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NB: Those tasks highlighted bold-faced can be solved independently from the previous ones. Label the axis of

all your graphs properly.

1. Consider the following matrix X ∈ R
4×2: (7 pt)

X =
1

4
·









3 1
3 1
1 3
1 3









.

Its singular value decomposition X = U ·Σ · V H is given by

U =
1

2









1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1









, Σ =









√
2 0

0
√
2/2

0 0
0 0









, V =
1√
2
·
[

1 1
1 −1

]

.

(a) What are the dimensions of the column space, the null space, the row space, and the left null space,

respectively?

(b) Let X̃ be the best rank-one approximation of X in the Frobenius norm sense. How can we find X̃

from the SVD of X?

(c) Compute X̃ .

(d) Provide a basis for the column space of X̃ and a basis for the null space of X̃ .

(e) Compute the projection matrix P onto the column space of X̃ .

2. Let a tensor X be given by (11 pt)

X = I2 ×1 A×2 B ×3 C

where I2 is the 2 × 2 × 2 identity tensor (with elements [I2](1,1,1) = [I2](2,2,2) = 1 and all other

elements zero) and A, B, C are the loading matrices given by

A =

[

1 1
1 1

]

B =

[

1 1
1 −1

]

C =

[

3 0
0 2

]

(a) What is the (tensor) rank r = rank{X}?

(b) Demonstrate a) by explicitly computing r rank-one tensors X 1 . . .X r such that X =
r

∑

i=1

X r.

(c) Compute the unfoldings [X ](1), [X ](2), [X ](3) in forward (MATLAB) column ordering.

(d) What are the n-ranks of X for n = 1, 2, 3?

(e) Find a basis for the space spanned by the one-mode vectors of X , i.e., the column space of [X ](1).

(f) Show that for an arbitrary tensor X ∈ C
M1×M2×M3 and matrices A ∈ C

N1×M1 , B ∈ C
P1×N1 , the

following identity holds: X ×1 A×1 B = X ×1 (B ·A). Hint: Use a suitable n-mode unfolding.
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3. We consider an M -tap linear FIR filter with weight vector w ∈ C
M×1 that operates on a received signal (7 pt)

x[n] ∈ C
M×1 = [x[n], x[n− 1], . . . , x[n−M + 1]]T and produces a scalar output y[n] = wH · x[n] =

M
∑

m=1

w∗

m · x[n−m + 1]. The goal is to design the filter such that y[n] follows a desired signal d[n], i.e.,

the squared error signal |e[n]|2 = |y[n]− d[n]|2 is minimized.

Moreover, the following quantities are given:

R =





2 1 1
1 2 1
1 1 2



 , R−1 =
1

4





3 −1 −1
−1 3 −1
−1 −1 3



 , p =





4
−4
8



 (1)

where R = E
{

x[n] · x[n]H
}

is the autocovariance matrix of the zero mean random process x[n] and

p = E {x[n] · d[n]∗} is the cross-correlation vector between x[n] and the desired signal d[n].

The eigenvalues of R are given by λ1 = 4, λ2 = 1, and λ3 = 1. The variance of the desired signal d[n]
is given by E

{

|d(n)|2
}

= 100.

(a) Compute the filter weight vector wopt which minimizes the mean square error J(w) =
E
{

|e(n)|2
}

.

(b) Determine the resulting mean square error Jmin = J(wopt).

Alternatively, we can compute w iteratively. We examine the method of steepest descent where we take

small steps in the direction of the negative gradient, starting from an initial weight vector w0.

(c) Provide an explicit expression for the gradient of the cost function γ(w) = ∂J(w)
∂w∗

.

(d) For the given covariance matrix, what is the maximum step size µmax that still allows the algorithm

to converge?

(e) Starting with the initial weight vector w0 = 0M×1, i.e., the zero vector, perform two steps of the

method of steepest descent using the step size µ = 0.25, i.e.,

i. Compute the gradient γ(w0).

ii. Perform one step of steepest descent to compute w1.

iii. Compute the new gradient using γ(w1).

iv. Perform a second step of steepest descent to compute w2.
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4. We consider a uniform linear array (ULA) with M = 5 elements and λ/2 inter-element spacing. (13 pt)

1 2 3 4 5

θ

Its array steering vector a(θ) = [a1(θ), a2(θ), a3(θ), a4(θ), a5(θ)]
T satisfies a3(θ) = 1 ∀θ, i.e., the phase

reference of the array is chosen in the middle.

(a) Provide expressions for a1(θ), a2(θ), a4(θ), and a5(θ), where θ is the azimuth angle.

Now assume that d wavefronts are impinging from distinct directions θ1, θ2, . . . , θd.

(b) Show that the array steering matrix A ∈ C
M×d for d impinging wavefronts is left-Π-real.

(c) We would like to estimate the directions of arrival θi via ESPRIT. If all wavefronts are non-coherent

and enough snapshots are available (N > M ), what is the maximum number of wavefronts dmax

that can be resolved with this array?

(d) If all wavefronts are coherent, what is the maximum number of wavefronts dmax that can be resolved

via ESPRIT by applying

i. Forward-backward averaging

ii. Spatial smoothing

iii. Both forward-backward averaging and spatial smoothing

as preprocessing steps?

Now we consider the special case d = 2 and ignore the contribution of the noise for clarity. Consequently,

the covariance matrix of the received signal x[n] is given by Rxx = E
{

x[n] · x[n]H
}

= A ·Rss ·AH,

where A ∈ C
M×2 and the source covariance matrix Rss ∈ C

2×2 can be expressed as

Rss = E
{

s[n] · s[n]H
}

=

[

1 ρ
ρ∗ 1

]

. (2)

Here ρ = |ρ|e ϕρ ∈ C denotes the correlation coefficient.

(e) Show that rank{Rss} = 1 if |ρ| = 1.

(f) Prove that after applying forward-backward averaging, the corresponding covariance matrix R
(fba)
xx

can be written as R
(fba)
xx = A · R̃ss ·AH, where R̃ss = Rss +R∗

ss.

(g) Show under which conditions the rank of R
(fba)
xx is 2.
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5. Consider the following four 2-D arrays: (10 pt)

2 5 8 11

3 6 9 12

1 4 7 10

14 17

15 18

13 16

λ
2

λ
2

(a)

2 12

1 3 7 11

14

13

4 8

9

10

5

6

λ
2

λ
2

(b)

5

6

7

8

1 2 3 4

λ
2

λ
2

(c)

6

4

7

8

1 5

3

2

λ
2

λ
2

(d)

Each of these arrays has a double shift-invariance structure, i.e., it is shift-invariant in horizontal (x) and

in vertical (y) direction.

(a) For each array find the largest possible subarrays (i.e., with the most number of sensors Msub in x-

and y-direction). Document your findings in a table like this

Array Subarray 1, x Subarray 2, x Subarray 1, y Subarray 2, y

(a) ... ... ... ...

(b) ... ... ... ...

(c) ... ... ... ...

(d) ... ... ... ...

by filling in the indices of the sensors that belong to the respective subarrays. Note that the displa-

cement between the two subarrays must not exceed λ/2.

(b) For each array find the largest possible number of wavefronts dmax that can be resolved via 2-

D ESPRIT if all wavefronts are non-coherent and a sufficient number of snapshots is available

(N > M ).

(c) For array (c) provide the selection matrices Jµ,1,Jµ,2,Jν,1,Jν,2 that are needed for the 2-D shift

invariance equations explicitly. Here, µ corresponds to the horizontal and ν corresponds to the

vertical direction.

(d) On which of the arrays can 2-D Unitary ESPRIT be applied?
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