Publications

Anzahl der Treffer: 290
Erstellt: Thu, 28 Mar 2024 23:06:22 +0100 in 0.0725 sec


Foroozani, Najmeh; Niemela, Joseph J.; Armenio, Vincenzo; Sreenivasan, Katepalli R.
Turbulent convection and large scale circulation in a cube with rough horizontal surfaces. - In: Physical review, ISSN 2470-0053, Bd. 99 (2019), 3, 0233116, insges. 8 S.

Large-eddy simulations of thermal convection are presented and discussed for a cube with rough horizontal surfaces. Two types of roughness are considered: uniformly placed pyramids, and grooves aligned parallel to one set of sidewalls. The Rayleigh number is 10^8, the Prandtl number 0.7, and the aspect ratio 1, as in a previous study [N. Foroozani, J. J. Niemela, V. Armenio, and K. R. Sreenivasan, Phys. Rev. E 95, 033107 (2017)], except that the meshes here are finer. When the thermal boundary layers are sufficiently large relative to the characteristic roughness height, i.e., for hydrodynamically smooth conditions, the mean properties of the large scale circulation (LSC) are qualitatively similar to the case of smooth surfaces. In particular, the LSC is always aligned along one of the diagonals of the cube. When the boundaries are hydrodynamically rough, the same result holds true only for the case of pyramidal structures; for grooved surfaces, the LSC is forced to be parallel to the sidewalls on average, alternating rapidly between the two diagonals of the cube with a mean period of the order 10 turnover times. Our analysis suggests that the difference from the pyramidal case is due to the breaking of the horizontal x-z symmetry under conditions of hydrodynamical roughness, and the corresponding directional concentration of plume emission along the grooves, from which the LSC is generated, providing a strong restoring force. Furthermore, in this study we observed a small reduction in heat transport for both roughness configurations which is in good agreement with past studies.



https://doi.org/10.1103/PhysRevE.99.033116
Prinz, Sebastian;
Direct and large-eddy simulations of wall-bounded magnetohydrodynamic flows in uniform and non-uniform magnetic fields. - Ilmenau, 2019. - 113 Seiten
Technische Universität Ilmenau, Dissertation 2019

Die vorliegende Arbeit beschäftigt sich mit magnetohydrodynamischen Strömungen auf industriellen Längen- und Geschwindigkeitsskalen. Strömungen dieser Art treten unter anderem bei metallurgischen Prozessen auf. Hier werden Magnetfelder genutzt, um Flüssigmetallströmungen zu beeinflussen oder zu messen. In dieser Arbeit werden diese Strömungen mit Hilfe von numerischen Simulationen untersucht. Dabei wird ein vorhandener wissenschaftlicher Computercode genutzt und erweitert. Die Arbeit besteht aus zwei Teilen. Im ersten Teil werden verschiedene Strömungen in dünnen Flüssigmetallschichten untersucht. Die Strömungen werden ausschließlich durch Lorentzkräfte angetrieben. Das Magnetfeld wird durch einen Permanentmagneten modelliert. Die Ergebnisse der numerischen Simulationen ermöglichen einen detaillierten Einblick in die Struktur der zugrundeliegenden Strömungen. Im Weiteren werden Strömungen untersucht, die von großem praktischen Interesse sind, wie z.B. die Durchmischung von masselosen Teilchen in einer Metallschmelze durch einen oszillierenden Permanentmagneten. Der zweite Teil der Arbeit beschäftigt sich mit druckgetriebenen, magnetohydrodynamischen Kanalströmungen in räumlich homogenen Magnetfeldern. Da Flüssigmetalle üblicherweise eine geringe kinematische Viskosität besitzen, sind Strömungen dieser Art für gewöhnlich turbulent. Aufgrund eines breiten Spektrums an Längen- und Zeitskalen in turbulenten Strömungen ist deren Untersuchung mittels direkter numerischer Simulation äußerst kostenintensiv oder gar unmöglich. Daher wurde der Computercode erweitert, um sogenannte Grobstruktursimulationen durchzuführen, welche den Rechenaufwand deutlich reduzieren können. Insbesondere wird der Einfluss des numerischen Diskretisierungschemas auf das Resultat einer Grobstruktursimulation untersucht. Es wird gezeigt, dass der numerische Fehler die wandnahen turbulenten Strukturen beeinflusst und folglich hohe Anforderungen an die wandnahe Gitterauflösung stellt. Hierbei verbessern Feinstrukturmodelle, die auch den Energietransfer von kleinen zu großen Skalen modellieren, die Resultate der Grobstruktursimulation signifikant.



Krasnov, Dmitry; Kolesnikov, Yuri; Boeck, Thomas
Numerical simulation of electrically conducting jet flow in a straight duct under longitudinal homogeneous magnetic field. - In: Physics of fluids, ISSN 1089-7666, Bd. 31 (2019), 1, 014108, insges. 15 S.

Spatial evolution of electrically conducting jet flow at a supercritical Reynolds number, entering a duct filled with the liquid of the same physical properties, is studied by direct numerical simulations for the case of a streamwise uniform magnetic field. In contrast to the case of a transverse field, here the jet mean velocity does not interact with the streamwise field, and only the turbulent fluctuations of the flow are influenced and suppressed by the field. In this case, the jet saves its energy and has a tendency to spread at much larger distances. Therefore, one interesting and important property of this setup is the flow stabilization, i.e., transition to turbulence can be largely delayed due to the stabilizing effect of the magnetic field. This occurs in the presence of moderate magnetic fields. At strong magnetic fields, the second instability evolves-the jet profile becomes unsteady due to the traveling waves, which propagate along the jet while not interacting with the field. These traveling waves are generated by the interaction of secondary radial flows and magnetic field.



https://doi.org/10.1063/1.5062617
Alam, Shahidul; Meitzner, Rico; Kästner, Christian; Ulbricht, Christoph; Höppener, Stephanie; Ayuk Mbi Egbe, Daniel; Schubert, Ulrich Sigmar; Hoppe, Harald
Controlling donor crystallinity and phase separation in bulk heterojunction solar cells by the introduction of orthogonal solvent additives. - In: MRS advances, ISSN 2059-8521, Bd. 3 (2018), 33, S. 1891-1900

https://doi.org/10.1557/adv.2018.436
Kästner, Christian; Resagk, Christian; Cierpka, Christian; Schumacher, Jörg
On the difficulties for reliable measurements of convection in large aspect ratio Rayleigh-Bénard cells. - In: 5th International Conference on Experimental Fluid Mechanics, (2018), S. 716-721

https://doi.org/10.18726/2018_2
Wiederhold, Andreas; Boeck, Thomas; Resagk, Christian; Cierpka, Christian
Detection and measurement of bubbles in gas-liquid two-phase flow using magnetic fields. - In: Turbulence, heat and mass transfer 9, (2018), S. 401-404

Iyer, Kartik P.; Schumacher, Jörg; Sreenivasan, Katepalli R.; Yeung, Pui-Kuen
Steep cliffs and saturated exponents in three-dimensional scalar turbulence. - In: Physical review letters, ISSN 1079-7114, Bd. 121 (2018), 26, 264501, insges. 6 S.

The intermittency of a passive scalar advected by three-dimensional Navier-Stokes turbulence at a Taylor-scale Reynolds number of 650 is studied using direct numerical simulations on a 4096^3 grid; the Schmidt number is unity. By measuring scalar increment moments of high orders, while ensuring statistical convergence, we provide unambiguous evidence that the scaling exponents saturate to 1.2 for moment orders beyond about 12, indicating that scalar intermittency is dominated by the most singular shocklike cliffs in the scalar field. We show that the fractal dimension of the spatial support of steep cliffs is about 1.8, whose sum with the saturation exponent value of 1.2 adds up to the space dimension of 3, thus demonstrating a deep connection between the geometry and statistics in turbulent scalar mixing. The anomaly for the fourth and sixth order moments is comparable to that in the Kraichnan model for the roughness exponent of 4/3.



https://doi.org/10.1103/PhysRevLett.121.264501
Bandaru, Vinodh; Boeck, Thomas; Schumacher, Jörg
The effect of magnetic field advection on turbulent magnetohydrodynamic flow in a square duct. - In: Proceedings in applied mathematics and mechanics, ISSN 1617-7061, Bd. 18 (2018), 1, e201800436, insges. 2 S.

https://doi.org/10.1002/pamm.201800436
Kumar, Bipin; Götzfried, Paul; Suresh, Neethi; Schumacher, Jörg; Shaw, Raymond A.
Scale dependence of cloud microphysical response to turbulent entrainment and mixing. - In: Journal of advances in modeling earth systems, ISSN 1942-2466, Bd. 10 (2018), 11, S. 2777-2785

The dynamics and lifetime of atmospheric clouds are tightly coupled to entrainment and turbulent mixing. This paper presents direct numerical simulations of turbulent mixing followed by droplet evaporation at the cloud-clear air interface in a meter-sized volume, with an ensemble of up to almost half a billion individual cloud water droplets. The dependence of the mixing process on domain size reveals that inhomogeneous mixing becomes increasingly important as the domain size is increased. The shape of the droplet size distribution varies strongly with spatial scale, with the appearance of a pronounced negative exponential tail. The increase of relative dispersion during the transient mixing process is strongly dependent on the scale of the mixing and therefore on the Damköhler number, defined as the turbulence large-eddy time scale divided by the cloud supersaturation relaxation time.



https://doi.org/10.1029/2018MS001487
Ovsyannikov, Mikhail;
Numerical studies of turbulent Rayleigh-Bénard convection in closed cells : boundary layer dynamics and large scale patterns. - Ilmenau : Universitätsbibliothek, 2018. - 1 Online-Ressource (vi, 123 Seiten)
Technische Universität Ilmenau, Dissertation 2018

Die vorliegende zweiteilige Arbeit beschäftigt sich mit verschiedenen Aspekten der Rayleigh-Benard Konvektion (RBK) in geschlossenen zylindrischen und rechteckigen Zellen. Im ersten Teil wird ein theoretisches Modell für eine laminare Grenzschichtströmung entwickelt, in dem sowohl der Auftrieb und als auch der longitudinale Druckgradient erstmals gemeinsam berücksichtigt werden. Es basiert auf der klassischen Theorie von L. Prandtl. Dieses Modell soll eine bessere Übereinstimmung mit Daten aus dreidimensionalen, direkten numerischen Simulationen (DNS) von Konvektionsströmungen in einer zylindrischen Zelle mit zwei unterschiedlichen Prandtlzahlen aufweisen als bereits bestehende Modelle. Für eine niedrige Prandtlzahl konnte eine Verbesserung erreicht werden. Mit Einbeziehung des Auftriebs für höhere Prandtlzahlen ergeben sich signifikante Unterschiede. Eine mögliche Erklärung anhand von kohärenten Strukturen wird vorgestellt. Der zweite Teil dieser Arbeit bezieht sich auf DNS von turbulenten Konvektionsströmungen in einer geschlossenen, rechteckigen Zelle mit großem Aspektverhältnis. Bisher wurden die meisten numerischen Untersuchungen der RBK in geschlossenen Zylindern oder zwischen zwei horizontalen Platten ohne Seitenwände gemacht. Die Seitenwände beschränken die Nutzung effizienter numerischer Methoden, welche bei inkompressiblen Konvektionsströmungen angewandt werden. Eine hohe Performance der numerischen Methode ist besonders für RBK mit großem Aspektverhältnis von Vorteil. In der vorliegenden Arbeit wurde deshalb eine numerische Methode für die Lösung elliptischer partieller Differentialgleichungen in einer rechteckigen Zelle entwickelt, die auf Mehrgitterlösern aus einem vorhandenen Programmpaket basiert. Diese numerische Methode ist in ein bestehendes Programm für RBK integriert worden. Der so erweiterte numerische Code ermöglicht DNS von RBK mit großem Aspektverhältnis. Eine Fragestellung zur Ergodizität von turbulenter RBK wird hierbei näher untersucht. Dazu werden Daten genutzt, welche mit dem neuen Code aus DNS mit großem Aspektverhältnis in rechteckigen Zellen erhalten wurden. Die Ergodenhypothese besagt, dass das Zeitmittel der hydrodynamischen Felder mit deren Ensemble-Mittelwert übereinstimmt. Für turbulente Strömungen wurde die Ergodenhypothese bislang nicht bewiesen. Das Ziel der Untersuchungen ist es, Gemeinsamkeiten und Unterschiede zwischen Zeitmittel und Ensemblemittel zu finden. Es stellt sich heraus, dass bei einer Zeitmittelung über ein langes Zeitfenster große, kohärente Strukturen der Strömung bestehen bleiben. Bei Ensemble-Mittelung werden diese dagegen zerstört. Dennoch stimmen viele makroskopische Parameter und Momente zweiter Ordnung einiger Größen bei den zwei unterschiedlichen Arten der Mittelung überein. Die Analyse der turbulenten Viskosität und der turbulenten thermischen Diffusivität zeigt dagegen einige Unterschiede und erfordert weitere Untersuchungen.



https://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2018000457