptor combinations, a Fano-like resonance feature associated with a distinctive molecular energy level of the acceptor as well as various relative molecular energy level shifts of different kinds could be observed. By analyzing ER-EIS and absorption spectra, not only the exciton binding energy within single materials could be determined, but also the commonly unknown binding energy of the CT state with regard to the joint density of states (jDOS) of the effective semiconductor. The latter is defined by transitions between the highest occupied molecular orbitals (HOMO) of the donor and the lowest unoccupied molecular orbitals (LUMO) of the acceptor. Using this technique among others, we identified cases in which charge generation may occur either via uphill or by downhill processes between the charge transfer exciton and the electronic gap of the effective semiconductor. Exceptionally high CT-exciton binding energies and thus low charge generation yields were obtained for a case in which the donor and acceptor yielded a too intimate blend morphology, indicating π-π stacking as a potential cause for unfavorable molecular energy level alignment.



https://doi.org/10.1039/D1TC02351A
Gerlach, Tobias; Rocktäschel, Stefan
On convexity and quasiconvexity of extremal value functions in set optimization. - In: Applied set-valued analysis and optimization, ISSN 2562-7783, Bd. 3 (2021), 3, S. 293-308

We study different classes of convex and quasiconvex set-valued maps defined by means of the l-less relation and the u-less relation. The aim of this paper is to formulate necessary and especially sufficient conditions for the convexity/quasiconvexity of extremal value functions.



https://doi.org/10.23952/asvao.3.2021.3.04
Zhang, Huanming; Zhou, Min; Zhao, Huaping; Lei, Yong
Ordered nanostructures arrays fabricated by anodic aluminum oxide (AAO) template-directed methods for energy conversion. - In: Nanotechnology, ISSN 1361-6528, Bd. 32 (2021), 50, 502006, S. 1-27

Clean and efficient energy conversion systems can overcome the depletion of the fossil fuel and meet the increasing demand of the energy. Ordered nanostructures arrays convert energy more efficiently than their disordered counterparts, by virtue of their structural merits. Among various fabrication methods of these ordered nanostructures arrays, anodic aluminum oxide (AAO) template-directed fabrication have drawn increasing attention due to its low cost, high throughput, flexibility and high structural controllability. This article reviews the application of ordered nanostructures arrays fabricated by AAO template-directed methods in mechanical energy, solar energy, electrical energy and chemical energy conversions in four sections. In each section, the corresponding advantages of these ordered nanostructures arrays in the energy conversion system are analysed, and the limitation of the to-date research is evaluated. Finally, the future directions of the ordered nanostructures arrays fabricated by AAO template-directed methods (the promising method to explore new growth mechanisms of AAO, green fabrication based on reusable AAO templates, new potential energy conversion application) are discussed.



https://doi.org/10.1088/1361-6528/ac268b
Derkach, Volodymyr; Strelnikov, Dmytro; Winkler, Henrik
On a class of integral systems. - In: Complex analysis and operator theory, ISSN 1661-8262, Bd. 15 (2021), 6, 103, insges. 39 S.

We study spectral problems for two-dimensional integral system with two given non-decreasing functions R, W on an interval [0, b) which is a generalization of the Krein string. Associated to this system are the maximal linear relation Tmax and the minimal linear relation Tmin in the space L2(dW) which are connected by Tmax=T*min. It is shown that the limit point condition at b for this system is equivalent to the strong limit point condition for the linear relation Tmax. In the limit circle case the Evans-Everitt condition is proved to hold on a subspace T*N of Tmax characterized by the Neumann boundary condition at b. The notion of the principal Titchmarsh-Weyl coefficient of this integral system is introduced. Boundary triple for the linear relation Tmax in the limit point case (and for T*N in the limit circle case) is constructed and it is shown that the corresponding Weyl function coincides with the principal Titchmarsh-Weyl coefficient of the integral system. The notion of the dual integral system is introduced by reversing the order of R and W and the formula relating the principal Titchmarsh-Weyl coefficients of the direct and the dual integral systems is proved. For every integral system with the principal Titchmarsh-Weyl coefficients q a canonical system is constructed so that its Titchmarsh-Weyl coefficient Q is the unwrapping transform of q: Q(z)=zq(z2).



https://doi.org/10.1007/s11785-021-01148-w
Hoff, Daniel; Wendland, Holger
A meshfree method for a PDE-constrained optimization problem. - In: SIAM journal on numerical analysis, ISSN 1095-7170, Bd. 59 (2021), 4, S. 1896-1917

We describe a new approximation method for solving a PDE-constrained optimization problem numerically. Our method is based on the adjoint formulation of the optimization problem, leading to a system of weakly coupled, elliptic PDEs. These equations are then solved using kernel-based collocation. We derive an error analysis and give numerical examples.



https://doi.org/10.1137/20M1363510
Bartsch, Heike; Weise, Frank; Gomez, Houari Cobas; Gongora-Rubio, Mario Ricardo
Cost-effective sensor for flow monitoring in biologic microreactors. - In: IEEE sensors journal, ISSN 1558-1748, Bd. 21 (2021), 19, S. 21314-21321

https://doi.org/10.1109/JSEN.2021.3102262
Bracher, Johannes; Wolffram, Daniel; Deuschel, Jannik; Görgen, Konstantin; Ketterer, Jakob L.; Ullrich, Alexander; Abbott, Sam; Barbarossa, Maria Vittoria; Bertsimas, Dimitris; Bhatia, Sangeeta; Bodych, Marcin; Bosse, Nikos I.; Burgard, Jan Pablo; Castro, Lauren; Fairchild, Geoffrey; Fuhrmann, Jan; Funk, Sebastian; Gogolewski, Krzysztof; Gu, Quanquan; Heyder, Stefan; Hotz, Thomas; Kheifetz, Yuri; Kirsten, Holger; Krueger, Tyll; Krymova, Ekaterina; Li, Michael Lingzhi; Meinke, Jan H.; Michaud, Isaac J.; Niedzielewski, Karol; Ożaânski, Tomasz; Rakowski, Franciszek; Scholz, Markus; Soni, Saksham; Srivastava, Ajitesh; Zieliânski, Jakub; Zou, Difan; Gneiting, Tilmann; Schienle, Melanie
A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave. - In: Nature Communications, ISSN 2041-1723, Bd. 12 (2021), 5173, S. 1-16

Disease modelling has had considerable policy impact during the ongoing COVID-19 pandemic, and it is increasingly acknowledged that combining multiple models can improve the reliability of outputs. Here we report insights from ten weeks of collaborative short-term forecasting of COVID-19 in Germany and Poland (12 October-19 December 2020). The study period covers the onset of the second wave in both countries, with tightening non-pharmaceutical interventions (NPIs) and subsequently a decay (Poland) or plateau and renewed increase (Germany) in reported cases. Thirteen independent teams provided probabilistic real-time forecasts of COVID-19 cases and deaths. These were reported for lead times of one to four weeks, with evaluation focused on one- and two-week horizons, which are less affected by changing NPIs. Heterogeneity between forecasts was considerable both in terms of point predictions and forecast spread. Ensemble forecasts showed good relative performance, in particular in terms of coverage, but did not clearly dominate single-model predictions. The study was preregistered and will be followed up in future phases of the pandemic.



https://doi.org/10.1038/s41467-021-25207-0
Grebinyk, Anna; Prylutska, Svitlana; Grebinyk, Sergii; Evstigneev, Maxim; Krysiuk, Iryna; Skaterna, Tetiana; Horak, Iryna; Sun, Yanfang; Drobot, Liudmyla; Matyshevska, Olga; Prylutskyy, Yuriy; Ritter, Uwe; Frohme, Marcus
Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo. - In: Cancer nanotechnology, ISSN 1868-6966, Bd. 12 (2021), 24, insges. 18 S.

Berberine (Ber) is a herbal alkaloid with pharmacological activity in general and a high anticancer potency in particular. However, due to its low bioavailability, the difficulty in reaching a target and choosing the right dose, there is a need to improve approaches of Ber use in anticancer therapy. In this study, Ber, noncovalently bound to a carbon nanostructure C60 fullerene (C60) at various molar ratios of the components, was explored against Lewis lung carcinoma (LLC).



https://doi.org/10.1186/s12645-021-00096-6
Hackenberg, Annika; Worthmann, Karl; Pätz, Torben; Keiner, Dörthe; Oertel, Joachim; Flaßkamp, Kathrin
Neurochirurgische Planung mittels automatisierter Bilderkennung und optimaler Pfadplanung :
Neurosurgery planning based on automated image recognition and optimal path design. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 69 (2021), 8, S. 708-721

Stereotactic neurosurgery requires a careful planning of cannulae paths to spare eloquent areas of the brain that, if damaged, will result in loss of essential neurological function such as sensory processing, linguistic ability, vision, or motor function. We present an approach based on modelling, simulation, and optimization to set up a computational assistant tool. Thereby, we focus on the modeling of the brain topology, where we construct ellipsoidal approximations of voxel clouds based on processed MRI data. The outcome is integrated in a path-planning problem either via constraints or by penalization terms in the objective function. The surgical planning problem with obstacle avoidance is solved for different types of stereotactic cannulae using numerical simulations. We illustrate our method with a case study using real MRI data.



https://doi.org/10.1515/auto-2021-0044
Hurmach, Vasyl V.; Platonov, Maksim O.; Prylutska, Svitlana V.; Scharff, Peter; Prylutskyy, Yuriy I.; Ritter, Uwe
C60 fullerene against SARS-CoV-2 coronavirus: an in silico insight. - In: Scientific reports, ISSN 2045-2322, Bd. 11 (2021), 17748, S. 1-12

Based on WHO reports the new SARS-CoV-2 coronavirus is currently widespread all over the world. So far > 162 million cases have been confirmed, including > 3 million deaths. Because of the pandemic still spreading across the globe the accomplishment of computational methods to find new potential mechanisms of virus inhibitions is necessary. According to the fact that C60 fullerene (a sphere-shaped molecule consisting of carbon) has shown inhibitory activity against various protein targets, here the analysis of the potential binding mechanism between SARS-CoV-2 proteins 3CLpro and RdRp with C60 fullerene was done; it has resulted in one and two possible binding mechanisms, respectively. In the case of 3CLpro, C60 fullerene interacts in the catalytic binding pocket. And for RdRp in the first model C60 fullerene blocks RNA synthesis pore and in the second one it prevents binding with Nsp8 co-factor (without this complex formation, RdRp can't perform its initial functions). Then the molecular dynamics simulation confirmed the stability of created complexes. The obtained results might be a basis for other computational studies of 3CLPro and RdRp potential inhibition ways as well as the potential usage of C60 fullerene in the fight against COVID-19 disease.



https://doi.org/10.1038/s41598-021-97268-6
Zhao, Xingxing; Zhang, Chenglin; Yang, Guowei; Wu, Yuhan; Fu, Qun; Zhao, Huaping; Lei, Yong
Bismuth selenide nanosheets confined in thin carbon layers as anode materials for advanced potassium-ion batteries. - In: Inorganic chemistry frontiers, ISSN 2052-1553, Bd. 8 (2021), 18, S. 4267-4275

Metal selenides as promising anode materials for potassium ion batteries (PIBs) have attracted great research attention. However, it is still a challenge to promote its practical application due to the unsatisfactory cyclability resulting from large volume variation and sluggish kinetics. Herein, we tackle this issue by focusing on a promising but undemonstrated anode, bismuth selenide for PIBs which possesses a high theoretical capacity and good electronic conductivity. Benefitting from the carbon layer coating, Bi2Se3C has the capability to inhibit self-aggregation and buffer the volume expansion, leading to outstanding potassium-ion storage capability. It exhibits a very high reversible capacity of 526 mA h g^-1 at 50 mA g^-1, as well as superior cyclability and rate capability while maintaining a high capacity of 214 mA h g^-1 at 1.0 A g^-1 after 1000 cycles. Furthermore, its fast and reversible ion storage mechanism was verified, which first involves conversion and subsequent alloying redox reactions. This work enriches the understanding and development of stable conversion/alloying-based anodes for high-performance potassium-ion batteries.



https://doi.org/10.1039/D1QI00672J
Kronfeld, Klaus-Peter; Ellinger, Thomas; Köhler, Michael
Micro flow photochemical synthesis of Ca-sensitive fluorescent sensor particles. - In: Engineering in life sciences, ISSN 1618-2863, Bd. 21 (2021), 8/9, S. 518-526

Fluorescence probes have widely been used for detecting and imaging Ca2+-enriched parts of cells but more rarely for quantitative determination of concentrations. In this study we show how this can be achieved by a novel approach using hydrogel particles. In a microfluidic co-flow arrangement spherical droplets were generated from an aqueous solution of acrylamide, N,N'-methylenebisacrylamide crosslinker and photoinitiator and subsequently photo-cured in situ yielding gel particles in a sub millimeter range. These particles were separated, dried under reduced pressure and re-swollen in water containing Rhod-5N tri potassium salt as calcium ion selective fluorescence probe. After that the particles were dried again and stored for further investigations. Upon exposure of dried particles to calcium chloride solutions they swell and take up Ca2+-ions forming a strong fluorescing complex with Rhod-5N. Thus, fluorescence intensity increases with calcium ion concentration. Up to ca. 0.50 mM the enhancement effect is strong and then becomes considerably weaker. The intensity-concentration-dependence is well described by an equation derived from the equilibrium of the formation of a 1:1 Ca2+:Rhod-5N complex. The particles allow for a fast optical determination of Ca2+-concentrations up to 0.50 mM in analyte volumes down to below 10 [my]L.



https://doi.org/10.1002/elsc.202100023
Köhler, Michael; Kluitmann, Jonas; Günther, Mike
Metal nanoparticles as free-floating electrodes. - In: Encyclopedia, ISSN 2673-8392, Bd. 1 (2021), 3, S. 551-565

Colloidal metal nanoparticles in an electrolyte environment are not only electrically charged but also electrochemically active objects. They have the typical character of metal electrodes with ongoing charge transfer processes on the metal/liquid interface. This picture is valid for the equilibrium state and also during the formation, growth, aggregation or dissolution of nanoparticles. This behavior can be understood in analogy to macroscopic mixed-electrode systems with a free-floating potential, which is determined by the competition between anodic and cathodic partial processes. In contrast to macroscopic electrodes, the small size of nanoparticles is responsible for significant effects of low numbers of elementary charges and for self-polarization effects as they are known from molecular systems, for example. The electrical properties of nanoparticles can be estimated by basic electrochemical equations. Reconsidering these fundamentals, the assembly behavior, the formation of nonspherical assemblies of nanoparticles and the growth and the corrosion behavior of metal nanoparticles, as well as the formation of core/shell particles, branched structures and particle networks, can be understood. The consequences of electrochemical behavior, charging and self-polarization for particle growth, shape formation and particle/particle interaction are discussed.



https://doi.org/10.3390/encyclopedia1030046
Köhler, Michael;
Challenges for nanotechnology. - In: Encyclopedia, ISSN 2673-8392, Bd. 1 (2021), 3, S. 618-631

The term "Nanotechnology" describes a large field of scientific and technical activities dealing with objects and technical components with small dimensions. Typically, bodies that are in-at least-two dimensions smaller than 0.1 [my]m are regarded as "nanobjects". By this definition, a lot of advanced materials, as well as the advanced electronic devices, are objects of nanotechnology. In addition, many aspects of molecular biotechnology as well as macromolecular and supermolecular chemistry and nanoparticle techniques are summarized under "nanotechnology". Despite this size-oriented definition, nanotechnology is dealing with physics and chemistry as well as with the realization of technical functions in the area between very small bodies and single particles and molecules. This includes the shift from classical physics into the quantum world of small molecules and low numbers or single elementary particles. Besides the already established fields of nanotechnology, there is a big expectation about technical progress and solution to essential economic, medical, and ecological problems by means of nanotechnology. Nanotechnology can only meet these expectations if fundamental progress behind the recent state of the art can be achieved. Therefore, very important challenges for nanotechnology are discussed here.



https://doi.org/10.3390/encyclopedia1030051
Lindt, Kevin; Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Non-exponential 1H and 2H NMR relaxation and self-diffusion in asphaltene-maltene solutions. - In: Molecules, ISSN 1420-3049, Bd. 26 (2021), 17, 5218, insges. 35 S.
Im Titel sind "1" und "2" hochgestellt

The distribution of NMR relaxation times and diffusion coefficients in crude oils results from the vast number of different chemical species. In addition, the presence of asphaltenes provides different relaxation environments for the maltenes, generated by steric hindrance in the asphaltene aggregates and possibly by the spatial distribution of radicals. Since the dynamics of the maltenes is further modified by the interactions between maltenes and asphaltenes, these interactions - either through steric hindrances or promoted by aromatic-aromatic interactions - are of particular interest. Here, we aim at investigating the interaction between individual protonic and deuterated maltene species of different molecular size and aromaticity and the asphaltene macroaggregates by comparing the maltenes’ NMR relaxation (T1 and T2) and translational diffusion (D) properties in the absence and presence of the asphaltene in model solutions. The ratio of the average transverse and longitudinal relaxation rates, describing the non-exponential relaxation of the maltenes in the presence of the asphaltene, and its variation with respect to the asphaltene-free solutions are discussed. The relaxation experiments reveal an apparent slowing down of the maltenes’ dynamics in the presence of asphaltenes, which differs between the individual maltenes. While for single-chained alkylbenzenes, a plateau of the relaxation rate ratio was found for long aliphatic chains, no impact of the maltenes’ aromaticity on the maltene-asphaltene interaction was unambiguously found. In contrast, the reduced diffusion coefficients of the maltenes in presence of the asphaltenes differ little and are attributed to the overall increased viscosity.



https://doi.org/10.3390/molecules26175218
Emminger, Carola; Abadizaman, Farzin; Samarasingha, Nuwanjula S.; Menéndez, José; Espinoza, Shirly; Richter, Steffen; Rebarz, Mateusz; Herrfurth, Oliver; Zahradník, Martin; Schmidt-Grund, Rüdiger; Andreasson, Jakob; Zollner, Stefan
Analysis of temperature-dependent and time-resolved ellipsometry spectra of Ge. - In: 2021 IEEE Photonics Society Summer Topicals Meeting Series (SUM), (2021), insges. 2 S.

https://doi.org/10.1109/SUM48717.2021.9505707
Paszuk, Agnieszka; Nandy, Manali; Kleinschmidt, Peter; Hannappel, Thomas
In situ monitoring of As-P exchange on Ge(100) surfaces in GaAs-rich CVD reactors for low-defect III-V multijunction solar cells. - In: 2021 48th IEEE Photovoltaic Specialists Conference (PVSC), (2021), S. 339-341

https://doi.org/10.1109/PVSC43889.2021.9518946
Nandy, Manali; Paszuk, Agnieszka; Feifel, Markus; Koppka, Christian; Kleinschmidt, Peter; Dimroth, Frank; Hannappel, Thomas
Reduction of defects in GaP layers grown on Si(100) by MOCVD. - In: 2021 48th IEEE Photovoltaic Specialists Conference (PVSC), (2021), S. 1344-1347

https://doi.org/10.1109/PVSC43889.2021.9518758
Zhou, Xue-Quan; Mytiliniou, Maria; Hilgendorf, Jonathan; Zeng, Ye; Papadopoulou, Panagiota; Shao, Yang; Dominguez, Maximilian Paradiz; Zhang, Liyan; Hesselberth, Marcel B. S.; Bos, Erik; Siegler, Maxime A.; Buda, Francesco; Brouwer, Albert M.; Kros, Alexander; Koning, Roman I.; Heinrich, Doris; Bonnet, Sylvestre
Intracellular dynamic assembly of deep-red emitting supramolecular nanostructures based on the Pt…Pt metallophilic interaction. - In: Advanced materials, ISSN 1521-4095, Bd. 33 (2021), 37, 2008613, insges. 13 S.

https://doi.org/10.1002/adma.202008613
Mehler, Alexander; Néel, Nicolas; Voloshina, Elena; Dedkov, Yuriy; Kröger, Jörg
Second floor of flatland: epitaxial growth of graphene on hexagonal boron nitride. - In: Small, ISSN 1613-6829, Bd. 17 (2021), 36, 2102747, insges. 9 S.

In the studies presented here, the subsequent growth of graphene on hexagonal boron nitride (h-BN) is achieved by the thermal decomposition of molecular precursors and the catalytic assistance of metal substrates. The epitaxial growth of h-BN on Pt(111) is followed by the deposition of a temporary Pt film that acts as a catalyst for the fabrication of the graphene sheet. After intercalation of the intermediate Pt film underneath the boron-nitride mesh, graphene resides on top of h-BN. Scanning tunneling microscopy and density functional calculations reveal that the moiré pattern of the van-der-Waals-coupled double layer is due to the interface of h-BN and Pt(111). While on Pt(111) the graphene honeycomb unit cells uniformly appear as depressions using a clean metal tip for imaging, on h-BN they are arranged in a honeycomb lattice where six protruding unit cells enframe a topographically dark cell. This superstructure is most clearly observed at small probe-surface distances. Spatially resolved inelastic electron tunneling spectroscopy enables the detection of a previously predicted acoustic hybrid phonon of the stacked materials. Its' spectroscopic signature is visible in surface regions where the single graphene sheet on Pt(111) transitions into the top layer of the stacking.



https://doi.org/10.1002/smll.202102747
Ilchmann, Achim; Kirchhoff, Jonas
Differential-algebraic systems are generically controllable and stabilizable. - In: Mathematics of control, signals, and systems, ISSN 1435-568X, Bd. 33 (2021), 3, S. 359-377

We investigate genericity of various controllability and stabilizability concepts of linear, time-invariant differential-algebraic systems. Based on well-known algebraic characterizations of these concepts (see the survey article by Berger and Reis (in: Ilchmann A, Reis T (eds) Surveys in differential-algebraic equations I, Differential-Algebraic Equations Forum, Springer, Berlin, pp 1-61. https://doi.org/10.1007/978-3-642-34928-7_1)), we use tools from algebraic geometry to characterize genericity of controllability and stabilizability in terms of matrix formats.



https://doi.org/10.1007/s00498-021-00287-x
Cretu, Andrea; Mattea, Carlos; Stapf, Siegfried
Low-field and variable-field NMR relaxation studies of H2O and D2O molecular dynamics in articular cartilage. - In: PLOS ONE, ISSN 1932-6203, Bd. 16 (2021), 8, e0256177, insges. 34 S.
Im Titel ist "2" tiefgestellt

https://doi.org/10.1371/journal.pone.0256177
Zhang, Keyu; Cui, Dingfang; Huang, Xiaopeng; Liang, Feng; Gao, Geng; Song, Tingyu; Zhang, Libo; Yao, Yaochun; Lei, Yong
Insights into the interfacial chemistry and conversion mechanism of iron oxalate toward the reduction by lithium. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 426 (2021), 131446

The origin of excellent lithium storage ability and high irreversible capacity is probably the least understood component for transition-metal oxalates as anode materials in lithium-ion batteries. Considerable efforts have been put into understanding their electrochemical reaction mechanisms, but these insights have mostly been unilateral and unsystematic. Herein, the interface characteristic between iron oxalate anode and electrolyte and detailed conversion process were investigated to explore the source of irreversible Li+ storage. In particular, a gelatinous "organic" layer identified oxygen, fluorine and phosphorus as the main chemical elements can be re-oxidized and exhibits an obviously reversible conversion between sedimentation and decomposition during its initial lithiation process, despite the general belief that it shows similar electrochemically inert to solid-electrolyte interphase (SEI). Meanwhile, this special interface layer leads to higher ability of Li+ ions diffusion and smaller charge-transfer resistance, which is the vital role for excellent rate capability. Furthermore, ex situ FTIR analysis confirms the formation and residue of new intermediate compound of Li2Fe(C2O4)2, thus making a part of initial irreversible capacity. It is also found that the iron oxalate electrode with larger capacitive contribution still has more widely application in energy storage of supercapacitors in future.



https://doi.org/10.1016/j.cej.2021.131446
Zeußel, Lisa; Mai, Patrick; Sharma, Sanjay; Schober, Andreas; Ren, Shizhan; Singh, Sukhdeep
Colorimetric method for instant detection of lysine and arginine using novel Meldrum's acid-furfural conjugate. - In: ChemistrySelect, ISSN 2365-6549, Bd. 6 (2021), 27, S. 6834-6840

In the past few years Meldrum's acid furfural conjugate (MAFC) have been extensively explored as starting material for the synthesis of photo switchable donor acceptor stenhouse adducts (DASA). Hereby, we have explored the interaction of MAFC with various amino acids. To our surprise, nitrogen rich amino acids like lysine and arginine interact spontaneously with MAFC to give colored adduct immediately, whereas other amino acids, including nitrogen rich histidine, didn't show any coloration. Naked eye detection of lysine in benign solvent make this reagent an attractive new entry to the collection of chemosensors for the colorimetric detection of lysine and arginine. Intense coloration corresponds to the absorption at 514 nm under UV-Vis spectrometer. Lowest concentration of 100 m can be detected with UV-Vis spectrometer. NMR titrations reveals that the appearance of color is due to ring opening of a furfural that leads to the formation of conjugated triene species. Compared to previously reported chemosensors for lysine and arginine, MAFC offers advantages including simple synthesis, easy handling, high speed, low cost, good sensitivity/selectivity.



https://doi.org/10.1002/slct.202101140
Wu, Xiaocui; Wiame, Frédéric; Maurice, Vincent; Marcus, Philippe
Molecular scale insights into interaction mechanisms between organic inhibitor film and copper. - In: npj Materials degradation, ISSN 2397-2106, Bd. 5 (2021), 22, insges. 8 S.

A model experimental approach, providing molecular scale insight into the build up mechanisms of a corrosion inhibiting interface, is reported. 2-mercaptobenzimidazole (2-MBI), a widely used organic inhibitor, was deposited from the vapor phase at ultra-low pressure on copper surfaces in chemically-controlled state, and X-ray photoelectron spectroscopy was used in situ to characterize the adsorption mechanisms upon formation of the inhibiting film. On copper surfaces prepared clean in the metallic state, the intact molecules lie flat at low exposure, with sulfur and both nitrogen atoms bonded to copper. A fraction of the molecules decomposes upon adsorption, leaving atomic sulfur on copper. At higher exposure, the molecules adsorb in a tilted position with sulfur and only one nitrogen bonded to copper, leading to a densification of 2-MBI in the monolayer. A bilayer is formed at saturation with the outer layer not bonded directly to copper. In the presence of a pre-adsorbed 2D oxide, oxygen is substituted and the molecules adsorb intactly without decomposition. A 3D oxide prevents the bonding of sulfur to copper. The molecular film formed on metallic and 2D oxide pre-covered surfaces partially desorbs and decomposes at temperature above 400 &ring;C, leading to the adsorption of atomic sulfur on copper.



https://doi.org/10.1038/s41529-021-00168-3
Jiang, Yuning; Sauerteig, Philipp; Houska, Boris; Worthmann, Karl
Distributed optimization using ALADIN for MPC in smart grids. - In: IEEE transactions on control systems technology, ISSN 1558-0865, Bd. 29 (2021), 5, S. 2142-2152

This article presents a distributed optimization algorithm tailored to solve optimization problems arising in smart grids. In detail, we propose a variant of the augmented Lagrangian-based alternating direction inexact Newton (ALADIN) method, which comes along with global convergence guarantees for the considered class of linear-quadratic optimization problems. We establish local quadratic convergence of the proposed scheme and elaborate its advantages compared with the alternating direction method of multipliers (ADMM). In particular, we show that, at the cost of more communication, ALADIN requires fewer iterations to achieve the desired accuracy. Furthermore, it is numerically demonstrated that the number of iterations is independent of the number of subsystems. The effectiveness of the proposed scheme is illustrated by running both an ALADIN and an ADMM-based model predictive controller on a benchmark case study.



https://doi.org/10.1109/TCST.2020.3033010
Bouza, Gemayqzel; Quintana, Ernest; Tammer, Christiane
A steepest descent method for set optimization problems with set-valued mappings of finite cardinality. - In: Journal of optimization theory and applications, ISSN 1573-2878, Bd. 190 (2021), 3, S. 711-743

In this paper, we study a first-order solution method for a particular class of set optimization problems where the solution concept is given by the set approach. We consider the case in which the set-valued objective mapping is identified by a finite number of continuously differentiable selections. The corresponding set optimization problem is then equivalent to find optimistic solutions to vector optimization problems under uncertainty with a finite uncertainty set. We develop optimality conditions for these types of problems and introduce two concepts of critical points. Furthermore, we propose a descent method and provide a convergence result to points satisfying the optimality conditions previously derived. Some numerical examples illustrating the performance of the method are also discussed. This paper is a modified and polished version of Chapter 5 in the dissertation by Quintana (On set optimization with set relations: a scalarization approach to optimality conditions and algorithms, Martin-Luther-Universität Halle-Wittenberg, 2020).



https://doi.org/10.1007/s10957-021-01887-y
Zhang, Huanming; Zhou, Min; Guo, Yaqiong; Yu, Zhenjiang; Xu, Rui; Wen, Liaoyong; Wang, Yi; Zhao, Huaping; Lei, Yong
Gas-flow-assisted wrinkle-free transfer of a centimeter-scale ultrathin alumina membrane onto arbitrary substrates. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 29, S. 35124-35132

The transfer of an ultrathin membrane onto arbitrary substrates is important in different practical fields. Conventional wet-transfer methods inevitably induce wrinkle defects as a result of the large contact angle of the trapped droplet between the membrane and the substrate. Here, we demonstrate a gas flow-assisted method (GFAM) to transfer centimeter (cm)-scale ultrathin membranes onto arbitrary substrates (including a curved substrate) without wrinkles. GFAM makes use of contact angle hysteresis to bulge the trapped droplet between the substrate and the ultrathin membrane and simultaneously stretch the ultrathin membrane during rapid dewetting driven by gas flow. Moreover, GFAM can be easily fulfilled by using compressed air for seconds. Compared with conventional hydrophilic treatments or organic liquid wetting, this method has no durability concern and does not change the surface nature of substrates. Taking a widely used ultrathin anodic aluminum oxide (AAO) membrane as an example, we successfully demonstrate the application of a large-area wrinkle-free ultrathin AAO membrane to defect-free ordered nanostructure array fabrication and investigate the micro-scale details of macro-scale wrinkles generated by the conventional ways. In addition, its corresponding superiority over the defective counterpart is further studied in optical sensing. This method is highly valuable for promoting the simplicity of large-area ultrathin membrane transfer in practice.



https://doi.org/10.1021/acsami.1c07574
Halle, Johannes; Néel, Nicolas; Kröger, Jörg
Monolayer and bilayer graphene on Ru(0001): layer-specific and moiré-site-dependent phonon excitations. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 12 (2021), 29, S. 6889-6894

Graphene phonons are excited by the local injection of electrons and holes from the tip of a scanning tunneling microscope. Despite the strong graphene-Ru(0001) hybridization, monolayer graphene unexpectedly exhibits pronounced phonon signatures in inelastic electron tunneling spectroscopy. Spatially resolved spectroscopy reveals that the strength of the phonon signal depends on the site of the moiré lattice with a substantial red-shift of phonon energies compared to those of free graphene. Bilayer graphene gives rise to more pronounced spectral signatures of vibrational quanta with energies nearly matching the free graphene phonon energies. Spectroscopy data of bilayer graphene indicate moreover the presence of a Dirac cone plasmon excitation.



https://doi.org/10.1021/acs.jpclett.1c01802
Grundel, Sara; Heyder, Stefan; Hotz, Thomas; Ritschel, Tobias K. S.; Sauerteig, Philipp; Worthmann, Karl
How to coordinate vaccination and social distancing to mitigate SARS-CoV-2 outbreaks. - In: SIAM journal on applied dynamical systems, ISSN 1536-0040, Bd. 20 (2021), 2, S. 1135-1157

Most countries have started vaccinating people against COVID-19. However, due to limited production capacities and logistical challenges it will take months/years until herd immunity is achieved. Therefore, vaccination and social distancing have to be coordinated. In this paper, we provide some insight on this topic using optimization-based control on an age-differentiated compartmental model. For real-life decision-making, we investigate the impact of the planning horizon on the optimal vaccination/social distancing strategy. We find that in order to reduce social distancing in the long run, without overburdening the health care system, it is essential to vaccinate the people with the highest contact rates first. That is also the case if the objective is to minimize fatalities provided that the social distancing measures are sufficiently strict. However, for short-term planning it is optimal to focus on the high-risk group.



https://doi.org/10.1137/20M1387687
Cao-Riehmer, Jialan; Chande, Charmi; Kalensee, Franziska; Schüler, Tim; Köhler, Michael
Microfluidically supported characterization of responses of Rhodococcus erythropolis strains isolated from different soils on Cu-, Ni-, and Co-stress. - In: Brazilian journal of microbiology, ISSN 1678-4405, Bd. 52 (2021), 3, S. 1405-1415

We present a new methodological approach for the assessment of the susceptibility of Rhodococcus erythropolis strains from specific sampling sites in response to increasing heavy metal concentration (Cu2+, Ni2+, and Co2+) using the droplet-based microfluid technique. All isolates belong to the species R. erythropolis identified by Sanger sequencing of the 16S rRNA. The tiny step-wise variation of metal concentrations from zero to the lower mM range in 500 nL droplets not only provided accurate data for critical metal ion concentrations but also resulted in a detailed visualization of the concentration-dependent response of bacterial growth and autofluorescence activity. As a result, some of the isolates showed similar characteristics in heavy metal tolerance against Cu2+, Ni2+, and Co2+. However, significantly different heavy metal tolerances were found for other strains. Surprisingly, samples from the surface soil of ancient copper mining areas supplied mostly strains with a moderate sensitivity to Cu2+, Ni2+, and Co2+, but in contrast, a soil sample from an excavation site of a medieval city that had been covered for about eight centuries showed an extremely high tolerance against cobalt ion (up to 36 mM). The differences among the strains not only may be regarded as results of adaptation to the different environmental conditions faced by the strains in nature but also seem to be related to ancient human activities and temporal partial decoupling of soil elements from the surface. This investigation confirmed that microfluidic screening offers empirical characterization of properties from same species which has been isolated from sites known to have different human activities in the past.



https://doi.org/10.1007/s42770-021-00495-2
Lauer, Kevin; Brokmann, Geert; Bähr, Mario; Ortlepp, Thomas
Determination of piezo-resistive coefficient π44 in p-type silicon by comparing simulation and measurement of pressure sensors. - In: AIP Advances, ISSN 2158-3226, Bd. 11 (2021), 8, 085005, insges. 6 S.

https://doi.org/10.1063/5.0060034
Strutynska, Nataliia; Malyshenko, Anna; Tverdokhleb, Nina; Evstigneev, Maxim; Vovchenko, Ludmila; Prylutskyy, Yuriy; Slobodyanik, Nikolai; Ritter, Uwe
Design, characterization and mechanical properties of new Na+, CO32--apatite/alginate/C60 fullerene hybrid biocomposites. - In: Journal of the Korean Ceramic Society, ISSN 2234-0491, Bd. 58 (2021), 4, S. 422-429
Im Titel sind "+" und "2-" hochgestellt, "3" und "60" tiefgestellt

Nanoparticles (20-50 nm) of Na+, CO32--containing calcium phosphate (Na: 1.49 wt% and C: 1.53 wt%) with apatite-type structure were prepared by precipitation method from aqueous solution. According to FTIR spectroscopy data, the partial substitution of phosphate by carbonate (B-type) realized in the apatite-type structure. Obtained Na+, CO32--hydroxyapatite (HAP) was used for the preparation of hybrid biocomposites with Alginate (Alg) with weight ratio HAP: Alg = 1:1 or 2:1 and C60 fullerene (C60; from 0.2 to 4 wt%) and their mechanical properties were determined. It was found, that sample with weight ratio HAP: Alg = 2:1 and containing 4.0 wt% of C60 has the highest Young's modulus 429 MPa comparing with other determined samples. The structure modeling of the investigated system showed that the formation of triple complexes Na+, CO32--HAP-Alg-C60 is stabilized by solvophobic and stacking interactions. The created biocomposites can be used as an effective implant material for bone restoration.



https://doi.org/10.1007/s43207-020-00107-z
Yao, Jie; Zhang, Chenglin; Yang, Guowei; Sha, Mo; Dong, Yulian; Fu, Qun; Wu, Yuhan; Zhao, Huaping; Wu, Minghong; Lei, Yong
Bismuth nanoparticles confined in carbonaceous nanospheres as anodes for high-performance potassium-ion batteries. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 27, S. 31766-31774

Bismuth (Bi) has been considered as a promising alloying-type anode for potassium-ion batteries (PIBs), owing to its high theoretical capacity and suitable working voltage plateaus. However, Bi suffers from dramatic volume fluctuation and significant pulverization during the discharge/charge processes, resulting in fast capacity decay. Herein, we synthesize Bi nanoparticles confined in carbonaceous nanospheres (denoted as BiC) for PIBs by first utilizing BiOCl nanoflakes as a hard template and a Bi precursor. The construction of the loose structure buffers the mechanical stresses resulting from the volume expansion of Bi during the alloying reaction and avoids the fracture of the electrode structure, thus improving the cycling performance. Moreover, the carbonaceous layers increase the electronic conductivity and disperse the Bi nanoparticles, enhancing the charge transportation and ionic diffusion, which further promotes the rate capability of Bi@C. It exhibits a superior capacity (389 mAh g^-1 at 100 mA g^-1 after 100 cycles), excellent cycling stability (206 mAh g^-1 at 500 mA g^-1 over 1000 cycles), and an improved rate capability (182 mAh g^-1 at 2.0 A g^-1). This work provides a new structuring strategy in alloying materials for boosting reversible and stable potassium-ion storage.



https://doi.org/10.1021/acsami.1c09286
Kriesell, Matthias;
A note on uniquely 10-colorable graphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 98 (2021), 1, S. 24-26

Hadwiger conjectured that every graph of chromatic number k admits a clique minor of order k. Here we prove for k ≤ 10, that every graph of chromatic number k with a unique k-coloring (up to the color names) admits a clique minor of order k. The proof does not rely on the Four Color Theorem.



https://doi.org/10.1002/jgt.22679
Chernykh, Mariia; Zavalny, Dmytro; Sokolova, Viktoriya; Ponomarenko, Stanislav; Prylutska, Svitlana; Kuziv, Yuliia; Chumachenko, Vasyl; Marynin, Andrii; Kutsevol, Nataliya; Epple, Matthias; Ritter, Uwe; Piosik, Jacek; Prylutskyy, Yuriy
A new water-soluble thermosensitive star-like copolymer as a promising carrier of the chemotherapeutic drug doxorubicin. - In: Materials, ISSN 1996-1944, Bd. 14 (2021), 13, 3517, insges. 13 S.

A new water-soluble thermosensitive star-like copolymer, dextran-graft-poly-N-iso-propilacrylamide (D-g-PNIPAM), was created and characterized by various techniques (size-exclusion chromatography, differential scanning calorimetry, Fourier-transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) spectroscopy). The viability of cancer cell lines (human transformed cervix epithelial cells, HeLa) as a model for cancer cells was studied using MTT and Live/Dead assays after incubation with a D-g-PNIPAM copolymer as a carrier for the drug doxorubicin (Dox) as well as a D-g-PNIPAM + Dox mixture as a function of the concentration. FTIR spectroscopy clearly indicated the complex formation of Dox with the D-g-PNIPAM copolymer. The size distribution of particles in Hank’s solution was determined by the DLS technique at different temperatures. The in vitro uptake of the studied D-g-PNIPAM + Dox nanoparticles into cancer cells was demonstrated by confocal laser scanning microscopy. It was found that D-g-PNIPAM + Dox nanoparticles in contrast to Dox alone showed higher toxicity toward cancer cells. All of the aforementioned facts indicate a possibility of further preclinical studies of the water-soluble D-g-PNIPAM particles’ behavior in animal tumor models in vivo as promising carriers of anticancer agents.



https://doi.org/10.3390/ma14133517
Romanyuk, Oleksandr; Paszuk, Agnieszka; Bartoš, Igor; Wilks, Regan George; Nandy, Manali; Bombsch, Jakob; Hartmann, Claudia; Félix, Roberto; Ueda, Shigenori; Gordeev, Ivan; Houdkova, Jana; Kleinschmidt, Peter; Machek, Pavel; Bär, Marcus; Jiříček, Petr; Hannappel, Thomas
Band bending at heterovalent interfaces: hard X-ray photoelectron spectroscopy of GaP/Si(0 0 1) heterostructures. - In: Applied surface science, Bd. 565 (2021), 150514

https://doi.org/10.1016/j.apsusc.2021.150514
Paszuk, Agnieszka; Supplie, Oliver; Brückner, Sebastian; Barrigón, Enrique; May, Matthias M.; Nandy, Manali; Gieß, Aaron; Dobrich, Anja; Kleinschmidt, Peter; Rey-Stolle, Ignacio; Hannappel, Thomas
Atomic surface control of Ge(100) in MOCVD reactors coated with (Ga)As residuals. - In: Applied surface science, Bd. 565 (2021), 150513

Heteroepitaxy of planar, low-defect III-V semiconductor layers on Ge(100) requires a single-domain substrate surface, where dimer rows are aligned in parallel on atomically well-ordered terraces, which are separated by steps of even numbered atomic height. The presence of Ga and As in the sample ambience crucially impacts the preparation of such Ge(100) surfaces. Ga and As are commonly omnipresent, when applying metalorganic chemical vapor deposition (MOCVD), either directly supplied by precursors, in the form of MOCVD reactor residuals, or both. We study the impact of the growth conditions on the Ge(100) surface formation in situ, in dependence on the reactor pre-conditioning, the type of As supply, and/or temperature, utilizing surface-sensitive reflection anisotropy spectroscopy. We benchmark the in situ spectra to in system X-ray photoelectron spectroscopy, low energy electron diffraction and scanning tunneling microscopy. We find that interaction of tertiarybutylarsine (TBAs) with a coating of the inner MOCVD reactor walls by GaAs residuals favors desorption of As from reactor parts resulting in As-dimers on the Ge(100) surface, which are rotated by 90&ring; compared to preparation routes employing TBAs in Ga-free ambience. The optical in situ control enables precise adjustment and switching between distinct Ge(100) surface reconstructions for subsequent III-V heteroepitaxy.



https://doi.org/10.1016/j.apsusc.2021.150513
Kriničnij, Viktor I.; Yudanova, Evgeniya I.; Denisov, Nikolay N.; Konkin, Aleksei A.; Ritter, Uwe; Bogatyrenko, Victor R.; Konkin, Alexander L.
Light-induced electron paramagnetic resonance study of charge transport in fullerene and nonfullerene PBDB-T-based solar cells. - In: The journal of physical chemistry, ISSN 1932-7455, Bd. 125 (2021), 22, S. 12224-12240

https://doi.org/10.1021/acs.jpcc.1c03427
Grüne, Lars; Schaller, Manuel; Schiela, Anton
Abstract nonlinear sensitivity and turnpike analysis and an application to semilinear parabolic PDEs. - In: Control, optimisation and calculus of variations, ISSN 1262-3377, Bd. 27 (2021), 56, insges. 28 S.

We analyze the sensitivity of the extremal equations that arise from the first order necessary optimality conditions of nonlinear optimal control problems with respect to perturbations of the dynamics and of the initial data. To this end, we present an abstract implicit function approach with scaled spaces. We will apply this abstract approach to problems governed by semilinear PDEs. In that context, we prove an exponential turnpike result and show that perturbations of the extremal equation's dynamics, e.g., discretization errors decay exponentially in time. The latter can be used for very efficient discretization schemes in a Model Predictive Controller, where only a part of the solution needs to be computed accurately. We showcase the theoretical results by means of two examples with a nonlinear heat equation on a two-dimensional domain.



https://doi.org/10.1051/cocv/2021030
Kluitmann, Jonas; Zheng, Xuejiao; Köhler, Michael
Tuning the morphology of bimetallic gold-platinum nanorods in a microflow synthesis. - In: Colloids and surfaces, ISSN 1873-4359, Bd. 626 (2021), 127085

An automated microfluidic system with computer-controlled syringe pumps was applied for screening a three-dimensional concentration space for the formation of binary gold-platinum metal nanorods. Leveraging the micro segmented flow technique, precise residence and reactant addition timings as well as concentration spaces were addressed. The density and thickness of quasi-isotropic platinum shells on gold nanorod cores were tuned from isolated spots to a dense arrangement of high-aspect-ratio columns. The changing optical properties of the particles in the platinum deposition were used for monitoring the reaction progress and the products by the means of a fiber based micro flow-through spectrophotometer allowing to optimize process times. From our data, we propose an electrochemical model, postulating a diode-like effect and limitations for the formation of Pt nuclei on the gold surface and the formation of nano local elements. This point of view is supported by the observed decoration effects of gold facets and to the formation of columnar structures of the platinum shell.



https://doi.org/10.1016/j.colsurfa.2021.127085
Visaveliya, Nikunjkumar R.; Köhler, Michael
Softness meets with brightness: dye-doped multifunctional fluorescent polymer particles via microfluidics for labeling. - In: Advanced optical materials, ISSN 2195-1071, Bd. 9 (2021), 13, 2002219, insges. 22 S.

Fluorogenic labeling strategies have emerged as powerful tools for in vivo and in vitro imaging applications for diagnostic and theranostic purposes. Free organic chromophores (fluorescent dyes) are bright but rapidly degrade. Inorganic nanoparticles (e.g., quantum dots) are photostable but toxic to biological systems. Alternatively, dye-doped polymer particles are promising for labeling and imaging due to their properties that overcome limitations of photodegradation and toxicity. This progress report, therefore, presents various synthesis techniques for the generation of dye-doped fluorescent polymer particles. Polymer particles are relatively soft compared to inorganic nanoparticles and can be synthesized with characteristics like biocompatibility and stimuli responsiveness. Also, their ability of loading fluorophores through various interactions reveals brightness. Here, a multiscale-multicolor library of bright and soft fluorescent polymer particles is generated hierarchically. Various microfluidic supported strategies have been applied where fluorophores can be linked to polymeric networks noncovalently and covalently in the interior, and at the surface of nanoparticles (60-550 nm). Besides, microfluidic strategies for hydrophilic and hydrophobic fluorescent polymer microparticles (20-800 [my]m) have been performed for systematic tuning in size and color combination. Furthermore, soft and bright particulate assemblies are enabled through interfacial interactions at the intermediate scale (600 nm-3 [my]m) between the nanometer and micrometer lengthscale.



https://doi.org/https://doi.org/10.1002/adom.202002219
Liu, Tingxian; Berk, Linda; Wondergem, Joeri A. J.; Tong, Ciqing; Kwakernaak, Markus C.; Braak, Bas; Heinrich, Doris; Water, Bob; Kieltyka, Roxanne E.
Squaramide-based supramolecular materials drive HepG2 spheroid differentiation. - In: Advanced healthcare materials, ISSN 2192-2659, Bd. 10 (2021), 11, 2001903, insges. 10 S.

A major challenge in the use of HepG2 cell culture models for drug toxicity screening is their lack of maturity in 2D culture. 3D culture in Matrigel promotes the formation of spheroids that express liver-relevant markers, yet they still lack various primary hepatocyte functions. Therefore, alternative matrices where chemical composition and materials properties are controlled to steer maturation of HepG2 spheroids remain desired. Herein, a modular approach is taken based on a fully synthetic and minimalistic supramolecular matrix based on squaramide synthons outfitted with a cell-adhesive peptide, RGD for 3D HepG2 spheroid culture. Co-assemblies of RGD-functionalized squaramide-based and native monomers resulted in soft and self-recovering supramolecular hydrogels with a tunable RGD concentration. HepG2 spheroids are self-assembled and grown ( 150 m) within the supramolecular hydrogels with high cell viability and differentiation over 21 days of culture. Importantly, significantly higher mRNA and protein expression levels of phase I and II metabolic enzymes, drug transporters, and liver markers are found for the squaramide hydrogels in comparison to Matrigel. Overall, the fully synthetic squaramide hydrogels are proven to be synthetically accessible and effective for HepG2 differentiation showcasing the potential of this supramolecular matrix to rival and replace naturally-derived materials classically used in high-throughput toxicity screening.



https://doi.org/10.1002/adhm.202001903
Emmert, Martin; Somorowsky, Ferdinand; Ebert, Jutta; Görick, Dominik; Heyn, Andreas; Rosenberger, Eva; Wahl, Moritz; Heinrich, Doris
Modulation of mammalian cell behavior by nanoporous gass. - In: Advanced biology, ISSN 2701-0198, Bd. 5 (2021), 7, 2000570, insges. 13 S.

The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study investigates the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend toward mean pore sizes >80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSCs on samples with 17 nm pore size display increased expression of COL10, COL2A1, and SOX9, especially during the first two weeks of culture. In the upside down culture, SK-MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA-MB-321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples, underlining the material's potential for functional drug screening.



https://doi.org/10.1002/adbi.202000570
Gernandt, Hannes; Trunk, Carsten
The spectrum and the Weyr characteristics of operator pencils and linear relations. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2021. - 1 Online-Ressource (18 Seiten). - (Preprint ; M21,05)

The relation between the spectra of operator pencils with unbounded coeficients and of associated linear relations is investigated. It turns out that various types of spectrum coincide and the same is true for the Weyr characteristics. This characteristic describes how many independent Jordan chains up to a certain length exist. Furthermore, the change of this characteristic subject to one-dimensional perturbations is investigated.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021200091
Köhler, Michael; Beetz, Nancy; Günther, Mike; Möller, Frances; Cao-Riehmer, Jialan
Extremophiles in soil communities of former copper mining sites of the East Harz region (Germany) reflected by re-analyzed 16S rRNA data. - In: Microorganisms, ISSN 2076-2607, Bd. 9 (2021), 7, 1422, insges. 16 S.

The east and southeast rim of Harz mountains (Germany) are marked by a high density of former copper mining places dating back from the late 20th century to the middle age. A set of 18 soil samples from pre- and early industrial mining places and one sample from an industrial mine dump have been selected for investigation by 16S rRNA and compared with six samples from non-mining areas. Although most of the soil samples from the old mines show pH values around 7, RNA profiling reflects many operational taxonomical units (OTUs) belonging to acidophilic genera. For some of these OTUs, similarities were found with their abundances in the comparative samples, while others show significant differences. In addition to pH-dependent bacteria, thermophilic, psychrophilic, and halophilic types were observed. Among these OTUs, several DNA sequences are related to bacteria which are reported to show the ability to metabolize special substrates. Some OTUs absent in comparative samples from limestone substrates, among them Thaumarchaeota were present in the soil group from ancient mines with pH > 7. In contrast, acidophilic types have been found in a sample from a copper slag deposit, e.g., the polymer degrading bacterium Granulicella and Acidicaldus, which is thermophilic, too. Soil samples of the group of pre-industrial mines supplied some less abundant, interesting OTUs as the polymer-degrading Povalibacter and the halophilic Lewinella and Halobacteriovorax. A particularly high number of bacteria (OTUs) which had not been detected in other samples were found at an industrial copper mine dump, among them many halophilic and psychrophilic types. In summary, the results show that soil samples from the ancient copper mining places contain soil bacterial communities that could be a promising source in the search for microorganisms with valuable metabolic capabilities.



https://doi.org/10.3390/microorganisms9071422
Nozdrenko, Dmytro; Matvienko, Tetiana; Vygovska, Oksana; Bogutska, Kateryna; Motuziuk, Olexandr; Nurishchenko, Natalia; Prylutskyy, Yuriy; Scharff, Peter; Ritter, Uwe
Protective effect of water-soluble C60 fullerene nanoparticles on the ischemia-reperfusion injury of the muscle soleus in rats. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 22 (2021), 13, 6812, S. 1-13

The biomechanical parameters of muscle soleus contraction in rats and their blood biochemical indicators after the intramuscular administration of water-soluble C60 fullerene at doses of 0.5, 1, and 2 mg/kg 1 h before the onset of muscle ischemia were investigated. In particular, changes in the contraction force of the ischemic muscle soleus, the integrated power of the muscle, the time to achieve the maximum force response, the dynamics of fatigue processes, and the parameters of the transition from dentate to smooth tetanus, levels of creatinine, creatine kinase, lactate and lactate dehydrogenase, and parameters of prooxidant-antioxidant balance (thiobarbituric acid reactive substances, hydrogen peroxide, and reduced glutathione and catalase) were analyzed. The positive therapeutic changes in the studied biomechanical and biochemical markers were revealed, which indicate the possibility of using water-soluble C60 fullerenes as effective prophylactic nanoagents to reduce the severity of pathological conditions of the muscular system caused by ischemic damage to skeletal muscles.



https://doi.org/10.3390/ijms22136812
Omidian, Maryam; Leitherer, Susanne; Néel, Nicolas; Brandbyge, Mads; Kröger, Jörg
Electric-field control of a single-atom polar bond. - In: Physical review letters, ISSN 1079-7114, Bd. 126 (2021), 21, 216801, insges. 6 S.

We expose the polar covalent bond between a single Au atom terminating the apex of an atomic force microscope tip and a C atom of graphene on SiC(0001) to an external electric field. For one field orientation, the Au-C bond is strong enough to sustain the mechanical load of partially detached graphene, while for the opposite orientation, the bond breaks easily. Calculations based on density-functional theory and nonequilibrium Green's function methods support the experimental observations by unveiling bond forces that reflect the polar character of the bond. Field-induced charge transfer between the atomic orbitals modifies the polarity of the different electronegative reaction partners and the Au-C bond strength.



https://doi.org/10.1103/PhysRevLett.126.216801
Li, Qianwen; Wang, Hang; Tang, Xinfeng; Zhou, Min; Zhao, Huaping; Xu, Yang; Xiao, Wei; Lei, Yong
Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 24, 2101081, insges. 11 S.

Sodium-ion battery (SIB) is significant for grid-scale energy storage. However, a large radius of Na ions raises the difficulties of ion intercalation, hindering the electrochemical performance during fast charge/discharge. Conventional strategies to promote rate performance focus on the optimization of ion diffusion. Improving interface capacitive-like storage by tuning the electrical conductivity of electrodes is also expected to combine the features of the high energy density of batteries and the high power density of capacitors. Inspired by this concept, an oxide-metal sandwich 3D-ordered macroporous architecture (3DOM) stands out as a superior anode candidate for high-rate SIBs. Taking Ni-TiO2 sandwich 3DOM as a proof-of-concept, anatase TiO2 delivers a reversible capacity of 233.3 mAh g^-1 in half-cells and 210.1 mAh g^-1 in full-cells after 100 cycles at 50 mA g^-1. At the high charge/discharge rate of 5000 mA g^-1, 104.4 mAh g^-1 in half-cells and 68 mAh g^-1 in full-cells can also be obtained with satisfying stability. In-depth analysis of electrochemical kinetics evidence that the dominated interface capacitive-like storage enables ultrafast uptaking and releasing of Na-ions. This understanding between electrical conductivity and rate performance of SIBs is expected to guild future design to realize effective energy storage.



https://doi.org/10.1002/adfm.202101081
Gizatullin, Bulat; Gafurov, Marat; Murzakhanov, Fadis; Vakhin, Alexey; Mattea, Carlos; Stapf, Siegfried
Molecular dynamics and proton hyperpolarization via synthetic and crude oil porphyrin complexes in solid and solution states. - In: Langmuir, ISSN 1520-5827, Bd. 37 (2021), 22, S. 6783-6791

The use of vanadyl porphyrins either in synthetic compounds or naturally occurring in asphaltenes is investigated as a source of proton hyperpolarization via dynamic nuclear polarization (DNP) in nuclear magnetic resonance (NMR) experiments. The features of dynamics and location of the vanadyl VO2+ complex in aggregates within the oil asphaltene molecules are studied by means of DNP, electron paramagnetic resonance (EPR), and NMR field cycling relaxometry. Both the solid effect and Overhauser DNP were observed for the asphaltene solution in benzene, as well as in the solution and solid states for synthetic compounds. By comparison with a solution of synthetic vanadyl porphyrins, it is shown that vanadyl porphyrins in asphaltene aggregates are localized outside of the interface of the asphaltene aggregates and more exposed to the maltene molecules than free carbon-centered radicals associated with the core of asphaltene molecules. The perceptible contribution of scalar interaction is observed in solutions for both synthetic and asphaltene vanadyl porphyrins.



https://doi.org/10.1021/acs.langmuir.1c00882
Gernandt, Hannes; Trunk, Carsten
Locally finite extensions and Gesztesy-Šeba realizations for the Dirac operator on a metric graph. - In: Operator theory, (2021), S. 25-54

Behrndt, Jussi; Schmitz, Philipp; Teschl, Gerald; Trunk, Carsten
Perturbations of periodic Sturm-Liouville operators. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2021. - 1 Online-Ressource (17 Seiten). - (Preprint ; M21,04)

We study perturbations of self-adjoint periodic Sturm-Liouville operators and conclude under L1-assumptions on the differences of the coeffcients that the essential spectrum and absolutely continuous spectrum remain the same. If a finite first moment condition holds for the differences of the coeffcients, then at most finitely many eigenvalues appear in the spectral gaps. This observation extends a seminal result by Rofe-Beketov from the 1960s. Finally, imposing a second moment condition we show that the band edges are no eigenvalues of the perturbed operator.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021200075
De Santis, Marianna; Eichfelder, Gabriele
A decision space algorithm for multiobjective convex quadratic integer optimization. - In: Computers & operations research, ISSN 0305-0548, Bd. 134 (2021), 105396, S. 1-13

We present a branch-and-bound algorithm for minimizing multiple convex quadratic objective functions over integer variables. Our method looks for efficient points by fixing subsets of variables to integer values and by using lower bounds in the form of hyperplanes in the image space derived from the continuous relaxations of the restricted objective functions. We show that the algorithm stops after finitely many fixings of variables with detecting both the full efficient and the nondominated set of multiobjective strictly convex quadratic integer problems. A major advantage of the approach is that the expensive calculations are done in a preprocessing phase so that the nodes in the branch-and-bound tree can be enumerated fast. We show numerical experiments on biobjective instances and on instances with three and four objectives.



https://doi.org/10.1016/j.cor.2021.105396
Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M.
Circumference of essentially 4-connected planar triangulations. - In: Journal of graph algorithms and applications, ISSN 1526-1719, Bd. 25 (2021), 1, S. 121-132
Sonstige Körperschaft: Technische Universität Hamburg

https://nbn-resolving.org/urn:nbn:de:gbv:830-882.0120423
Nasori, Nasori; Cao, Dawei; Wang, Zhijie; Farahdina, Ulya; Rubiyanto, Agus; Lei, Yong
Tunning of templated CuWO4 nanorods arrays thickness to improve photoanode water splitting. - In: Molecules, ISSN 1420-3049, Bd. 26 (2021), 10, 2900, insges. 14 S.
Im Titel ist "4" tiefgestellt

The fabrication of the photoanode of the n-type CuWO4 nanorod arrays was successfully carried out through electrochemical deposition using anodic aluminum oxide (AAO) control templates and for the first time produced distinct gaps between the nanorod arrays. The effectiveness and efficiency of the resulting deposition was shown by the performance of the photoelectrochemical (PEC) procedure with a current density of 1.02 mA cm^-2 with irradiation using standard AM 1.5G solar simulator and electron changed radiation of 0.72% with a bias potential of 0.71 V (vs. Ag/AgCl). The gap between each nanorod indicated an optimization of the electrolyte penetration on the interface, which resulted in the expansion of the current density as much as 0.5 × 1024 cm^-3 with a flat band potential of 0.14 V vs. Ag/AgCl and also a peak quantum efficiency of wavelength 410 nm. Thus, also indicating the gaps between the nanorod arrays is a promising structure to optimize the performance of the PEC water splitting procedure as a sustainable energy source.



https://doi.org/10.3390/molecules26102900
Chang, Shilei; Hou, Minjie; Xu, Bowen; Liang, Feng; Qiu, Xuechao; Yao, Yaochun; Qu, Tao; Ma, Wenhui; Yang, Bing; Dai, Yongnian; Chen, Kunfeng; Xue, Dongfeng; Zhao, Huaping; Lin, Xiaoting; Poon, Fanny; Lei, Yong; Sun, Xueliang
High-performance quasi-solid-state Na-air battery via gel cathode by confining moisture. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 22, 2011151, insges. 9 S.

https://doi.org/10.1002/adfm.202011151
Chen, Liangzhi; Hotz, Thomas; Zhang, Haizhang
Admissible kernels for RKHS embedding of probability distributions. - In: Statistical papers, ISSN 1613-9798, Bd. 62 (2021), 3, S. 1499-1518

Similarity measurement of two probability distributions is important in many applications of statistics. Embedding such distributions into a reproducing kernel Hilbert space (RKHS) has many favorable properties. The choice of the reproducing kernel is crucial in the approach. We study this question by considering the similarity of two distributions of the same class. In particular, we investigate when the RKHS embedding is "admissible" in the sense that the distance between the embeddings should become smaller when the expectations are getting closer or when the variance is increasing to infinity. We give conditions on the widely-used translation-invariant reproducing kernels to be admissible. We also extend the study to multivariate non-symmetric Gaussian distributions.



https://doi.org/10.1007/s00362-019-01144-5
Nozdrenko, Dmytro; Abramchuk, Olga; Prylutska, Svitlana; Vygovska, Oksana; Soroca, Vasil; Bogutska, Kateryna; Khrapatyi, Sergii; Prylutskyy, Yuriy; Scharff, Peter; Ritter, Uwe
Analysis of biomechanical parameters of muscle soleus contraction and blood biochemical parameters in rat with chronic glyphosate intoxication and therapeutic use of C60 fullerene. - In: International journal of molecular sciences, ISSN 1422-0067, Bd. 22 (2021), 9, 4977, S. 1-11

https://doi.org/10.3390/ijms22094977
Wang, Shouzhi; Zhao, Huaping; Lv, Songyang; Jiang, Hehe; Shao, Yongliang; Wu, Yongzhong; Hao, Xiaopeng; Lei, Yong
Insight into nickel-cobalt oxysulfide nanowires as advanced anode for sodium-ion capacitors. - In: Advanced energy materials, ISSN 1614-6840, Bd. 11 (2021), 18, 2100408, insges. 9 S.

Transition metal oxides have a great potential in sodium-ion capacitors (SICs) due to their pronouncedly higher capacity and low cost. However, their poor conductivity and fragile structure hinder their development. Herein, core-shell-like nickel-cobalt oxysulfide (NCOS) nanowires are synthesized and demonstrated as an advanced SICs anode. The bimetallic oxysulfide with multiple cation valence can promote the sodium ion adsorption and redox reaction, massive defects enable accommodation of the volume change in the sodiation/desodiation process, meanwhile the core-shell-like structure provides abundant channels for fast transfer of sodium ions, thereby synergistically making the NCOS electrode exhibit a high reversible sodium ion storage capacity (1468.5 mAh g^-1 at 0.1 A g^-1) and an excellent cyclability (90.5% capacity retention after 1000 cycles). The in-situ X-ray diffraction analysis unravels the insertion and conversion mechanism for sodium storage in NCOS, and the enhanced capability of NCOS is further verified by the kinetic analysis and theoretical calculations. Finally, SICs consisting of the NCOS anode and a boron-nitrogen co-doped carbon nanotubes cathode deliver an energy density of 205.7 Wh kg^-1, a power density of 22.5 kW kg^-1, and an outstanding cycling lifespan. These results indicate an efficient strategy in designing a high-performance anode for sodium storage based on bimetallic dianion compounds.



https://doi.org/10.1002/aenm.202100408
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Molecular dynamics in ionic liquid/radical systems. - In: The journal of physical chemistry, ISSN 1520-5207, Bd. 125 (2021), 18, S. 4850-4862

Molecular dynamics of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide (Emim-Tf2N) with either of the four organic stable radicals, TEMPO, 4-benzoyloxy-TEMPO, BDPA, and DPPH, is studied by using Nuclear Magnetic Resonance (NMR) and Dynamic Nuclear Polarization (DNP). In complex fluids at ambient temperature, NMR signal enhancement by DNP is frequently obtained by a combination of several mechanisms, where the Overhauser effect and solid effect are the most common. Understanding the interactions of free radicals with ionic liquid molecules is of particular significance due to their complex dynamics in these systems, influencing the properties of the ion-radical interaction. A combined analysis of EPR, DNP, and NMR relaxation dispersion is carried out for cations and anions containing, respectively, the NMR active nuclei 1H or 19F. Depending on the size and the chemical properties of the radical, different interaction processes are distinguished, namely, the Overhauser effect and solid effect, driven by dominating dipolar or scalar interactions. The resulting NMR relaxation dispersion is decomposed into rotational and translational contributions, allowing the identification of the corresponding correlation times of motion and interactions. The influence of electron relaxation time and electron-nuclear spin hyperfine coupling is discussed.



https://doi.org/10.1021/acs.jpcb.1c02118
Knauer, Andrea; Kuhfuss, Danja; Köhler, Michael
Electrostatic control of Au nanorod formation in automated microsegmented flow synthesis. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 4 (2021), 2, S. 1411-1419

An automated flow rate program was applied for the synthesis of gold nanorods of different aspect ratios dependent on a two-dimensional concentration space of reducing agent and additional silver ions. It was found a regular redshift of the spectral position of the electromagnetic in-axis resonance of metal nanorods with decreasing concentration of reducing agent and increasing concentration of silver ions. The increase of resonance wavelength is strongly correlated with the aspect ratio of the formed nanorods. The experimental results agree with an electrostatic model of self-polarization due to positive excess charge of the nanorods in the presence of CTAB and confirm the crucial role of electrostatic control in the formation of nonspherical and composed nanoparticles in general.



https://doi.org/10.1021/acsanm.0c02941
Wu, Yuhan; Zhang, Chenglin; Zhao, Huaping; Lei, Yong
Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. - In: Journal of materials chemistry, ISSN 2050-7496, Bd. 9 (2021), 15, S. 9506-9534

In next-generation rechargeable batteries, sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) have been considered as attractive alternatives to lithium-ion batteries due to their cost competitiveness. Anodes with complicated electrochemical mechanisms determine the performance and safety of battery systems to a large degree. Among a wide range of anode materials for SIBs and PIBs, ferromagnetic metal (Fe, Co, and Ni) sulfides and selenides have captured prominent attention by virtue of their high theoretical capacities, suitable potentials, and relatively low price. Although some breakthrough results have been achieved, a few intrinsic issues stemming from the materials themselves need to be further explored and studied, especially in the field of PIBs, an emerging research interest. Herein, in this review, we highlight the pioneering investigation of typical ferromagnetic metal sulfides and selenides for application as anodes in SIBs and PIBs and overview their recent research progress. Meanwhile, the preparation methods, structural characteristics, charge storage mechanisms, and electrochemical properties are outlined. Finally, the present challenges and research perspectives are discussed.



https://doi.org/10.1039/D1TA00831E
Reiß, Stephanie; Hopfeld, Marcus; Romanus, Henry; Pfeifer, Kerstin; Krischok, Stefan; Rädlein, Edda
Chemical changes of float glass surfaces induced by different sand particles and mineralogical phases. - In: Journal of non-crystalline solids, ISSN 0022-3093, Bd. 566 (2021), 120868

Particles play an important role in the storage, transportation and natural weathering of glasses, but their influence on glass degradation is little studied. In this work, the influence of main sand components is investigated. Feldspar exhibits the strongest leaching rate for the network former Na, while quartz has the lowest. The leaching rate of natural sands is in between. Based on these findings, a model describing the leaching mechanism was developed: Hereby, hydroxyl groups adhering on sand grains adsorb network modifiers by substituting their hydrogen by network formers from the glass surface. The amount of available hydroxyl groups determines the leaching rate. This model is supported by loss on ignition performed for the sands, which might be a suitable method to roughly estimate their leaching rates. The adsorption of network modifiers suppresses carbonate formation, dendritic growth and Mg diffusion in the glass surface region. Pimple-like crystal growth is observed.



https://doi.org/10.1016/j.jnoncrysol.2021.120868
Gizatullin, Bulat; Papmahl, Eric; Mattea, Carlos; Stapf, Siegfried
Quantifying crude oil contamination in sand and soil by EPR spectroscopy. - In: Applied magnetic resonance, ISSN 1613-7507, Bd. 52 (2021), 5, S. 633-648

Crude oil frequently contains stable radicals that allow detection by means of EPR spectroscopy. On the other hand, most sands and soils possess significant amounts of iron, manganese or other metallic species that often provide excessively broad EPR signatures combined with well-defined sharp features by quartz defects. In this study, we demonstrate the feasibility to identify oil contamination in natural environments that are subject to oil spillage during production on land, as well as beachside accumulation of marine oil spillage. Straightforward identification of oil is enabled by the radical contributions of asphaltenes, in particular by vanadyl multiplets that are absent from natural soils. This potentially allows for high-throughput soil analysis or the application of mobile EPR scanners.



https://doi.org/10.1007/s00723-021-01331-4
Zhang, Da; Xie, Zhipeng; Zhang, Kaiwen; Wang, Haoyu; Qu, Tao; Ma, Wenhui; Yang, Bin; Dai, Yongnian; Liang, Feng; Lei, Yong; Watanabe, Takayuki
Controlled regulation of the transformation of carbon nanomaterials under H2 mixture atmosphere by arc plasma. - In: Chemical engineering science, Bd. 241 (2021), 116695
Im Titel ist "2" tiefgestellt

Hydrogen plays a pivotal role in carbon nanomaterials synthesis by arc plasma. However, the effect of hydrogen on morphological regulation of carbon nanomaterials has received little attention. In this paper, carbon nanomaterials synthesized under mixed H2/Ar, H2/N2, and Ar/N2 atmospheres with different ratios were investigated in detail to tackle the issue. Graphene, carbon nanocages, polyhedral graphite particles, amorphous carbon nanoballs, and carbon nanohorns underwent structural transformation as hydrogen content reduced. As a result of varying hydrogen concentration, the number of C-H bond sites at the edge of graphene islands differed, leading to the structural transformation of carbon nanomaterials originating from the formation of various types of precursors. Meanwhile, X-ray photoelectron spectroscopy results revealed that hydrogen impeded nitrogen doping because it tended to bond with electronegative nitrogen. Moreover, morphology control capability followed the order of H2 > N2 > Ar during the preparation of carbon nanomaterials through arc plasma under a mixed atmosphere.



https://doi.org/10.1016/j.ces.2021.116695
Faulwasser, Timm; Müller, Matthias A.; Worthmann, Karl
Recent advances in model predictive control : theory, algorithms, and applications. - Cham, Switzerland : Springer, 2021. - ix, 244 Seiten. - (Lecture notes in control and information sciences ; volume 485) ISBN 978-3-030-63280-9

Eichfelder, Gabriele; Kirst, Peter; Meng, Laura; Stein, Oliver
A general branch-and-bound framework for continuous global multiobjective optimization. - In: Journal of global optimization, ISSN 1573-2916, Bd. 80 (2021), 1, S. 195-227

Current generalizations of the central ideas of single-objective branch-and-bound to the multiobjective setting do not seem to follow their train of thought all the way. The present paper complements the various suggestions for generalizations of partial lower bounds and of overall upper bounds by general constructions for overall lower bounds from partial lower bounds, and by the corresponding termination criteria and node selection steps. In particular, our branch-and-bound concept employs a new enclosure of the set of nondominated points by a union of boxes. On this occasion we also suggest a new discarding test based on a linearization technique. We provide a convergence proof for our general branch-and-bound framework and illustrate the results with numerical examples.



https://doi.org/10.1007/s10898-020-00984-y
Wu, Yuhan; Zhang, Qingcheng; Xu, Yang; Xu, Rui; Li, Lei; Li, Yueliang; Zhang, Chenglin; Zhao, Huaping; Wang, Shun; Kaiser, Ute; Lei, Yong
Enhanced potassium storage capability of two-dimensional transition-metal chalcogenides enabled by a collective strategy. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 13 (2021), 16, S. 18838-18848

Potassium-ion batteries (PIBs) have been considered as a promising alternative to lithium-ion batteries due to their merits of high safety and low cost. Two-dimensional transition-metal chalcogenides (2D TMCs) with high theoretical specific capacities and unique layered structures have been proven to be amenable materials for PIB anodes. However, some intrinsic properties including severe stacking and unsatisfactory conductivity restrict their electrochemical performance, especially rate capability. Herein, we prepared a heterostructure of high-crystallized ultrathin MoSe2 nanosheet-coated multiwall carbon nanotubes and investigated its electrochemical properties with a view to demonstrating the enhancement of a collective strategy for K storage of 2D TMCs. In such a heterostructure, the constructive contribution of CNTs not only suppresses the restacking of MoSe2 nanosheets but also accelerates electron transport. Meanwhile, the MoSe2 nanosheets loaded on CNTs exhibit an ultrathin feature, which can expose abundant active sites for the electrochemical reaction and shorten K+ diffusion length. Therefore, the synergistic effect between ultrathin MoSe2 and CNTs endows the resulting nanocomposite with superior structural and electrochemical properties. Additionally, the high crystallinity of the MoSe2 nanosheets further leads to the improvement of electrochemical performance. The composite electrode delivers high-rate capacities of 209.7 and 186.1 mAh g-1 at high current densities of 5.0 and 10.0 A g-1, respectively.



https://doi.org/10.1021/acsami.1c01891
Schumann, Peter; Kalensee, Franziska; Cao-Riehmer, Jialan; Criscuolo, Alexis; Clermont, Dominique; Köhler, Michael; Meier-Kolthoff, Jan Philipp; Neumann-Schaal, Meina; Tindall, Brian J.; Pukall, Rüdiger
Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. - In: International journal of systematic and evolutionary microbiology, ISSN 1466-5034, Bd. 71 (2021), 4, 004769

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 &ring;C, pH 7-8 and with 0.5-2% (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys-l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15:0, iso-C14:0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7%, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.,



https://doi.org/10.1099/ijsem.0.004769
Allen, Peter; Koch, Christoph; Parczyk, Olaf; Person, Yury
Finding tight Hamilton cycles in random hypergraphs faster. - In: Combinatorics, probability & computing, ISSN 1469-2163, Bd. 30 (2021), 2, S. 239-257

https://doi.org/10.1017/S0963548320000450
Richter, Steffen; Rebarz, Mateusz; Herrfurth, Oliver; Espinoza, Shirly; Schmidt-Grund, Rüdiger; Andreasson, Jakob
Broadband femtosecond spectroscopic ellipsometry. - In: Review of scientific instruments, ISSN 1089-7623, Bd. 92 (2021), 3, S. 033104-1-033104-14

We present a setup for time-resolved spectroscopic ellipsometry in a pump-probe scheme using femtosecond laser pulses. As a probe, the system deploys supercontinuum white light pulses that are delayed with respect to single-wavelength pump pulses. A polarizer-sample-compensator-analyzer configuration allows ellipsometric measurements by scanning the compensator azimuthal angle. The transient ellipsometric parameters are obtained from a series of reflectance-difference spectra that are measured for various pump-probe delays and polarization (compensator) settings. The setup is capable of performing time-resolved spectroscopic ellipsometry from the near-infrared through the visible to the near-ultraviolet spectral range at 1.3 eV-3.6 eV. The temporal resolution is on the order of 100 fs within a delay range of more than 5 ns. We analyze and discuss critical aspects such as fluctuations of the probe pulses and imperfections of the polarization optics and present strategies deployed for circumventing related issues.



https://doi.org/10.1063/5.0027219
Derkach, Volodymyr; Hassi, Seppo; Malamud, Mark
Generalized boundary triples, II : some applications of generalized boundary triples and form domain invariant Nevanlinna functions. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2021. - 1 Online-Ressource (54 Seiten). - (Preprint ; M21,03)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021200058
Derkach, Volodymyr; Schmitz, Philipp; Trunk, Carsten
PT-symmetric Hamiltonians as couplings of dual pairs. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2021. - 1 Online-Ressource (15 Seiten). - (Preprint ; M21,02)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021200042
Wei, Huifang; Wang, Jiahui; Lin, Qian; Zou, Yanwen; Chen, Xi'an; Zhao, Huaping; Li, Jun; Jin, Huile; Lei, Yong; Wang, Shun
Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. - In: Nano energy, ISSN 2211-2855, Bd. 86 (2021), 106047
Im Titel ist "2" tiefgestellt

Developing highly-efficient and stable hydrogen evolution reaction (HER) electrocatalysts plays a crucial role in realizing the hydrogen production from electrocatalytic water splitting. Herein, ultra-small and nitrogen-doped molybdenum carbide (N-Mo2C) nanoparticles with oxidized surfaces are facilely synthesized with the assistance of cationic surfactants and simultaneously anchored onto three-dimensional nitrogen-doped flower-like carbon nanospheres (NFCNS), and the N-Mo2C/NFCNS composites are further investigated as HER electrocatalysts. Analysis results reveal that nitrogen atoms are doped into both the lattice and the carbon framework of Mo2C, resulting in low desorption energy of Mo-H bond for the easy evolution of hydrogen gas. Moreover, the high specific area of NFCNS enables enrichment of N-Mo2C nanoparticles, and its open framework facilitates fast ion diffusion. As a result, the N-Mo2C/NFCNS composites exhibit impressive HER activities with low overpotential, small Tafel slope, and excellent durability in both acidic and alkaline media, which outperform most of the reported Mo-based HER catalysts and are also highly comparable to the commercial Pt/C catalyst. Not limited to HER electrocatalysts, this work should open a new avenue for tailoring highly-efficient carbon/metal compounds-based electrocatalysts for oxygen reduction reaction, oxygen evolution reaction, nitrogen reduction reaction, etc.



https://doi.org/10.1016/j.nanoen.2021.106047
Zhang, Da; Zhao, Huaping; Liang, Feng; Ma, Wenhui; Lei, Yong
Nanostructured arrays for metal-ion battery and metal-air battery applications. - In: Journal of power sources, ISSN 1873-2755, Bd. 493 (2021), 229722

Rechargeable battery technology has been the research focus due to the largely increased global energy demand, while metal-ion batteries (MIBs) and metal-air batteries (MABs) are two major representatives. In addition to lithium-ion batteries, other MIBs such as sodium-ion batteries and aluminum-ion batteries have been drawn great attention. Regarding MABs, considerable research effort has been devoted to lithium-, zinc-, and sodium-air batteries. So far, significant progress in the performance improvement of both MIBs and MABs has been achieved through the material design and electrode design. Particularly, free-standing nanoarrays (NAs) directly grown on current collectors have been regarded as promising electrodes of both MIBs and MABs for improving the energy storage capability. In this review, recent advances in design, fabrication and application of NAs for MIBs and MABs have been summarized. Firstly, the motivation of employing NAs electrodes for MIBs and MABs is outlined. The principles and categories of MIBs and MABs, the construction, structural features, and resulting superiorities are also briefly reviewed. Secondly, the relationship of the conductive substrates, the structural features, and electrochemical performance of NAs electrodes is analyzed in depth. Finally, the future design focuses of NAs as advanced electrodes for MIBs and MABs are emphasized.



https://doi.org/10.1016/j.jpowsour.2021.229722
Link, Steffen; Kurniawan, Mario; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas; Ivanov, Svetlozar
Enhanced cycling performance of binder free silicon-based anode by application of electrochemically formed microporous substrate. - In: Electrochimica acta, ISSN 1873-3859, Bd. 380 (2021), 138216, S. 1-9

In this work, an electrochemically formed porous Cu current collector (p-Cu) is utilized for the development of a high-performance binder-free silicon anode. Two electrolyte compositions based on sulfolane (SL) and [BMP][TFSI] ionic liquid (IL) are implemented for silicon deposition. The electrochemical experiments confirm the advantages of applying the p-Cu structure in terms of specific capacity, rate capability, and long-term cycling, where the best electrochemical properties have been observed for the Si deposited from SL electrolyte. The Si-based p-Cu anodes formed in SL display stable 2500 mAh g^-1 reversible capacity during the first 250 cycles and promising capacity retention. Compared to this result, the cycling performance of the same type of material deposited on flat Cu foil (f-Cu) showed significantly reduced capacity (1400 mAh g^-1) and inferior cycling performance. The positive effect can be attributed to the improved mechanical stability of the active material and accelerated ionic transport in the porous structure of the anode. The improved functional properties of the electrochemically deposited Si from SL electrolyte in p-Cu samples compared to those obtained in IL can be ascribed to differences in the chemical composition. While the layers deposited in SL electrolyte involve Si domains incorporated in a matrix containing C and O that offer high mechanical stability, the Si material obtained in IL is additionally influenced by N and F chemical species, resulting from active IL decomposition. These differences in the chemical surrounding of the Si domains are the primary reason for the inferior electrochemical performance of the material deposited from [BMP][TFSI] electrolyte. XPS analysis shows that the initial composition of the as deposited layers, containing a considerable amount of elemental Si, is changed after lithiation and that the electrochemical activity of the anode is governed by switching between the intermediate redox states of Si, where the carbon-oxygen matrix is also involved.



https://doi.org/10.1016/j.electacta.2021.138216
Kurniawan, Mario; Stich, Michael; Marimon, Mayra; Camargo, Magali K.; Peipmann, Ralf; Hannappel, Thomas; Bund, Andreas
Electrodeposition of cuprous oxide on a porous copper framework for an improved photoelectrochemical performance. - In: Journal of materials science, ISSN 1573-4803, Bd. 56 (2021), 20, S. 11866-11880

https://doi.org/10.1007/s10853-021-06058-y
Herrfurth, Oliver; Richter, Steffen; Rebarz, Mateusz; Espinoza, Shirley; Zúñiga-Pérez, Jesus; Deparis, Christiane; Leveillee, Joshua; Schleife, André; Grundmann, Marius; Andreasson, Jakob; Schmidt-Grund, Rüdiger
Transient birefringence and dichroism in ZnO studied with fs-time-resolved spectroscopic ellipsometry. - In: Physical review research, ISSN 2643-1564, Bd. 3 (2021), 1, S. 013246-1-013246-12

The full transient dielectric-function (DF) tensor of ZnO after UV-laser excitation in the spectral range 1.4-3.6 eV is obtained by measuring an m-plane-oriented ZnO thin film with femtosecond (fs)-time-resolved spectroscopic ellipsometry. From the merits of the method, we can distinguish between changes in the real and the imaginary part of the DF as well as changes in birefringence and dichroism, respectively. We find pump-induced switching from positive to negative birefringence in almost the entire measured spectral range for about 1 ps. Simultaneously, weak dichroism in the spectral range below 3.0 eV hints at contributions of inter-valence-band transitions. Line-shape analysis of the DF above the band gap based on discrete exciton, exciton-continuum, and exciton-phonon-complex contributions shows a maximal dynamic increase in the transient exciton energy by 80 meV. The absorption coefficient below the band gap reveals an exponential line shape attributed to Urbach-rule absorption mediated by exciton-longitudinal-optic-phonon interaction. The transient DF is supported by first-principles calculations for 1020cm^-3 excited electron-hole pairs in ideal bulk ZnO.



https://doi.org/10.1103/PhysRevResearch.3.013246
Bosch, Martí; Behrens, Arne; Sinzinger, Stefan; Hentschel, Martina
Husimi functions for coupled optical resonators. - In: Journal of the Optical Society of America, ISSN 1520-8532, Bd. 38 (2021), 4, S. 573-578

Phase-space analysis has been widely used in the past for the study of optical resonant systems. While it is usually employed to analyze the far-field behavior of resonant systems, we focus here on its applicability to coupling problems. By looking at the phase-space description of both the resonant mode and the exciting source, it is possible to understand the coupling mechanisms as well as to gain insights and approximate the coupling behavior with reduced computational effort. In this work, we develop the framework for this idea and apply it to a system of an asymmetric dielectric resonator coupled to a waveguide.



https://doi.org/10.1364/JOSAA.422740
Leben, Leslie; Martínez Pería, Francisco; Philipp, Friedrich; Trunk, Carsten; Winkler, Henrik
Finite rank perturbations of linear relations and matrix pencils. - In: Complex analysis and operator theory, ISSN 1661-8262, Bd. 15 (2021), 2, 37, insges. 37 S.

We elaborate on the deviation of the Jordan structures of two linear relations that are finite-dimensional perturbations of each other. We compare their number of Jordan chains of length at least n. In the operator case, it was recently proved that the difference of these numbers is independent of n and is at most the defect between the operators. One of the main results of this paper shows that in the case of linear relations this number has to be multiplied by n+1 and that this bound is sharp. The reason for this behavior is the existence of singular chains. We apply our results to one-dimensional perturbations of singular and regular matrix pencils. This is done by representing matrix pencils via linear relations. This technique allows for both proving known results for regular pencils as well as new results for singular ones.



https://doi.org/10.1007/s11785-021-01082-x
Berger, Thomas; Ilchmann, Achim; Ryan, Eugene P.
Funnel control of nonlinear systems. - In: Mathematics of control, signals, and systems, ISSN 1435-568X, Bd. 33 (2021), 1, S. 151-194

Tracking of reference signals is addressed in the context of a class of nonlinear controlled systems modelled by r-th-order functional differential equations, encompassing inter alia systems with unknown "control direction" and dead-zone input effects. A control structure is developed which ensures that, for every member of the underlying system class and every admissible reference signal, the tracking error evolves in a prescribed funnel chosen to reflect transient and asymptotic accuracy objectives. Two fundamental properties underpin the system class: bounded-input bounded-output stable internal dynamics, and a high-gain property (an antecedent of which is the concept of sign-definite high-frequency gain in the context of linear systems).



https://doi.org/10.1007/s00498-021-00277-z
Janse van Rensburg, Dawie B.; van Straaten, Madelein; Theron, Frieda; Trunk, Carsten
Square roots of H-nonnegative matrices. - In: Linear algebra and its applications, ISSN 0024-3795, Bd. 621 (2021), S. 29-49

https://doi.org/10.1016/j.laa.2021.03.006
Condon, Padraig; Espuny Díaz, Alberto; Girão, António; Kühn, Daniela; Osthus, Deryk
Dirac's theorem for random regular graphs. - In: Combinatorics, probability & computing, ISSN 1469-2163, Bd. 30 (2021), 1, S. 17-36

https://doi.org/10.1017/S0963548320000346
Ruiz Alvarado, Isaac Azahel; Karmo, Marsel; Runge, Erich; Schmidt, W. Gero
InP and AlInP(001)(2 × 4) surface oxidation from density functional theory. - In: ACS omega, ISSN 2470-1343, Bd. 6 (2021), 9, S. 6297-6304

The atomic structure and electronic properties of the InP and Al0.5In0.5P(001) surfaces at the initial stages of oxidation are investigated via density functional theory. Thereby, we focus on the mixed-dimer (2 × 4) surfaces stable for cation-rich preparation conditions. For InP, the top In-P dimer is the most favored adsorption site, while it is the second-layer Al-Al dimer for AlInP. The energetically favored adsorption sites yield group III-O bond-related states in the energy region of the bulk band gap, which may act as recombination centers. Consistently, the In p state density around the conduction edge is found to be reduced upon oxidation.



https://doi.org/10.1021/acsomega.0c06019
Néel, Nicolas; Kröger, Jörg
Atomic force extrema induced by the bending of a CO-functionalized probe. - In: Nano letters, ISSN 1530-6992, Bd. 21 (2021), 5, S. 2318-2323

The control and observation of reactants forming a chemical bond at the single-molecule level is a long-standing challenge in quantum physics and chemistry. Using a single CO molecule adsorbed at the apex of an atomic force microscope tip together with a Cu(111) surface, bending of the molecular probe is induced by torques due to van der Waals attraction and Pauli repulsion. As a result, the vertical force between CO and Cu(111) exhibits a characteristic dip-hump evolution with the molecule-surface separation, which depends sensitively on the initial tilt angle the CO axis encloses with the surface normal. The experimental force data are reproduced by model calculations that consider the CO deflection in a harmonic potential and the molecular orientation in the Pauli repulsion term of the Lennard-Jones potential. The presented findings shed new light on vertical-force extrema that can occur in scanning probe experiments with functionalized tips.



https://doi.org/10.1021/acs.nanolett.1c00268
Xu, C.; Zhan, Jing; Wang, Z.; Fang, X.; Chen, J.; Liang, Feng; Zhao, Huaping; Lei, Yong
Biomass-derived highly dispersed Co/Co9S8 nanoparticles encapsulated in S, N-co-doped hierarchically porous carbon as an efficient catalyst for hybrid Na-CO2 batteries. - In: Materials today, ISSN 2468-6069, Bd. 19 (2021), 100594, insges. 12 S.
Im Titel sind "9", "8" und "2" tiefgestellt

Na-CO2 batteries are prospective in energy storage and CO2 recycling applications; development of a high-efficiency, low-cost electrocatalyst to promote CO2 reduction and carbonate decomposition is extremely vital for practical Na-CO2 batteries. Herein, a highly efficient cathode catalyst for rechargeable hybrid Na-CO2 batteries is successfully synthesized by encapsulating highly dispersed Co/Co9S8 nanoparticles into carbon skeletons, consisting of biomass-derived S, N-co-doped hierarchically porous carbon (Co/Co9S8SNHC). The conductive and hierarchically porous framework structure of the Co/Co9S8@SNHC can not only accelerate electron transport, electrolyte infiltration, and CO2 diffusion but also can inhibit overgrowth and agglomeration of Co/Co9S8 nanoparticles and expose numerous high density of active sites, as well as offer sufficient space to store discharge products. Benefiting from the synergistic effect among S and N dopants, carbon defects, and Co/Co9S8 nanoparticles in robust porous carbon structure, the hybrid Na-CO2 batteries displayed a low charge overpotential (only ˜0.32 V) at 0.2 mA/cm2 and repeatedly charged and discharged over 200 cycles at 0.1 mA/cm2. Besides, an ultrahigh areal capacity of ˜18.9 mAh/cm2 was obtained at 0.5 mA/cm2, the highest value to date for Na-CO2 batteries. Meanwhile, the hybrid Na-CO2 battery charging from Na2CO3@C catalytic cathode demonstrated the high catalytic activity of biomass-derived S,N-co-doped hierarchically porous carbon (Co/Co9S8@SNHC) for CO2 reduction and carbonate decomposition. Given this finding, this work might open up a potential avenue for the reasonable design of low-cost and highly efficient catalysts for advanced metal-CO2 batteries systems.



https://doi.org/10.1016/j.mtener.2020.100594
Duan, Yu; Feng, Shuanglong; Guo, Shenghui; Gao, Jiyun; Qiu, Jiajia; Yang, Li
Efficient and inexpensive MPCVD method to synthesize Co3O4/MoS2 heterogeneous composite materials with high stability for supercapacitors. - In: Journal of materials research and technology, ISSN 2214-0697, Bd. 10 (2021), S. 953-959

Large-sized metal oxide particles have the potential to constitute cheap, high-performance, and high-stability supercapacitor electrode materials. Herein, the marketable large-sized Co3O4 particles (˜6 [my]m) as the starting raw material, inexpensive Co3O4/MoS2 core-shell heterogeneous composites have been one-step fabricated via an improvised MPCVD system modified by a domestic microwave oven. After that, the surface morphology, composition structure, and valence state of elements were analyzed to the confirmed successful synthesis of MoS2 on the surface of Co3O4. Besides, the performance was tested by cyclic voltammetry and galvanostatic charge-discharge method. The results show that the synergistic effect of Co3O4 core and MoS2 shell can effectively improve the material's electrochemical performance. The specific capacitance of Co3O4/MoS2 composite can reach 337 F g^-1 with a current density of 0.5 A g^-1, which is six times more than the raw Co3O4 powder. Furthermore, it could maintain 93.6% of the initial specific capacitance after 2000 charges and discharges. Finally, the mechanism of material performance improvement is proposed.



https://doi.org/10.1016/j.jmrt.2020.12.101
Huo, Dexian; Chen, Bin; Li, Mingtao; Meng, Guowen; Lei, Yong; Zhu, Chuhong
Template-assisted fabrication of Ag-nanoparticlesZnO-nanorods array as recyclable 3D surface enhanced Raman scattering substrate for rapid detection of trace pesticides. - In: Nanotechnology, ISSN 1361-6528, Bd. 32 (2021), 14, 145302, S. 1-9

We present a template-assisted fabrication method for a large-scale ordered arrays of ZnO nanorods (ZnO-NRs) modified with Ag nanoparticles (Ag-NPs), which possess high-density three-dimensional (3D) hot spots uniformly dispersed all over the substrate, being beneficial to ultrahigh sensitivity of surface enhanced Raman scattering (SERS) detection. These achieved Ag-NPsZnO-NRs arrays show high sensitivity, good spectral uniformity and reproducibility as substrates for SERS detection. Using the arrays, both dye molecules (rhodamine 6G, R6G) and organic pollutants like toxic pesticides (thiram and methyl parathion) are detected, with the detection limits of thiram and methyl parathion being 0.79 x 10^-9 M and 1.51 x 10^-8 M, respectively. In addition, the Ag-NPs@ZnO-NRs arrays have a self-cleaning function because the analyte molecules can be photocatalytic degraded using ultraviolet irradiation, showing that the 3D recyclable arrays have promising opportunities to be applied in rapid SERS-based detection of toxic organic pesticides.



https://doi.org/10.1088/1361-6528/abc50e
Bang-Jensen, Jørgen; Bessy, Stéphane; Huang, Jing; Kriesell, Matthias
Good orientations of unions of edge-disjoint spanning trees. - In: Journal of graph theory, ISSN 1097-0118, Bd. 96 (2021), 4, S. 594-618

In this paper, we exhibit connections between the following subjects: Tree packing in graphs and digraphs (both behave completely different), the rigidity matroid of a graph, Henneberg moves on trees, the conjectures of Thomassen and Matthews and Sumner, and (s,t)-orderings of digraphs. We do this by studying graphs which admit acyclic orientations that contain an out-branching and in-branching which are arc-disjoint (such an orientation is called good). A 2T-graph is a graph whose edge set can be decomposed into two edge-disjoint spanning trees. It is a well-known result due to Tutte and Nash-Williams, respectively, that every 4-edge-connected graph contains a spanning 2T-graph. Vertex-minimal 2T-graphs with at least two vertices which are known as generic circuits play an important role in rigidity theory for graphs. We prove that every generic circuit has a good orientation. Using this result we prove that if G is 2T-graph whose vertex set has a partition V1,V2, ,Vk so that each Vi induces a generic circuit Gi of G and the set of edges between different Gi's form a matching in G, then G has a good orientation. We also obtain a characterization for the case when the set of edges between different Gi's form a double tree, that is, if we contract each Gi to one vertex, and delete parallel edges we obtain a tree. All our proofs are constructive and imply polynomial algorithms for finding the desired good orderings and the pairs of arc-disjoint branchings which certify that the orderings are good. We identify a structure which can be used to certify that a given 2T-graph does not have a good orientation.



https://doi.org/10.1002/jgt.22633
Meier, Lukas; Braun, Christian; Hannappel, Thomas; Schmidt, W. Gero
Band alignment at GaxIn1-xP/AlyIn1-yP alloy interfaces from hybrid density functional theory calculations. - In: Physica status solidi, ISSN 1521-3951, Bd. 258 (2021), 2, 2000463, insges. 4 S.

The composition dependence of the natural band alignment at the GaxIn1-xP/AlyIn1-yP alloy interface is investigated via hybrid functional based density functional theory. The direct-indirect crossover for the GaxIn1-xP and AlyIn1-yP alloys is calculated to occur for x = 0.9 and y = 0.43. The calculated GaxIn1-xP/AlyIn1-yP interface band alignment shows a crossover from type-I to type-II with increasing Ga content x. The valence band offset is essentially positive irrespective of the alloy compositions, and amounts up to 0.56 eV. The conduction band offset varies between −0.85 and 1.16 eV.



https://doi.org/10.1002/pssb.202000463
Visaveliya, Nikunjkumar R.; Köhler, Michael
Hierarchical assemblies of polymer particles through tailored interfaces and controllable interfacial interactions. - In: Advanced functional materials, ISSN 1616-3028, Bd. 31 (2021), 9, 2007407, insges. 22 S.

Hierarchical assembly architectures of functional polymer particles are promising because of their physicochemical and surface properties for multi-labeling and sensing to catalysis and biomedical applications. While polymer nanoparticles' interior is mainly made up of the cross-linked network, their surface can be tailored with soft, flexible, and responsive molecules and macromolecules as potential support for the controlled particulate assemblies. Molecular surfactants and polyelectrolytes as interfacial agents improve the stability of the nanoparticles whereas swellable and soft shell-like cross-linked polymeric layer at the interface can significantly enhance the uptake of guest nano-constituents during assemblies. Besides, layer-by-layer surface-functionalization holds the ability to provide a high variability in assembly architectures of different interfacial properties. Considering these aspects, various assembly architectures of polymer nanoparticles of tunable size, shapes, morphology, and tailored interfaces together with controllable interfacial interactions are constructed here. The microfluidic-mediated platform has been used for the synthesis of constituents polymer nanoparticles of various structural and interfacial properties, and their assemblies are conducted in batch or flow conditions. The assemblies presented in this progress report is divided into three main categories: cross-linked polymeric network's fusion-based self-assembly, electrostatic-driven assemblies, and assembly formed by encapsulating smaller nanoparticles into larger microparticles.



https://doi.org/10.1002/adfm.202007407
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Field-cycling NMR and DNP - a friendship with benefits. - In: Journal of magnetic resonance, ISSN 1096-0856, Bd. 322 (2021), 106851, S. 1-16

Field-cycling relaxometry, or rather its electronic version with a resistive magnet which requires signal detection at a field strength of 1 Tesla or below, remains an inherently insensitive technique due to the construction compromise that goes along with the need for a fast-switching, low-inductance magnet. For the same reasons, signal lifetime is short and frequency resolution is typically not given, at least for the predominantly used hydrogen nuclei. Dynamic Nuclear Polarization (DNP) bears the potential to circumvent these disadvantages: not only has it been demonstrated to enhance magnetization by up to three orders of magnitude beyond its thermal value, but it also provides the possibility to address particular parts of a molecule, thus generating selectivity even in the absence of spectral resolution. At the same time, DNP requires the introduction of stable radicals giving rise to additional relaxation contributions. This article presents a straightforward way to recover the native relaxation rates of the undisturbed system, and shows examples in different research fields where field-cycling relaxometry is traditionally used for refining models of molecular dynamics and interactions.



https://doi.org/10.1016/j.jmr.2020.106851
Baidiuk, Dmytro; Derkach, Volodymyr; Hassi, Seppo
Unitary boundary pairs for isometric operators in Pontryagin spaces and generalized coresolvents. - In: Complex analysis and operator theory, ISSN 1661-8262, Bd. 15 (2021), 2, 32, insges. 52 S.

https://doi.org/10.1007/s11785-020-01073-4
Hasselmann, Sebastian; Kopittke, Caroline; Götz, Maria; Witzel, Patrick; Riffel, Jacqueline; Heinrich, Doris
Tailored nanotopography of photocurable composites for control of cell migration. - In: RSC Advances, ISSN 2046-2069, Bd. 11 (2021), 8, S. 4286-4296

External mechanical stimuli represent elementary signals for living cells to adapt to their adjacent environment. These signals range from bulk material properties down to nanoscopic surface topography and trigger cell behaviour. Here, we present a novel approach to generate tailored surface roughnesses in the nanometer range to tune surface properties by particle size and volume ratio. Time-resolved local mean-squared displacement (LMSD) analysis of amoeboid cell migration reveals that nanorough surfaces alter effectively cell migration velocities and the active cell migration phases. Since the UV curable composite material is easy to fabricate and can be structured via different light based processes, it is possible to generate hierarchical 3D cell scaffolds for tissue engineering or lab-on-a-chip applications with adjustable surface roughness in the nanometre range.



https://doi.org/10.1039/D0RA06530G
Köhler, Michael; Kluitmann, Jonas
In situ assembly of gold nanoparticles in the presence of poly-DADMAC resulting in hierarchical and highly fractal nanostructures. - In: Applied Sciences, ISSN 2076-3417, Bd. 11 (2021), 3, 1191, S. 1-13

The presence of the polycationic macromolecule poly(diallyldimethylammonium chloride) (poly-DADMAC) has a strong effect on the shape and size of colloidal gold nanoparticles formed by the reduction of tetrachloroauric acid with ascorbic acid in aqueous solution. It slows down nanoparticle growth and supports the formation of nonspherical, partially highly fractal and hierarchical nanoparticle shapes. Four structural levels have been recognized from the near-spherical gold nanoparticles in the lower nanometer range over compact aggregates in the midnanometer range and flower and star-like particles in the submicron range up to larger filamentous aggregates. High-contrast scanning electron microscope (SEM) images show that single gold nanoparticles and clusters of them are connected by bundles of macromolecules in large aggregates. The investigation showed that a large spectrum of different nanoparticle shapes and sizes can be accessed by tuning the poly-DADMAC concentrations and their ratio to other reactants. The nanoassemblies with a very high specific surface area might be of interest for SERS and heterogeneous catalysis.



https://doi.org/10.3390/app11031191
Eichfelder, Gabriele; Jahn, Johannes
Optimality conditions in discrete-continuous nonlinear optimization. - In: Minimax theory and its applications, ISSN 2199-1413, Bd. 6 (2021), 1, S. 127-144

Schweser, Thomas;
Generalized hypergraph coloring. - In: Discussiones mathematicae, ISSN 2083-5892, Bd. 41 (2021), 1, S. 103-121

https://doi.org/10.7151/dmgt.2168
Berger, Thomas; Snoo, Hendrik S. V. de; Trunk, Carsten; Winkler, Henrik
Linear relations and their singular chains. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2021. - 1 Online-Ressource (17 Seiten). - (Preprint ; M21,01)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2021200018
Ryzhkov, Nikolay V.; Ledovich, Olesya; Eggert, Lara; Bund, Andreas; Paszuk, Agnieszka; Hannappel, Thomas; Klyukin, Konstantin; Alexandrov, Vitaly; Skorb, Ekaterina V.
Layer-by-layer polyelectrolyte assembly for the protection of GaP surfaces from photocorrosion. - In: ACS applied nano materials, ISSN 2574-0970, Bd. 4 (2021), 1, S. 425-431

Polyelectrolyte layer-by-layer assemblies are known as protective coatings for corrosion inhibition. Here, we demonstrate that polyelectrolyte multilayers of poly(ethyleneimine) (PEI) and poly(styrene sulfonate) (PSS)-(PEI/PSS)x-adsorbed at the GaP(100) photocathode surface remarkably mitigate the photocorrosion of GaP without decreasing its photoconversion efficiency. The activity of the polybase-polyacid complex is based on buffering pH changes at the solid-liquid interface. We carried out ab initio molecular dynamics-based simulations of the GaP(100) surface in contact with liquid water and demonstrated that an increase in the proton concentration enhances GaP dissolution. We used the scanning vibrating electrode technique (SVET) to characterize the distribution of photocorrosion activity areas over bare and polyelectrolyte-coated GaP surfaces and we showed that a polyelectrolyte coating impedes the dissolution kinetics. Data obtained using the SVET were compared to photoetched pores on the semiconductor surface. Voltammetric and chronoamperometric measurements were also performed to evaluate photoconversion efficiencies before and after the application of the protective coatings.



https://doi.org/10.1021/acsanm.0c02768
Eichfelder, Gabriele; Warnow, Leo
Proximity measures based on KKT points for constrained multi-objective optimization. - In: Journal of global optimization, ISSN 1573-2916, Bd. 80 (2021), 1, S. 63-86

An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush-Kuhn-Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the violation of the KKT conditions. It can be computed easily and is continuous in every efficient solution. Hence, it can be used as an indicator for the proximity of a certain point to the set of efficient (Edgeworth-Pareto-minimal) solutions and is well suited for algorithmic use due to its continuity properties. This is especially useful within evolutionary algorithms for candidate selection and termination, which we also illustrate numerically for some test problems.



https://doi.org/10.1007/s10898-020-00971-3
Han, Jie; Kohayakawa, Yoshiharu; Morris, Patrick; Person, Yury
Finding any given 2-factor in sparse pseudorandom graphs efficiently. - In: Journal of graph theory, ISSN 1097-0118, Bd. 96 (2021), 1, S. 87-108

https://doi.org/10.1002/jgt.22576
Eichfelder, Gabriele; Klamroth, Kathrin; Niebling, Julia
Nonconvex constrained optimization by a filtering branch and bound. - In: Journal of global optimization, ISSN 1573-2916, Bd. 80 (2021), 1, S. 31-61

A major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the [alpha]BB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained optimization problem. Moreover, the multiobjective reformulation enables to identify the trade-off between constraint satisfaction and objective value which is also reflected in the quality guarantee. Numerical tests validate that we indeed can find feasible and often optimal solutions where the classical single-objective [alpha]BB method fails, i.e., it terminates without ever finding a feasible solution.



https://doi.org/10.1007/s10898-020-00956-2
Prinz, Sebastian; Thomann, Jana; Eichfelder, Gabriele; Boeck, Thomas; Schumacher, Jörg
Expensive multi-objective optimization of electromagnetic mixing in a liquid metal. - In: Optimization and engineering, ISSN 1573-2924, Bd. 22 (2021), 2, S. 1065-1089

This paper presents a novel trust-region method for the optimization of multiple expensive functions. We apply this method to a biobjective optimization problem in fluid mechanics, the optimal mixing of particles in a flow in a closed container. The three-dimensional time-dependent flows are driven by Lorentz forces that are generated by an oscillating permanent magnet located underneath the rectangular vessel. The rectangular magnet provides a spatially non-uniform magnetic field that is known analytically. The magnet oscillation creates a steady mean flow (steady streaming) similar to those observed from oscillating rigid bodies. In the optimization problem, randomly distributed mass-less particles are advected by the flow to achieve a homogeneous distribution (objective function 1) while keeping the work done to move the permanent magnet minimal (objective function 2). A single evaluation of these two objective functions may take more than two hours. For that reason, to save computational time, the proposed method uses interpolation models on trust-regions for finding descent directions. We show that, even for our significantly simplified model problem, the mixing patterns vary significantly with the control parameters, which justifies the use of improved optimization techniques and their further development.



https://doi.org/10.1007/s11081-020-09561-4
Derkach, Volodymyr; Dym, Harry
Functional models for entire symmetric operators in rigged de Branges Pontryagin spaces. - In: Journal of functional analysis, ISSN 1096-0783, Bd. 280 (2021), 2, 108776

The theory of operator extensions in rigged Pontryagin spaces is used to develop two functional models for closed symmetric entire operators S with finite deficiency indices (p,p) acting in a separable Pontryagin space K. In the first functional model it is shown that every such operator S is unitarily equivalent to the multiplication operator in a de Branges-Pontryagin space B(E) of p×1 vector valued entire functions. The second functional model is used to parametrize a class of compressed resolvents of extensions ÜÞS of S in terms of the range of a linear fractional transformation that is associated with the model. This approach is independent of the methods used by Krein and Langer to parameterize a related class of extensions.



https://doi.org/10.1016/j.jfa.2020.108776
Gernandt, Hannes; Haller, Frederic E.; Reis, Timo; Schaft, Abraham Jan van der
Port-Hamiltonian formulation of nonlinear electrical circuits. - In: Journal of geometry and physics, Bd. 159 (2021), 103959, insges. 15 S.

We consider nonlinear electrical circuits for which we derive a port-Hamiltonian formulation. After recalling a framework for nonlinear port-Hamiltonian systems, we model each circuit component as an individual port-Hamiltonian system. The overall circuit model is then derived by considering a port-Hamiltonian interconnection of the components. We further compare this modeling approach with standard formulations of nonlinear electrical circuits.



https://doi.org/10.1016/j.geomphys.2020.103959
Fern, Florian; Füßl, Roland; Eichfelder, Gabriele; Manske, Eberhard; Kühnel, Michael
Coordinate transformation and its uncertainty under consideration of a non-orthogonal coordinate base. - In: Measurement science and technology, ISSN 1361-6501, Bd. 32 (2021), 4, 045001, insges. 6 S.

Nanopositioning and nanomeasuring machines are 3D coordinate measuring systems with nanometer precision at measurement volumes in the cubic centimeter range. The coordinate base is formed by an interferometer system with a common mirror corner. The orthogonality deviations of the mirror corner require a coordinate transformation of the measuring axes. The uncertainty of the coordinate transformation must be taken into account in the overall measurement uncertainty budget. Starting from a complete transformation model, the result of model simplications on the transformation behaviour is analysed and discussed.



https://doi.org/10.1088/1361-6501/aba3f5
Liang, Zhenyan; Yang, Mingzhi; Wang, Shouzhi; Chang, Bin; Tu, Huayao; Shao, Yongliang; Zhang, Baoguo; Zhao, Huaping; Lei, Yong; Shen, Jianxing; Wu, Yongzhong; Hao, Xiaopeng
Hollow submicrospheres of trimetallic selenides for high-capacity lithium and sodium ion batteries. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 405 (2021), 126724

Highly conductive metal selenides have drawn increasing attention in the field of energy storage. Unfortunately, their application is severely limited by the inferior capacity contribution as well as unsatisfactory cycling stability. Here, we propose a simple and practical way to prepare hollow nickel-cobalt-manganese selenides (NCMSe) submicrospheres. The NCMSe submicrospheres exhibit rich redox reactions during the reaction process into which much more alkali metal ions can be inserted, leading to high reversible capacity and their hollow structure facilitates the contact between the active material and electrolyte to accelerate the redox kinetics. Benefiting from these features, the hollow NCMSe submicrospheres show superior Li-storage capacity (1600 mAh g^-1 after 1000 cycles at 2 A g^-1) and Na-storage capacity (695 mAh g^-1 after 200 cycles at 0.1 A g^-1). This work offers a novel insight to the remarkable electrochemical performance anode materials for both lithium and sodium ion batteries.



https://doi.org/10.1016/j.cej.2020.126724
Xu, Rui; Du, Lei; Adekoya, David; Zhang, Gaixia; Zhang, Shanqing; Sun, Shuhui; Lei, Yong
Well-defined nanostructures for electrochemical energy conversion and storage. - In: Advanced energy materials, ISSN 1614-6840, Bd. 11 (2021), 15, 2001537, insges. 53 S.

Electrochemical energy conversion and storage play crucial roles in meeting the increasing demand for renewable, portable, and affordable power supplies for society. The rapid development of nanostructured materials provides an alternative route by virtue of their unique and promising effects emerging at nanoscale. In addition to finding advanced materials, structure design and engineering of electrodes improves the electrochemical performance and the resultant commercial competitivity. Regarding the structural engineering, controlling the geometrical parameters (i.e., size, shape, hetero-architecture, and spatial arrangement) of nanostructures and thus forming well-defined nanostructure (WDN) electrodes have been the central aspects of investigations and practical applications. This review discusses the fundamental aspects and concept of WDNs for energy conversion and storage, with a strong emphasis on illuminating the relationship between the structural characteristics and the resultant electrochemical superiorities. Key strategies for actualizing well-defined features in nanostructures are summarized. Electrocatalysis and photoelectrocatalysis (for energy conversion) as well as metal-ion batteries and supercapacitors (for energy storage) are selected to illustrate the superiorities of WDNs in electrochemical reactions and charge carrier transportation. Finally, conclusions and perspectives regarding future research, development, and applications of WDNs are discussed.



https://doi.org/10.1002/aenm.202001537
Schweser, Thomas; Stiebitz, Michael
Partitions of hypergraphs under variable degeneracy constraints. - In: Journal of graph theory, ISSN 1097-0118, Bd. 96 (2021), 1, S. 7-33

https://doi.org/10.1002/jgt.22575
Esterhuizen, Willem; Worthmann, Karl; Streif, Stefan
Recursive feasibility of continuous-time model predictive control without stabilising constraints. - In: IEEE control systems letters, ISSN 2475-1456, Bd. 5 (2021), 1, S. 265-270

https://doi.org/10.1109/LCSYS.2020.3001514
Behrens, Arne; Bosch, Martí; Hentschel, Martina; Sinzinger, Stefan
Deformed microcavities with very high Q-factors and directional farfield emission. - In: EOS Annual Meeting (EOSAM 2020), (2020), 01006, S. 1-2

We report the design and optimized fabrication of deformed whispering gallery mode resonators in silica with solely ICP-RIE. This allows us to control the morphology of the resonators more freely and results in low surface roughness. The light was coupled into the resonator using a state of the art tapered fiber approach and we determined the Q-factor in the range of 10^5



https://doi.org/10.1051/epjconf/202023801006
Mendl, Alexander; Köhler, Michael; Boskovic, Dusan
Fast reaction screening combining segmentet flow microfluidics and surface enhanced Raman spectroscopy. - In: 23rd International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2019), (2020), S. 1368-1369

Liu, Jing; Zhu, Chuhong; Pan, Qijun; Meng, Guowen; Lei, Yong
Ag-nanoparticles-decorated Ge-nanowhisker grafted on carbon fiber cloth as flexible and effective SERS substrates. - In: ChemistrySelect, ISSN 2365-6549, Bd. 5 (2020), 27, S. 8338-8343

Three-dimensional (3D) flexible surface enhanced Raman scattering (SERS) substrates of silver nanoparticles (Ag-NPs) decorated Germanium nanowhiskers (Ge-NWHKs) grafted on carbon fiber cloth (CFC) (denoted as Ag-NPsGe-NWHKs@CFC) are constructed via chemical vapor deposition growth of high-density Ge-NWHKs on CFC and then assembly of Ag-NPs on the Ge-NWHKs by galvanic displacement. Ordered 3D framework of Ge-NWHKs grafted flexible CFC impels the formation of large amounts of Ag-NPs with homogenous distribution via spontaneous reduction of Ag+ ions. Thus, the Ag-NPs@Ge-NWHKs@CFC SERS substrates present ultra-high sensitivity, good reproducibility, and high flexibility. This SERS sensor has achieved a detection limit of 1 pM for Rhodamine 6G and 0.1 nM for thiram respectively. The as-fabricated SERS substrates show promising potential for applications in rapid detection of trace organic pollutants in the aquatic environment.



https://doi.org/10.1002/slct.202001290
Ivanov, Svetlozar; Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Electrochemical nucleation of silicon in ionic liquid-based electrolytes. - In: Meeting abstracts, ISSN 2151-2043, Bd. MA2020-01 (2020), 19, 1181

https://doi.org/10.1149/MA2020-01191181mtgabs
Gernandt, Hannes; Moalla, Nedra; Philipp, Friedrich; Selmi, Wafa; Trunk, Carsten
Invariance of the essential spectra of operator pencils. - In: Operator theory, operator algebras and their interactions with geometry and topology, (2020), S. 203-219

Sauerteig, Philipp; Jiang, Yuning; Houska, Boris; Worthmann, Karl
Distributed control enforcing group sparsity in smart grids. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 53 (2020), 2, S. 13269-13274

In modern smart grids, charging of local energy storage devices is coordinated within the distribution grid to compensate the volatile aggregated power demand on the time interval of interest. However, this results in a perpetual usage of all batteries which in return reduces their lifetime. In this paper, we enforce group sparsity by using an lp,q-regularization on the control to counteract this phenomenon. This leads to a non-smooth convex optimization problem, for which a tailored Alternating Direction Method of Multipliers algorithm is proposed. Furthermore, the algorithm is embedded in a Model Predictive Control framework. Numerical simulations show that the proposed scheme yields sparse control while achieving reasonable overall peak shaving.



https://doi.org/10.1016/j.ifacol.2020.12.156
Berger, Thomas; Kästner, Carolin; Worthmann, Karl
Learning-based funnel-MPC for output-constrained nonlinear systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 53 (2020), 2, S. 5177-5182

We exploit an adaptive control technique, namely funnel control, to establish both initial and recursive feasibility in Model Predictive Control (MPC) for output-constrained nonlinear systems. Moreover, we show that the resulting feedback controller outperforms the funnel controller both w.r.t. the required sampling rate for a zero-order-hold implementation and required control action. We further propose a combination of funnel control and MPC, exploiting the performance guarantees of the model-free funnel controller during a learning phase and the advantages of the model-based MPC scheme thereafter.



https://doi.org/10.1016/j.ifacol.2020.12.1186
Täuscher, Eric;
Salpetersäure zum Rauchen bringen. - In: Nachrichten aus der Chemie, ISSN 1868-0054, Bd. 68 (2020), 10, S. 20-22

Rauchende Salpetersäure ist im Handel nur hochrein zu kaufen und daher teuer - zu teuer für Hochschulpraktika. An der TU Ilmenau synthetisieren die Studierenden die HNO3 nun selbst als Praktikumsversuch und nutzen dafür historische Anleitungen.



https://doi.org/10.1002/nadc.20204101724
Miao, Qing; Zurlo, Enrico; Bruin, Donny; Wondergem, Joeri A. J.; Timmer, Monika; Blok, Anneloes; Heinrich, Doris; Overhand, Mark; Huber, Martina; Ubbink, Marcellus
A two-armed probe for in-cell DEER measurements on proteins. - In: Chemistry - a European journal, ISSN 1521-3765, Bd. 26 (2020), 71, S. 17128-17133

The application of double electron-electron resonance (DEER) with site-directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin-label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two-armed GdIII complexes, GdIII-CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.



https://doi.org/10.1002/chem.202002743
Kleyman, Viktoria; Abbas, Hossam S.; Brinkmann, Ralf; Worthmann, Karl; Müller, Matthias A.
Modelling of heat diffusion for temperature-controlled retinal photocoagulation. - In: Proceedings on automation in medical engineering, Vol. 1 (2020), no. 1, paperID: 006, 2 Seiten

https://doi.org/10.18416/AUTOMED.2020
Kurniawan, Mario; Stich, Michael; Marimon, Mayra; Camargo, Magali K.; Peipmann, Ralf; Hannappel, Thomas; Bund, Andreas
Electrodeposition of cuprous oxide on a free-standing porous Cu framework for photoelectrochemical water splitting. - In: Meeting abstracts, ISSN 2151-2043, Bd. MA2020-02 (2020), 15, 1425

https://doi.org/10.1149/MA2020-02151425mtgabs
Zviagin, Vitaly; Grundmann, Marius; Schmidt-Grund, Rüdiger
Impact of defects on magnetic properties of spinel zinc ferrite thin films. - In: Physica status solidi, ISSN 1521-3951, Bd. 257 (2020), 7, 1900630, insges. 11 S.

The recent developments in the study of magnetic properties in the spinel zinc ferrite system are explored. Engineering of ionic valence and site distribution allows tailoring of magnetic interactions. Recent literature is reviewed, and own investigations are presented for a conclusive understanding of the mechanisms responsible for the magnetic behavior in this material system. By varying the Zn-to-Fe ratio, the deposition, as well as thermal annealing conditions, ZnFe2O4 thin films with a wide range of crystalline quality are produced. In particular, the focus is on the magnetic structure in relation to spectroscopic properties of disordered ZnFe2O4 thin films. Comparing the cation distribution in film bulk (optical transitions in the dielectric function) and near-surface region (X-ray absorption), it is found that an inhomogeneous cation distribution leads to a weaker magnetic response in films of inverse configuration, whereas defects in the normal spinel are likely to be found at the film surface. The results show that it is possible to engineer the defect distribution in the magnetic spinel ferrite film structure and tailor their magnetic properties on demand. It is demonstrated that these properties can be read out optically, which allows controlled growth of the material and applications in future magneto-optical devices.



https://doi.org/10.1002/pssb.201900630
Sukhodub, Liudmyla B.; Sukhodub, Leonid F.; Prylutskyy, Yuriy I.; Kumeda, Mariya A.; Ritter, Uwe
Graphene oxide influences on mechanical properties and drug release ability of hydroxyapatite based composite material. - In: Nanomaterials in biomedical application and bionsensors (NAP-2019), (2020), S. 139-149

Bioactive composite material based on hydroxyapatite (HA), sodium alginate (Alg) with different content of graphene oxide (GO) was synthesized by the wet chemistry method and characterized by TEM, XRD, FTIR, HPLC analysis. Introduced the GO nanoparticles, as well as Ca2+ ions, as cross-linker of Alg macromolecules by the beads formation, lead to enhancement of the composites mechanical properties. HA-Alg-GO10 sample with GO content of 0.004% in relation to the HA powder has a much higher Youngs modulus (1325 MPa) in comparison with GO-free HA-Alg composite (793 MPa), as well as steel sample of the same size (˜706 MPa). The addition of GO reduces the degree of the composites swelling in a phosphate buffered saline for 43% and enhances the beads shape stability. Chlorhexidine bigluconate release from GO containing samples lasts for 48 h longer according to HPLC study. The findings clear demonstrate the potential possibility of applications of the HA-Alg-GO composite material in bioengineering of bone tissue to fill bone defects of various geometries with the function of prolonged release of the drug. It is assumed that HA-Alg-GO composite material can be used in 3D modeling of areas of bone tissue that have to bear a mechanical load.



Kleinschmidt, Peter; Mutombo, Pingo; Berthold, Theresa; Paszuk, Agnieszka; Steidl, Matthias; Ecke, Gernot; Nägelein, Andreas; Koppka, Christian; Supplie, Oliver; Krischok, Stefan; Romanyuk, Oleksandr; Himmerlich, Marcel; Hannappel, Thomas
Atomic surface structure of MOVPE-prepared GaP(111)B. - In: Applied surface science, Bd. 534 (2020), 147346

Controlling the surface formation of the group-V face of (111)-oriented III-V semiconductors is crucial for subsequent successful growth of III-V nanowires for electronic and optoelectronic applications. With a view to preparing GaP/Si(111) virtual substrates, we investigate the atomic structure of the MOVPE (metalorganic vapor phase epitaxy)-prepared GaP(111)B surface (phosphorus face). We find that upon high-temperature annealing in the H2-based MOVPE process ambience, the surface is phosphorus-depleted, as evidenced by X-ray photoemission spectroscopy (XPS). However, a combination of density functional theory calculations and scanning tunneling microscopy (STM) suggests the formation of a partially H-terminated phosphorus surface, where the STM contrast is due to electrons tunneling from non-terminated dangling bonds of the phosphorus face. Atomic force microscopy (AFM) reveals that a high proportion of the surface is covered by islands, which are confirmed as Ga-rich by Auger electron spectroscopy (AES). We conclude that the STM images of the samples after high-temperature annealing only reflect the flat regions of the partially H-terminated phosphorus face, whereas an increasing coverage with Ga-rich islands, as detected by AFM and AES, forms upon annealing and underlies the higher proportion of Ga in the XPS measurements.



https://doi.org/10.1016/j.apsusc.2020.147346
Coron, Jean-Michel; Grüne, Lars; Worthmann, Karl
Model predictive control, cost controllability, and homogeneity. - In: SIAM journal on control and optimization, ISSN 1095-7138, Bd. 58 (2020), 5, S. 2979-2996

We are concerned with the design of Model Predictive Control (MPC) schemes such that asymptotic stability of the resulting closed loop is guaranteed - even if the linearization at the desired set point fails to be stabilizable. Therefore, we propose constructing the stage cost based on the homogeneous approximation and rigorously show that applying MPC yields an asymptotically stable closed-loop behavior if the homogeneous approximation is asymptotically null controllable. To this end, we verify cost controllability - a condition relating the current state, the stage cost, and the growth of the value function with respect to time - for this class of systems in order to provide stability and performance guarantees for the proposed MPC scheme without stabilizing terminal costs or constraints.



https://doi.org/10.1137/19M1265995
Zviagin, Vitaly; Sturm, Chris; Esquinazi, Pablo; Grundmann, Marius; Schmidt-Grund, Rüdiger
Control of magnetic properties in spinel ZnFe2O4 thin films through intrinsic defect manipulation. - In: Journal of applied physics, ISSN 1089-7550, Bd. 128 (2020), 16, 165702, insges. 7 S.
Im Titel sind "2" und "4" tiefgestellt

We present a systematic study of the magnetic properties of ZnFe2O4 thin films fabricated by pulsed laser deposition at low and high oxygen partial pressure and annealed in oxygen and argon atmosphere, respectively. The as-grown films show strong magnetization, closely related to a non-equilibrium distribution of defects, namely, Fe cations among tetrahedral and octahedral lattice sites. While the concentration of tetrahedral Fe cations declines after argon treatment at 250 &ring;C, the magnetic response is enhanced by the formation of oxygen vacancies, evident by the increase in near-infrared absorption due to the Fe2+-Fe3+ exchange. After annealing at temperatures above 300 &ring;C, the weakened magnetic response is related to a decline in disorder with a partial recrystallization toward a less defective spinel configuration.



https://doi.org/10.1063/5.0019712
Mazétyté-Stasinskiené, Raminta; Köhler, Michael
Sensor micro and nanoparticles for microfluidic application. - In: Applied Sciences, ISSN 2076-3417, Bd. 10 (2020), 23, 8353, S. 1-37

Micro and nanoparticles are not only understood as components of materials but as small functional units too. Particles can be designed for the primary transduction of physical and chemical signals and, therefore, become a valuable component in sensing systems. Due to their small size, they are particularly interesting for sensing in microfluidic systems, in microarray arrangements and in miniaturized biotechnological systems and microreactors, in general. Here, an overview of the recent development in the preparation of micro and nanoparticles for sensing purposes in microfluidics and application of particles in various microfluidic devices is presented. The concept of sensor particles is particularly useful for combining a direct contact between cells, biomolecules and media with a contactless optical readout. In addition to the construction and synthesis of micro and nanoparticles with transducer functions, examples of chemical and biological applications are reported.



https://doi.org/10.3390/app10238353
Feifel, Markus; Lackner, David; Ohlmann, Jens; Volz, Kerstin; Hannappel, Thomas; Benick, Jan; Hermle, Martin; Dimroth, Frank
Advances in epitaxial GaInP/GaAs/Si triple junction solar cells. - In: 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), (2020), S. 0194-0196

https://doi.org/10.1109/PVSC45281.2020.9300594
Faulwasser, Timm; Göttlich, Simone; Worthmann, Karl
Mathematical innovations fostering the energy transition - control and optimization. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 68 (2020), 12, S. 982-984

https://doi.org/10.1515/auto-2020-0152
Kleyman, Viktoria; Gernandt, Hannes; Worthmann, Karl; Abbas, Hossam S.; Brinkmann, Ralf; Müller, Matthias A.
Modellierung und Parameteridentifikation für die Echtzeittemperaturregelung bei retinalen Lasertherapien :
Modeling and parameter identification for real-time temperature controlled retinal laser therapies. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 68 (2020), 11, S. 953-966

Laser photocoagulation is a widely used treatment for a variety of retinal diseases. Temperature-controlled irradiation is a promising approach to enable uniform heating, reduce the risks of over- or undertreatment, and unburden the ophthalmologists from a time consuming manual power titration. In this paper, an approach is proposed for the development of models with different levels of detail, which serve as a basis for improved, more accurate observer and control designs. To this end, we employ a heat diffusion model and propose a suitable discretization and subsequent model reduction procedures. Since the absorption of the laser light can vary strongly at each irradiation site, a method for identifying the absorption coefficient is presented. To identify a parameter in a reduced order model, an optimal interpolatory projection method for parametric systems is used. In order to provide an online identification of the absorption coefficient, we prove and exploit monotonicity of the parameter influence.



https://doi.org/10.1515/auto-2020-0074
Link, Steffen; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas; Ivanov, Svetlozar
Electrogravimetry and structural properties of thin silicon layers deposited in sulfolane and ionic liquid electrolytes. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 51, S. 57526-57538

Potentiostatic deposition of silicon is performed in sulfolane (SL) and ionic liquid (IL) electrolytes. Electrochemical quartz crystal microbalance with damping monitoring (EQCM-D) is used as main analytical tool for the characterization of the reduction process. The apparent molar mass (Mapp) is applied for in situ estimation of the layer contamination. By means of this approach, appropriate electrolyte composition and substrate type are selected to optimize the structural properties of the layers. The application of SL electrolyte results in silicon deposition with higher efficiency compared to the IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, [BMP][TFSI]. This has been associated with the instability of the IL in the presence of silicon tetrachloride and the enhanced incorporation of IL decomposition products into the growing silicon deposit. X-ray photoelectron spectroscopy (XPS) analysis supports the results about the layer composition, as suggested from the microgravimetric experiments. Attention has been given to the impact of practically relevant substrates (i.e., Cu, Ni, and vitreous carbon) on the reduction process. An effective deposition can be carried out on the metal electrodes in both electrolytes due to accelerated reaction kinetics for these types of substrates. However, on vitreous carbon (VC), a successful reduction of SiCl4 can only be accomplished in the IL, while the electroreduction process in SL is dominated by the decomposition of the electrolyte. For short deposition times, the scanning electron microscopy (SEM) images display rough morphologies in the nanometer range, which evolve further to structures with increased length scale of the surface roughness. The development of a rough interface during deposition, resulting in QCM damping at advanced stages of the process, is interpreted by a model accounting for the resistive force caused by the interaction of the liquid with a nonuniform layer interface. By using this approach, the individual contributions of the surface roughness and viscoelastic effects to the measured damping values are estimated.



https://doi.org/10.1021/acsami.0c14694
Kröger, Jörg; Néel, Nicolas
Scanning probe microscopy - from surfaces to single atoms. - In: Encyclopedia of applied physics, (2020), S. 1-39

This article highlights the important role of scanning tunneling and atomic force microscopy in modern surface science experiments. Imaging with atomic resolution, manipulation of matter atom by atom, spectroscopy of confined electrons, molecular vibrational quanta, surface phonons, singleatom spin flips, and singlemolecule fluorescence photons are some of the diverse applications of the microscopes. The impact of the actual atomic or molecular termination of the tip is emphasized. A variety of examples presents the state of the art in quantum physics of surfaces and interfaces and demonstrates that scanning probe techniques significantly contribute to the understanding of matter at the atomic scale.



https://doi.org/10.1002/3527600434.eap914
Schulte, Stefan; Hartung, Gerd; Kröger, Jörg; Himmerlich, Marcel; Petit, Valentine; Taborelli, Mauro
Energy-resolved secondary-electron emission of candidate beam screen materials for electron cloud mitigation at the Large Hadron Collider. - In: Physical review accelerators and beams, ISSN 2469-9888, Bd. 23 (2020), 10, S. 103101-1-103101-10

Energy-resolved secondary electron spectroscopy has been performed on air-exposed standard Cu samples and modified Cu surfaces that are tested and possibly applied to efficiently suppress electron cloud formation in the high-luminosity upgrade of the Large Hadron Collider at CERN. The Cu samples comprise pristine oxygen-free, carbon-coated and laser-structured surfaces, which were characterized prior to and after electron irradiation and rare-gas ion bombardment. Secondary-electron and reflected-electron yields measured with low charge dose of the samples exhibit a universal dependence on the energy of the primary impinging electrons. State-of-the-art models can successfully be used to describe the spectroscopic data. The supplied spectral dependence of electron emission and integrated electron yield as well as the derived parametrization can serve as a basis for forthcoming simulations of electron cloud formation and multipacting.



https://doi.org/10.1103/PhysRevAccelBeams.23.103101
De Santis, Marianna; Eichfelder, Gabriele; Niebling, Julia; Rocktäschel, Stefan
Solving multiobjective mixed integer convex optimization problems. - In: SIAM journal on optimization, ISSN 1095-7189, Bd. 30 (2020), 4, S. 3122-3145

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, but we build linear outer approximations of the image set in an adaptive way. We are able to guarantee correctness in terms of detecting both the efficient and the nondominated set of multiobjective mixed integer convex problems according to a prescribed precision. As far as we know, the procedure we present is the first non-scalarization-based deterministic algorithm devised to handle this class of problems. Our numerical experiments show results on biobjective and triobjective mixed integer convex instances.



https://doi.org/10.1137/19M1264709
Bosch, Martí; Behrens, Arne; Sinzinger, Stefan; Hentschel, Martina
Optische Systeme im Phasenraumbild. - In: DGaO-Proceedings, ISSN 1614-8436, Bd. 121 (2020), B29, insges. 2 S.

https://nbn-resolving.org/urn:nbn:de:0287-2020-B029-0
Xiao, Meiling; Xing, Zihao; Jin, Zhao; Liu, Changpeng; Ge, Junjie; Zhu, Jianbing; Wang, Ying; Zhao, Xiao; Chen, Zhongwei
Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries. - In: Advanced materials, ISSN 1521-4095, Bd. 32 (2020), 49, 2004900, insges. 9 S.
Im Titel ist "4" tiefgestellt

Single-atom FeN4 sites at the edges of carbon substrates are considered more active for oxygen electrocatalysis than those in plane; however, the conventional high-temperature pyrolysis process does not allow for precisely engineering the location of the active site down to atomic level. Enlightened by theoretical prediction, herein, a self-sacrificed templating approach is developed to obtain edge-enriched FeN4 sites integrated in the highly graphitic nanosheet architecture. The in situ formed Fe clusters are intentionally introduced to catalyze the growth of graphitic carbon, induce porous structure formation, and most importantly, facilitate the preferential anchoring of FeN4 to its close approximation. Due to these attributes, the as-resulted catalyst (denoted as Fe/N-G-SAC) demonstrates unprecedented catalytic activity and stability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) by showing an impressive half-wave potential of 0.89 V for the ORR and a small overpotential of 370 mV at 10 mA cm^-2 for the OER. Moreover, the Fe/N-G-SAC cathode displays encouraging performance in a rechargeable Zn-air battery prototype with a low charge-discharge voltage gap of 0.78 V and long-term cyclability for over 240 cycles, outperforming the noble metal benchmarks.



https://doi.org/10.1002/adma.202004900
Eichfelder, Gabriele;
Methods for multiobjective bilevel optimization. - In: Bilevel optimization, (2020), S. 423-449

This chapter is on multiobjective bilevel optimization, i.e. on bilevel optimization problems with multiple objectives on the lower or on the upper level, or even on both levels. We give an overview on the major optimality notions used in multiobjective optimization. We provide characterization results for the set of optimal solutions of multiobjective optimization problems by means of scalarization functionals and optimality conditions. These can be used in theoretical and numerical approaches to multiobjective bilevel optimization.As multiple objectives arise in multiobjective optimization as well as in bilevel optimization problems, we also point out the results on the connection between these two classes of optimization problems. Finally, we give reference to numerical approaches which have been followed in the literature to solve these kind of problems. We concentrate in this chapter on nonlinear problems, while the results and statements naturally also hold for the linear case.



Gernandt, Hannes; Haller, Frédéric E.; Reis, Timo
A linear relation approach to port-Hamiltonian differential-algebraic equations. - [Hamburg[ : [Fachbereich Mathematik, Universität Hamburg], 2020. - 1 Online-Ressource (31 Seiten). - ([Hamburger Beiträge zur Angewandten Mathematik] ; [2020, 16])Titel der monographischen Reihe und Veröffentlichungsangabe von der Homepage entnommen

http://epub.sub.uni-hamburg.de/epub/volltexte/2020/112509/
Visaveliya, Nikunjkumar R.; Köhler, Michael
Emerging structural and interfacial features of particulate polymers at the nanoscale. - In: Langmuir, ISSN 1520-5827, Bd. 36 (2020), 44, S. 13125-13143

Particulate polymers at the nanoscale are exceedingly promising for diversified functional applications ranging from biomedical and energy to sensing, labeling, and catalysis. Tailored structural features (i.e., size, shape, morphology, internal softness, interior cross-linking, etc.) determine polymer nanoparticles' impact on the cargo loading capacity and controlled/sustained release, possibility of endocytosis, degradability, and photostability. The designed interfacial features, however (i.e., stimuli-responsive surfaces, wrinkling, surface porosity, shell-layer swellability, layer-by-layer surface functionalization, surface charge, etc.), regulate nanoparticles interfacial interactions, controlled assembly, movement and collision, and compatibility with the surroundings (e.g., solvent and biological environments). These features define nanoparticles' overall properties/functions on the basis of homogeneity, stability, interfacial tension, and minimization of the surface energy barrier. Lowering of the resultant outcomes is directly influenced by inhomogeneity in the structural and interfacial design through the structure-function relationship. Therefore, a key requirement is to produce well-defined polymer nanoparticles with controlled characteristics. Polymers are amorphous, flexible, and soft, and hence controlling their structural/interfacial features through the single-step process is a challenge. The microfluidics reaction strategy is very promising because of its wide range of advantages such as efficient reactant mixing and fast phase transfer. Overall, this feature article highlights the state-of-the-art synthetic features of polymer nanoparticles with perspectives on their advanced applications.



https://doi.org/10.1021/acs.langmuir.0c02566
Huo, Dexian; Chen, Bin; Meng, Guowen; Huang, Zhulin; Li, Mingtao; Lei, Yong
Ag-nanoparticlesbacterial nanocellulose as a 3D flexible and robust surface-enhanced raman scattering substrate. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 45, S. 50713-50720

We present a well-designed, low-cost, and simple synthetic approach to realizing the hybrid composites of Ag nanoparticle-decorated bacterial nanocellulose (denoted as Ag-NPsBNC) as a three-dimensional (3D) flexible surface-enhanced Raman scattering (SERS) substrate with ultrahigh SERS sensitivity, excellent signal reproducibility, and stability. The homogeneous Ag-NPs with high density were in situ grown on the networked BNC fibers by the controlled silver mirror reaction and volume shrinkage treatment, which created uniformly distributed SERS "hot spots" in the 3D networked hybrid substrate. Attributed to these unique 3D hot spots, the as-presented Ag-NPs@BNC substrates exhibited ultrahigh sensitivity and good spectral reproducibility. Moreover, the hydrophilic BNC exhibits good permeability and adsorption performances, which could capture the target molecules in the highly active hot spot areas to further improve the SERS sensitivity. As a result, not only dye molecules (rhodamine 6G) but also toxic organic pollutants such as 2-naphthalenethiol and thiram have been detected using the hybrid substrates as SERS substrates, with sensitivities of 1.6 × 10-8 and 3.8 × 10-9 M, respectively. The good linear response of the intensity and the logarithmic concentration revealed promising applications in the rapid and quantitative detection of toxic organic pollutants. Besides, this self-supported Ag-NPs@BNC substrate demonstrated good stability and flexibility for varied detection conditions. Therefore, the 3D networked, flexible, ultrasensitive, and stable Ag-NPs@BNC substrate shows potential as a versatile SERS substrate in the rapid identification of various organic molecules.



https://doi.org/10.1021/acsami.0c13828
Romanyuk, Oleksandr; Supplie, Oliver; Paszuk, Agnieszka; Stoeckmann, Jan Philipp; Wilks, Regan George; Bombsch, Jakob; Hartmann, Claudia; Garcia Diez, Raul; Ueda, Shigenori; Bartoš, Igor; Gordeev, Ivan; Houdkova, Jana; Kleinschmidt, Peter; Bär, Marcus; Jiříček, Petr; Hannappel, Thomas
Hard X-ray photoelectron spectroscopy study of core level shifts at buried GaP/Si(001) interfaces. - In: Surface and interface analysis, ISSN 1096-9918, Bd. 52 (2020), 12, S. 933-938

We present a study of buried GaP/Si(001) heterointerfaces by hard X-ray photoelectron spectroscopy. Well-defined thin (4-50 nm) GaP films were grown on Si(001) substrates with 2&ring; miscut orientations by metalorganic vapor phase epitaxy. Core level photoelectron intensities and valence band spectra were measured on heterostructures as well as on the corresponding reference (bulk) substrates. Detailed analysis of core level peaks revealed line broadening and energetic shifts. Valence band offsets were derived for the films with different thickness. Based on the observed variation of the valence band offsets with the GaP film thickness and on the experimental evidence of line broadening, the existence of charge displacement at the GaP/Si(001) interface is suggested.



https://doi.org/10.1002/sia.6829
Kreismann, Jakob; Hentschel, Martina
Spin-orbit interaction of light in three-dimensional microcavities. - In: Physical review, ISSN 2469-9934, Bd. 102 (2020), 4, 043524

We investigate the spin-orbit coupling of light in three-dimensional cylindrical and tubelike whispering gallery mode resonators. We show that its origin is the transverse confinement of light in the resonator walls, even in the absence of inhomogeneities or anisotropies. The spin-orbit interaction results in elliptical far-field polarization (spin) states and causes spatial separation of polarization handedness in the far field. The ellipticity and spatial separation are enhanced for whispering gallery modes with higher excitation numbers along the resonator height. We analyze the asymmetry of the ellipticity and the tilt of the polarization orientation in the far field of conelike microcavities. Furthermore, we find a direct relationship between the tilt of the polarization orientation in the far field and the local inclination of the resonator wall. Our findings are based on finite-difference time-domain simulations and are supported by three-dimensional diffraction theory.



https://doi.org/10.1103/PhysRevA.102.043524
Zhang, Chenglin; Zhao, Huaping; Lei, Yong
Recent research progress of anode materials for potassium-ion batteries. - In: Energy & Environmental Materials, ISSN 2575-0356, Bd. 3 (2020), 2, S. 105-120

The next-generation smart grid for the storage and delivery of renewable energy urgently needs to develop a low-cost and rechargeable energy storage technology beyond lithium-ion batteries (LIBs). Owing to the abundance of potassium (K) resources and the similar electrochemical performance to that of LIBs, potassium-ion batteries (PIBs) have been attracted considerable interest in recent years, and significant progress has been achieved concerning the discovery of high-performance electrode materials for PIBs. This review especially summarizes the latest research progress regarding anode materials for PIBs, including carbon materials, organic materials, alloys, metal-based compounds, and other new types of compounds. The reversible K-ion storage principle and the electrochemical performance (i.e., capacity, potential, rate capability, and cyclability) of these developed anode materials are summarized. Furthermore, the challenges and the corresponding effective strategies to enhance the battery performance of the anode materials are highlighted. Finally, prospects of the future development of high-performance anode materials for PIBs are discussed.



https://doi.org/10.1002/eem2.12059
Hurmach, Vasyl V.; Khrapatiy, Sergeii V.; Zavodovskyi, D. O.; Prylutskyy, Yuriy I.; Täuscher, Eric; Ritter, Uwe
Modeling of single-walled carbon nanotube binding to nitric oxide synthase and guanylate cyclase molecular structures. - In: Neurophysiology, ISSN 1573-9007, Bd. 52 (2020), 2, S. 110-115

Previously, we have demonstrated that water dispersible single-walled carbon nanotubes (SWCNTs) may be used in low therapeutic doses in antihypertensive therapy as promising agents capable of activating constitutive nitric oxide synthase (NOS) in spontaneously hypertensive rats, thus increasing the NO production in central and peripheral elements of the cardiovascular system [1]. Here we confirm this effect by docking and molecular dynamics simulations, clearly showing that SWCNTs may interact with NOS and guanylate cyclase molecular structures.



https://doi.org/10.1007/s11062-020-09859-0
Shapoval, Lyudmila M.; Dmytrenko, Oksana V.; Sagach, Vadim F.; Prylutska, Svitlana V.; Khrapatiy, Sergeii V.; Zavodovskyi, D. O.; Prylutskyy, Yuriy I.; Tsierkezos, Nikos; Ritter, Uwe
Systemic administrations of water-dispersible single-walled carbon nanotubes: activation of NOS in spontaneously hypertensive rats. - In: Neurophysiology, ISSN 1573-9007, Bd. 52 (2020), 2, S. 101-109

Priority data have been obtained on the effects of repeated systemic administrations of water-dispersible single-walled carbon nanotubes (SWCNTs) to spontaneously hypertensive rats with respect to constitutive NO-synthase (cNOS). As is known, NO is an inhibitory transmitter in the cardiovascular system. It was found that the systemic (i.p., subcutaneous, and i.m.) introductions of SWCNTs during two weeks resulted in considerable elevations of the NO2- level (a marker of NO bioavailability) in the blood of experimental hypertensive animals. Thus, SWCNTs may be used in the future for antihypertensive therapy as a novel agent capable of activating cNOS and, thus, increasing the NO production in central and peripheral elements of the cardiovascular system.



https://doi.org/10.1007/s11062-020-09858-1
Xu, Rui; Wen, Liaoyong; Wang, Zhijie; Zhao, Huaping; Mu, Guannan; Zeng, Zhiqiang; Zhou, Min; Bohm, Sebastian; Zhang, Huanming; Wu, Yuhan; Runge, Erich; Lei, Yong
Programmable multiple plasmonic resonances of nanoparticle superlattice for enhancing photoelectrochemical activity. - In: Advanced functional materials, ISSN 1616-3028, Bd. 30 (2020), 48, 2005170, insges. 10 S.

https://doi.org/10.1002/adfm.202005170
Janse van Rensburg, Dawie B.; Van Straaten, Madelein; Theron, Frieda; Trunk, Carsten
Square roots of H-nonnegative matrices. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2020. - 1 Online-Ressource (24 Seiten). - (Preprint ; M20,01)
https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2020200426
Hurmach, Yevheniia; Rudyk, Mariia; Prylutska, Svitlana; Hurmach, Vasyl; Prylutskyy, Yuriy I.; Ritter, Uwe; Scharff, Peter; Skivka, Larysa
C60 fullerene governs doxorubicin effect on metabolic profile of rat microglial cells in vitro. - In: Molecular pharmaceutics, ISSN 1543-8392, Bd. 17 (2020), 9, S. 3622-3632
Im Titel ist "60" tiefgestellt

Background: C60 fullerenes and their derivatives are actively investigated for the use in neuroscience. Applications of these nanoscale materials require the examination of their interaction with different neural cells, especially with microglia, because these cells, like other tissue resident phagocytes, are the earliest and most sensitive responders to nanoparticles. The aim of this study was to investigate the effect of C60 fullerene and its nanocomplex with doxorubicin (Dox) on the metabolic profile of brain-resident phagocytes - microglia - in vitro. Methods: Resting microglial cells from adult male Wistar rats were used in experiments. Potential C60 fullerene targets in microglial cells were studied by computer simulation. Microglia oxidative metabolism and phagocytic activity were examined by flow cytometry. Griess reaction and arginase activity colorimetric assay were used to explore arginine metabolism. Results: C60 fullerene when used alone did not influence microglia oxidative metabolism and phagocytic activity but shifted arginine metabolism toward the decrease of NO generation. Complexation of C60 fullerene with Dox (C60-Dox) potentiated the ability of the latter to stimulate NO generation. Conclusion: The capability of C60 fullerenes used alone to cause anti-inflammatory shift of microglia arginine metabolism makes them a promising agent for the correction of neuroinflammatory processes involved in neurodegeneration. The potentiating action of C60 fullerene on the immunomodulatory effect of Dox allows us to consider the C60 molecule as an attractive vehicle for this antitumor agent.



https://doi.org/10.1021/acs.molpharmaceut.0c00691
Halenova, Tetiana; Raksha, Nataliia; Savchuk, Olexiy; Ostapchenko, Ludmila; Prylutskyy, Yuriy; Ritter, Uwe; Scharff, Peter
Evaluation of the biocompatibility of water-soluble pristine 60 fullerenes in rabbit. - In: BioNanoScience, ISSN 2191-1649, Bd. 10 (2020), 3, S. 721-730
Im Titel ist "60" tiefgestellt

C60 fullerenes have proved their therapeutic effects and efficacy by the results of countless experiments. For further usage of these nanoparticles, the systematic toxicological investigations are required. Blood compatibility should be studied for C60 fullerenes due to the potential blood contact. Currently, available data is not systematic and has not provided insights into possible side effects of C60 fullerenes on blood components. In this study, water-soluble pristine C60 fullerenes were tested in vitro to assess their biocompatibility in rabbit. The blood compatibility has been evaluated looking at the impact of C60 fullerenes on erythrocyte integrity, platelet aggregation, and some blood factors involved in coagulation. Our results revealed that C60 fullerenes cannot elicit hemolysis at studied concentrations and did not show any effect on coagulation process. C60 fullerenes in concentration-dependent manner increased ADP-dependent platelet aggregation and changed the key kinetic parameters of these processes. C60 fullerenes inhibited thrombin amidolytic activity but did not affect the activities of other studied coagulation factors. The prothrombotic property of C60 fullerenes could be the potential risk factor that leads to enhancement of vascular thrombosis. The ability of fullerene to inhibit thrombin activity is important for the pharmacological use of these carbon nanoparticles as anticoagulant agents.



https://doi.org/10.1007/s12668-020-00762-w
Hähnlein, Bernd; Hofmann, Tim; Tonisch, Katja; Pezoldt, Jörg; Kovac, Jaroslav; Krischok, Stefan
Structural analysis of sputtered Sc(x)Al(1-x)N layers for sensor applications. - In: Materials science and smart materials, (2020), S. 13-18

Zhang, Qingcheng; Zhao, Junping; Wu, Yechao; Li, Jun; Jin, Huile; Zhao, Shiqiang; Chai, Lulu; Wang, Yahui; Lei, Yong; Wang, Shun
Rapid and controllable synthesis of nanocrystallized nickel-cobalt boride electrode materials via a mircoimpinging stream reaction for high performance supercapacitors. - In: Small, ISSN 1613-6829, Bd. 16 (2020), 39, 2003342, insges. 13 S.

Nickel-cobalt borides (denoted as NCBs) have been considered as a promising candidate for aqueous supercapacitors due to their high capacitive performances. However, most reported NCBs are amorphous that results in slow electron transfer and even structure collapse during cycling. In this work, a nanocrystallized NCBs-based supercapacitor is successfully designed via a facile and practical microimpinging stream reactor (MISR) technique, composed of a nanocrystallized NCB core to facilitate the charge transfer, and a tightly contacted Ni-Co borates/metaborates (NCBi) shell which is helpful for OH^- adsorption. These merits endow NCBNCBi a large specific capacity of 966 C g^-1 (capacitance of 2415 F g^-1) at 1 A g^-1 and good rate capability (633.2 C g^-1 at 30 A g^-1), as well as a very high energy density of 74.3 Wh kg^-1 in an asymmetric supercapacitor device. More interestingly, it is found that a gradual in situ conversion of core NCBs to nanocrystallized Ni-Co (oxy)-hydroxides inwardly takes place during the cycles, which continuously offers large specific capacity due to more electron transfer in the redox reaction processes. Meanwhile, the electron deficient state of boron in metal-borates shells can make it easier to accept electrons and thus promote ionic conduction.



https://doi.org/10.1002/smll.202003342
Hähnlein, Bernd; Lebedev, Sergei P.; Eliseyev, Ilya A.; Smirnov, Alexander N.; Davydov, Valery Yu.; Zubov, Alexander V.; Lebedev, Alla A.; Pezoldt, Jörg
Investigation of epitaxial graphene via Raman spectroscopy: origins of phonon mode asymmetries and line width deviations. - In: Carbon, ISSN 1873-3891, Bd. 170 (2020), S. 666-676

In this work a comprehensive study is presented for the analysis of epitaxial graphene layers using Raman spectroscopy. A wide range of graphene types is covered, from defective/polycrystalline single layer graphene to multilayer graphene with low defect density. On this basis the influence of strain type, Fermi level and number of layers on the Raman spectrum of graphene is investigated. A detailed view on the 2D/G dispersion and the respective slopes of uniaxially and biaxially strained graphene is given and its implications on the asymmetry of the G peak analyzed. A linear dependency of the phonon mode asymmetry on uniaxial strain is presented in addition to the known Fermi level dependence. Additional impacts on the asymmetry are found to be arising from the defect density and transfer doping of adsorbates. The discovered transfer doping mechanism is contrary to pure phonon excitation through excitons and exhibits increasing asymmetry with increasing Fermi level. A new characteristic correlation between the 2D mode line width and the inverse I(D)/I(G) ratio is introduced that allows the determination of the strain type and layer number and explains the difference between Raman line widths of monolayer graphene on different substrates.



https://doi.org/10.1016/j.carbon.2020.07.016
Liu, Jun; Wang, Zhijie; Lei, Yong
A close step towards industrialized application of solar water splitting. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 41 (2020), 9, 090401, S. 1-3

https://doi.org/10.1088/1674-4926/41/9/090401
Zhu, Hongfan; Sha, Mo; Zhao, Huaping; Nie, Yuting; Sun, Xuhui; Lei, Yong
Highly-rough surface carbon nanofibers film as an effective interlayer for lithium-sulfur batteries. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 41 (2020), 9, 092701, S. 1-6

Lithium-sulfur (Li-S) battery with a new configuration is demonstrated by inserting a flexible nitrogen-doping carbon nanofiber (N-CNFs) interlayer between the sulfur cathode and the separator. The N-CNFs film with high surface roughness and surface area is fabricated by electrospinning and a subsequent calcination process. The N-CNFs film interlayer not only effectively traps the shuttling migration of polysulfides but also gives the whole battery reliable electronic conductivity, which can effectively enhance the electrochemical performance of Li-S batteries. Finally, Li-S batteries with long cycling stability of 785 mAh/g after 200 cycles and good rate capability of 573 mAh/g at 5 C are achieved.



https://doi.org/10.1088/1674-4926/41/9/092701
Azam, Muhammad; Yue, Shizhong; Xu, Rui; Yang, Shuaijian; Liu, Kong; Huang, Yanbin; Sun, Yang; Hassan, Ali; Ren, Kuankuan; Tan, Furui; Wang, Zhijie; Lei, Yong; Qu, Shengchun; Wang, Zhanguo
Realization of moisture-resistive perovskite films for highly efficient solar cells using molecule incorporation. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 12 (2020), 35, S. 39063-39073

The development of highly crystalline perovskite films with large crystal grains and few surface defects is attractive to obtain high-performance perovskite solar cells (PSCs) with good device stability. Herein, we simultaneously improve the power conversion efficiency (PCE) and humid stability of the CH3NH3PbI3 (CH3NH3 = MA) device by incorporating small organic molecule IT-4F into the perovskite film and using a buffer layer of PFN-Br. The presence of IT-4F in the perovskite film can successfully improve crystallinity and enhance the grain size, leading to reduced trap states and longer lifetime of the charge carrier, and make the perovskite film hydrophobic. Meanwhile, as a buffer layer, PFN-Br can accelerate the separation of excitons and promote the transfer process of electrons from the active layer to the cathode. As a consequence, the PSCs exhibit a remarkably improved PCE of 20.55% with reduced device hysteresis. Moreover, the moisture-resistive film-based devices retain about 80% of their initial efficiency after 30 days of storage in relative humidity of 10-30% without encapsulation.



https://doi.org/10.1021/acsami.0c09046
Richter, Steffen; Herrfurth, Oliver; Espinoza, Shirly; Rebarz, Mateusz; Kloz, Miroslav; Leveillee, Joshua A.; Schleife, André; Zollner, Stefan; Grundmann, Marius; Andreasson, Jakob; Schmidt-Grund, Rüdiger
Ultrafast dynamics of hot charge carriers in an oxide semiconductor probed by femtosecond spectroscopic ellipsometry. - In: New journal of physics, ISSN 1367-2630, Bd. 22 (2020), 083066, insges. 14 S.

https://doi.org/10.1088/1367-2630/aba7f3
Clemens, Dennis; Ehrenmüller, Julia; Person, Yury
A Dirac-type theorem for Berge cycles in random hypergraphs. - In: The electronic journal of combinatorics, ISSN 1077-8926, Volume 27 (2020), issue 3, P3.39, Seite 1-23

https://doi.org/10.37236/8611
Dorywalski, Krzysztof; Schmidt-Grund, Rüdiger; Grundmann, Marius
Hybrid GA-gradient method for thin films ellipsometric data evaluation. - In: Journal of computational science, ISSN 1877-7503, Bd. 47 (2020), 101201

A global-search method which applies the concept of genetic algorithm (GA) with gradient-based optimizer is proposed for the problem of experimental data analysis from spectroscopic ellipsometry on thin films. The method is applied to evaluate the data obtained for samples with different structure complexity, starting with transparent monolayers (SiO2, HfO2) on a substrate, through absorbing film (diamond-like carbon) and multilayer structures. We demonstrate that by using this method we are able to find material parameters even for limited a priori knowledge about the sample properties, where classical methods fail.



https://doi.org/10.1016/j.jocs.2020.101201
Karmo, Marsel; Runge, Erich
First-principles study of the structural and electronic properties of the GaAsxP1-x surface. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 6.9

Runge, Erich; Schuster, Cosima; Ingold, Gert-Ludwig; Kahlert, Uwe; Scheffler, Matthias; Wolba, Benjamin
Impact of the upcoming "Nationale Forschungsdaten Infrastruktur NFDI" on the SKM Community. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), PSV III

Kuhl, Matthias; Bienek, Oliver; Henning, Alex; Paszuk, Agnieszka; Hannappel, Thomas; Sharp, Ian
Atomic-Layer-Deposited TiO2 protection layers for InP photocathodes. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 24.5

Brand, Jonathan; Néel, Nicolas; Kröger, Jörg
Probing relaxations of atomic-scale junctions in the Pauli repulsion range. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 28.2

Néel, Nicolas; Bohn, Markus; Kröger, Jörg; Schüler, Malte; Shao, Bin; Wehling, Tim O.; Kowalski, Alexander; Sangiovanni, Giorgio
Single-Co and two-site Kondo effect in atomic Cu wires on Cu(111). - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 30.3

Yi, Juemin; Wang, Dong; Zhong, Jinhui; Schaaf, Peter; Runge, Erich; Lienau, Christoph
Fluctuation-modulated third harmonic deep ultraviolet emission from randomly disordered Si nanograss. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 18.10

Zhong, Jin-Hui; Vogelsang, Jan; Yi, Jue-Min; Wang, Dong; Wittenbecher, Lukas; Mikaelsson, Sara; Korte, Anke; Chimeh, Abbas; Arnold, Cord L.; Schaaf, Peter; Runge, Erich; L'Huillier, Anne; Mikkelsen, Anders; Lienau, Christoph
Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a Au/ZnO nanohybrid. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 18.9

Heyder, Florian; Schumacher, Jörg; Hentschel, Martina
Moist Rayleigh-Bérnard Convection in conditionally unstable environments. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), DY 16.3

Behrens, Arne; Bosch, Martí; Feßer, Patrick; Hentschel, Martina; Sinzinger, Stefan
Fabrication and characterization of deformed microdisk cavities in silicon dioxide with high Q-factor. - In: Applied optics, ISSN 2155-3165, Bd. 59 (2020), 26, S. 7893-7899

We demonstrate the excitation and characterization of whispering gallery modes in a deformed optical microcavity. To fabricate deformed microdisk microresonators we established a fabrication process relying on dry plasma etching tools for many degrees of freedom and a shape-accurate morphology. This approach allowed us to fabricate resonators of different sizes with a controlled sidewall angle and underetching in large quantities with reproducible properties such as a surface roughness RQ ≤ 2nm. The excitation and characterization of these modes were achieved by using a state-of-the-art tapered fiber coupling setup with a narrow linewidth tunable laser source. The conducted measurements in shortegg resonators showed at least two modes within a spectral range of about 237 pm. The highest Q-factors measured were in the range of 105. Wave optical eigenmode and frequency domain simulations were conducted that could partially reproduce the observed behavior and therefore allow us to compare the experimental results.



https://doi.org/10.1364/AO.398108
Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M.
On the circumference of essentially 4-connected planar graphs. - In: Journal of graph algorithms and applications, ISSN 1526-1719, Bd. 24 (2020), 1, S. 21-46

http://dx.doi.org/10.7155/jgaa.00516
Kürth, Sascha; Schmidt-Grund, Rüdiger; Krischok, Stefan; Tonisch, Katja
Structure and dielectric function tensor of (Al,Sc)N thin films. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 30.29

Beenken, Wichard J. D.; Gäbler, Tobias B.; Runge, Erich; Krischok, Stefan
Improved numerical reconstruction method for Metastable Induced Electron Spectra of molecules. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 48.6

Kim, Jaewon; Ryu, Jung-Wan
Splitting and combining of exceptional points. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), KFM 7.5

Bosch, Martí; Malzard, Simon; Hentschel, Martina; Schomerus, Henning
Nonhermitian defect states from lifetime differences. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), KFM 7.4

Kreismann, Jakob; Hentschel, Martina
Far-field polarization states of 3D-whispering-gallery-mode resonators. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), KFM 7.3

Dani, Olfa; Kurniawan, Mario; Paszuk, Agnieszka; Nandy, Manali; Bund, Andreas; Hannappel, Thomas
InP(100) surfaces for efficient photoelectrochemical water splitting. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 34.2

Kreismann, Jakob; Kim, Jaewon; Bosch, Martí; Hein, Matthias; Sinzinger, Stefan; Hentschel, Martina
Super-directional light emission and emission reversal from micro cavity arrays. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), KFM 7.1

Romanyuk, Oleksandr; Stöckmann, Jan P.; Paszuk, Agnieszka; Supplie, Oliver; Wilks, Regan G.; Bombsch, Jakob; Hartmann, Claudia; Garcia Diez, Raul; Ueda, Shigenori; Bartoš, Igor; Gordeev, Ivan; Houdkova, Jana; Kleinschmidt, Peter; Bär, Marcus; Jiříček, Petr; Hannappel, Thomas
Electronic properties of the GaP/Si(001) heterointerface studied by HAXPES. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 30.23

Paszuk, Agnieszka; Supplie, Oliver; Stöckmann, Jan Philipp; Rupapar, Harita Gordhanbhai; Kleinschmidt, Peter; Hannappel, Thomas
Atomic structure of GaAsxP1-x surfaces during MOCVD-preparation. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 30.21
Im Titel sind "x" und "1-x" tiefgestellt

Mehler, Alexander; Néel, Nicolas; Halle, Johannes; Bocquet, Marie-Laure; Kröger, Jörg
Single-molecule vibrational progression on two-dimensional materials. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 49.2

Luhn, Sebastian; Runge, Erich
Properties of effective potentials obtained within the Localisation Landscape Theory of random potentials. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), TT 47.2

Anton, Arthur Markus; Alam, Shahidul; Meitzner, Rico; Hager, Martin; Ahner, Johannes; Schubert, Ulrich Sigmar; Beenken, Wichard J. D.; Ayuk Mbi Egbe, Daniel; Kremer, Friedrich; Hoppe, Harald
Investigation of sub-molecular parts in blends for organic solar cells. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), CPP 73.1

Sha, Mo; Liu, Long; Zhao, Huaping; Lei, Yong
Nitrogen doped carbon nanofiber composites as anode for sodium-ion batteries. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 74.7

Dong, Yulian; Zhao, Huaping; Lei, Yong
The effect of crystallinity of layered transition metal disulfide on the performance of potassium-ion batteries: the case of molybdenum disulfide. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), MM 42.5

Bohm, Sebastian; Runge, Erich
Theoretical and numerical investigation of an EWOD-driven micro pump. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), DY 45.2

Zhang, Chenglin; Liu, Long; Wu, Yuhan; Lei, Yong
An ultrafast graphite oxide-graphite capacitor enabled by potassium-based ether electrolyte. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), MM 46.2

Liu, Long; Zhao, Huaping; Sha, Mo; Zhang, Chenglin; Qiu, Jiajia; Lei, Yong
Investigating the role of nanoarchitectured current collector in supercapacitor electrode with thick pseudocapacitive materials. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), MM 46.3

Nandy, Manali; Paszuk, Agnieszka; Koppka, Christian; Feifel, Markus; Kleinschmidt, Peter; Dimroth, Frank; Hannappel, Thomas
Impact of Al on defect formation in GaP buffer layers grown on Si(100) substrates in CVD ambience. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 91.3

Omidian, Maryam; Néel, Nicolas; Manske, Eberhard; Pezoldt, Jörg; Lei, Yong; Kröger, Jörg
Structural and local electronic properties of clean and Li-intercalated graphene on SiC(0001). - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 80.3

May, Matthias M.; Stange, Helena; Weinrich, Jonas; Hannappel, Thomas; Supplie, Oliver
Time-resolved reflection anisotropy spectroscopy reveals the impact of surface non-idealities for water adsorption on GaP. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 107.1

Federer, Marika; Cizek, Rebecca; Hendriks, Michel; Schrepfer, Jule Katharina; Bosch, Martí; Kreismann, Jakob; Kim, Jaewon; Hentschel, Martina
Sources and coupling in billiards for light. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), DY 53.3

Zviagin, Vitaly; Sturm, Chris; Esquinazi, Pablo; Grundmann, Marius; Schmidt-Grund, Rüdiger
Ellipsometric study of defect induced magnetism in spinel ferrite thin films. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), DS 39.3

Brand, Jonathan; Leitherer, Susanne; Papior, Nick R.; Néel, Nicolas; Lei, Yong; Brandbyge, Mads; Kröger, Jörg
Nonequilibrium bond forces in single-molecule junctions. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 105.4

Trefflich, Lukas; Weizenmann, Nicole; Dissinger, Frank; Benndorf, Gabriele; Sturm, Chris; Schmidt-Grund, Rüdiger; Waldvogel, Siegfried R.; Seidel, Ralf; Grundmann, Marius
Carbon nanodots: luminescence properties tuned by microcavity devices. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 64.45

Kleinschmidt, Peter; Mutombo, Pingo; Berthold, Theresa; Paszuk, Agnieszka; Steidl, Matthias; Ecke, Gernot; Nägelein, Andreas; Koppka, Christian; Supplie, Oliver; Krischok, Stefan; Romanyuk, Oleksandr; Himmerlich, Marcel; Hannappel, Thomas
Surface structure of MOVPE-prepared GaP(111)B. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 91.2

Qiu, Jiajia; Zhao, Huaping; Liu, Long; Ma, Wenhui; Lei, Yong
Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 111.7

Henn, Sebastian; Krüger, Evgeny; Sturm, Chris; Dadgar, Armin; Wieneke, Matthias; Schmidt-Grund, Rüdiger; Grundmann, Marius
Exceptional Points in optical anisotropic semiconductors. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 75.20

Schrepfer, Jule Katharina; Liu, Ming-Hao; Richter, Klaus; Hentschel, Martina
Ray-wave correspondence in graphene billiards with sources. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), DY 57.18

Hill, Noah; Duwe, Matthias; Funke, Sebastian; Sturm, Chris; Trefflich, Lukas; Grundmann, Marius; Krischok, Stefan; Schmidt-Grund, Rüdiger
Dielectric function tensor of ZnO microwires determined by spatially resolved spectroscopic ellipsometry. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 75.26
Richtiger Name des 1. Verfassers: Noah Hill

Zhang, Huanming; Zhou, Min; Xu, Rui; Lei, Yong
Shear flow-driven dewetting for wrinkle-free transfer of centimeter-scale ultrathin alumina membrane onto arbitrary substrates. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 112.8

Wu, Yuhan; Zhang, Chenglin; Lei, Yong
Defect and interlayer engineering in transition metal dichalcogenides for enhancing potassium storage. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), MM 65.3

Huang, Pengcheng; Zhao, Huaping; Lei, Yong
Modulating selectivity of nitrites reduction by leveraging polymer-induced solvation effects. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), CPP 107.5

Néel, Nicolas; Bohn, Markus; Kröger, Jörg; Schüler, Malte; Shao, Bin; Wehling, Tim O.; Kowalski, Alexander; Sangiovanni, Giorgio
Theoretical description of single-Co Kondo effect in atomic Cu wires on Cu(111). - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 118.8

Ullmann, Fabian; Dimitrova, Anna; Krischok, Stefan
Bulk ion conductivity and near surface composition of Ionic Liquid and Zwiterion Ionic Liquid based electrolyte for lithium battery applications. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 121.9

Brendel, Thimo; Dimitrova, Anna; Krischok, Stefan
Bulk ion conductivity and near surface composition of Ionic Liquid and Zwitterion Ionic Liquid based electrolyte for sodium battery applications. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), O 121.10

Vedel, Elena; Olfa, Dani; Kurniawan, Mario; Pflug, Theo; Kürth, Sascha; Hill, Noah; Espinoza, Shirly; Rebarz, Mateusz; Olbrich, Markus; Herrfurth, Oliver; Krischok, Stefan; Horn, Alexander; Andreasson, Jakob; Schmidt-Grund, Rüdiger; Bund, Andreas; Hannappel, Thomas
Surface modification and charge carrier dynamics of materials and structures for semiconductor-based solar water splitting applications under operation conditions. - In: DPG-Frühjahrstagung (DPG Spring Meeting) of the Condensed Matter Section (SKM) together with the DPG Division Environmental Physics and the Working Groups Accelerator Physics; Equal Opportunities; Energy; Industry and Business; Physics, Modern IT and Artificial Intelligence, Young DPG, (2020), HL 75.25

Strutynska, Nataliia; Livitska, Oksana; Prylutska, Svitlana; Yumyna, Yuliia; Zelena, Pavlina; Skivka, Larysa; Malyshenko, Anna; Vovchenko, Lyudmyla; Strelchuk, Viktor; Prylutskyy, Yuriy; Slobodyanik, Nikolai; Ritter, Uwe
New nanostructured apatite-type (Na+,Zn2+,CO32-)-doped calcium phosphates : Preparation, mechanical properties and antibacterial activity. - In: Journal of molecular structure, ISSN 0022-2860, Bd. 1222 (2020), 128932
Im Titel sind "+", "2+" und "2-" hochgestellt, "3" tiefgestellt

Nanoparticles with the sizes in the range (20-30) nm of apatite-type Na+,Zn2+,CO32--doped calcium phosphates were prepared from aqueous solution of Na+-Ca2+-Zn2+-NO3--CO32--PO43- system at molar ratios Ca2+/PO43- =1.67, CО32-/РО43- = 1, Zn2+:Ca2+ = 1:100 or 2:100. The elemental analysis showed growth of Zn2+ content in composition of samples from 0.61 to 1.95 wt% at increasing of Zn2+ amount in an initial solution. According to FTIR and Raman data, B-type substitution of PO43- by CO32- realized in apatite-type calcium phosphates. The mechanical properties study for prepared phases showed the dependence of Young's modulus and compressive strength on Zn2+ amount in their composition. Growth of S. epidermidis after the contact with synthesized apatite containing Na+ (0.25 wt%), Zn2+ (0.61 wt%) and CO32- (1.18 wt%) was significantly delayed with an extension of lag time from 1 to 13-14 h. The prepared sample can be considered as a new prospective biomaterial with antibacterial potential.



https://doi.org/10.1016/j.molstruc.2020.128932
Zhang, Chenglin; Xu, Yang; He, Kaiming; Dong, Yulian; Zhao, Huaping; Medenbach, Lukas; Wu, Yuhan; Balducci, Andrea; Hannappel, Thomas; Lei, Yong
Polyimide@Ketjenblack composite: a porous organic cathode for fast rechargeable potassium-ion batteries. - In: Small, ISSN 1613-6829, Bd. 16 (2020), 38, 2002953, insges. 8 S.

Potassium-ion batteries (PIBs) configurated by organic electrodes have been identified as a promising alternative to lithium-ion batteries. Here, a porous organic PolyimideKetjenblack is demonstrated in PIBs as a cathode, which exhibits excellent performance with a large reversible capacity (143 mAh g^-1 at 100 mA g^-1), high rate capability (125 and 105 mAh g^-1 at 1000 and 5000 mA g^-1), and long cycling stability (76% capacity retention at 2000 mA g^-1 over 1000 cycles). The domination of fast capacitive-like reaction kinetics is verified, which benefits from the porous structure synthesized using in situ polymerization. Moreover, a renewable and low-cost full cell is demonstrated with superior rate behavior (106 mAh g^-1 at 3200 mA g^-1). This work proposes a strategy to design polymer electrodes for high-performance organic PIBs.



https://doi.org/10.1002/smll.202002953
Supplie, Oliver; Heinisch, Alexander; Paszuk, Agnieszka; Nandy, Manali; Tummalieh, Ammar; Kleinschmidt, Peter; Sugiyama, Masakazu; Hannappel, Thomas
Quantification of the As/P content in GaAsP during MOVPE growth. - In: Applied physics letters, ISSN 1077-3118, Bd. 117 (2020), 6, S. 061601-1-061601-5

Epitaxial integration of direct-bandgap III-V compound semiconductors with silicon requires overcoming a significant lattice mismatch. To this end, GaAsP step-graded buffer layers are commonly applied. The thickness and composition of the individual layers are decisive for the envisaged strain relaxation. We study GaAsP growth by metalorganic vapor phase epitaxy in situ with reflection anisotropy spectroscopy. We find that the growth surface exhibits optical fingerprints of atomically well-ordered surfaces. These allow for tuning the interface preparation between adjacent layers. The spectral position of the characteristic peaks in the RA spectra, which are related to surface-modified bulk transitions, behaves similarly upon an increased As content as does the E1 interband transition of GaAsP at the growth temperature. The impact of strain on this shift is negligible. We thus monitor a bulk property via the surface reconstruction. An empiric model enables quantification of the As content of individual layers directly in situ without growth interruptions and for various surface reconstructions. Our findings are suitable for a simplified optimization of the GaAsP buffer growth for high-efficiency devices.



https://doi.org/10.1063/5.0012948
Kim, Ji-Hwan; Kang, Sung Bum; Yu, Hyeon-Hye; Kim, Jaewon; Ryu, Jinhyeok; Lee, Ji-Won; Choi, Kyoung Jin; Kim, Chil-Min; Yi, Chang-Hwan
Augmentation of absorption channels induced by wave-chaos effects in free-standing nanowire arrays. - In: Optics express, ISSN 1094-4087, Bd. 28 (2020), 16, S. 23569-23583

Plenty of issues on quantal features in chaotic systems have been raised since chaos was accepted as one of the intrinsic properties of nature. Through intensive studies, it was revealed that resonance spectra in chaotic systems exhibit complicated structures, which is deeply concerned with sophisticated resonance dynamics. Motivated by these phenomena, we investigate light absorption characteristics of chaotic nanowires in an array. According to our results, a chaotic cross-section of a nanowire induces a remarkable augmentation of absorption channels, that is, an increasing number of absorption modes leads to substantial light absorption enhancement, as the deformation of cross-section increases. We experimentally demonstrate the light absorption enhancement with free-standing Si-nanowire polydimethylsiloxane (PDMS) composites. Our results are applicable not only to transparent solar cells but also to complementary metal-oxide-semiconductor (CMOS) image sensors to maximize absorption efficiency.



https://doi.org/10.1364/OE.398687
Kuznietsova, Halyna; Dziubenko, Natalia; Herheliuk, Tetiana; Prylutskyy, Yuriy; Täuscher, Eric; Ritter, Uwe; Scharff, Peter
Water-soluble pristine C60 fullerene inhibits liver alterations associated with hepatocellular carcinoma in rat. - In: Pharmaceutics, ISSN 1999-4923, Bd. 12 (2020), 9, 794, S. 1-20
Richtiger Name des Verfassers: Eric Täuscher

https://doi.org/10.3390/pharmaceutics12090794
Rothe, Karl; Mehler, Alexander; Néel, Nicolas; Kröger, Jörg
Scanning tunneling microscopy and spectroscopy of rubrene on clean and graphene-covered metal surfaces. - In: Beilstein journal of nanotechnology, ISSN 2190-4286, Bd. 11 (2020), S. 1157-1167

https://doi.org/10.3762/bjnano.11.100
Köhler, Michael; Beetz, Nancy; Günther, Mike; Möller, Frances; Schüler, Tim; Cao-Riehmer, Jialan
Microbial community types and signature-like soil bacterial patterns from fortified prehistoric hills of Thuringia (Germany). - In: Community ecology, ISSN 1588-2756, Bd. 21 (2020), 2, S. 107-120

16S rRNA profiling has been applied for the investigation of bacterial communities of surface soil samples from forest-covered areas of ten prehistorical ramparts from different parts of Thuringia. Besides the majority bacterial types that are present in all samples, there could be identified bacteria that are highly abundant in some places and absent or low abundant in others. These differences are mainly related to the acidity of substrate and distinguish the communities of lime stone hills from soils of sand/quartzite and basalt hills. Minority components of bacterial communities show partially large differences that cannot be explained by the pH of the soil or incidental effects, only. They reflect certain relations between the communities of different places and could be regarded as a kind of signature-like patterns. Such relations had also been found in a comparison of the data from ramparts with formerly studied 16S rRNA profiling from an iron-age burial field. The observations are supporting the idea that a part of the components of bacterial communities from soil samples reflect their ecological history and can be understood as the "ecological memory" of a place. Probably such memory effects can date back to prehistoric times and might assist in future interpretations of archaeological findings on the prehistoric use of a place, on the one hand. On the other hand, the genetic profiling of soils of prehistoric places contributes to the evaluation of anthropogenic effects on the development of local soil bacterial diversity.



https://doi.org/10.1007/s42974-020-00017-4
Papadogianni, Alexandra; Rombach, Julius; Berthold, Theresa; Polyakov, Vladimir; Krischok, Stefan; Himmerlich, Marcel; Bierwagen, Oliver
Two-dimensional electron gas of the In2O3 surface: enhanced thermopower, electrical transport properties, and reduction by adsorbates or compensating acceptor doping. - In: Physical review, ISSN 2469-9969, Bd. 102 (2020), 7, S. 075301-1-075301-10
Im Titel sind "2" und "3" tiefgestellt

https://doi.org/10.1103/PhysRevB.102.075301
Marx-Blümel, Lisa; Marx, Christian; Weise, Frank; Frey, Jessica; Perner, Birgit; Schlingloff, Gregor; Lindig, Nora; Hampl, Jörg; Sonnemann, Jürgen; Brauer, Dana; Voigt, A.; Singh, Sukhdeep; Beck, B.; Jäger, Ute-Maria; Wang, Zhao Qi; Beck, James F.; Schober, Andreas
Biomimetic reconstruction of the hematopoietic stem cell niche for in vitro amplification of human hematopoietic stem cells. - In: PLOS ONE, ISSN 1932-6203, Bd. 15 (2020), 6, e0234638, insges. 17 S.

https://doi.org/10.1371/journal.pone.0234638
Sha, Mo; Liu, Long; Zhao, Huaping; Lei, Yong
Anode materials for potassium-ion batteries: current status and prospects. - In: Carbon energy, ISSN 2637-9368, Bd. 2 (2020), 3, S. 350-369

https://doi.org/10.1002/cey2.57
Bang-Jensen, Jørgen; Bellitto, Thomas; Schweser, Thomas; Stiebitz, Michael
On DP-coloring of digraphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 95 (2020), 1, S. 76-98

https://doi.org/10.1002/jgt.22535
Fabrici, Igor; Harant, Jochen; Madaras, Tomáš; Mohr, Samuel; Soták, Roman; Zamfirescu, Carol T.
Long cycles and spanning subgraphs of locally maximal 1-planar graphs. - In: Journal of graph theory, ISSN 1097-0118, Bd. 95 (2020), 1, S. 125-137

https://doi.org/10.1002/jgt.22542
Zhao, Huaping; Lei, Yong
3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. - In: Advanced energy materials, ISSN 1614-6840, Bd. 10 (2020), 28, 2001460, insges. 8 S.

https://doi.org/10.1002/aenm.202001460
Cheng, Meng; Qu, Tao; Zi, Jie; Yao, Yaochun; Liang, Feng; Ma, Wenhui; Yang, Bin; Dai, Yongnian; Lei, Yong
A hybrid solid electrolyte for solid-state sodium ion batteries with good cycle performance. - In: Nanotechnology, ISSN 1361-6528, Bd. 31 (2020), 42, 425401, S. 1-9

https://doi.org/10.1088/1361-6528/aba059
Gäbler, Tobias B.; Beenken, Wichard J. D.; Krischok, Stefan; Runge, Erich
Ab-initio reconstruction of metastable-induced electron-emission spectra (MIES) for molecules. - In: Nuclear instruments & methods in physics research, Bd. 478 (2020), S. 62-69

https://doi.org/10.1016/j.nimb.2020.05.006
Kuznietsova, Halyna; Dziubenko, Natalia; Herheliuk, Tetyana; Lynchak, Oksana; Prylutskyy, Yuriy; Ritter, Uwe
P-204 C60 fullerene inhibits hepatocellular carcinoma development and metastasis: in vitro and in vivo studies. - In: Annals of oncology, ISSN 1569-8041, Bd. 31 (2020), S. S156-147

https://doi.org/10.1016/j.annonc.2020.04.286
Néel, Nicolas; Kröger, Jörg; Schüler, Malte; Shao, Bin; Wehling, Tim O.; Kowalski, Alexander; Sangiovanni, Giorgio
Single-Co Kondo effect in atomic Cu wires on Cu(111). - In: Physical review research, ISSN 2643-1564, Bd. 1 (2020), 2, S. 023309-1-023309-10

Linear atomic chains containing a single Kondo atom, Co, and several nonmagnetic atoms, Cu, were assembled atom by atom on Cu(111) with the tip of a scanning tunneling microscope. The resulting one-dimensional wires, CumCoCun (0≤m,n≤5), exhibit a rich evolution of the single-Co Kondo effect with the variation of m and n, as inferred from changes in the line shape of the Abrikosov-Suhl-Kondo resonance. The most striking result is the quenching of the resonance in CuCoCu2 and Cu2CoCu2 clusters. State-of-the-art first-principles calculations were performed to unravel possible microscopic origins of the remarkable experimental observations.



https://doi.org/10.1103/PhysRevResearch.2.023309
Budde, Dana; Maier, Tanja Verena; Jurkiewicz, Elke; Pahl, Ina; Hauk, Armin; Täuscher, Eric; Görls, Helmar; Noll, Thomas; Menzel, Roberto
Identification and evaluation of cell- growth-inhibiting bDtBPP-analogue degradation products from phosphite antioxidants used in polyolefin bioprocessing materials. - In: Analytical and bioanalytical chemistry, ISSN 1618-2650, Bd. 412 (2020), 19, S. 4505-4518

https://doi.org/10.1007/s00216-020-02736-z
Mendl, Alexander; Köhler, Michael; Boškoviâc, Dušan; Löbbecke, Stefan
Novel SERS-based process analysis for label-free segmented flow screenings. - In: Lab on a chip, ISSN 1473-0189, Bd. 20 (2020), 13, S. 2364-2371

https://doi.org/10.1039/D0LC00367K
Krinichnyi, Vicor I.; Yudanova, Evgeniya I.; Denisov, Nikolay N.; Konkin, Aleksei A.; Ritter, Uwe; Wessling, Bernhard; Konkin, Alexander L.; Bogatyrenko, Victor R.
Impact of spin-exchange interaction on charge transfer in dual-polymer photovoltaic composites. - In: The journal of physical chemistry, ISSN 1932-7455, Bd. 124 (2020), 20, S. 10852-10869

https://doi.org/10.1021/acs.jpcc.0c02317
Mehler, Alexander; Néel, Nicolas; Kröger, Jörg
Dissimilar decoupling behavior of two-dimensional materials on metal surfaces. - In: The journal of physical chemistry letters, ISSN 1948-7185, Bd. 11 (2020), S. 5204-5211

https://doi.org/10.1021/acs.jpclett.0c01320
Stepišnik, Janez; Mattea, Carlos; Stapf, Siegfried; Mohorič, Aleš
Molecular velocity auto-correlations in glycerol/water mixtures studied by NMR MGSE method. - In: Physica, ISSN 1873-2119, Bd. 553 (2020), 124171, S. 1-12

https://doi.org/10.1016/j.physa.2020.124171
Sukhodub, Liudmyla B.; Sukhodub, Leonid F.; Kumeda, Mariya O.; Prylutskyy, Yuriy I.; Pogorielov, Maksym V.; Evstigneev, Maxim; Kostjukov, Viktor V.; Strutynska, Nataliya Y.; Vovchenko, Ludmila L.; Khrapatiy, Sergii V.; Ritter, Uwe
Single-walled carbon nanotubes loaded hydroxyapatite-alginate beads with enhanced mechanical properties and sustained drug release ability. - In: Progress in Biomaterials, ISSN 2194-0517, Bd. 9 (2020), 1/2, S. 1-14

https://doi.org/10.1007/s40204-020-00127-2
Cao-Riehmer, Jialan; Richter, Felix; Kastl, Michael; Erdmann, Jonny; Burgold, Christian; Dittrich, David; Schneider, Steffen; Köhler, Michael; Groß, Gregor Alexander
Droplet-based screening for the investigation of microbial nonlinear dose-response characteristics system, background, and examples. - In: Micromachines, ISSN 2072-666X, Bd. 11 (2020), 6, 577, insges. 19 S.

https://doi.org/10.3390/mi11060577
Omidian, Maryam; Néel, Nicolas; Manske, Eberhard; Pezoldt, Jörg; Lei, Yong; Kröger, Jörg
Structural and local electronic properties of clean and Li-intercalated graphene on SiC(0001). - In: Surface science, ISSN 1879-2758, Bd. 699 (2020), 121638

https://doi.org/10.1016/j.susc.2020.121638
Zyabkin, Dmitry; Gunnlaugsson, Haraldur Páll; Gon¸calves, João N.; Bharuth-Ram, Krishanlal; Qi, Bingcui; Unzueta, Iraultza; Naidoo, Deena; Mantovan, Roberto; Masenda, Hilary; Ólafsson, Sveinn; Peters, Gerrard; Schell, Juliana; Vetter, Ulrich; Dimitrova, Anna; Krischok, Stefan; Schaaf, Peter
Experimental and theoretical study of electronic and hyperfine properties of hydrogenated anatase (TiO2): defect interplay and thermal stability. - In: The journal of physical chemistry, ISSN 1932-7455, Bd. 124 (2020), 13, S. 7511-7522
Im Titel ist "2" tiefgestellt

https://doi.org/10.1021/acs.jpcc.0c00085
Cretu, Andrea; Mattea, Carlos; Stapf, Siegfried; Ardelean, Ioan
The effect of silica fume and organosilane addition on the porosity of cement paste. - In: Molecules, ISSN 1420-3049, Bd. 25 (2020), 8, 1762, insges. 9 S.

https://doi.org/10.3390/molecules25081762
Bang-Jensen, Jørgen; Bellitto, Thomas; Schweser, Thomas; Stiebitz, Michael
Hajós and Ore constructions for digraphs. - In: The electronic journal of combinatorics, ISSN 1077-8926, Volume 27 (2020), issue 1, P1.63, 22 Seiten

https://doi.org/10.37236/8942
Maznychenko, Andriy V.; Mankivska, Olena P.; Sokolowska, Inna V.; Kopyak, Bohdan S.; Tomiak, Tomasz; Bulgakova, Nataliya V.; Gonchar, Olga O.; Prylutskyy, Yuriy I.; Ritter, Uwe; Mishchenko, Iryna V.; Kostyukov, Alexander I.
C60 fullerenes increase the intensity of rotational movements in non-anesthetized hemiparkinsonic rats. - In: Acta neurobiologiae experimentalis, ISSN 1689-0035, Bd. 80 (2020), 1, S. 32-37
Im Titel ist "60" tiefgestellt

https://doi.org/10.21307/ane-2020-003
Parczyk, Olaf;
2-universality in randomly perturbed graphs. - In: European journal of combinatorics, Bd. 87 (2020), 103118

https://doi.org/10.1016/j.ejc.2020.103118
Jiang, Hehe; Wang, Shouzhi; Zhang, Baoguo; Shao, Yongliang; Wu, Yongzhong; Zhao, Huaping; Lei, Yong; Hao, Xiaopeng
High performance lithium-ion capacitors based on LiNbO3-arched 3D graphene aerogel anode and BCNNT cathode with enhanced kinetics match. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 396 (2020), 125207
Im Titel ist "3" tiefgestellt

https://doi.org/10.1016/j.cej.2020.125207
Böttcher, Julia; Montgomery, Richard; Parczyk, Olaf; Person, Yury
Embedding spanning bounded degree graphs in randomly perturbed graphs. - In: Mathematika, ISSN 2041-7942, Bd. 66 (2020), 2, S. 422-447

https://doi.org/10.1112/mtk.12005
Kielpinski, Mark; Walther, Oliver; Cao-Riehmer, Jialan; Henkel, Thomas; Köhler, Michael; Groß, Gregor Alexander
Microfluidic chamber design for controlled droplet expansion and coalescence. - In: Micromachines, ISSN 2072-666X, Bd. 11 (2020), 4, 394, insges. 16 S.

https://doi.org/10.3390/mi11040394
Zhong, Jin-Hui; Vogelsang, Jan; Yi, Jue-Min; Wang, Dong; Wittenbecher, Lukas; Mikaelsson, Sara; Korte, Anke; Chimeh, Abbas; Arnold, Cord L.; Schaaf, Peter; Runge, Erich; L' Huillier, Anne; Mikkelsen, Anders; Lienau, Christoph
Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure. - In: Nature Communications, ISSN 2041-1723, Bd. 11 (2020), 1464, S. 1-10

https://doi.org/10.1038/s41467-020-15232-w
Spitler, Mark T.; Modestino, Miguel A.; Deutsch, Todd G.; Xiang, Chengxiang X.; Durrant, James R.; Esposito, Daniel V.; Haussener, Sophia; Maldonado, Stephen; Sharp, Ian; Parkinson, Bruce A.; Ginley, David S.; Houle, Frances A.; Hannappel, Thomas; Neale, Nathan R.; Nocera, Daniel G.; McIntyre, Paul C.
Practical challenges in the development of photoelectrochemical solar fuels production. - In: Sustainable energy & fuels, ISSN 2398-4902, Bd. 4 (2020), 3, S. 985-995

https://doi.org/10.1039/C9SE00869A
Ostrovskaya, I. K.; Fatkullin, Nail; Körber, T.; Rößler, Ernst A.; Lozovoi, Artur; Mattea, Carlos; Stapf, Siegfried
On the theory of deuteron NMR free induction decay of reptating polymer chains: effect of end segment dynamics. - In: The journal of chemical physics, ISSN 1089-7690, Bd. 152 (2020), 18, 184904, insges. 12 S.

https://doi.org/10.1063/5.0005049
Cui, Cuixia; Gao, Yong; Li, Jun; Yang, Chao; Liu, Meng; Jin, Huile; Xia, Zhenhai; Dai, Liming; Lei, Yong; Wang, Jichang; Wang, Shun
Origins of boosted charge storage on heteroatom-doped carbons. - In: Angewandte Chemie, ISSN 1521-3757, Bd. 132 (2020), 20, S. 8002-8007

https://doi.org/10.1002/ange.202000319
Sha, Mo; Liu, Long; Zhao, Huaping; Lei, Yong
Review on recent advances of cathode materials for potassium-ion batteries. - In: Energy & Environmental Materials, ISSN 2575-0356, Bd. 3 (2020), 1, S. 56-66

https://doi.org/10.1002/eem2.12060
Hadzich, Antonella; Groß, Gregor Alexander; Leimbach, Martin; Ispas, Adriana; Bund, Andreas; Flores, Santiago
Effect of polyalcohols on the anticorrosive behaviour of alkyd coatings prepared with drying oils. - In: Progress in organic coatings, Bd. 145 (2020), 105671

https://doi.org/10.1016/j.porgcoat.2020.105671
Emmrich, Etienne; Trunk, Carsten
Gut vorbereitet in die erste Mathematikklausur : Aufgaben und Lösungen
2., aktualisierte Auflage. - München : Hanser, 2020. - 1 Online-Ressource (240 Seiten). - (Hanser eLibrary) ISBN 978-3-446-46615-9

Fit in einer Woche! Dieses Buch ist als Begleiter für die Vorbereitung auf Mathematikklausuren des ersten Universitätssemesters konzipiert. Die mehr als 100 klausurrelevanten Aufgaben und Lösungen sind so ausgewählt, dass eine intensive Vorbereitung etwa einer Woche bedarf. In jedem Abschnitt finden Sie eine breite Auswahl von Aufgaben, die in Klausuren zur Höheren Mathematik I oder Analysis I gestellt wurden. Dazu wird eine ausführliche und möglichst einfache Lösung formuliert, mit der das entsprechende Thema gleichzeitig wiederholt wird. Mit einer Zusammenfassung der wesentlichen mathematischen Zusammenhänge und Verfahren schließt jeder Abschnitt. Die behandelten Themen sind: - Grenzwerte - Reihen und Potenzreihen - Komplexe Zahlen - Eigenschaften von Funktionen - Differentation und Extremwerte - Taylorpolynom und Restgliedabschätzung - Integration, partielle Integration und Substitutionsregel - Partialbruchzerlegung und Integration rationaler Funktionen - Uneigentliche Integrale - Fourierreihen - Vollständige Induktion - Lineare Gleichungssysteme, Rang und Determinante - Lineare Abbildungen, Basen und Eigenwerte - Analytische Geometrie Die mathematischen Abschnitte werden durch drei komplette Beispielklausuren mit Lösungen abgerundet. Zusätzlich findet der Leser zwei Abschnitte mit praktischen und fundierten Hinweisen zur Prüfungsvorbereitung. Es eignet sich für Studierende der Ingenieurwissenschaften, der Wirtschaftswissenschaften, Biologie, Chemie und Informatik zur Prüfungsvorbereitung für Erstsemesterklausuren im Bereich Mathematik. Auf plus.hanser-fachbuch.de finden Sie zu diesem Titel kostenloses digitales Zusatzmaterial: die Kapitelzusammenfassungen und das Wichtigste für eine Klausur in Analysis I bzw. Höherer Mathematik I auf zwei Seiten



https://dx.doi.org/10.3139/9783446466159
Kostochka, Alexandr V.; Stiebitz, Michael
The minimum number of edges in 4-critical digraphs of given order. - In: Graphs and combinatorics, ISSN 1435-5914, Bd. 36 (2020), 3, S. 703-718

https://doi.org/10.1007/s00373-020-02147-y
Poonoosamy, Jenna; Haber-Pohlmeier, Sabina; Deng, Hang; Deißmann, Guido; Klinkenberg, Martina; Gizatullin, Bulat; Stapf, Siegfried; Brandt, Felix; Bosbach, Dirk; Pohlmeier, Andreas
Combination of MRI and SEM to assess changes in the chemical properties and permeability of porous media due to barite precipitation. - In: Minerals, ISSN 2075-163X, Bd. 10 (2020), 3, 226, insges. 20 S.

The understanding of the dissolution and precipitation of minerals and its impact on the transport of fluids in porous media is essential for various subsurface applications, including shale gas production using hydraulic fracturing ("fracking"), CO2 sequestration, or geothermal energy extraction. In this work, we conducted a flow through column experiment to investigate the effect of barite precipitation following the dissolution of celestine and consequential permeability changes. These processes were assessed by a combination of 3D non-invasive magnetic resonance imaging, scanning electron microscopy, and conventional permeability measurements. The formation of barite overgrowths on the surface of celestine manifested in a reduced transverse relaxation time due to its higher magnetic susceptibility compared to the original celestine. Two empirical nuclear magnetic resonance (NMR) porosity-permeability relations could successfully predict the observed changes in permeability by the change in the transverse relaxation times and porosity. Based on the observation that the advancement of the reaction front follows the square root of time, and micro-continuum reactive transport modelling of the solid/fluid interface, it can be inferred that the mineral overgrowth is porous and allows the diffusion of solutes, thus affecting the mineral reactivity in the system. Our current investigation indicates that the porosity of the newly formed precipitate and consequently its diffusion properties depend on the supersaturation in solution that prevails during precipitation.



https://doi.org/10.3390/min10030226
Ivanov, Svetlozar; Sauerteig, Daniel; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Irreversible dilation of graphite composite anodes influenced by vinylene carbonate. - In: Journal of power sources, ISSN 1873-2755, Bd. 457 (2020), 228020

https://doi.org/10.1016/j.jpowsour.2020.228020
Ben-Eliezer, Omri; Hefetz, Dan; Kronenberg, Gal; Parczyk, Olaf; Shikhelman, Clara; Stojakoviâc, Miloš
Semi-random graph process. - In: Random structures & algorithms, ISSN 1098-2418, Bd. 56 (2020), 3, S. 648-675

https://doi.org/10.1002/rsa.20887
Li, Qianwen; Zhang, Huanming; Zhang, Lijun; Zhou, Min; Lei, Yong
Ultrathin Na2Ti2O4(OH)2 nanowall for boosting sodium storage. - In: Materials letters, ISSN 1873-4979, Bd. 269 (2020), S. 127649
Im Titel sind "2" und "4" tiefgestellt

https://doi.org/10.1016/j.matlet.2020.127649
Zhang, Chenglin; Xu, Yang; Du, Guangyu; Wu, Yuhan; Li, Yueliang; Zhao, Huaping; Kaiser, Ute; Lei, Yong
Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. - In: Nano energy, ISSN 2211-2855, Bd. 72 (2020), 104661

https://doi.org/10.1016/j.nanoen.2020.104661
Schneider, Diana; Schumann, Berit; Glahn, Felix; Krings, Oliver; Tomisch, Lara; Thomas, Sarah; Bacanli, Merve; Mai, Patrick; Schober, Andreas; Foth, Heidi
Establishment of a lung cell Co-culture model for nanoparticle aerosol exposition. - In: Naunyn-Schmiedeberg's archives of pharmacology, ISSN 1432-1912, Bd. 393 (2020), 1, S. S56

https://doi.org/10.1007/s00210-020-01828-y
Eliseyev, Ilya A.; Smirnov, Alexander N.; Lebedev, Sergey P.; Panteleev, V. N.; Dementev, Peter A.; Pezoldt, Jörg; Hartung, Gerd; Kröger, Jörg; Zubov, Alexander V.; Lebedev, Alexander A.
Transformation of the buffer layer grown on 4H-SiC to single-layer graphene by ex situ hydrogen intercalation. - In: Fullerenes, nanotubes & carbon nanostructures, ISSN 1536-4046, Bd. 28 (2020), 4, S. 316-320

https://doi.org/10.1080/1536383X.2019.1708733
Kröger, Jörg; Néel, Nicolas; Wehling, Tim O.; Brandbyge, Mads
Local probes of graphene lattice dynamics. - In: Small Methods, ISSN 2366-9608, Volume 4 (2020), issue 5, 1900817, 18 Seiten

https://doi.org/10.1002/smtd.201900817
Ghoshal, Sushanta; Mattea, Carlos; Denner, Paul; Stapf, Siegfried
Effect of initial conformation on the starch biopolymer film formation studied by NMR. - In: Molecules, ISSN 1420-3049, Bd. 25 (2020), 5, 1227, insges. 17 S.

https://doi.org/10.3390/molecules25051227
Kronfeld, Klaus-Peter; Ellinger, Thomas; Köhler, Michael
Microfluidically prepared sensor particles for determination of chloride by fluorescence quenching of matrix-embedded lucigenin. - In: SN applied sciences, ISSN 2523-3971, Bd. 2 (2020), 3, 366, insges. 8 S.

https://doi.org/10.1007/s42452-020-2155-z
Lo, On-Hei Solomon; Schmidt, Jens M.; Van Cleemput, Nico; Zamfirescu, Carol T.
Shortness coefficient of cyclically 4-edge-connected cubic graphs. - In: The electronic journal of combinatorics, ISSN 1077-8926, Volume 27 (2020), issue 1, P1.43, Seite 1-14

https://doi.org/10.37236/8440
Baldauf, Julia; Schmidt-Grund, Rüdiger; Reiche, Manfred; Ortlepp, Thomas
Molybdenum silicide in infrared emitting devices. - In: MOEMS and Miniaturized Systems XIX, (2020), S. 112930Y-1-112930Y-9

https://doi.org/10.1117/12.2556681
Zhu, Chuhong; Zhao, Qiangsheng; Meng, Guowen; Wang, Xiujuan; Hu, Xiaoye; Han, Fangming; Lei, Yong
Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue. - In: Nanotechnology, ISSN 1361-6528, Bd. 31 (2020), 20, 205303, S. 1-8

https://doi.org/10.1088/1361-6528/ab7100
Romanyuk, Oleksandr; Gordeev, Ivan; Paszuk, Agnieszka; Supplie, Oliver; Stöckmann, Jan Philipp; Houdkova, Jana; Ukraintsev, Egor; Bartoš, Igor; Jiříček, Petr; Hannappel, Thomas
GaP/Si(0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering. - In: Applied surface science, Bd. 514 (2020), 145903, insges. 8 S.

https://doi.org/10.1016/j.apsusc.2020.145903
Yang, Qingjun; Wang, Qishun; Long, Yan; Wang, Fan; Wu, Lanlan; Pan, Jing; Han, Jie; Lei, Yong; Shi, Weidong; Song, Shuyan
In situ formation of Co9S8 quantum dots in MOF-derived ternary metal layered double hydroxide nanoarrays for high-performance hybrid supercapacitors. - In: Advanced energy materials, ISSN 1614-6840, Bd. 10 (2020), 7, 1903193, insges. 12 S.
Im Titel sind "9" und "8" tiefgestellt

https://doi.org/10.1002/aenm.201903193
Mehrez, Mohamed W.; Worthmann, Karl; Cenerini, Joseph P. V.; Osman, Mostafa; Melek, William W.; Jeon, Soo
Model predictive control without terminal constraints or costs for holonomic mobile robots. - In: Robotics and autonomous systems, ISSN 1872-793X, Bd. 127 (2020), 103468

https://doi.org/10.1016/j.robot.2020.103468
Liborius, Lisa; Bieniek, Jan; Nägelein, Andreas; Tegude, Franz-Josef; Prost, Werner; Hannappel, Thomas; Poloczek, Artur Christoph; Weimann, Nils
n-doped InGaP nanowire shells in GaAs/InGaP core-shell p-n junctions. - In: Physica status solidi, ISSN 1521-3951, Bd. 257 (2020), 2, 1900358, insges. 9 S.

https://doi.org/10.1002/pssb.201900358
Giribet, Juan; Langer, Matthias; Martínez Pería, Francisco; Philipp, Friedrich; Trunk, Carsten
Spectral enclosures for a class of block operator matrices. - In: Journal of functional analysis, ISSN 1096-0783, Volume 278 (2020), issue 10, 108455

https://doi.org/10.1016/j.jfa.2019.108455
Yan, Chengzhan; Zhao, Huaping; Li, Jun; Jin, Huile; Liu, Long; Wu, Wanyi; Wang, Jichang; Lei, Yong; Wang, Shun
Mild-temperature solution-assisted encapsulation of phosphorus into ZIF-8 derived porous carbon as lithium-ion battery anode. - In: Small, ISSN 1613-6829, Bd. 16 (2020), 11, 1907141, insges. 7 S.

https://doi.org/10.1002/smll.201907141
Rabia, Mohamed; Mohamed, Sodky H.; Zhao, Huaping; Shaban, Mohamed; Lei, Yong; Ahmed, Ashour M.
TiO2/TiOxNy hollow mushrooms-like nanocomposite photoanode for hydrogen electrogeneration. - In: Journal of porous materials, ISSN 1573-4854, Bd. 27 (2020), 1, S. 133-139
Im Titel sind "2", "x" und "y" tiefgestellt

https://doi.org/10.1007/s10934-019-00792-0
Jin, Huile; Lu, Hang; Wu, Wanyi; Chen, Suqin; Liu, Tongchao; Bi, Xuanxuan; Xie, Weining; Chen, Xian; Yang, Keqin; Lia, Jun; Liu, Aili; Lei, Yong; Wang, Jichang; Wang, Shun; Lu, Jun
Tailoring conductive networks within hollow carbon nanospheres to host phosphorus for advanced sodium ion batteries. - In: Nano energy, ISSN 2211-2855, Bd. 70 (2020), 104569

https://doi.org/10.1016/j.nanoen.2020.104569
Krey, Maximilian; Hähnlein, Bernd; Tonisch, Katja; Krischok, Stefan; Töpfer, Hannes
Automated parameter extraction of ScAlN MEMS devices using an extended Euler-Bernoulli beam theory. - In: Sensors, ISSN 1424-8220, Bd. 20 (2020), 4, 1001, insges. 19 S.

https://doi.org/10.3390/s20041001
Luhn, Sebastian; Hentschel, Martina
Analytical Fresnel laws for curved dielectric interfaces. - In: Journal of optics, ISSN 2040-8986, Volume 22 (2020), number 1, 015605, Seite 1-6

https://doi.org/10.1088/2040-8986/ab5c42
Kuznietsova, Halyna; Dziubenko, Natalia V.; Lynchak, Oksana V.; Herheliuk, Tetyana S.; Zavalny, Dmytro K.; Remeniak, Olga V.; Prylutskyy, Yuriy I.; Ritter, Uwe
Effects of pristine C60 fullerenes on liver and pancreas in α-naphthylisothiocyanate-induced cholangitis. - In: Digestive diseases and sciences, ISSN 1573-2568, Bd. 65 (2020), 1, S. 215-224
Im Titel ist "60" tiefgestellt

https://doi.org/10.1007/s10620-019-05730-3
Cao-Riehmer, Jialan; Kalensee, Franziska; Günther, Mike; Köhler, Michael
Microsegmented flow-assisted miniaturized culturing for isolation and characterization of heavy metal-tolerant bacteria. - In: International journal of environmental science and technology, ISSN 1735-2630, Bd. 17 (2020), 1, S. 1-16

https://doi.org/10.1007/s13762-019-02424-1
Lei, Zhendong; Liu, Long; Zhao, Huaping; Liang, Feng; Chang, Shilei; Li, Lei; Zhang, Yong; Lin, Zhan; Kröger, Jörg; Lei, Yong
Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors. - In: Nature Communications, ISSN 2041-1723, Bd. 11 (2020), 299, S. 1-10

https://doi.org/10.1038/s41467-019-14170-6
Hildenbrandt, Regina;
The k-server problem with parallel requests and the compound work function algorithm. - In: Baltic journal of modern computing, ISSN 2255-8950, Bd. 8 (2020), 1, S. 1-20

In this paper the compound work function algorithm for solving the generalized k-server problem is proposed. This problem is an online k-server problem with parallel requests where several servers can also be located on one point. In 1995 Koutsoupias and Papadimitriouhave proved that the well-known work function algorithm is competitive for the (usual) k-server problem. A proof, where a potential-like function argument is included, was given by Borodinand El-Yaniv in 1998. Unfortunately, certain techniques of these proofs cannot be applied to show that a natural generalization of the work function algorithm is competitive for the problem with parallel requests. Values of work functions, which are used by the compound work function algorithm are derived from a surrogate problem, where at most one server must be moved in servicing the request in each step. We can show that the compound work function algorithm is competitive with the same bound of the ratio as in the case of the usual problem.



https://doi.org/10.22364/bjmc.2020.8.1.01
Kriesell, Matthias;
Maximal ambiguously k-colorable graphs. - In: Journal of combinatorial theory, Bd. 140 (2020), S. 248-262

https://doi.org/10.1016/j.jctb.2019.05.007
Rocktäschel, Stefan;
A branch-and-bound algorithm for multiobjective mixed-integer convex optimization. - Wiesbaden : Springer Spektrum, 2020. - VIII, 70 Seiten. - (BestMasters) ISBN 978-3-658-29148-8

Hadzich, Antonella; Groß, Gregor Alexander; Leimbach, Martin; Ispas, Adriana; Bund, Andreas; Flores, Santiago
Characterization of Plukenetia volubilis L. fatty acid-based alkyd resins. - In: Polymer testing, ISSN 1873-2348, Bd. 82 (2020), 106296

https://doi.org/10.1016/j.polymertesting.2019.106296
Sauerteig, Philipp; Worthmann, Karl
Towards multiobjective optimization and control of smart grids. - In: Optimal control, applications and methods, ISSN 1099-1514, Bd. 41 (2020), 1, S. 128-145

https://doi.org/10.1002/oca.2532
Preißer, Johanna E.; Schmidt, Jens M.
Computing vertex-disjoint paths in large graphs using MAOs. - In: Algorithmica, ISSN 1432-0541, Bd. 82 (2020), 1, S. 146-162

https://doi.org/10.1007/s00453-019-00608-2
Link, Steffen; Ivanov, Svetlozar; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Understanding the initial stages of Si electrodeposition under diffusion kinetic limitation in ionic liquid-based electrolytes. - In: Journal of crystal growth, Bd. 531 (2020), 125346, S. 1-6

https://doi.org/10.1016/j.jcrysgro.2019.125346
Néel, Nicolas; Shao, Bin; Wehling, Tim O.; Kröger, Jörg
Manipulation of the two-site Kondo effect in linear CoCu n CoCu m clusters. - In: Journal of physics, ISSN 1361-648X, Bd. 32 (2020), 5, S. 055303, insges. 6 S.
Im Titel sind "n" und "m" tiefgestellt

https://doi.org/10.1088/1361-648X/ab4d17
Mohamed, Sodky Hamed; Zhao, Huaping; Romanus, Henry; El-Hossary, Fayez M.; Abo EL-Kassem, M.; Awad, Madeha A.; Rabia, Mohamed; Lei, Yong
Optical, water splitting and wettability of titanium nitride/titanium oxynitride bilayer films for hydrogen generation and solar cells applications. - In: Materials science in semiconductor processing, ISSN 1873-4081, Bd. 105 (2020), 104704, insges. 7 S.

https://doi.org/10.1016/j.mssp.2019.104704
Yuan, Ning; Zhao, Huaping; Zheng, Chunfang; Zheng, Xianzheng; Fu, Qun; Wu, Minghong; Lei, Yong
An efficient nanopatterning strategy for controllably fabricating ultra-small gaps as a highly sensitive surface-enhanced Raman scattering platform. - In: Nanotechnology, ISSN 1361-6528, Bd. 31 (2020), 4, 045301, S. 1-8

https://doi.org/10.1088/1361-6528/ab49ac
Eichfelder, Gabriele; Niebling, Julia; Rocktäschel, Stefan
An algorithmic approach to multiobjective optimization with decision uncertainty. - In: Journal of global optimization, ISSN 1573-2916, Bd. 77 (2020), 1, S. 3-25

In real life applications, optimization problems with more than one objective function are often of interest. Next to handling multiple objective functions, another challenge is to deal with uncertainties concerning the realization of the decision variables. One approach to handle these uncertainties is to consider the objectives as set-valued functions. Hence, the image of one decision variable is a whole set, which includes all possible outcomes of this decision variable. We choose a robust approach and thus these sets have to be compared using the so-called upper-type less order relation. We propose a numerical method to calculate a covering of the set of optimal solutions of such an uncertain multiobjective optimization problem. We use a branch-and-bound approach and lower and upper bound sets for being able to compare the arising sets. The calculation of these lower and upper bound sets uses techniques known from global optimization, as convex underestimators, as well as techniques used in convex multiobjective optimization as outer approximation techniques. We also give first numerical results for this algorithm.



https://doi.org/10.1007/s10898-019-00815-9
Fabrici, Igor; Harant, Jochen; Mohr, Samuel; Schmidt, Jens M.
Longer cycles in essentially 4-connected planar graphs. - In: Discussiones mathematicae, ISSN 2083-5892, Bd. 40 (2020), 1, S. 269-277

https://doi.org/10.7151/dmgt.2133
Braun, Philipp; Grüne, Lars; Kellett, Christopher M.; Weller, Steven R.; Worthmann, Karl
Towards price-based predictive control of a small-scale electricity network. - In: International journal of control, ISSN 1366-5820, Bd. 93 (2020), 1, S. 40-61

https://doi.org/10.1080/00207179.2017.1339329
May, Matthias M.; Stange, Helena; Weinrich, Jonas; Hannappel, Thomas; Supplie, Oliver
The impact of non-ideal surfaces on the solid-water interaction: a time-resolved adsorption study. - In: SciPost physics, ISSN 2542-4653, Vol. 6 (2019), issue 5, 058, Seite 1-13

SciPost Journals Publication Detail SciPost Phys. 6, 058 (2019) The impact of non-ideal surfaces on the solid-water interaction: a time-resolved adsorption study



https://doi.org/10.21468/SciPostPhys.6.5.058
Cretu, Andrea; Mattea, Carlos; Stapf, Siegfried; Ardelean, Ioan
The effect of silica nanoparticles on the pore structure of hydrating cement paste: a spatially resolved low-field NMR study. - In: Molecular physics, ISSN 1362-3028, Bd. 117 (2019), 7/8, S. 1006-1014

https://doi.org/10.1080/00268976.2018.1513581
Schwarz, Felix; Bohm, Sebastian; Runge, Erich; Wang, Dong; Schaaf, Peter; Zhong, Jinhui; Yi, Juemin; Lienau, Christoph
Natural cavities with huge Purcell factors in gold nano sponges. - In: Quantum science and information technologies, (2019), FM 85.8

Henn, Sebastian; Krüger, Evgeny; Sturm, Chris; Dadgar, Armin; Wieneke, Matthias; Grundmann, Marius; Schmidt-Grund, Rüdiger
Exceptional points in optical anisotropic thin films. - In: Quantum science and information technologies, (2019), FM 83.7

Hentschel, Martina;
Quantenchaos. - In: Vielfältige Physik, (2019), S. 253-262

https://doi.org/10.1007/978-3-662-58035-6_23
Calderón, Jesús A.; Valdiva, Cesar J.; Mas, Roland; Chirinos, Luis; Barrantes, Enrique; Lozano, John H.; Lengua, Juan C.
System identification analysis for an air compressor system and enhancement proposal by sensors based in nanostructures. - In: The 3rd International Conference on Power, Energy and Mechanical Engineering (ICPEME 2019), (2019), 02007, S. 1-5

https://doi.org/10.1051/e3sconf/20199502007
Calderón, Jesús A.; Tafur, Julio C.; Barriga, Eliseo B.; Mas, Roland; Chirinos, Luis; Barrantes, Enrique; Alencastre, Jorge; Melgarejo, Oscar; Lozano, John H.; Heinrich, Bjorn; Aguilar, Enrique; Lengua, Juan C.
Active noise control proposal design enhanced because of using sensors/actuators based on nanostructures. - In: The 3rd International Conference on Power, Energy and Mechanical Engineering (ICPEME 2019), (2019), 01003, S. 1-4

https://doi.org/10.1051/e3sconf/20199501003
Calderón, Jesús A.; Barriga, Eliseo B.; Mas, Roland; Chirinos, Luis; Barrantes, Enrique; Alencastre, Jorge; Tafur, Julio C.; Melgarejo, Oscar; Lozano, John H.; Heinrich, Bjorn; Aguilar, Enrique; Lengua, Juan C.
Magnetic bearing proposal design for a general unbalanced rotor system enhanced because of using sensors/actuators based in nanostructures. - In: The 3rd International Conference on Power, Energy and Mechanical Engineering (ICPEME 2019), (2019), 01002, S. 1-8

https://doi.org/10.1051/e3sconf/20199501002
Barros, Gil F.; Cavalar, Bruno P.; Mota, Guilherme Oliveira; Parczyk, Olaf
Anti-Ramsey threshold of cycles for sparse graphs. - In: Electronic notes in theoretical computer science, ISSN 1571-0661, Bd. 346 (2019), S. 89-98

https://doi.org/10.1016/j.entcs.2019.08.009
Mohr, Samuel;
Cycles through a set of specified vertices of a planar graph. - In: Acta mathematica Universitatis Comenianae, ISSN 0862-9544, Bd. 88 (2019), 3, S. 963-966

Berger, Sören; Kohayakawa, Yoshiharu; Maesaka, Giulia Satiko; Martins, Taisa; Mendon¸ca, Walner; Mota, Guilherme Oliveira; Parczyk, Olaf
The size-Ramsey number of powers of bounded degree trees. - In: Acta mathematica Universitatis Comenianae, ISSN 0862-9544, Bd. 88 (2019), 3, S. 451-456

Parczyk, Olaf;
Almost spanning universality in random graphs. - In: Acta mathematica Universitatis Comenianae, ISSN 0862-9544, Bd. 88 (2019), 3, S. 997-1002

Aigner-Horev, Elad; Person, Yury
Monochromatic Schur triples in randomly perturbed dense sets of integers. - In: SIAM journal on discrete mathematics, ISSN 1095-7146, Bd. 33 (2019), 4, S. 2175-2180

https://doi.org/10.1137/18M1227007
Hubai, Tamás; Král', Daniel; Parczyk, Olaf; Person, Yury
More non-bipartite forcing pairs. - In: Acta mathematica Universitatis Comenianae, ISSN 0862-9544, Bd. 88 (2019), 3, S. 819-825

Hannappel, Thomas; Kleinschmidt, Peter; Paszuk, Agnieszka; Nandy, Manali
High Efficiency III-V Multi-junction Solar Cells on Silicon :
Hocheffiziente III-V-Mehrfachsolarzellen auf Silicium (Akronym "MehrSi") : Abschlussbericht des Forschungsvorhabens : Teilprojekt der Technischen Universität Ilmenau : Laufzeit des Vorhabens: 01.09.2015 bis 28.02.2019. - Ilmenau : Technische Universität Ilmenau. - 1 Online-Ressource (63 Seiten, 3,72 MB)Förderkennzeichen BMBF 03SF0525B

https://doi.org/10.2314/KXP:1687431418
Chepurna, Oksana; Grebinyk, Anna; Petrushko, Yuriy; Prylutska, Svitlana; Grebinyk, Sergii; Yashchuk, Valeriy M.; Matyshevska, Olga; Ritter, Uwe; Dandekar, Thomas; Frohme, Marcus; Qu, J.; Ohulchanskyy, Tymish Y.
LED-based portable light source for photodynamic therapy. - In: Optics in Health Care and Biomedical Optics IX, (2019), S. 11190A-1-11190A-7

https://doi.org/10.1117/12.2541774
Petrich, Rebecca; Bartsch, Heike; Tonisch, Katja; Jaekel, Konrad; Barth, Stephan; Bartzsch, Hagen R.; Glöß, Daniel; Delan, Annekatrin; Krischok, Stefan; Strehle, Steffen; Hoffmann, Martin; Müller, Jens
Investigation of ScAlN for piezoelectric and ferroelectric applications. - In: 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), (2019), insges. 5 S.

https://doi.org/10.23919/EMPC44848.2019.8951824
Gizatullin, Bulat; Gafurov, Marat; Vakhin, Alexey; Rodionov, Alexander; Mamin, Georgy; Orlinskii, Sergei; Mattea, Carlos; Stapf, Siegfried
Native vanadyl complexes in crude oil as polarizing agents for in situ proton dynamic nuclear polarization. - In: Energy & fuels, ISSN 1520-5029, Bd. 33 (2019), 11, S. 10923-10932

https://doi.org/10.1021/acs.energyfuels.9b03049
Ryu, Jinhyeok; Gwak, Sunjae; Kim, Jaewon; Yu, Hyeon-Hye; Kim, Ji-Hwan; Lee, Ji-Won; Yi, Chang-Hwan; Kim, Chil-Min
Hybridization of different types of exceptional points. - In: Photonics research, ISSN 2327-9125, Bd. 7 (2019), 12, S. 1473-1478

https://doi.org/10.1364/PRJ.7.001473
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Hyperpolarization by DNP and molecular dynamics: eliminating the radical contribution in NMR relaxation studies. - In: The journal of physical chemistry, ISSN 1520-5207, Bd. 123 (2019), 46, S. 9963-9970

https://doi.org/10.1021/acs.jpcb.9b03246
Herrfurth, Oliver; Pflug, Theo; Olbrich, Markus; Grundmann, Marius; Horn, Alexander; Schmidt-Grund, Rüdiger
Femtosecond-time-resolved imaging of the dielectric function of ZnO in the visible to near-IR spectral range. - In: Applied physics letters, ISSN 1077-3118, Bd. 115 (2019), 21, S. 212103-1-212103-5

https://doi.org/10.1063/1.5128069
Faulwasser, Timm; Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Worthmann, Karl
Towards velocity turnpikes in optimal control of mechanical systems. - In: IFAC-PapersOnLine, ISSN 2405-8963, Bd. 52 (2019), 16, S. 490-495

https://doi.org/10.1016/j.ifacol.2019.12.009
Grundel, Sara; Sauerteig, Philipp; Worthmann, Karl
Surrogate models for coupled microgrids. - In: Progress in industrial mathematics at ECMI 2018, (2019), S. 477-483

https://doi.org/10.1007/978-3-030-27550-1_60
Braun, Philipp; Sauerteig, Philipp; Worthmann, Karl
Distributed optimization based control on the example of microgrids. - In: Computational intelligence and optimization methods for control engineering, (2019), S. 173-200

https://doi.org/10.1007/978-3-030-25446-9_8
Baumann, Manuel; Grundel, Sara; Sauerteig, Philipp; Worthmann, Karl
Ersatzmodelle in bidirektionaler Optimierung gekoppelter Microgrids :
Surrogate models in bidirectional optimization of coupled microgrids. - In: Automatisierungstechnik, ISSN 2196-677X, Bd. 67 (2019), 12, S. 1035-1046

https://doi.org/10.1515/auto-2019-0075
Thomann, Jana; Eichfelder, Gabriele
Representation of the Pareto front for heterogeneous multi-objective optimization. - In: Journal of applied and numerical optimization, ISSN 2562-5535, Bd. 1 (2019), 3, S. 293-323

Optimization problems with multiple objectives which are expensive, i.e., where function evaluations are time consuming, are difficult to solve. Finding at least one locally optimal solution is already a difficult task. In case only one of the objective functions is expensive while the others are cheap, for instance, analytically given, this can be used in the optimization procedure. Using a trust-region approach and the Tammer-Weidner-functional for finding descent directions, in [19] an algorithm was proposed which makes use of the heterogeneity of the objective functions. In this paper, we present three heuristic approaches, which allow to find additional optimal solutions of the multiobjective optimization problem and by that representations at least of parts of the Pareto front. We present the related theoretical results as well as numerical results on some test instances.



https://doi.org/10.23952/jano.1.2019.3.08
Flaßkamp, Kathrin; Ober-Blöbaum, Sina; Worthmann, Karl
Symmetry and motion primitives in model predictive control. - In: Mathematics of control, signals, and systems, ISSN 1435-568X, Bd. 31 (2019), 4, S. 455-485

https://doi.org/10.1007/s00498-019-00246-7
Bosch, Martí; Malzard, Simon; Hentschel, Martina; Schomerus, Henning
Non-Hermitian defect states from lifetime differences. - In: Physical review, ISSN 2469-9934, Bd. 100 (2019), 6, 063801, insges. 8 S.

https://doi.org/10.1103/PhysRevA.100.063801
Kreismann, Jakob; Kim, Jaewon; Bosch, Martí; Hein, Matthias; Sinzinger, Stefan; Hentschel, Martina
Superdirectional light emission and emission reversal from microcavity arrays. - In: Physical review research, ISSN 2643-1564, Bd. 1 (2019), 3, S. 033171-1-033171-5

Optical microdisk cavities with certain asymmetric shapes are known to possess unidirectional far-field emission properties. Here, we investigate arrays of these dielectric microresonators with respect to their emission properties resulting from the coherent behavior of the coupled constituents. This approach is inspired by electronic mesoscopic physics where the additional interference effects are known to enhance the properties of the individual system. As an example, we study the linear arrangement of nominally identical Lima¸con-shaped cavities and find mostly an increase of the portion of directional emitted light while its angular spread is largely diminished from 20 deg for the single cavity to about 3 deg for a linear array of 10 Lima¸con resonators, in fair agreement with a simple array model. Moreover, by varying the intercavity distance, we observe windows of reversion of the emission directionality and superdirectionality that can be interesting for applications like optical sensing or interconnects. We introduce a generalized array factor model that takes the coupling into account.



https://doi.org/10.1103/PhysRevResearch.1.033171
Flaßkamp, Kathrin; Worthmann, Karl; Mühlenhoff, Julian; Greiner-Petter, Christoph; Büskens, Christof; Oertel, Joachim; Keiner, Dörthe; Sattel, Thomas
Towards optimal control of concentric tube robots in stereotactic neurosurgery. - In: Mathematical and computer modelling of dynamical systems, ISSN 1744-5051, Bd. 25 (2019), 6, S. 560-574

https://doi.org/10.1080/13873954.2019.1690004
Richter, Steffen; Zirnstein, Heinrich-Gregor; Zúñiga-Pérez, Jesús; Krüger, Evgeny; Deparis, Christiane; Trefflich, Lukas; Sturm, Chris; Rosenow, Bernd; Grundmann, Marius; Schmidt-Grund, Rüdiger
Voigt exceptional points in an anisotropic ZnO-based planar microcavity: square-root topology, polarization vortices, and circularity. - In: Physical review letters, ISSN 1079-7114, Bd. 123 (2019), 22, 227401, insges. 7 S.

https://doi.org/10.1103/PhysRevLett.123.227401
Petrich, Rebecca; Bartsch, Heike; Tonisch, Katja; Jaekel, Konrad; Barth, Stephan; Bartzsch, Hagen R.; Glöß, Daniel; Delan, Annekatrin; Krischok, Stefan; Strehle, Steffen; Hoffmann, Martin; Müller, Jens
Untersuchung von ScAlN für piezoelektrische und ferroelektrische Anwendungen. - In: MikroSystemTechnik Kongress 2019, (2019), S. 412-416

Bohm, Sebastian; Dittrich, Lars; Runge, Erich
Modellierung, Fertigung und Erprobung einer neuartigen EWOD-betriebenen Mikropumpe. - In: MikroSystemTechnik Kongress 2019, (2019), S. 378-381

Behrens, Arne; Feßer, Patrick; Kreismann, Jakob; Hentschel, Martina; Sinzinger, Stefan
Mesoskopische Flüstergaleriemodenresonatoren im sichtbaren Spektrum auf Basis von Silizium Mikrostrukturierung. - In: MikroSystemTechnik Kongress 2019, (2019), S. 178-181

Yu, Wei; Visaveliya, Nikunjkumar; Serra, Christophe A.; Köhler, Michael; Ding, Shukai; Bouquey, Michel; Muller, René; Schmutz, Marc; Kraus, Isabelle
Preparation and deep characterization of composite/hybrid multi-scale and multi-domain polymeric microparticles. - In: Materials, ISSN 1996-1944, Bd. 12 (2019), 23, 3921, insges. 13 S.

https://doi.org/10.3390/ma12233921
Franskevych, Daria; Prylutska, Svitlana; Grynyuk, Iryna; Pasichnyk, Ganna; Drobot, Liudmyla; Matyshevska, Olga; Ritter, Uwe
Mode of photoexcited C60 fullerene involvement in potentiating cisplatin toxicity against drug-resistant L1210 cells. - In: BioImpacts, ISSN 2228-5660, Bd. 9 (2019), 4, S. 211-217
Im Titel ist "60" tiefgestellt

https://doi.org/10.15171/bi.2019.26
Kuznietsova, Halyna; Lynchak, Oksana; Dziubenko, Natalia; Herheliuk, Tetyana; Prylutskyy, Yuriy; Rybalchenko, Volodymyr; Ritter, Uwe
Water-soluble pristine C60 fullerene attenuates acetaminophen-induced liver injury. - In: BioImpacts, ISSN 2228-5660, Bd. 9 (2019), 4, S. 227-237
Im Titel ist "60" tiefgestellt

https://doi.org/10.15171/bi.2019.28
Yi, Jue-Min; Wang, Dong; Schwarz, Felix; Zhong, Jinhui; Chimeh, Abbas; Korte, Anke; Zhan, Jinxin; Schaaf, Peter; Runge, Erich; Lienau, Christoph
Doubly resonant plasmonic hot spot-exciton coupling enhances second harmonic generation from Au/ZnO hybrid porous nanosponges. - In: ACS photonics, ISSN 2330-4022, Bd. 6 (2019), 11, S. 2779-2787

https://doi.org/10.1021/acsphotonics.9b00791
Zheng, Hao; Xu, Yong; Dong, Guo-Cai; Kröger, Jörg; Berndt, Richard
Structure of a phthalocyanine dye on ZnO. - In: Surface review and letters, ISSN 0218-625X, Bd. 26 (2019), 6, S. 1850204-1-1850204-6

Room temperature scanning tunneling microscopy was used to investigate the adsorption of a dye molecule, iron-phthalocyanine (FePc), on ZnO(0001). Submolecular resolution reveals the orientation of molecules with respect to crystallographic directions of the surface. Upon adsorption, the molecular symmetry is reduced. First-principles calculations trace these observations to a strong molecule-substrate bond, which induces deformations of the molecule.



https://doi.org/10.1142/S0218625X18502049
Brand, Jonathan; Néel, Nicolas; Kröger, Jörg
Probing relaxations of atomic-scale junctions in the Pauli repulsion range. - In: New journal of physics, ISSN 1367-2630, Bd. 21 (2019), 103041, insges. 10 S.

Clean metal as well as C60-terminated tips of an atomic force microscope probe the interaction with C60 molecules adsorbed on Cu(111) and Pb(111). The force measurements unveil a monotonic shift of the point of maximum attraction with the bias voltage. The conventional superposition of long-range van der Waals and electrostatic forces with short-range Pauli repulsion does not reproduce the shift. By phenomenologically including bias-dependent relaxations of the electrode geometry in the analytical expression for the short-range force the experimental data can qualitatively be described.



https://doi.org/10.1088/1367-2630/ab4c84
Wu, Yuhan; Xu, Yang; Li, Yueliang; Lyu, Pengbo; Wen, Jin; Zhang, Chenglin; Zhou, Min; Fang, Yaoguo; Zhao, Huaping; Kaiser, Ute; Lei, Yong
Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. - In: Nano research, ISSN 1998-0000, Bd. 12 (2019), 12, S. 2997-3002
Im Titel ist "2" tiefgestellt

https://doi.org/10.1007/s12274-019-2543-0
Mehler, Alexander; Néel, Nicolas; Kröger, Jörg
Probing site-dependent decoupling of hexagonal boron nitride with molecular frontier orbitals. - In: Journal of vacuum science & technology, ISSN 1520-8559, Bd. 37 (2019), 6, S. 061404-1-061404-6

https://doi.org/10.1116/1.5125486
Brand, Jonathan; Leitherer, Susanne; Papior, Nick R.; Néel, Nicolas; Lei, Yong; Brandbyge, Mads; Kröger, Jörg
Nonequilibrium bond forces in single-molecule junctions. - In: Nano letters, ISSN 1530-6992, Bd. 19 (2019), 11, S. 7845-7851

https://doi.org/10.1021/acs.nanolett.9b02845
Harant, Jochen; Jendrol', Stanislav
Lightweight paths in graphs. - In: Opuscula mathematica, ISSN 2300-6919, Bd. 39 (2019), 6, S. 829-837

https://doi.org/10.7494/OpMath.2019.39.6.829
Gernandt, Hannes;
Locating the extremal entries of the Fiedler vector for rose trees. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 19 (2019), 1, e201900408, insges. 2 S.

https://doi.org/10.1002/pamm.201900408
Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten
The non-real spectrum of a singular indefinite Sturm-Liouville operator with regular left endpoint. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 19 (2019), 1, e201900133, insges. 2 S.

https://doi.org/10.1002/pamm.201900133
Zimmermann, Armin; Hotz, Thomas
Integrating simulation and numerical analysis in the evaluation of generalized stochastic Petri nets. - In: ACM transactions on modeling and computer simulation, ISSN 1558-1195, Bd. 29 (2019), 4, S. 24:1-24:25

https://dx.doi.org/10.1145/3321518
Lauer, Kevin; Krischok, Stefan; Klein, Thomas; Bähr, Mario; Lawerenz, Alexander; Röder, Ralf; Ortlepp, Thomas; Gohs, Uwe
Light-induced degradation in annealed and electron irradiated silicon. - In: Physica status solidi, ISSN 1862-6319, Bd. 216 (2019), 17, S. 1900284, insges. 6 S.

https://doi.org/10.1002/pssa.201900284
Baier, Robert; Eichfelder, Gabriele; Gerlach, Tobias
Optimality conditions for set optimization using a directional derivative based on generalized Steiner sets. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (40 Seiten). - (Preprint ; M19,09)

Set-optimization has attracted increasing interest in the last years, as for instance uncertain multiobjective optimization problems lead to such problems with a set- valued objective function. Thereby, from a practical point of view, most of all the so-called set approach is of interest. However, optimality conditions for these problems, for instance using directional derivatives, are still very limited. The key aspect for a useful directional derivative is the definition of a useful set difference for the evaluation of the numerator in the difference quotient. We present here a new set difference which avoids the use of a convex hull and which applies to arbitrary convex sets, and not to strictly convex sets only. The new set difference is based on the new concept of generalized Steiner sets. We introduce the Banach space of generalized Steiner sets as well as an embedding of convex sets in this space using Steiner points. In this Banach space we can easily define a difference and a directional derivative. We use the latter for new optimality conditions for set optimization. Numerical examples illustrate the new concepts.



https://www.db-thueringen.de/receive/dbt_mods_00040057
Köhler, Michael; Kalensee, Franziska; Cao-Riehmer, Jialan; Günther, Mike
Hadesarchaea and other extremophile bacteria from ancient mining areas of the East Harz region (Germany) suggest an ecological long-term memory of soil. - In: SN applied sciences, ISSN 2523-3971, Bd. 1 (2019), 8, 839, insges. 9 S.

https://doi.org/10.1007/s42452-019-0874-9
Eichfelder, Gabriele; Gerlach, Tobias
On classes of set optimization problems which are reducible to vector optimization problems and its impact on numerical test instances. - In: Variational analysis and set optimization, (2019), S. 265-290

Set optimization with the set approach has recently gained increasing interest due to its practical relevance. In this problem class one studies optimization problems with a set-valued objective map and defines optimality based on a direct comparison of the images of the objective function, which are sets here. Meanwhile, in the literature a wide range of theoretical tools as scalarization approaches and derivative concepts as well as first numerical algorithms are available. These numerical algorithms require on the one hand test instances where the optimal solution sets are known. On the other hand, in most examples and test instances in the literature only set-valued maps with a very simple structure are used. We study in this paper such special set-valued maps and we show that some of them are such simple that they can equivalently be expressed as a vector optimization problem. Thus we try to start drawing a line between simple set-valued problems and such problems which have no representation as multiobjective problems. Those having a representation can be used for defining test instances for numerical algorithms with easy verifiable optimal solution set.



Leben, Florian; Trunk, Carsten
Operator-based approach to PT-symmetric problems on a wedge-shaped contour. - In: Quantum studies, ISSN 2196-5617, Bd. 6 (2019), 3, S. 315-333

https://doi.org/10.1007/s40509-019-00197-3
Huang, Junjie; Sun, Junfeng; Chen, Alatancang; Trunk, Carsten
Invertibility of 2 × 2 operator matrices. - In: Mathematische Nachrichten, ISSN 1522-2616, Bd. 292 (2019), 11, S. 2411-2426

https://doi.org/10.1002/mana.201800351
Grebinyk, Anna; Prylutska, Svitlana; Chepurna, Oksana; Grebinyk, Sergii; Prylutskyy, Yuriy; Ritter, Uwe; Ohulchanskyy, Tymish Y.; Matyshevska, Olga; Dandekar, Thomas; Frohme, Marcus
Synergy of chemo- and photodynamic therapies with C60 fullerene-doxorubicin nanocomplex. - In: Nanomaterials, ISSN 2079-4991, Bd. 9 (2019), 11, 1540, insges. 19 S.
Im Titel ist "60" tiefgestellt

https://doi.org/10.3390/nano9111540
Grebinyk, Anna; Prylutska, Svitlana; Buchelnikov, Anatoliy; Tverdokhleb, Nina; Grebinyk, Sergii; Evstigneev, Maxim; Matyshevska, Olga; Cherepanov, Vsevolod; Prylutskyy, Yuriy; Yashchuk, Valeriy; Naumovets, Anton; Ritter, Uwe; Dandekar, Thomas; Frohme, Marcus
C60 fullerene as an effective nanoplatform of alkaloid Berberine delivery into leukemic cells. - In: Pharmaceutics, ISSN 1999-4923, Bd. 11 (2019), 11, 586, S. 1-23

https://doi.org/10.3390/pharmaceutics11110586
Schweser, Thomas;
DP-degree colorable hypergraphs. - In: Theoretical computer science, Bd. 796 (2019), S. 196-206

https://doi.org/10.1016/j.tcs.2019.09.010
Zhong, Jinhui; Yi, Juemin; Wang, Dong; Korte, Anke; Chimeh, Abbas; Schaaf, Peter; Runge, Erich; Lienau, Christoph
Observing nonlinear plasmon-exciton coupling for enhanced harmonic generation. - In: 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), (2019), insges. 1 S.

https://doi.org/10.1109/CLEOE-EQEC.2019.8872963
Seyedlar, Amin Ordikhani; Stapf, Siegfried; Mattea, Carlos
Nuclear magnetic relaxation and diffusion study of the ionic liquids 1-ethyl- and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide confined in porous glass. - In: Magnetic resonance in chemistry, ISSN 1097-458X, Bd. 57 (2019), 10, S. 818-828

https://doi.org/10.1002/mrc.4852
Böttcher, Julia; Han, Jie; Kohayakawa, Yoshiharu; Montgomery, Richard; Parczyk, Olaf; Person, Yury
Universality for bounded degree spanning trees in randomly perturbed graphs. - In: Random structures & algorithms, ISSN 1098-2418, Bd. 55 (2019), 4, S. 854-864

https://doi.org/10.1002/rsa.20850
Wan, Chenghao; Zhang, Zhen; Woolf, David; Hessel, Colin M.; Rensberg, Jura; Hensley, Joel M.; Xiao, Yuzhe; Shahsafi, Alireza; Salman, Jad; Richter, Steffen; Sun, Yifei; Qazilbash, M. Mumtaz; Schmidt-Grund, Rüdiger; Ronning, Carsten; Ramanathan, Shriram; Kats, Mikhail A.
On the optical properties of thin-film vanadium dioxide from the visible to the far infrared. - In: Annalen der Physik, ISSN 1521-3889, Bd. 531 (2019), 10, 1900188, S. 1-7

https://doi.org/10.1002/andp.201900188
Marx-Blümel, Lisa; Frey, Jessica; Sonnemann, Jürgen; Schober, Andreas; Brauer, Dana; Schlingloff, Gregor; Singh, Sukhdeep; Hampl, Jörg; Weise, Frank; Lindig, Nora; Marx, Christian; Wang, Zhao-Qi; Perner, Birgit; Beck, James F.
Biomimetic reconstruction of tissue structures using the example of the hematopoietic stem cell niche for the in vitro amplification of human hematopoietic stem cells. - In: Bone marrow transplantation, ISSN 1476-5365, Bd. 54 (2019), S. 365-366
P341

https://doi.org/10.1038/s41409-019-0559-4
Semper, Sebastian; Hotz, Thomas
Packing bounds for outer products with applications to compressive sensing. - In: Geometric science of information, (2019), S. 135-143

Cadar, Calin; Cretu, Andrea; Moldovan, Marioara; Mattea, Carlos; Stapf, Siegfried; Ardelean, Ioan
NMR T1-T2 correlation analysis of molecular absorption inside a hardened cement paste containing silanised silica fume. - In: Molecular physics, ISSN 1362-3028, Bd. 117 (2019), 7/8, S. 1000-1005
Im Titel sind "1" und "2" tiefgestellt

https://doi.org/10.1080/00268976.2018.1513582
Prylutska, Svitlana V.; Grebinyk, Anna; Lynchak, Oksana V.; Byelinska, Iryna V.; Cherepanov, Vsevolod; Täuscher, Eric; Matyshevska, Olga P.; Prylutskyy, Yuriy I.; Rybalchenko, Volodymyr K.; Ritter, Uwe; Frohme, Marcus
In vitro and in vivo toxicity of pristine C60 fullerene aqueous colloid solution. - In: Fullerenes, nanotubes & carbon nanostructures, ISSN 1536-4046, Bd. 27 (2019), 9, S. 715-728
Im Titel ist "60" tiefgestellt

https://doi.org/10.1080/1536383X.2019.1634055
Zhang, Da; Zhang, Keyu; Yao, Yaochun; Liang, Feng; Qu, Tao; Ma, Wenhui; Yang, Bing; Dai, Yongnian; Lei, Yong
Intercalation and exfoliation syntheses of high specific surface area graphene and FeC2O4/graphene composite for anode material of lithium ion battery. - In: Fullerenes, nanotubes & carbon nanostructures, ISSN 1536-4046, Bd. 27 (2019), 9, S. 746-754
Im Titel sind "2" und "4" tiefgestellt

https://doi.org/10.1080/1536383X.2019.1635586
Behrens, Arne; Hentschel, Martina; Sinzinger, Stefan
Untersuchung deformierter optischer Mikrokavitäten anhand des abgestrahlten Fernfelds. - In: DGaO-Proceedings, ISSN 1614-8436, Bd. 120 (2019), B17, insges. 2 S.

https://nbn-resolving.org/urn:nbn:de:0287-2019-B017-3
Köhler, Michael; Kluitmann, Jonas; Knauer, Andrea
Metal nano networks by potential-controlled in situ assembling of gold/silver nanoparticles. - In: ChemistryOpen, ISSN 2191-1363, Bd. 8 (2019), 12, S. 1369-1374

https://doi.org/10.1002/open.201900231
Marinin, Oleh D.; Ovsiienko, Iryna V.; Len, Tatiana A.; Matzui, Lyudmila Yu.; Prylutskyy, Yuriy I.; Naumova, Dina D.; Ritter, Uwe
The effect of ultraviolet irradiation on the electro-transport properties of carbon nanotubes : transport properties of ultraviolet irradiated carbon nanotubes. - In: Nanophotonics, nanooptics, nanobiotechnology, and their applications, (2019), S. 145-163

Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
X-nuclei hyperpolarization for studying molecular dynamics by DNP-FFC. - In: Journal of magnetic resonance, ISSN 1096-0856, Bd. 307 (2019), 106583

https://doi.org/10.1016/j.jmr.2019.106583
Köhler, Michael;
Entropie-Wende. - Ilmenau : Technische Universität Ilmenau, Universitätsbibliothek/ilmedia, 2019. - 1 Online-Ressource (V, 118 Seiten)
https://doi.org/10.22032/dbt.39378
Campbell, Stephen L.; Ilchmann, Achim; Mehrmann, Volker; Reis, Timo
Applications of differential-algebraic equations: examples and benchmarks. - Cham : Springer, 2019. - vii, 320 Seiten. - (Differential-algebraic equations forum) ISBN 3-030-03717-7
Literaturangaben

General Nonlinear Differential Algebraic Equations and Tracking Problems: A Robotics Example -- DAE Aspects in Vehicle Dynamics and Mobile Robotics -- Open-loop Control of Underactuated Mechanical Systems Using Servo-constraints: Analysis and Some Examples -- Systems of Differential Algebraic Equations in Computational Electromagnetics -- Gas Network Benchmark Models -- Topological Index Analysis Applied to Coupled Flow Networks -- Nonsmooth DAEs with Applications in Modeling Phase Changes -- Continuous, Semi-Discrete, and Fully Discretized Navier-Stokes Equations



Michel, Jonas; Splith, Daniel; Rombach, Julius; Papadogianni, Alexandra; Berthold, Theresa; Krischok, Stefan; Grundmann, Marius; Bierwagen, Oliver; Wenckstern, Holger von; Himmerlich, Marcel
Processing strategies for high-performance Schottky contacts on n-type oxide semiconductors: insights from In2O3. - In: ACS applied materials & interfaces, ISSN 1944-8252, Bd. 11 (2019), 30, S. 27073-27087
Im Titel sind "2" und "3" tiefgestellt

https://doi.org/10.1021/acsami.9b06455
Han, Jie; Kohayakawa, Yoshiharu; Morris, Patrick; Person, Yury
Clique-factors in sparse pseudorandom graphs. - In: European journal of combinatorics, Bd. 82 (2019), S. 102999

https://doi.org/10.1016/j.ejc.2019.102999
Lei, Minyang; Liu, Jun; Huang, Yanbin; Dong, Yulian; Zhou, Siyu; Zhao, Huaping; Wang, Zhijie; Wu, Minghong; Lei, Yong; Wang, Zhanguo
The optimization of optical modes in Ni-BiVO4 nanoarrays for boosting photoelectrochemical water splitting. - In: Nanotechnology, ISSN 1361-6528, Bd. 30 (2019), 44, 445403, S. 1-10
Im Titel ist "4" tiefgestellt

https://doi.org/10.1088/1361-6528/ab350d
Xu, Yang; Dong, Huishuang; Zhou, Min; Zhang, Chenglin; Wu, Yuhan; Li, Wei; Dong, Yulian; Lei, Yong
Ammonium vanadium bronze as a potassium-ion battery cathode with high rate capability and cyclability. - In: Small Methods, ISSN 2366-9608, Bd. 3 (2019), 8, 1800349, S. 1-9

https://doi.org/10.1002/smtd.201800349
Zhao, Huaping; Wilde, Gerhard; Lei, Yong
Recent research progress for electrochemical energy conversion and storage in Europe. - In: Small Methods, ISSN 2366-9608, Bd. 3 (2019), 8, 1900283, S. 1-2
Editorial

https://doi.org/10.1002/smtd.201900283
Babovsky, Hans;
Shocks in the light of discrete velocity models. - In: AIP conference proceedings, ISSN 1551-7616, Bd. 2132 (2019), 060002, insges. 8 S.

https://doi.org/10.1063/1.5119542
Thomann, Jana; Eichfelder, Gabriele
A trust-region algorithm for heterogeneous multiobjective optimization. - In: SIAM journal on optimization, ISSN 1095-7189, Bd. 29 (2019), 2, S. 1017-1047

https://doi.org/10.1137/18M1173277
Bahmania, Farzaneh; Kazemi, Sayed Habib; Wu, Yuhan; Liu, Long; Xu, Yang; Lei, Yong
CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 375 (2019), 121966
Im Titel ist "2" tiefgestellt

https://doi.org/10.1016/j.cej.2019.121966
Sukhodub, Liudmyla B.; Sukhodub, Leonid F.; Kumeda, Mariya O.; Prylutska, Svitlana V.; Deineka, Volodymyr; Prylutskyy, Yuriy I.; Ritter, Uwe
C60 fullerene loaded hydroxyapatite-chitosan beads as a promising system for prolonged drug release. - In: Carbohydrate polymers, ISSN 1879-1344, Bd. 223 (2019), S. 115067
Im Titel ist "60" tiefgestellt

https://doi.org/10.1016/j.carbpol.2019.115067
Kuznietsova, Halyna; Lynchak, Oksana V.; Dziubenko, Natalia V.; Osetskyi, Valeriy L.; Ogloblya, Oleksandr V.; Prylutskyy, Yuriy I.; Rybalchenko, Volodymyr K.; Ritter, Uwe; Scharff, Peter
Water-soluble C60 fullerenes reduce manifestations of acute cholangitis in rats. - In: Applied nanoscience, ISSN 2190-5517, Bd. 9 (2019), 5, S. 601-608

https://doi.org/10.1007/s13204-018-0700-5
Prylutska, Svitlana V.; Lynchak, Oksana V.; Kostjukov, Viktor V.; Evstigneev, Maxim; Remeniak, Olga V.; Rybalchenko, Volodymyr K.; Prylutskyy, Yurii I.; Ritter, Uwe; Scharff, Peter
Antitumor effects and hematotoxicity of C60-Cis-Pt nanocomplex in mice with Lewis lung carcinoma. - In: Experimental oncology, Bd. 42 (2019), 2, S. 106-111
Im Titel ist "60" tiefgestellt

https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-2.13030
Harant, Jochen; Mohr, Samuel
On Selkow's bound on the independence number of graphs. - In: Discussiones mathematicae, ISSN 2083-5892, Bd. 39 (2019), 3, S. 655-657

https://doi.org/10.7151/dmgt.2100
Kubek, Mario; Böhme, Thomas; Unger, Herwig
Empiric experiments with text-representing centroids. - In: Theory and application of text-representing centroids, (2019), S. 39-54

Kubek, Mario; Böhme, Thomas; Unger, Herwig
Spreading activation: a fast calculation method for text centroids. - In: Theory and application of text-representing centroids, (2019), S. 27-38

Li, Wei; Xu, Yang; Dong, Yulian; Wu, Yuhan; Zhang, Chenglin; Zhou, Min; Fu, Qun; Wu, Minghong; Lei, Yong
Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. - In: Chemical communications, ISSN 1364-548X, Bd. 55 (2019), 46, S. 6507-6510

https://doi.org/10.1039/c9cc01937e
Berger, Thomas; Giribet, Juan; Martínez Pería, Francisco; Trunk, Carsten
On a class of non-Hermitian matrices with positive definite Schur complements. - In: Proceedings of the American Mathematical Society, ISSN 1088-6826, Bd. 147 (2019), 6, S. 2375-2388

https://doi.org/10.1090/proc/14412
Sha, Mo; Sun, Xuhui; Lei, Yong
Sn nanoparticlesnitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 15.7

Korte, Anke; Zhong, Jinhui; Chimeh, Abbas; Schwarz, Felix; Yi, Juemin; Wang, Dong; Zhan, Jinxin; Schaaf, Peter; Runge, Erich; Lienau, Christoph
Strong spatial and spectral localization of surface plasmons in individual randomly disordered gold nanosponges. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 76.8

Fu, Qun; Zhao, Huaping; Lei, Yong
Ingenious 3D gap-plasmonic AgAg strawberry galactic nanostructure for SERS detection. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 76.5

Brand, Jonathan; Néel, Nicolas; Kröger, Jörg
Moving atoms on surfaces: the impact of external parameters on the required force. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 71.4

Liu, Long; Zhao, Huaping; Zhang, Chenglin; Xu, Yang; Yang, Dongjiang; Lei, Yong
Mechanism of SeOx2- immobilization by [delta]-Bi2O3 microsphere with surface oxygen vacancies. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 68.10

Fu, Qun; Zhao, Huaping; Lei, Yong
An effective nanopatterning strategy for controllable fabrication of high-density sub-3-nm gaps. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 68.7

Baranov, Aleksandr; Ullmann, Fabian; Dimitrova, Anna; Krischok, Stefan
X-Ray photoelectron spectroscopic study of the near surface composition of [TfO] and [Tf2N] based Ionic Liquids at different electrode surfaces. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 67.6

Nandy, Manali; Paszuk, Agnieszka; Koppka, Christian; Supplie, Oliver; Kleinschmidt, Peter; Hannappel, Thomas
The impact of Al on defects introduced during GaP nucleation on Si(100) 2&ring; substrate by MOCVD. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 61.2

Paszuk, Agnieszka; Romanyuk, Oleksandr; Supplie, Oliver; Nandy, Manali; Kleinschmidt, Peter; Hannappel, Thomas
Atomic structure of As-modified Si(100) surfaces prepared in MOCVD ambient. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 61.1

Mehler, Alexander; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Exciting vibrons in both frontier orbitals of a single hydrocarbon molecule on graphene. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 42.3

Zhang, Huanming; Zhou, Min; Xu, Yang; Xu, Rui; Wang, Yi; Zeng, Zhiqiang; Lei, Yong
Wrinkle-free centimeter-scale ultrathin alumina membranes on arbitrary substrates prepared by fast surface-energy-assisted drying. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 41.7

Halle, Johannes; Mehler, Alexander; Néel, Nicolas; Kröger, Jörg
Preparation of graphene bilayers on platinum by sequential chemical vapour deposition. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 39.10

Gäbler, Tobias B.; Beenken, Wichard J. D.; Runge, Erich
New reconstruction method for Metastable Induced Electron Spectra of molecules on solid surfaces. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 34.7

Zeng, Zhiqiang; Xu, Rui; Lei, Yong
Template-guided programmable Janus heteronanostructure arrays for efficient plasmonic photocatalysis. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 29.7

Nägelein, Andreas; Koch, Juliane; Steidl, Matthias; Korte, Stefan; Voigtländer, Bert; Kleinschmidt, Peter; Hannappel, Thomas
Surface dependent analysis of freestanding GaAs-nanowires. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), O 18.10

Liu, Long; Zhao, Huaping; Xu, Yang; Zhang, Chenglin; Fang, Yaoguo; Lei, Yong
Rational surface engineering toward optimizing hydrogen evolution activity of nanoporous electrodes. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), MM 26.8

Zhao, Huaping; Liu, Long; Fang, Yaoguo; Lei, Yong
Template-realized functional nanostructure arrays for electrical energy conversion and storage. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), MM 20.24

Zhang, Huanming; Zhou, Min; Xu, Yang; Xu, Rui; Zeng, Zhiqiang; Lei, Yong
Static friction vs Young's modulus: the essential factors inreusable anodic aluminum oxide (AAO) template as a master mold. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), MM 17.10

Zhang, Chenglin; Xu, Yang; Liu, Long; Lei, Yong
Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), MM 3.4

Zhang, Chenglin; Xu, Yang; Liu, Long; Lei, Yong
A low cost potassium Prussian blue cathode for potassium ion batteries. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), KFM 14.6

Wu, Yuhan; Xu, Yang; Zhang, Chenglin; Lei, Yong
Tungsten sulfide: an intercalation-type anode material for potassium-ion battery. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), KFM 9.7

Kreismann, Jakob; Hentschel, Martina; Behrens, Arne; Sinzinger, Stefan
Super-directional light emission from arrays of deformed microcavities. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), KFM 4.10

Kreismann, Jakob; Hentschel, Martina
The optical Möbius strip cavity: tailoring geometric phases and far fields. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), KFM 4.9

Nägelein, Andreas; Kleinschmidt, Peter; Timm, Cornelia; Steidl, Matthias; Schwarzburg, Klaus; Hannappel, Thomas
Determination of doping profiles in axial GaAs nanowires by 4-point-probe and luminescence measurements. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 47.3

Wu, Yuhan; Xu, Yang; Bahmani, Farzaneh; Zhang, Chenglin; Lei, Yong
Enhancing potassium-ion battery performance by defect and interlayer engineering. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 45.29

Nägelein, Andreas; Koch, Juliane; Timm, Cornelia; Steidl, Matthias; Kleinschmidt, Peter; Hannappel, Thomas
Multi-probe electrical characterization of axial pn-junctionin GaAs nanowires. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 42.6

Tummalieh, Ammar; Paszuk, Agnieszka; Supplie, Oliver; Heinisch, Alexander; Kleinschmidt, Peter; Hannappel, Thomas
Optical in situ spectroscopy during MOCVD-preparation of GaAs1-xPx surfaces. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 41.7
Im Titel sind "1-x" und "x" tiefgestellt

Karmo, Marsel; Runge, Erich
First-principles study of the structural and electronic properties of the GaP surface and GaP/Si interface. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 35.32

Hofmann, Tim; Tonisch, Katja; Hähnlein, Bernd; Kovic, Jaroslav; Pezoldt, Jörg; Krischok, Stefan
Spectroscopic characterization of sputtered ScAlN thinfilms. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 35.6

Zeng, Zhiqiang; Xu, Rui; Lei, Yong
Template-assisted fabrication of spectrum-programmable superlattice photonic crystals for efficient solar energy harvesting. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 12.58

De Santis, Marianna; Eichfelder, Gabriele; Niebling, Julia; Rocktäschel, Stefan
Solving multiobjective mixed integer convex optimization problems. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (26 Seiten). - (Preprint ; M19,06)

Multiobjective mixed integer convex optimization refers to mathematical programming problems where more than one convex objective function needs to be optimized simultaneously and some of the variables are constrained to take integer values. We present a branch-and-bound method based on the use of properly defined lower bounds. We do not simply rely on convex relaxations, but we built linear outer approximations of the image set in an adaptive way. We are able to guarantee correctness in terms of detecting both the efficient and the nondominated set of multiobjective mixed integer convex problems according to a prescribed precision. As far as we know, the procedure we present is the first deterministic algorithm devised to handle this class of problems. Our numerical experiments show results on biobjective and triobjective mixed integer convex instances.



https://www.db-thueringen.de/receive/dbt_mods_00038620
Wang, Xiujuan; Zhu, Chuhong; Hu, Xiaoye; Xu, Qiaoling; Zhao, Huaping; Meng, Guowen; Lei, Yong
Highly sensitive surface-enhanced Raman scattering detection of organic pesticides based on Ag-nanoplate decorated graphene-sheets. - In: Applied surface science, Bd. 486 (2019), S. 405-410

https://doi.org/10.1016/j.apsusc.2019.05.008
Prylutska, Svitlana; Grynyuk, Iryna; Skaterna, Tetiana; Horak, Iryna; Grebinyk, Anna; Drobot, Liudmyla; Matyshevska, Olga; Senenko, Anton; Prylutskyy, Yuriy; Naumovec&softcy;, Anton Hryhorovyč; Ritter, Uwe; Frohme, Marcus
Toxicity of C60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. - In: Archives of toxicology, ISSN 1432-0738, Bd. 93 (2019), 5, S. 1213-1226

https://doi.org/10.1007/s00204-019-02441-6
Reiß, Stephanie; Krischok, Stefan; Rädlein, Edda
Comparative study of weather induced corrosion mechanisms of toughened and normal float glasses. - In: European journal of glass science and technology, ISSN 1753-3554, Bd. 60 (2019), 2, S. 33-44

https://doi.org/10.13036/17533546.60.2.020
Thomann, Jana; Eichfelder, Gabriele
Numerical results for the multiobjective trust region algorithm MHT. - In: Data in Brief, ISSN 2352-3409, Bd. 25 (2019), 104103, S. 1-18

https://doi.org/10.1016/j.dib.2019.104103
Tummalieh, Ammar; Paszuk, Agnieszka; Supplie, Oliver; Heinisch, Alexander; Kleinschmidt, Peter; Hannappel, Thomas
In situ study of the surface preparation of metamorphic GaAsP buffers for III-V-on-Si integration. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), HL 12.45

Bohm, Sebastian; Runge, Erich
Fast calculation method for determining the shape of static liquid/liquid or liquid/vapor interfaces under the influence of electrical fields. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), DY 54.10

Kim, Jaewon; Hentschel, Martina; Kim, Chil-Min
Hamiltonian matrix elements of the stadium billiard. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), DY 42.7

Luhn, Sebastian; Hentschel, Martina
Analytical Fresnel laws at convex and concave non-planar interfaces from a transfer matrix approach. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), DY 37.4

Xu, Rui; Zhao, Huaping; Sommerfeld, Max; Lei, Yong
Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), CPP 42.11
Auch enthalten in: O 56.11

Yi, Jue-Min; Wang, Dong; Schwarz, Felix; Zhong, Jinhui; Chimeh, Abbas; Korte, Anke; Schaaf, Peter; Runge, Erich; Lienau, Christoph
Enhanced second harmonic emission from zinc oxide nanoparticles infiltrated into the pores of gold nanosponges. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), CPP 27.7
Auch enthalten in: O 31.7

Runge, Erich; Schüssler, Rima X.; Jäger, Philipp
Being a PhD candidate in physics. - In: DPG-Frühjahrstagung 2019 (DPG Spring Meeting 2019) of the Condensed Matter Section (SKM) together with the Division Radiation and Medical Physics and the Working Groups Equal Opportunities, Industry and Business, Young DPG; Symposia, exhibition of scientific instruments and literature, (2019), PSV VIII

Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten
The non-real spectrum of a singular indefinite Sturm-Liouville operator with regular left endpoint. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (3 Seiten). - (Preprint ; M19,05)
https://www.db-thueringen.de/receive/dbt_mods_00038524
Nasori, Nasori; Dai, Tianyi; Jia, Xiaohao; Rubiyanto, Agus; Cao, Dawei; Qu, Shengchun; Wang, Zhanguo; Wang, Zhijie; Lei, Yong
Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach. - In: Journal of semiconductors, ISSN 2058-6140, Bd. 40 (2019), 5, 052701, S. 1-6

https://doi.org/10.1088/1674-4926/40/5/052701
Friedrich, Dennis; Sippel, Philipp; Supplie, Oliver; Hannappel, Thomas; Eichberger, Rainer
Two-photon photoemission spectroscopy for studying energetics and electron dynamics at semiconductor interfaces. - In: Physica status solidi, ISSN 1862-6319, Bd. 216 (2019), 8, S. 1800738, insges. 10 S.

https://doi.org/10.1002/pssa.201800738
Niemeyer, Markus; Kleinschmidt, Peter; Walker, Alexandre W.; Mundt, Laura Elena; Timm, Cornelia; Lang, Robin; Hannappel, Thomas; Lackner, David
Measurement of the non-radiative minority recombination lifetime and the effective radiative recombination coefficient in GaAs. - In: AIP Advances, ISSN 2158-3226, Bd. 9 (2019), 4, 045034, insges. 7 S.

https://doi.org/10.1063/1.5051709
Liu, Long; Zhao, Huaping; Lei, Yong
Advances on three-dimensional electrodes for micro-supercapacitors: a mini-review. - In: InfoMat, ISSN 2567-3165, Bd. 1 (2019), 1, S. 74-84

https://doi.org/10.1002/inf2.12007
Melnyk, Mariia I.; Ivanova, Irina V.; Dryn, Dariia O.; Prylutskyy, Yuriy I.; Hurmach, Vasyl V.; Platonov, Maxim; Al Kury, Lina T.; Ritter, Uwe; Soloviev, Anatoly I.; Zholos, Alexander V.
C60 fullerenes selectively inhibit BKCa but not Kv channels in pulmonary artery smooth muscle cells. - In: Nanomedicine, ISSN 1549-9642, Bd. 19 (2019), S. 1-11
Im Titel sind "60", "Ca" und "v" tiefgestellt

https://doi.org/10.1016/j.nano.2019.03.018
Nägelein, Andreas; Timm, Cornelia; Steidl, Matthias; Kleinschmidt, Peter; Hannappel, Thomas
Multi-probe electrical characterization of nanowires for solar energy conversion. - In: IEEE journal of photovoltaics, ISSN 2156-3403, Bd. 9 (2019), 3, S. 673-678

https://doi.org/10.1109/JPHOTOV.2019.2894065
Niebling, Julia; Eichfelder, Gabriele
A branch-and-bound-based algorithm for nonconvex multiobjective optimization. - In: SIAM journal on optimization, ISSN 1095-7189, Bd. 29 (2019), 1, S. 794-821

https://doi.org/10.1137/18M1169680
Yasinskyi, Y.; Protsenko, O.; Maistrenko, O.; Rybalchenko, Volodymyr; Prylutskyy, Yuriy; Täuscher, Eric; Ritter, Uwe; Kozeretska, I.
Reconciling the controversial data on the effects of C60 fullerene at the organismal and molecular levels using as a model Drosophila melanogaster. - In: Toxicology letters, ISSN 1879-3169, Bd. 310 (2019), S. 92-98
Im Titel ist "60" tiefgestellt

https://doi.org/10.1016/j.toxlet.2019.03.006
Nägelein, Andreas; Timm, Cornelia; Schwarzburg, Klaus; Steidl, Matthias; Kleinschmidt, Peter; Hannappel, Thomas
Spatially resolved analysis of dopant concentration in axial GaAs NW pn-contacts. - In: Solar energy materials & solar cells, ISSN 1879-3398, Bd. 197 (2019), S. 13-18

https://doi.org/10.1016/j.solmat.2019.03.049
Yang, Qingjun; Liu, Yu; Yan, Ming; Lei, Yong; Shi, Weidong
MOF-derived hierarchical nanosheet arrays constructed by interconnected NiCo-alloyNiCo-sulfide core-shell nanoparticles for high-performance asymmetric supercapacitors. - In: The chemical engineering journal, ISSN 1873-3212, Bd. 370 (2019), S. 666-676

https://doi.org/10.1016/j.cej.2019.03.239
Link, Steffen; Ivanov, Svetlozar; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Electrochemical deposition of silicon from a sulfolane-based electrolyte: effect of applied potential. - In: Electrochemistry communications, ISSN 1873-1902, Bd. 103 (2019), S. 7-11

https://doi.org/10.1016/j.elecom.2019.04.008
Halle, Johannes; Néel, Nicolas; Kröger, Jörg
Tailoring intercalant assemblies at the graphene-metal interface. - In: Langmuir, ISSN 1520-5827, Bd. 35 (2019), 7, S. 2554-2560

https://doi.org/10.1021/acs.langmuir.8b03879
Tovar Ballen, Miguel Angel; Hengoju, Sundar; Weber, Thomas; Mahler, Lisa; Choudhary, Mahipal; Becker, Tino; Roth, Martin
One sensor for multiple colors: fluorescence analysis of microdroplets in microbiological screenings by frequency-division multiplexing. - In: Analytical chemistry, ISSN 1520-6882, Bd. 91 (2019), 4, S. 3055-3061

https://doi.org/10.1021/acs.analchem.8b05451
Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten
Spectral bounds for indefinite singular Sturm-Liouville operators with uniformly locally integrable potentials. - In: Journal of differential equations, ISSN 1090-2732, Bd. 267 (2019), 1, S. 468-493

https://doi.org/10.1016/j.jde.2019.01.013
Halbedel, Bernd; Himmerlich, Marcel
Kontrollierte Adsorption von Titandioxidpartikeln auf galvanisch erzeugten Zinkschichten zur Verbesserung des Korrosionswiderstandes von Chrom(VI)-freien Konversionsschichten :
Controlled adsorption of titanium(IV) oxide particles on electroplated zinc coatings to improve the corrosion resistance of chromium(VI)-free conversion layers. - In: Materials science and engineering technology, ISSN 1521-4052, Bd. 50 (2019), 4, S. 412-420

Adsorption of nano-scaled titanium(IV) oxide particles on electroplated zinc is performed by a simple dip-coating technique in an aqueous titanium(IV) oxide suspension prepared with a stirred media mill. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray fluorescence spectroscopy are carried out to investigate the composition of the zinc surface and the thickness and porosity of the adsorbed titania films. The zinc surface formed during the electrodeposition process is of oxyhydroxide nature and the thickness of the adsorbed titania particle layer is controlled by the pH value and the solid concentration of the suspension. In the range of 10 wt.%-30 wt.% titanium(IV) oxide, a linear dependence between the titania film thickness and the solid content of titania particles in the suspension is found. Highest film thicknesses are obtained in alkaline media (pH≥9). At 13.5 wt.% titania particles and pH values below pH = 2.4, the titania particle film is not closely packed and the zinc layer underneath is still visible in electron microscopy, which is a prerequisite for imbedding these particles by a thin second zinc layer for formation of a robust chromium(VI)-free passivation layer containing the titania particles.



https://doi.org/10.1002/mawe.201800134
Petrov, Oleg V.; Stapf, Siegfried
Multicomponent analysis of T1 relaxation in bovine articular cartilage at low magnetic fields. - In: Magnetic resonance in medicine, ISSN 1522-2594, Bd. 81 (2019), 5, S. 2858-2868

https://doi.org/10.1002/mrm.27624
Yi, Chang-Hwan; Kullig, Julius; Hentschel, Martina; Wiersig, Jan
Non-Hermitian degeneracies of internal-external mode pairs in dielectric microdisks. - In: Photonics research, ISSN 2327-9125, Bd. 7 (2019), 4, S. 464-472

https://dx.doi.org/10.1364/PRJ.7.000464
Kuznietsova, Halyna; Dziubenko, Natalia; Herheliuk, Tetiana; Perepelytsina, Olena; Prylutskyy, Yuriy; Ritter, Uwe; Scharff, Peter; Rybalchenko, Volodymyr
Pristine C60 fullerenes suppress liver fibrosis and early carcinogenesis on rat hepatocellular carcinoma model. - In: Hepatology international, ISSN 1936-0541, Bd. 13 (2019), Suppl. 1, Abstract #663, Seite S262

https://doi.org/10.1007/s12072-019-09936-5
Ivanov, Svetlozar; Mai, Sebastian; Himmerlich, Marcel; Dimitrova, Anna; Krischok, Stefan; Bund, Andreas
Microgravimetric and spectroscopic analysis of solid-electrolyte interphase formation in presence of additives. - In: ChemPhysChem, ISSN 1439-7641, Bd. 20 (2019), 5, S. 655-664

https://doi.org/10.1002/cphc.201801001
Eichfelder, Gabriele; Hotz, Thomas; Wieditz, Johannes
An algorithm for computing Fréchet means on the sphere. - In: Optimization letters, ISSN 1862-4480, Bd. 13 (2019), 7, S. 1523-1533

For most optimisation methods an essential assumption is the vector space structure of the feasible set. This condition is not fulfilled if we consider optimisation problems over the sphere. We present an algorithm for solving a special global problem over the sphere, namely the determination of Fréchet means, which are points minimising the mean distance to a given set of points. The Branch and Bound method derived needs no further assumptions on the input data, but is able to cope with this objective function which is neither convex nor differentiable. The algorithms performance is tested on simulated and real data.



https://doi.org/10.1007/s11590-019-01415-y
Mai, Sebastian; Wessel, Janine; Dimitrova, Anna; Stich, Michael; Ivanov, Svetlozar; Krischok, Stefan; Bund, Andreas
Nanoscale morphological changes at lithium interface, triggered by the electrolyte composition and electrochemical cycling. - In: Journal of chemistry, ISSN 2090-9071, (2019), Article ID 4102382, insges. 13 S.

https://doi.org/10.1155/2019/4102382
Weiß, Dieter; Täuscher, Eric; Brandl, Herbert
Die bunte Welt der Porphyrine: von der Natur zur Hochtechnologie. - In: Chemie in unserer Zeit, ISSN 1521-3781, Bd. 53 (2019), 1, S. 12-21

https://doi.org/10.1002/ciuz.201800813
Giribet, Juan; Langer, Matthias; Martínez Pería, Francisco; Philipp, Friedrich; Trunk, Carsten
Spectral enclosures for a class of block operator matrices. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (23 Seiten). - (Preprint ; M19,04)

We prove new spectral enclosures for the non-real spectrum of a class of 2x2 block operator matrices with self-adjoint operators A and D on the diagonal and operators B and -B* as off-diagonal entries. One of our main results resembles Gershgorin's circle theorem. The enclosures are applied to J-frame operators.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200198
Ilchmann, Achim; Leben, Leslie; Witschel, Jonas; Worthmann, Karl
Optimal control of differential-algebraic equations from an ordinary differential equation perspective. - In: Optimal control, applications and methods, ISSN 1099-1514, Bd. 40 (2019), 2, S. 351-366

https://doi.org/10.1002/oca.2481
Eichfelder, Gabriele; Klamroth, Kathrin; Niebling, Julia
Using a B&B algorithm from multiobjective optimization to solve constrained optimization problems. - In: AIP conference proceedings, ISSN 1551-7616, Bd. 2070 (2019), 020028, insges. 4 S.

https://doi.org/10.1063/1.5089995
Lenk, Claudia; Einax, Mario; Köhler, Michael; Maaß, Philipp
Complex oscillation modes in the Belousov-Zhabotinsky reaction by weak diffusive coupling. - In: Physical review, ISSN 2470-0053, Bd. 99 (2019), 2, 022202, insges. 6 S.

https://doi.org/10.1103/PhysRevE.99.022202
Matvienko, Tatiana; Sokolova, Viktoriya; Prylutska, Svitlana; Harahuts, Yuliia; Kutsevol, Nataliya; Kostjukov, Viktor; Evstigneev, Maxim; Prylutskyy, Yuriy; Epple, Matthias; Ritter, Uwe
In vitro study of the anticancer activity of various doxorubicin-containing dispersions. - In: BioImpacts, ISSN 2228-5660, Bd. 9 (2019), 1, S. 57-63

https://doi.org/10.15171/bi.2019.07
Grebinyk, Anna; Prylutska, Svitlana; Grynyuk, Sergii; Prylutskyy, Yuriy; Ritter, Uwe; Matyshevska, Olga; Dandekar, Thomas; Frohme, Marcus
Complexation with C60 fullerene increases doxorubicin efficiency against leukemic cells in vitro. - In: Nanoscale research letters, ISSN 1556-276X, (2019), 14:61, page 1-10
Im Titel ist "60" tiefgestellt

https://doi.org/10.1186/s11671-019-2894-1
Lenz, Andrea; Supplie, Oliver; Lenz, E.; Kleinschmidt, Peter; Hannappel, Thomas
Interface of GaP/Si(001) and antiphase boundary facet-type determination. - In: Journal of applied physics, ISSN 1089-7550, Bd. 125 (2019), 4, 045304, insges. 9 S.

https://doi.org/10.1063/1.5080547
Noerenberg, Astrid; Brauer, Dana; Klett, Maren; Schober, Andreas; Johannssen, Timo
Expanded primary human liver sinusoidal endothelial cells as a predictive tool in hepatotoxicity evaluation. - In: Drug metabolism and pharmacokinetics, ISSN 1880-0920, Bd. 34 (2019), 1, Suppl., Seite S51

https://doi.org/10.1016/j.dmpk.2018.09.181
Schweser, Thomas; Stiebitz, Michael
Partitions of multigraphs under minimum degree constraints. - In: Discrete applied mathematics, ISSN 1872-6771, Bd. 257 (2019), S. 269-275

https://doi.org/10.1016/j.dam.2018.10.016
Xu, Rui; Zhao, Huaping; Jin, Huile; Wang, Zhijie; Zhang, Zhiliang; Xu, Shipu; Zeng, Zhiqiang; Wang, Shun; Lei, Yong
Scalable fabrication of geometry-tunable self-aligned superlattice photonic crystals for spectrum-programmable light trapping. - In: Nano energy, ISSN 2211-2855, Bd. 58 (2019), S. 543-551

https://doi.org/10.1016/j.nanoen.2019.01.074
Schlipf, Lena; Schmidt, Jens M.
Simple computation of st-edge- and st-numberings from ear decompositions. - In: Information processing letters, ISSN 1872-6119, Bd. 145 (2019), S. 58-63

https://doi.org/10.1016/j.ipl.2019.01.008
Gernandt, Hannes; Pade, Jan Philipp
Schur reduction of trees and extremal entries of the Fiedler vector. - In: Linear algebra and its applications, ISSN 0024-3795, Bd. 570 (2019), S. 93-122

https://doi.org/10.1016/j.laa.2019.02.008
Liu, Long; Zhao, Huaping; Lei, Yong
Review on nanoarchitectured current collectors for pseudocapacitors. - In: Small Methods, ISSN 2366-9608, Bd. 3 (2019), 8, 1800341, S. 1-25

https://doi.org/10.1002/smtd.201800341
Gernandt, Hannes; Moalla, Nedra; Philipp, Friedrich; Selmi, Wafa; Trunk, Carsten
Invariance of the essential spectra of operator pencils. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (15 Seiten). - (Preprint ; M19,03)

The essential spectrum of operator pencils with bounded coefficients in a Hilbert space is studied. Sufficient conditions in terms of the operator coefficients of two pencils are derived which guarantee the same essential spectrum. This is done by exploiting a strong relation between an operator pencil and a specific linear subspace (linear relation).



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200141
Gizatullin, Bulat; Shikhov, Igor; Arns, Christoph; Mattea, Carlos; Stapf, Siegfried
On the influence of wetting behaviour on relaxation of adsorbed liquids - a combined NMR, EPR and DNP study of aged rocks. - In: Magnetic resonance imaging, ISSN 1873-5894, Bd. 56 (2019), S. 63-69

https://doi.org/10.1016/j.mri.2018.09.019
Gizatullin, Bulat; Mattea, Carlos; Stapf, Siegfried
Overhauser DNP FFC study of block copolymer diluted solution. - In: Magnetic resonance imaging, ISSN 1873-5894, Bd. 56 (2019), S. 96-102

https://doi.org/10.1016/j.mri.2018.09.005
Köhler, Michael;
Mobile microspies : particles for sensing and communication. - Singapore : Pan Stanford Publishing, 2019. - xii, 183 Seiten ISBN 978-981-4800-14-3
Includes bibliographical references and index

Mattea, Carlos; Gizatullin, Bulat; Stapf, Siegfried
Dynamics of ionic liquids in poly(vinyl alcohol) porous scaffold : low field NMR study. - In: Magnetic resonance imaging, ISSN 1873-5894, Bd. 56 (2019), S. 126-130

https://doi.org/10.1016/j.mri.2018.09.032
Shikhov, Igor; Thomas, Donald S.; Rawal, Aditya; Yao, Yin; Gizatullin, Bulat; Hook, James M.; Stapf, Siegfried; Arns, Christoph H.
Application of low-field, 1H/13C high-field solution and solid state NMR for characterisation of oil fractions responsible for wettability change in sandstones. - In: Magnetic resonance imaging, ISSN 1873-5894, Bd. 56 (2019), S. 77-85
Im Titel sind "1" und "13" hochgestellt

https://doi.org/10.1016/j.mri.2018.10.004
Bartsch, Heike; Peipmann, Ralf; Himmerlich, Marcel; Frant, Marion; Rothe, Holger; Liefeith, Klaus; Witte, Hartmut
Surface properties and biocompatibility of thick film materials used in ceramic bioreactors. - In: Materialia, ISSN 2589-1529, Volume 5 (2019), article 100213, 7 Seiten

https://doi.org/10.1016/j.mtla.2019.100213
Halle, Johannes; Mehler, Alexander; Néel, Nicolas; Kröger, Jörg
Preparation of graphene bilayers on platinum by sequential chemical vapour deposition. - In: Physical chemistry, chemical physics, ISSN 1463-9084, Bd. 21 (2019), 6, S. 3140-3144

https://doi.org/10.1039/C8CP07569G
Zhang, Jingjing; Zhao, Huaping; Li, Jun; Jin, Huile; Yu, Xiaochun; Lei, Yong; Wang, Shun
In situ encapsulation of iron complex nanoparticles into biomass-derived heteroatom-enriched carbon nanotubes for high-performance supercapacitors. - In: Advanced energy materials, ISSN 1614-6840, Bd. 9 (2019), 4, 1803221, insges. 8 S.

https://doi.org/10.1002/aenm.201803221
Kriesell, Matthias; Mohr, Samuel
Rooted complete minors in line graphs with a Kempe coloring. - In: Graphs and combinatorics, ISSN 1435-5914, Bd. 35 (2019), 2, S. 551-557

https://doi.org/10.1007/s00373-019-02012-7
Cao, Yan; Chen, Guantao; Jing, Guangming; Stiebitz, Michael; Toft, Bjarne
Graph edge coloring: a survey. - In: Graphs and combinatorics, ISSN 1435-5914, Bd. 35 (2019), 1, S. 33-66

https://doi.org/10.1007/s00373-018-1986-5
Atmane, Imane; Sobti, Nadjah; Chetibi, Loubna; Dimitrova, Anna; Zerkout, Salah; Achour, Slimane
Defective graphite and its decoration with copper oxide nanoparticles synthesized with olive leaf extract for electrochemical water splitting. - In: Journal of inorganic and organometallic polymers and materials, ISSN 1574-1451, Bd. 29 (2019), 1, S. 132-143

https://doi.org/10.1007/s10904-018-0973-x
Bilobrov, Vladislav; Sokolova, Viktoriya; Prylutska, Svitlana; Panchuk, Rostyslav; Litsis, Olena; Osetskyi, Valeriy; Evstigneev, Maxim; Prylutskyy, Yuriy; Epple, Matthias; Ritter, Uwe; Rohr, Jürgen
A novel nanoconjugate of Landomycin A with C60 fullerene for cancer targeted therapy: in vitro studies. - In: Cellular and molecular bioengineering, ISSN 1865-5033, Bd. 12 (2019), 1, S. 41-51

https://doi.org/10.1007/s12195-018-0548-5
Leben, Florian; Trunk, Carsten
Operator based approach to PT-symmetric problems on a wedge-shaped contour. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (23 Seiten). - (Preprint ; M19,02)

We consider a second-order differential equation -y''(z)-(iz)^{N+2}y(z)=\lambda y(z), z\in \Gamma with an eigenvalue parameter \lambda \in C. In PT quantum mechanics z runs through a complex contour \Gamma in C, which is in general not the real line nor a real half-line. Via a parametrization we map the problem back to the real line and obtain two differential equations on [0,\infty) and on (-\infty,0]. They are coupled in zero by boundary conditions and their potentials are not real-valued. The main result is a classification of this problem along the well-known limit-point/ limit-circle scheme for complex potentials introduced by A.R. Sims 60 years ago. Moreover, we associate operators to the two half-line problems and to the full axis problem and study their spectra.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200020
Behrndt, Jussi; Schmitz, Philipp; Trunk, Carsten
Spectral bounds for indefinite singular Sturm-Liouville operators with uniformly locally integrable potentials. - Ilmenau : Technische Universität Ilmenau, Institut für Mathematik, 2019. - 1 Online-Ressource (26 Seiten). - (Preprint ; M19,01)

The non-real spectrum of a singular indefinite Sturm-Liouville operator A=1/r (-d/dx p d/dx+q) with a sign changing weight function r consists (under suitable additional assumptions on the real coefficients 1/p,q,r in L^1_loc(R)) of isolated eigenvalues with finite algebraic multiplicity which are symmetric with respect to the real line. In this paper bounds on the absolute values and the imaginary parts of the non-real eigenvalues of A are proved for uniformly locally integrable potentials q and potentials $q in L^s(R) for some s in [1,\infty]. The bounds depend on the negative part of q, on the norm of 1/p and in an implicit way on the sign changes and zeros of the weight function.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2019200016
Steidl, Matthias; Schwarzburg, Klaus; Galiana, Beatriz; Kups, Thomas; Supplie, Oliver; Kleinschmidt, Peter; Lilienkamp, Gerhard; Hannappel, Thomas
MOVPE growth of GaP/GaPN core-shell nanowires: N incorporation, morphology and crystal structure. - In: Nanotechnology, ISSN 1361-6528, Bd. 30 (2019), 10, 104002, S. 1-8

https://doi.org/10.1088/1361-6528/aaf607
Phani Kumar, Bandaru V. N.; Stapf, Siegfried; Mattea, Carlos
Molecular dynamics in the lyophases of copolymer P123 investigated with FFC NMR relaxometry. - In: Langmuir, ISSN 1520-5827, Bd. 35 (2019), 2, S. 435-445

https://doi.org/10.1021/acs.langmuir.8b03057
Sun, Yang; Lu, Shudi; Xu, Rui; Liu, Kong; Zhou, Ziqi; Yue, Shizhong; Azam, Muhammad; Ren, Kuankuan; Wei, Zhongming; Wang, Zhijie; Qu, Shengchun; Lei, Yong; Wang, Zhanguo
Collection optimization of photo-generated charge carriers for efficient organic solar cells. - In: Journal of power sources, ISSN 1873-2755, Bd. 412 (2019), S. 465-471

https://doi.org/10.1016/j.jpowsour.2018.11.063
Berger, Thomas; Gernandt, Hannes; Trunk, Carsten; Winkler, Henrik; Wojtylak, Michał
The gap distance to the set of singular matrix pencils. - In: Linear algebra and its applications, ISSN 0024-3795, Bd. 564 (2019), S. 28-57

https://doi.org/10.1016/j.laa.2018.11.020
Korte, Stefan; Nägelein, Andreas; Steidl, Matthias; Prost, Werner; Cherepanov, Vasily; Kleinschmidt, Peter; Hannappel, Thomas; Voigtländer, Bert
Charge transport in GaAs nanowires: interplay between conductivity through the interior and surface conductivity. - In: Journal of physics, ISSN 1361-648X, Bd. 31 (2019), 7, 074004, insges. 7 S.

https://doi.org/10.1088/1361-648X/aaf515
Mehler, Alexander; Néel, Nicolas; Bocquet, Marie-Laure; Kröger, Jörg
Exciting vibrons in both frontier orbitals of a single hydrocarbon molecule on graphene. - In: Journal of physics, ISSN 1361-648X, Bd. 31 (2019), 6, S. 065001, insges. 9 S.

https://doi.org/10.1088/1361-648X/aaf54c
Liu, Long; Li, Di; Zhao, Huaping; Dimitrova, Anna; Li, Longhua; Fang, Yaoguo; Krischok, Stefan; Shi, Weidong; Lei, Yong
Optimizing hydrogen evolution activity of nanoporous electrodes by dual-step surface engineering. - In: Applied catalysis, ISSN 1873-3883, Bd. 244 (2019), S. 87-95

https://doi.org/10.1016/j.apcatb.2018.11.036
Xu, Yang; Bahmani, Farzaneh; Zhou, Min; Li, Yueliang; Zhang, Chenglin; Liang, Feng; Kazemi, Sayed Habib; Kaiser, Ute; Meng, Guowen; Lei, Yong
Enhancing potassium-ion battery performance by defect and interlayer engineering. - In: Nanoscale horizons, ISSN 2055-6764, Bd. 4 (2019), 1, S. 202-207

https://doi.org/10.1039/C8NH00305J
Schlipf, Lena Marie; Schmidt, Jens M.
Edge-orders. - In: Algorithmica, ISSN 1432-0541, Bd. 81 (2019), 5, S. 1881-1900

https://doi.org/10.1007/s00453-018-0516-4
Wu, Yuqi; Qiu, Xuechao; Liang, Feng; Zhang, Qingkai; Koo, Alicia; Dai, Yongnian; Lei, Yong; Sun, Xueliang
A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. - In: Applied catalysis, ISSN 1873-3883, Bd. 241 (2019), S. 407-414

https://doi.org/10.1016/j.apcatb.2018.09.063
Dong, Yulian; Xu, Yang; Li, Wei; Fu, Qun; Wu, Minghong; Manske, Eberhard; Kröger, Jörg; Lei, Yong
Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: a case study of molybdenum disulfide. - In: Small, ISSN 1613-6829, Bd. 15 (2019), 15, 1900497, insges. 9 S.

Layer-structured transition metal dichalcogenides (LS-TMDs) are being heavily studied in K-ion batteries (KIBs) owing to their structural uniqueness and interesting electrochemical mechanisms. Synthetic methods are designed primarily focusing on high capacities. The achieved performance is often the collective results of several contributing factors. It is important to decouple the factors and understand their functions individually. This work presents a study focusing on an individual factor, crystallinity, by taking MoS2 as a demonstrator. The performance of low and high-crystallized MoS2 is compared to show the function of crystallinity is dependent on the electrochemical mechanism. Lower crystallinity can alleviate diffusional limitation in 0.5-3.0 V, where intercalation reaction takes charge in storing K-ions. Higher crystallinity can ensure the structural stability of the MoS2 layers and promote surface charge storage in 0.01-3.0 V, where conversion reaction mainly contributes. The low-crystallized MoS2 exhibits an intercalation capacity (118 mAh g^-1), good cyclability (85% over 100 cycles), and great rate capability (41 mAh g^-1 at 2 A g^-1), and the high-crystallized MoS2 delivers a high capacity of 330 mAh g^-1 at 1 A g^-1 and retains 161 mAh g^-1 at 20 A g^-1, being one of the best among the reported LS-TMDs in KIBs.



https://doi.org/10.1002/smll.201900497
EURO journal on computational optimization. - Amsterdam : Elsevier. - Online-Ressource, 2013 -. - ISSN 2192-4414Gesehen am 11.03.2022

https://ezb.ur.de/?2703307-7
Nanotechnology reviews. - Berlin : De Gruyter. - Online-Ressource, 2012 -. - ISSN 2191-9097Gesehen am 25.01.12

https://doi.org/10.1515/ntrev
Burger, Peter; Süße, Roland
Theoretische Grundlagen der Elektrotechnik. - Wiesbaden : Teubner, 2005. - (Lehrbuch Elektrotechnik)
Asia-Pacific journal of operational research : APJOR. - Singapore : World Scientific Publishing. - Online-Ressource, Nachgewiesen 1997 -. - ISSN 1793-7019Frühere Jahrgänge online nicht mehr verfügbar

https://www.worldscientific.com/worldscinet/apjor
Preprint. - Ilmenau : Technische Universität, 5.1995 -Gesehen am 06.07.15

http://www.db-thueringen.de/servlets/DocumentServlet?id=5374
Optimization : a journal of mathematical programming and operations research. - London [u.a.] : Taylor & Francis. - Online-Ressource, Volume 16, number 1 (1985)-. - ISSN 1029-4945Gesehen am 19.09.2022

https://www.tandfonline.com/loi/gopt20
Operations research letters : a journal of INFORMS devoted to the rapid publication of concise contributions in operations research. - Amsterdam [u.a.] : Elsevier Science. - Online-Ressource, 1.1981 -. - ISSN 0167-6377Gesehen am 11.04.23

https://ezb.ur.de/?1467065-3