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Linear Filters, ConvolutionLinear Filters, Convolution

Examples of linear �lters: low pass �lters, band pass �lters

Linearity:

Same result if we add two signals before or after the �lter

Same result if we apply gain or attenuation before or after the
�lter
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A digital audio signal can be seen as a sum of its samples .

Each sample of a signal can be seen as an impulse of the sample value, producing the
�lters "Impulse Response"  multiplied by the sample value.

Hence the sum of all samples at the �lter input results in the "convolution" of the signal 
 with the �lter impulse response as output ,

" " is a short notation for convolution.

We see: from earlier signal samples later impulse response samples are added.

Observe: In effect this is a sliding weighted sum of past samples.

In Python this is implemented in the function scipy.signal.lfilter .

x(n)

h(n)

x(n) y(n)

y(n) = x(n − m) ⋅ h(m) = x(n) ∗ h(n)∑
m

L−1

∗
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The z-TransformThe z-Transform

If these samples where coef�cients of polynomials, then this convolution sum
would be the result of the multiplication of the polynomials.
This leads to the "z-Transform", which converts samples  into polynomials 

The convolution in the time domain then turns into a multiplication in the z-
domain,
This is an important and convenient simpli�cation for �lter design and analysis,

Imagine the z-domain as a generalized frequency domain.
The usual frequency domain with normalized frequency  (with  corresponding
to the Nyquist frequency) is obtained by setting

x(n)
X(z)

X(z) = x(n) ⋅∑
n=0

∞

z−n

x(n) ∗ h(n) → X(z) ⋅ H(z)

ω π

z = ejω
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Example Application: Lowpass Filtering for Sampling RateExample Application: Lowpass Filtering for Sampling Rate

ChangeChange

If we want to reduce the sampling rate of an audio signal, we �rst need to lowpass
�lter it
to avoid "Aliasing" artefacts
Aliasing results from audio components at frequencies above the new Nyquist
Frequency (half the new sampling frequency)
Example: We reduce the sampling rate to half the original sampling rate
then the lowpass �lter should only pass the lower half of the original frequency
range.
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Example for AliasingExample for Aliasing

To show the effect of aliasing, we take a chirp or sweep signal at 16 kHz original
sampling rate
It has a sinusoid which "sweeps" from 100 Hz up to its Nyquist frequency of 8 kHz
Then we downsample it by a factor of 2 down to 8 kHz sampling rate, without
lowpass �ltering
And listen to the original and downsampled version.
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Chirp Audio Signal for TestingChirp Audio Signal for Testing

In [1]: from scipy.signal import chirp 

import scipy.io.wavfile as wav 

import numpy as np 

#%matplotlib notebook 

import matplotlib.pyplot as plt 

from IPython.display import Audio 

samplerate=16000  #sampling frequency in Hz 

t1=2.0 #End time  

f0=100 #start frequency in Hz 

f1=8000 #end frequency in Hz 

t=np.linspace(0,t1,int(t1*samplerate)) #sample times 

chirpsig=chirp(t, f0, t1, f1) 

wav.write("chirp.wav",samplerate,np.int16(chirpsig*2**14)) 
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In [2]: plt.plot(chirpsig[0:2000]) 

plt.title('The beginning of the Chirp Signal') 

plt.xlabel('Sample Index') 

plt.ylabel('Value') 

plt.show() 
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The Chirp SoundThe Chirp Sound

In [3]: Audio("chirp.wav") 

Out[3]:
0:000:00 / 0:02/ 0:02
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DownsamplingDownsampling

Next we downsample it by a factor of 2 without lowpass �ltering.
We do that be keeping only every second sample
The argument [::2] means: from beginning to end with index steps of
2.

In [4]: chirpsigdownsampled=chirpsig[::2] 

wav.write("chirpdownsampled.wav",samplerate/2,np.int16(chirpsigdownsampled*2**1

4)) 

Audio("chirpdownsampled.wav") 

Out[4]:
0:000:00 / 0:02/ 0:02
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Aliasing, FilteringAliasing, Filtering

Observe: We can hear "arti�cial" frequencies, the aliasing
This shows that we need a lowpass �lter to suppress the higher frequencies in the
original which cause the aliasing
A very simple lowpass �lter is the so-called "raised cosine" function,
in our example with N=8 samples or coef�cients.
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In [5]: N=8 #length of filter 

rc=(1-np.cos(2*np.pi/N*np.arange(0.5,N)))/np.sqrt(N) #raised cosine 

plt.plot(rc) 

plt.title('The Raised Cosine Lowpass Filter or Window') 

plt.xlabel('Index') 

plt.ylabel('Value') 

plt.show() 
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Frequency ResponseFrequency Response

Observe that this �lter is symmetric around its center, which results in the linear
phase property.
This means all frequencies have the same signal delay.
To see how much attenuation this �lter provides, we plot its frequency response
We use scipy.signal.freqz for it
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In [6]: import scipy.signal as sp 

w,H=sp.freqz(rc) 

plt.plot(w, 20*np.log10(abs(H)+1e-5)) 

plt.title('The Magnitude of the Frequency Response of our Filter') 

plt.xlabel('Normalized Frequency (pi is Nyquist Frequency)') 

plt.ylabel('Attenuation or Gain in dB') 

plt.show() 
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Observe: our desired stop band is above normalized frequency 1.5
We only obtain roughly 30 dB attenuation, which is not much for our application.
We can test it by applying it to our downsampling example,
with the function scipy.signal.lfilter for the lowpass �ltering before
downsampling.
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The Lowpass Filtered and Downsampled Chirp (with Raised Cosine)The Lowpass Filtered and Downsampled Chirp (with Raised Cosine)

In [7]: chirplowpass=sp.lfilter(rc,1,chirpsig) 

chirplowpasssampled=chirplowpass[::2] 

wav.write("chirplowpasssampled.wav",samplerate/2,np.int16(chirplowpasssampled*2

**13)) 

Audio("chirplowpasssampled.wav") 

Out[7]:
0:000:00 / 0:02/ 0:02
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Improved FilterImproved Filter

Observe: The aliasing was still clearly audible
To better supress the aliasing, we need more stopband
attenuation
We try the "Remez-exchange" algorithm 
scipy.signal.remez.
Now also with more coef�cients to obtain more attenuation:
N=64
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The Remez Lowpass FilterThe Remez Lowpass Filter

In [8]: # Usage: remez(numtaps, bands, desired, weight=None, Hz=1) 

#Passband: 0, 3000 

#Stopband: 4000, 8000 

#Desired band output: 1, 0 

#Sampling frequency: Hz=16000 

lpremez=sp.remez(64,[0, 3000, 4000, 8000],[1,0],Hz=16000) 

plt.plot(lpremez) 

plt.title('The Remez-exchange Lowpass Filter') 

plt.xlabel('Index') 

plt.ylabel('Value') 

plt.show() 
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In [9]: w,H=sp.freqz(lpremez) 

plt.plot(w, 20*np.log10(abs(H)+1e-5)) 

plt.title('The Magnitude of the Frequency Response of our Remez Filter') 

plt.xlabel('Normalized Frequency (pi is Nyquist Frequency)') 

plt.ylabel('Attenuation or Gain in dB') 

plt.show() 
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Observe: We now have much more stopband attenuation, about 70 dB!
Also the passband is much more �at, which is desirable to not change those
frequency components.

We can now test it with our downsampling
example.



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 21/75

In [10]: chirplowpass=sp.lfilter(lpremez,1,chirpsig) 

chirplowpasssampled=chirplowpass[::2] 

wav.write("chirplowpassremezsampled.wav",samplerate/2,np.int16(chirplowpasssamp

led*2**13)) 

Audio("chirplowpassremezsampled.wav") 

Observe: The aliasing is now indeed completely
gone!

Out[10]:
0:000:00 / 0:02/ 0:02
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UpsamplingUpsampling

For upsampling we get the reverse order
First upsampling by inserting a 0 after each sample, then lowpass �ltering
That we need lowpass �ltering also after upsampling shows the following Python
example
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UpsamplingUpsampling

In [11]: chirpupsampled=np.zeros(2*len(chirplowpasssampled)) 

chirpupsampled[::2]=chirplowpasssampled 

wav.write("chirpupsampled.wav",samplerate,np.int16(chirpupsampled*2**13)) 

Audio("chirpupsampled.wav") 

Observe: There is again aliasing, heard as a "reverse" chirp
Hence we need again our lowpass �lter to supress the aliasing
Observe: both times the �ltering happens at the higher sampling
rate

In [12]: chirpupsampledlp=sp.lfilter(lpremez,1,chirpupsampled) 

wav.write("chirpupsampledlp.wav",samplerate,np.int16(chirpupsampledlp*2**13)) 

Audio("chirpupsampledlp.wav") 

Out[11]:
0:000:00 / 0:02/ 0:02

Out[12]:
0:000:00 / 0:02/ 0:02
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Minimum Phase FiltersMinimum Phase Filters

Our better �lter also became longer
If the this impulse response becomes on the order of a few Milliseconds, there will
be a danger of "pre-echos"
This happens if the audio signal consists of a short attack, like from castanets
The �lter "smears" such a pulse or attack
Particularly a tail before the attack can be easily picked up by the ear
a tail after the attack is more likely masked by the temporal masking effects of the
ear
Hence a non-symmetric impulse response would be useful,
with a shorter tail before the main lobe and a longer tail after it
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Minimum Phase FiltersMinimum Phase Filters

This leads to "minimum-phase" �lters.
In Python, we have the function scipy.signal.minimum_phase.
It approximates the square root of the magnitude frequency response of a
symmetric impulse response by a minimum-phase version.
Hence we need to input the square of the magnitude,
which we obtain by convolving the remez �lter with itself.
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In [13]: lp_minphase=sp.minimum_phase(sp.convolve(lpremez,lpremez)) 

plt.plot(lp_minphase) 

plt.title('The Minimum-Phase Lowpass Filter') 

plt.xlabel('Index') 

plt.ylabel('Value') 

plt.show() 
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Observe: The main lobe is indeed now in the beginning,
we have mainly a tail after it
The �lter has a signal delay which can be estimated as the duration from the
beginning to the main peak
Hence this �lter also has lower delay
We can now compare the magnitude of the frequency response.
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In [14]: w,H=sp.freqz(lp_minphase) 

plt.plot(w, 20*np.log10(abs(H)+1e-5)) 

plt.title('The Magnitude of the Frequency Response of our Minimum-Phase Filter'

) 

plt.xlabel('Normalized Frequency (pi is Nyquist Frequency)') 

plt.ylabel('Attenuation or Gain in dB') 

plt.show() 
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Filter BanksFilter Banks

We now have a signal at a lower sampling rate, but half of the original frequecy
ranges gone.
To avoid this, we would need another �lter with the same bandwidth, but keeping
the remaining frequencies.
In general, it we downsample by a factor of N, we need N bandpass �lters to
cover the original spectrum.
This leads to "critical sampled �lter banks".
Together the �lters cover the entire original frequency range (no lost
frequencies).
For the synthesis we now have the addition of all of our subbands
This gives us the possibility of cancelling all the alias that the �lters did not
supress!
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Filter Bank Block DiagramFilter Bank Block Diagram

Left hand side: analsysis �lter bank and downsampling
Right hand side: upsampling and Synthesis �lter
This gives us an invertible "time/frequency" representation with the subband
samples 

: subband index (frequency), : donwsampled time index
(m)yk

k m
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Filter Bank ApplicationsFilter Bank Applications

Filter banks are widely used for audio coding
In the encoder, the audio signal is feed into the analysis �lter bank,
the subbands are then quantized and encoded according to a "psycho-acoustic"
model,
this models the ears sensitivities to noise and artefacts at different frequencies
In this way we minimize the bit-rate while keeping artifacts and noise mostly
inaudible.
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Filter Bank ApplicationsFilter Bank Applications

In effect we shape the unavoidable quantization noise such that it it below the
"masking threshold" of the ear, hence it is inaudible.
This is called "perceptual coding".
The decoder uses the synthesis �lter bank to reconstruct the audio signal, with
hopefully inaudible distortions
The signal should sound the same, but would look quite different in its waveform,
or even its spectrum
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The MDCT Filter BankThe MDCT Filter Bank

The "Modi�ed Discrete Cosine Transform" (MDCT) �lter bank is used for
instance in the MPEG audio coding standards
It consists of N bandpass �lters, commonly  or .
Each has a bandwidth of  th of the original frequency range.
Its �lters are obtained by multiplying cosine functions by a "window function" of
length .
The simplest window function is the "sine window".
It has "Perfect Reconstruction"
Meaning: If there is no change to the subband samples, the reconstructed audio
signal is identical to the input, except for its "sytem delay" of  samples.

N = 1024 N = 128
1/N

2N

2N − 1
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The MDCT Filter BankThe MDCT Filter Bank

Here we see the multiplication of the cosine functions by window functions 
and  resp.,

The impulse responses for the bandpasses of the "analysis" �lter bank,
which is doing the downsampling, are

for the subbands  and the time index 

The impulse responses for the bandpasses of the "synthesis" �lter bank,
which is doing the upsampling, are

h(n)
g(n)

(n) = −h(n) ⋅ cos( (k + )(n ± + ))hk

2

N

−−−
√

π
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2
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The Sine WindowThe Sine Window

For the MDCT �lter bank, this happens by limiting the �lter length to 
and by imposing suitable conditions on the window functions  and 
A particularly simple and often used window which ful�lls these condition is the
"sine window",

for .

This is not a great �lter, it has a quality similar to our raised cosine
window
but here it cancels the aliasing!

2N
h(n) g(n)

h(n) = g(n) = sin( (n + 0.5))
π

2N

n = 0, . . . , 2N − 1
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In [15]: N=4 

h=np.sin(np.pi/(2*N)*np.arange(0.5,2*N)) 

plt.plot(h) 

plt.title('The Sine Window') 

plt.xlabel('Index') 

plt.ylabel('Value') 

plt.show() 



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 38/75

Alternative WindowsAlternative Windows

An alternative Window which is used in MPEG coders is the "Kaiser Bessel
Derived" (KBD) Window
It also ful�lls the alias cancellation conditions
and has an optimized frequency response
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Audio Coding ApplicationsAudio Coding Applications

The MDCT is used to quantize and encode the time/frequency representation 

The ear has different sensitivities for different frequencies and times, with
psycho-acoustic frequency and temporal maskings
This also depends on the signal itself
The quantization step sizes are controlled by a psycho-acoustical model
In effect the time/frequency representation is used for time and frequency
adaptive (quantization) noise shaping
In this way, ideally the quantization distortions stay inaudible, while minimizing
bit-rate

(m)yk
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Pseudo Quadrature Mirror Filter Bank (PQMF)Pseudo Quadrature Mirror Filter Bank (PQMF)

This type of �lter bank is used when very narrow �lter with high attenuation are
desired
Drawback: no perfect reconstruction
Aliasing cancels only between neighbouring subbands
Beyond these neighbouring subbands, the stopband attenutation needs to be high
enough to suf�ciently supress aliasing
Its window functions are obtained by numerical optimization, which tries to
minimize the reconstructuion error while maximizing the stopband attenuation.
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In [16]: qmfwin=np.loadtxt('qmf.dat'); 

plt.plot(qmfwin) 

plt.title('The PQMF and Sine Window for N=64 Subbands') 

plt.xlabel('Index') 

plt.ylabel('Value') 

N=64 

hsin=np.sin(np.pi/(2*N)*np.arange(0.5,2*N)) 

plt.plot(hsin) 

plt.legend(('PQMF', 'Sine')) 

plt.show() 
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In [17]: w,Hqmf=sp.freqz(qmfwin) 

w,Hsin=sp.freqz(hsin) 

plt.plot(w, 20*np.log10(abs(Hqmf)+1e-5)) 

plt.plot(w, 20*np.log10(abs(Hsin)+1e-5)) 

plt.legend(('PQMF', 'Sine')) 

plt.title('The Magnitude of the Frequency Response of our Windows') 

plt.xlabel('Normalized Frequency (pi is Nyquist Frequency)') 

plt.ylabel('Attenuation or Gain in dB') 

plt.show() 
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Observe: The sine window does not really have enough attenuation to suf�ciently
suppress aliasing
Hence we really need the alias cancellation property of the MDCT �lter bank
This means we cannot change subbands too much (like setting neighbouring
subbands to zero)
If we want to have more substatial changes over frequency we need to use the
PQMF for its far better stopband attenuation.
In MPEG coders this is for instance for spacial surround encoding or parametric
high frequency regeneration.



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 44/75

Low Delay Filter BanksLow Delay Filter Banks

Similar to minimum-phase �lters, we can design low delay �lter banks
They have a lower system delay than �lter banks with symmetric window
functions, with similar stopband attenuation
or have better stopband attenuation at the same system delay through longer
window functions
In the following is an example for N=1024 subbands, where the low delay �lter
bank has better stopband attenuation due to the longer window function.
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In [18]: ldfbwin=np.loadtxt('h4096t2047d1024bbitc.txt'); 

plt.plot(-ldfbwin) 

plt.title('The Low Delay and Sine Window for N=1024 Subbands') 

plt.xlabel('Index') 

plt.ylabel('Value') 

N=1024 

hsin=np.sin(np.pi/(2*N)*np.arange(0.5,2*N)) 

plt.plot(hsin) 

plt.legend(('Low Delay', 'Sine')) 

plt.show() 
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In [19]: w,Hldfb=sp.freqz(ldfbwin) 

w,Hsin=sp.freqz(hsin) 

plt.plot(w, 20*np.log10(abs(Hldfb)+1e-5)) 

plt.plot(w, 20*np.log10(abs(Hsin)+1e-5)) 

plt.legend(('Low Delay', 'Sine')) 

plt.title('The Magnitude of the Frequency Response of our Windows for N=1024 Su

bbands') 

plt.xlabel('Normalized Frequency (pi is Nyquist Frequency)') 

plt.ylabel('Attenuation or Gain in dB') 

plt.show() 
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Low Delay Filter BanksLow Delay Filter Banks

Observe that we indeed obtain a much better stopband attenuation.
We can also use it to obtain a lower system delay for real time communications
applications like teleconferencing.
It is part of the MPEG4 Enhanced Low Delay AAC audio coder (ELD-AAC)
which is part of the i-OS and Android operating systems.
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Implementation using a Neural Network FrameworkImplementation using a Neural Network Framework

We can use a Neural Network framwork, like "Keras", because a critically sampled
�lter bank is a special case of a one layer convolutional neural network, with N
"nodes", "strides" of size N, and no non-linearity.
Advantage: it uses the parallel processing for fast implementation, even without a
fast implementation like using an FFT.
This makes a fast implementation simpler.
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Github Repository for Filter Bank ImplementationGithub Repository for Filter Bank Implementation

Implementation using a Fast Fourier Transform:
https://github.com/TUIlmenauAMS/ 
FilterBanks_FastPythonImplementation

Implementation using the Keras Neural Nework Python library.
This has the advantage that it works for more generic �lter banks,
and it uses a GPU for fast implementation
https://github.com/TUIlmenauAMS/ 
FilterBanks_PythonKerasNeuralNetworkImplemention
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De-Nosing exampleDe-Nosing example

We can use the ability of �lter banks for noise shaping for a de-nosing example
If a subband at a certain time mostly contains noise (is below a threshold), its
signal is set to zero.
If the signal is above a threshold, it remains unchanged
This assumes that we estimated the strength of the noise before.
In our example we take the chirp signal with added noise (hence we know the
noise in this case)
We choose uniformly distributed noise, which could result from quantization.
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MDCT Spectrogram of our Clean Chirp SignalMDCT Spectrogram of our Clean Chirp Signal

In [35]: from keras_MDCTanalysis import * 

N=1024 #Number of filters, stride 

filtlen=2048 #Length of filter impulse response 

modelana = generate_model_ana(N,filtlen)     # Compile an neural net analysis f

ilter bank 

Y=keras_MDCT_ana(chirpsig,modelana) 

plt.imshow(abs(Y),aspect='auto') 

plt.xlabel('Subbands') 

plt.ylabel('Blocks (downsampled time)') 

plt.title('The MDCT Spectrogram of the Chirp Signal') 

Out[35]:

Initializing MDCT analysis weights 

Text(0.5,1,u'The MDCT Spectrogram of the Chirp Signal')



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 52/75

Noisy Chirp Test ExampleNoisy Chirp Test Example

We now add white noise to our chirp signal for
testing

In [21]: chirpsignoise=chirpsig+ (np.random.rand(len(chirpsig))-0.5)*1.0 

wav.write("chirpsignoise.wav",samplerate/2,np.int16(chirpsignoise*2**14)) 

Audio("chirpsignoise.wav") 

Out[21]:
0:000:00 / 0:04/ 0:04
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MDCT Spectrogram of the Noisy ChirpMDCT Spectrogram of the Noisy Chirp
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In [22]: Y=keras_MDCT_ana(chirpsignoise,modelana) 

plt.imshow(abs(Y),aspect='auto') 

plt.xlabel('Subband') 

plt.ylabel('Block (downsampled time)') 

plt.title('The MDCT Spectrogram of the Chirp with Noise') 

Out[22]: Text(0.5,1,u'The MDCT Spectrogram of the Chirp with Noise')
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Observe: the noise is visible as a "snow" like
pattern.

Noise EstimationNoise Estimation

To estimate the level of the noise we plot the magnitude spectrum of block
number 15
Observe: the noise is below magnitude 1, the chirp signal is above.
We can use this threshold to distinguish between noise and signal.
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In [23]: plt.plot(abs(Y[15,:])) 

plt.xlabel('Subband') 

plt.ylabel('Signal Magnitude') 

plt.title('Magnitude Spectrum of Block 15') 

Out[23]: Text(0.5,1,u'Magnitude Spectrum of Block 15')
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Signal SeparationSignal Separation

Now we can build a "binary mask" for our MDCT representation
With it, we multiply time/frequency bin which we classify as noise with 0, hence
discarded
Time/frequency bins which we classify as signal are kept by multiplying it with 1
Our binary mask has the same size as our MDCT representation, and has the 1's
and 0's at the corresponing positons
Such masks are also used to separate signals in audio source separation
We separate the signals by elementwise multiplication
In our case we separate the signal from the noise
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The Binary MaskThe Binary Mask
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In [24]: # Create the binary mask: 

binarymask=abs(Y)>1.0 

plt.imshow(binarymask,aspect='auto') 

plt.xlabel('Subband') 

plt.ylabel('Block (downsampled time)') 

plt.title('The Binary mask for our Chirp Signal (Yellow is 1)') 

Out[24]: Text(0.5,1,u'The Binary mask for our Chirp Signal (Yellow is 1)')
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The MDCT Spectrogram after Applying the MaskThe MDCT Spectrogram after Applying the Mask

In [25]: # Elementwise multiplication with the binary mask: 

Ydenoise=Y*binarymask 

plt.imshow(abs(Ydenoise),aspect='auto') 

plt.xlabel('Subband') 

plt.ylabel('Block (downsampled time)') 

plt.title('The De-noised MDCT Spectrogram after Masking') 

Out[25]: Text(0.5,1,u'The De-noised MDCT Spectrogram after Masking')
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The MDCT Synthesis Filter BankThe MDCT Synthesis Filter Bank

To return to the time domain, we now apply the MDCT synthesis �lter bank to our
de-noised MDCT representation

In [26]: from keras_MDCTsynthesis import * 

modelsyn = generate_model_syn(N,filtlen) 

#MDCT Synthesis: 

xrek= keras_MDCT_syn(Ydenoise,modelsyn) 

wav.write("xrekMDCTdenoised.wav",samplerate/2,np.int16(xrek*2**14)) 

Audio("xrekMDCTdenoised.wav") 

Observe: the noise is almost completely gone, except for some musical noise
It results from non-cancelled aliasing from switching off neighbouring
subbands
And from some time/frequency bins outside the chirp turned falsely on.

Out[26]:

Initializing MDCT synthesis weights 

subbands.shape= (1, 30, 1, 1024) 

xrek.shape= (1, 31744, 1, 1) 

0:000:00 / 0:03/ 0:03
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Predictive FiltersPredictive Filters

Filters can also be used to predict the next sample of an audio signal
In an encoder, the predicted sample is subtracted from the true sample, resulting
in the prediction error, which is encoded and transmitted to the decoder
in the decoder does the same prediction, which is added back to the received
prediction error
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Predictive FiltersPredictive Filters

Smooth signals, like sinusoids, are easy to predict
Noise like signals, like quantization noise, are dif�cult to predict
This means: the predictor output contains mostly the predictable
part
Hence the predictor output can be used for de-nosing
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Adaptive Predictive FilterAdaptive Predictive Filter

Adaptive �lters are (continuously) adapted to the audio signal to optimize
prediction performance
A well know example is the "Least Mean Squares" (LMS) �lter

It minimizes the mean squared prediction error over time
The "Normalized" LMS (NLMS) �lter normalizes its update steps to the signal
power, and hence becomes less dependend on the signal amplitude.
In Python it is implemented in adaptfilt.lms and adaptfilt.nlms.
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Python Example for (N)LMS De-NosingPython Example for (N)LMS De-Nosing

First we generate a noisy chirp signal for
testing

In [30]: chirpsignoise=chirpsig+ (np.random.rand(len(chirpsig))-0.5)*1.0 

wav.write("chirpsignoise.wav",samplerate/2,np.int16(chirpsignoise*2**14)) 

Audio("chirpsignoise.wav") 

Out[30]:
0:000:00 / 0:04/ 0:04
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Next we apply adaptfilt.nlms for de-
noising,

In [40]: import adaptfilt 

#predictor for the chirp signal, signal to predict is 1 sample ahead: 

predicted, error, lastweights = adaptfilt.nlms(chirpsignoise[:-1], chirpsignois

e[1:] , 20, step=0.1) 

wav.write("chirppredicted.wav",samplerate/2,np.int16(predicted*2**14)) 

Audio("chirppredicted.wav") 

Out[40]:
0:000:00 / 0:03/ 0:03



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 67/75

Observe: we hear less noise and noise shaping,
but the de-noising is less effective than with the �lter
bank
but due to the predictor structure, it has no system delay
This make it suitable for real time speech
communications
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Predictive Lossless CodingPredictive Lossless Coding

Predictors can be easily applied to lossless coding,
if the input of the encoder is integer valued audio samples, the predicted value can
be rounded to be integer valued to produce an integer valued prediction error
This leads to a reduced bit-rate
The decoder simply adds the same rounded predicted value back to obtain the
reconstructed original integer audio samples
This principle is used for instance in MPEG-4 ALS lossless coding
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Lossless Coding with Integer-to-Integer MDCT (IntMDCT)Lossless Coding with Integer-to-Integer MDCT (IntMDCT)

In general the MDCT �lter bank produces �oat valued samples in its subbands,
even if the input was integer valued, like for instance the usual 16, 24, or 32 bit
audio samples
For lossless coding, integer valued subband values are needed, which can be
reconstructed to the original audio samples
If we just round the samples from an MDCT to the nearest integers, it is not
reconstructing the exact same integers
The IntMDCT solves this problem: its analysis �lter bank produces integer
subband values
Its synthesis �lter bank reconstructs the exact original integer values
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The Block Diagram of (Part of) the Encoder IntMDCT for StereoThe Block Diagram of (Part of) the Encoder IntMDCT for Stereo
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The Block Diagram of the IntMDCTThe Block Diagram of the IntMDCT

The decoder IntMDCT has the same structure, except it is mirrored left to right,
and subtractions and additions are switched.
Observe: the IntMDCT uses the same principle as lossless predictive coding:
on the encoding side, rounded values are subtracted (or added),
on the decoding side, the same rounded values are added (or subtracted) for
exact reconstruction.
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The Integer-to-Integer MDCT (IntMDCT)The Integer-to-Integer MDCT (IntMDCT)

It can be combined with lossy perceptual MDCT based audio coders, like the
MPEG-AAC coder
In this way we can create a scalable extension layer for lossless coding,
There the decoder can choose if it wants to decode the low bitrate lossy version or
to include the lossless layer.
It is used in MPEG-4 SLS lossless audio coding, also known as HD-AAC.



3/20/2019 filtersForAudio slides

127.0.0.1:8000/filtersForAudio.slides.html?print-pdf#/ 73/75

ConclusionsConclusions

We saw: digital �lters can be seen as a running weightes average of previous
samples
Filter banks allow us to donwsample without loosing bandwidth and with perfect
reconstruction
We can use them for coding, noise shaping, and de-noising
Minimum-Phase �lter can reduce the signal delay while keeping the same or
similar magnitude response and stopband attenuation
Similar, Low Delay �lter banks can reduce the system delay, for realy time coding
applications, like teleconferencing
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ConclusionsConclusions

Predictive �lters can be used for low delay coding and also noise shaping and de-
noising
They can also be easily used for lossless coding
The IntMDCT produces integer valued subband signals
It can be used for lossless coding and lossless enhancement layers for perceptual
audio coders.
Slides later available at: https://www.tu-ilmenau.de/en/applied-media-systems-
group/publications/ (https://www.tu-ilmenau.de/en/applied-media-systems-
group/publications/)

https://www.tu-ilmenau.de/en/applied-media-systems-group/publications/
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