IImenau University of Technology
Communications Research Laboratory
Prof. Dr.-Ing. Martin Haardt

Adaptive and Array Signal Processing

09.02.2011

Total time: 120 min
Total points: 48
NB: Those tasks highlighted bold-faced can be solved independently from the previous ones. Label the axis of all your graphs properly.

1. Consider the following matrix $\boldsymbol{X} \in \mathbb{R}^{4 \times 2}$:

$$
\boldsymbol{X}=\frac{1}{4} \cdot\left[\begin{array}{ll}
3 & 1 \\
3 & 1 \\
1 & 3 \\
1 & 3
\end{array}\right]
$$

Its singular value decomposition $\boldsymbol{X}=\boldsymbol{U} \cdot \boldsymbol{\Sigma} \cdot \boldsymbol{V}^{\mathrm{H}}$ is given by

$$
\boldsymbol{U}=\frac{1}{2}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right], \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2} / 2 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad \boldsymbol{V}=\frac{1}{\sqrt{2}} \cdot\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] .
$$

(a) What are the dimensions of the column space, the null space, the row space, and the left null space, respectively?
(b) Let $\tilde{\boldsymbol{X}}$ be the best rank-one approximation of \boldsymbol{X} in the Frobenius norm sense. How can we find $\tilde{\boldsymbol{X}}$ from the SVD of \boldsymbol{X} ?
(c) Compute $\tilde{\boldsymbol{X}}$.
(d) Provide a basis for the column space of $\tilde{\boldsymbol{X}}$ and a basis for the null space of $\tilde{\boldsymbol{X}}$.
(e) Compute the projection matrix \boldsymbol{P} onto the column space of $\tilde{\boldsymbol{X}}$.
2. Let a tensor \mathcal{X} be given by

$$
\mathcal{X}=\mathcal{I}_{2} \times_{1} \boldsymbol{A} \times_{2} \boldsymbol{B} \times_{3} \boldsymbol{C}
$$

where \mathcal{I}_{2} is the $2 \times 2 \times 2$ identity tensor (with elements $\left[\mathcal{I}_{2}\right]_{(1,1,1)}=\left[\mathcal{I}_{2}\right]_{(2,2,2)}=1$ and all other elements zero) and $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ are the loading matrices given by

$$
\boldsymbol{A}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \boldsymbol{B}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \boldsymbol{C}=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right]
$$

(a) What is the (tensor) $\operatorname{rank} r=\operatorname{rank}\{\mathcal{X}\}$?
(b) Demonstrate a) by explicitly computing r rank-one tensors $\mathcal{X}_{1} \ldots \mathcal{X}_{r}$ such that $\mathcal{X}=\sum_{i=1}^{r} \boldsymbol{\mathcal { X }}_{r}$.
(c) Compute the unfoldings $[\mathcal{X}]_{(1)},[\mathcal{X}]_{(2)},[\mathcal{X}]_{(3)}$ in forward (MATLAB) column ordering.
(d) What are the n-ranks of \mathcal{X} for $n=1,2,3$?
(e) Find a basis for the space spanned by the one-mode vectors of \mathcal{X}, i.e., the column space of $[\mathcal{X}]_{(1)}$.
(f) Show that for an arbitrary tensor $\mathcal{X} \in \mathbb{C}^{M_{1} \times M_{2} \times M_{3}}$ and matrices $\boldsymbol{A} \in \mathbb{C}^{N_{1} \times M_{1}}, \boldsymbol{B} \in \mathbb{C}^{P_{1} \times N_{1}}$, the following identity holds: $\mathcal{X} \times_{1} \boldsymbol{A} \times_{1} \boldsymbol{B}=\boldsymbol{\mathcal { X }} \times{ }_{1}(\boldsymbol{B} \cdot \boldsymbol{A})$. Hint: Use a suitable n-mode unfolding.
3. We consider an M-tap linear FIR filter with weight vector $\boldsymbol{w} \in \mathbb{C}^{M \times 1}$ that operates on a received signal $\boldsymbol{x}[n] \in \mathbb{C}^{M \times 1}=[x[n], x[n-1], \ldots, x[n-M+1]]^{\mathrm{T}}$ and produces a scalar output $y[n]=\boldsymbol{w}^{\mathrm{H}} \cdot \boldsymbol{x}[n]=$ $\sum_{m=1}^{M} w_{m}^{*} \cdot x[n-m+1]$. The goal is to design the filter such that $y[n]$ follows a desired signal $d[n]$, i.e., the squared error signal $|e[n]|^{2}=|y[n]-d[n]|^{2}$ is minimized.
Moreover, the following quantities are given:

$$
\boldsymbol{R}=\left[\begin{array}{lll}
2 & 1 & 1 \tag{1}\\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], \quad \boldsymbol{R}^{-1}=\frac{1}{4}\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right], \quad \boldsymbol{p}=\left[\begin{array}{c}
4 \\
-4 \\
8
\end{array}\right]
$$

where $\boldsymbol{R}=\mathbb{E}\left\{\boldsymbol{x}[n] \cdot \boldsymbol{x}[n]^{\mathrm{H}}\right\}$ is the autocovariance matrix of the zero mean random process $\boldsymbol{x}[n]$ and $\boldsymbol{p}=\mathbb{E}\left\{\boldsymbol{x}[n] \cdot d[n]^{*}\right\}$ is the cross-correlation vector between $\boldsymbol{x}[n]$ and the desired signal $d[n]$.
The eigenvalues of \boldsymbol{R} are given by $\lambda_{1}=4, \lambda_{2}=1$, and $\lambda_{3}=1$. The variance of the desired signal $d[n]$ is given by $\mathbb{E}\left\{|d(n)|^{2}\right\}=100$.
(a) Compute the filter weight vector $\boldsymbol{w}_{\text {opt }}$ which minimizes the mean square error $J(\boldsymbol{w})=$ $\mathbb{E}\left\{|e(n)|^{2}\right\}$.
(b) Determine the resulting mean square error $J_{\min }=J\left(\boldsymbol{w}_{\text {opt }}\right)$.

Alternatively, we can compute \boldsymbol{w} iteratively. We examine the method of steepest descent where we take small steps in the direction of the negative gradient, starting from an initial weight vector \boldsymbol{w}_{0}.
(c) Provide an explicit expression for the gradient of the cost function $\gamma(\boldsymbol{w})=\frac{\partial J(\boldsymbol{w})}{\partial \boldsymbol{w}^{*}}$.
(d) For the given covariance matrix, what is the maximum step size $\mu_{\max }$ that still allows the algorithm to converge?
(e) Starting with the initial weight vector $\boldsymbol{w}_{0}=\mathbf{0}_{M \times 1}$, i.e., the zero vector, perform two steps of the method of steepest descent using the step size $\mu=0.25$, i.e.,
i. Compute the gradient $\gamma\left(\boldsymbol{w}_{0}\right)$.
ii. Perform one step of steepest descent to compute \boldsymbol{w}_{1}.
iii. Compute the new gradient using $\gamma\left(\boldsymbol{w}_{1}\right)$.
iv. Perform a second step of steepest descent to compute \boldsymbol{w}_{2}.
4. We consider a uniform linear array (ULA) with $M=5$ elements and $\lambda / 2$ inter-element spacing.

Its array steering vector $\boldsymbol{a}(\theta)=\left[a_{1}(\theta), a_{2}(\theta), a_{3}(\theta), a_{4}(\theta), a_{5}(\theta)\right]^{\mathrm{T}}$ satisfies $a_{3}(\theta)=1 \forall \theta$, i.e., the phase reference of the array is chosen in the middle.
(a) Provide expressions for $a_{1}(\theta), a_{2}(\theta), a_{4}(\theta)$, and $a_{5}(\theta)$, where θ is the azimuth angle.

Now assume that d wavefronts are impinging from distinct directions $\theta_{1}, \theta_{2}, \ldots, \theta_{d}$.
(b) Show that the array steering matrix $\boldsymbol{A} \in \mathbb{C}^{M \times d}$ for d impinging wavefronts is left- $\boldsymbol{\Pi}$-real.
(c) We would like to estimate the directions of arrival θ_{i} via ESPRIT. If all wavefronts are non-coherent and enough snapshots are available $(N>M)$, what is the maximum number of wavefronts $d_{\max }$ that can be resolved with this array?
(d) If all wavefronts are coherent, what is the maximum number of wavefronts $d_{\max }$ that can be resolved via ESPRIT by applying
i. Forward-backward averaging
ii. Spatial smoothing
iii. Both forward-backward averaging and spatial smoothing
as preprocessing steps?
Now we consider the special case $d=2$ and ignore the contribution of the noise for clarity. Consequently, the covariance matrix of the received signal $\boldsymbol{x}[n]$ is given by $\boldsymbol{R}_{\mathrm{xx}}=\mathbb{E}\left\{\boldsymbol{x}[n] \cdot \boldsymbol{x}[n]^{\mathrm{H}}\right\}=\boldsymbol{A} \cdot \boldsymbol{R}_{\mathrm{ss}} \cdot \boldsymbol{A}^{\mathrm{H}}$, where $\boldsymbol{A} \in \mathbb{C}^{M \times 2}$ and the source covariance matrix $\boldsymbol{R}_{\mathrm{sS}} \in \mathbb{C}^{2 \times 2}$ can be expressed as

$$
\boldsymbol{R}_{\mathrm{SS}}=\mathbb{E}\left\{\boldsymbol{s}[n] \cdot \boldsymbol{s}[n]^{\mathrm{H}}\right\}=\left[\begin{array}{cc}
1 & \rho \tag{2}\\
\rho^{*} & 1
\end{array}\right]
$$

Here $\rho=|\rho| \mathrm{e}^{\jmath \varphi_{\rho}} \in \mathbb{C}$ denotes the correlation coefficient.
(e) Show that $\operatorname{rank}\left\{\boldsymbol{R}_{\mathrm{SS}}\right\}=1$ if $|\rho|=1$.
(f) Prove that after applying forward-backward averaging, the corresponding covariance matrix $\boldsymbol{R}_{\mathrm{xx}}^{(\mathrm{fba})}$ can be written as $\boldsymbol{R}_{\mathrm{xx}}^{(\mathrm{fba})}=\boldsymbol{A} \cdot \tilde{\boldsymbol{R}}_{\mathrm{ss}} \cdot \boldsymbol{A}^{\mathrm{H}}$, where $\tilde{\boldsymbol{R}}_{\mathrm{ss}}=\boldsymbol{R}_{\mathrm{ss}}+\boldsymbol{R}_{\mathrm{ss}}^{*}$.
(g) Show under which conditions the rank of $\boldsymbol{R}_{\mathrm{xx}}^{(\mathrm{fba})}$ is 2 .

Each of these arrays has a double shift-invariance structure, i.e., it is shift-invariant in horizontal (x) and in vertical (y) direction.
(a) For each array find the largest possible subarrays (i.e., with the most number of sensors $M_{\text {sub }}$ in x and y-direction). Document your findings in a table like this

Array	Subarray 1, x	Subarray 2, x	Subarray 1, y	Subarray 2, y
(a)	\ldots	\ldots	\ldots	\ldots
(b)	\ldots	\ldots	\ldots	\ldots
(c)	\ldots	\ldots	\ldots	\ldots
(d)	\ldots	\ldots	\ldots	\ldots

by filling in the indices of the sensors that belong to the respective subarrays. Note that the displacement between the two subarrays must not exceed $\lambda / 2$.
(b) For each array find the largest possible number of wavefronts $d_{\text {max }}$ that can be resolved via 2D ESPRIT if all wavefronts are non-coherent and a sufficient number of snapshots is available ($N>M$).
(c) For array (c) provide the selection matrices $\boldsymbol{J}_{\mu, 1}, \boldsymbol{J}_{\mu, 2}, \boldsymbol{J}_{\nu, 1}, \boldsymbol{J}_{\nu, 2}$ that are needed for the 2-D shift invariance equations explicitly. Here, μ corresponds to the horizontal and ν corresponds to the vertical direction.
(d) On which of the arrays can 2-D Unitary ESPRIT be applied?

