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NB: Those tasks highlighted bold-faced can be solved independently from the previous ones. Label the axes

of all your graphs properly.

1. Consider a linear FIR filter with weight vector w ∈ C
M operating on a zero-mean input signal x[n] ∈ (12 pt)

C
M such that the filter output is given by y[n] = wH · x[n]. The mean output power is given by

Pout(w) = E
{

|y[n]|2
}

= wH · E
{

x[n] · xH[n]
}

·w = wH ·Rxx ·w,

where Rxx ∈ C
M×M is the positive definite covariance matrix of the input signal, i.e., it is of full rank.

(a) Find the unconstrained optimum, i.e., the weight vector w which minimizes Pout(w) if no further

constraints are made.

Now we add constraints. Let M = 3 such that w = [w1, w2, w3]
T and let two constraints be given by

w1 + w3 = 1

w1 − w2 = 0

(b) Express the constraints in the form c(w) = CH ·w − g
!
= 0, i.e., find C and g.

(c) Find a basis for the column space and the left null space of C.

We now want to solve the constrained minimization problem

min
w

Pout(w) subject to c(w) = 0.

(d) Specify the Lagrangian L(w,λ) for this constrained optimization problem.

(e) What is the dimension of the vector of Lagrangian multipliers λ?

(f) Is L(w,λ) an analytic (holomorphic) function?

An alternative implementation of the constrained optimization is given by the Generalized Sidelobe Can-

celler, where we decompose w into w = wq −Ca ·wa such that CH ·Ca is a matrix of zeros.

(g) Compute a vector wq such that CH ·w = g.

(h) How is Ca related to the four fundamental subspaces of C?

(i) What is the size of Ca and wa?

(j) Determine the matrix Ca.

(k) Find wa which minimizes the output power Pout(w) for Rxx = I3.
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2. We are given the following 2× 2× 2 tensor X : (9 pt)

X =

[

1
0

]

◦
[

1
0

]

◦
[

2
0

]

+

[

1
1

]

◦
[

1
−1

]

◦
[

3
3

]

+

[

0
1

]

◦
[

0
1

]

◦
[

0
4

]

(a) What is the (tensor-) rank of X ?

(b) Compute the “three-mode slices” [X ](:,:,k) of X , i.e., the matrices [X ](:,:,1) = [xi,j,k]i = 1, 2
j = 1, 2
k = 1

and

[X ](:,:,2) = [xi,j,k]i = 1, 2
j = 1, 2
k = 2

, where xi,j,k denotes the (i, j, k)-th element of X .

(c) Find three matrices A, B, and C such that X = I ×1 A×2 B×3 C, where I is the diagonal 3-D

identity tensor of appropriate size.

(d) Find the one-mode, the two-mode, and the three-mode unfoldings of X in forward (MATLAB)

column ordering.

(e) What are the n-ranks of X for n = 1, 2, 3?

3. Let a 2× 3 matrix X be given by (9+2 pt)

X =

[

2− j 1 + 3j −1− 2j
x y z

]

(a) Find x, y, z ∈ C such that X is left-Π-real.

(b) Find x, y, z ∈ C such that X is centro-Hermitian.

Now consider a generic 2× 2 matrix A given by

A =

[

a b
c d

]

(c) Which conditions should a, b, c, d ∈ C satisfy such that A is centro-Hermitian?

The set of centro-Hermitian matrices A can be mapped onto the set of real-valued matrices via the

mapping ϕ(A) = Q−1 ·A ·Q, where Q is a left-Π-real matrix.

(d) Compute the transformed real-valued matrix ϕ(A) using the generic centro-Hermitian 2×2 matrix

from above.

Hint: A unitary left-Π-real matrix of size 2n× 2n is given by Q
(s)
2n = 1√

2
·
[

In j · In
Πn −j ·Πn

]

.

(e) Show that the matrix above is in fact real-valued.

Hint: a+ a∗ = 2 · Re{a} and a− a∗ = 2 · j · Im{a}.

(f) (Bonus +2p): In class we have shown that for an arbitrary centro-Hermitian matrix A, the trans-

formed matrix ϕ(A) is real. Now show that the converse is true, i.e., for an arbitrary real-valued

matrix Z, show that ϕ−1(Z) is a centro-Hermitian matrix. Here ϕ−1(Z) is the inverse mapping

which retrieves A from ϕ(A).
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4. We would like to apply 2-D ESPRIT on the following sensor array: (10 pt)
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(a) For ∆ = λ/2, find the sensor elements belonging to the largest possible subarrays in vertical (µ)

and horizontal (ν) directions, respectively. Note that the displacement between the corresponding

elements of the first and the second subarray must be less than or equal to λ/2.

(b) Find the selection matrices for the vertical (µ) direction Jµ,1 and Jµ,2.

(c) What is the maximum number of incoherent wavefronts dmax which can be resolved?

(d) Repeat task (a) for ∆ = λ/4.

(e) How does dmax change for ∆ = λ/4?

5. Consider a uniform rectangular array of M = Mx ×My sensors. Without loss of generality, we assume (9+2 pt)

Mx ≤ My (for Mx > My we can simply flip the dimensions).

(a) You are given a total of M = 48 sensors. Find all arrangements of the M sensors in form of an

Mx ×My URA where 1 < Mx ≤ My.

(b) For each arrangement find the maximum number of incoherent wavefronts dmax we can have for

2-D ESPRIT. Note that in both directions x and y, the number of sensors per subarray must be

greater than or equal to d.

If sources are coherent, we need to apply proper preprocessing to decorrelate them. Since the array is

centro-symmetric we use forward-backward averaging. Additionally, we apply 2-D spatial smoothing by

dividing the array into Lx×Ly subarrays (Lx in x-direction and Ly in y-direction) where 1 ≤ Lx < Mx

and 1 ≤ Ly < My. In total, this decorrelates 2 · L = 2 · Lx · Ly sources.

(c) What is the size of the array after 2-D spatial smoothing has been applied?

(d) How many coherent sources can be estimated via 2-D Unitary ESPRIT for a given choice of Lx

and Ly?

Hint: Use the same reasoning as in (b).

(e) Find the maximum possible number of coherent sources (i.e., choose the best possible Lx and Ly)

for Mx = 3 and My = 4.

Hint: Try out all combinations of Lx and Ly for 1 ≤ Lx < Mx and 1 ≤ Ly < My.

(f) (Bonus +2p) Consider a URA with M = Mx × My elements where M is a square number, i.e.,

M = m2 for an integer m. Show that in this case, for incoherent wavefronts the best distribution of

M sensors in form of a URA which maximizes dmax is given by setting Mx =
√
M = m.
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