Major: ... Mat.-Nr.: ...

Ilmenau University of Technology Communications Research Laboratory Prof. Dr.-Ing. Martin Haardt

Mobile Communications

21.07.2010

Total time: 120 min

Total points: 40+2 Bonus

NB: Those tasks highlighted **bold-faced** can be solved independently from the previous ones. Label the axis of all your graphs properly.

- 1. Consider a propagation model where the received power is proportional to d^{-n} , where d is the distance (7 pt) between transmitter and receiver and n is the path loss exponent. The received power has been measured to be $P_{\rm R,1} = -80$ dBm at a distance $d_1 = 50$ m and $P_{\rm R,2} = -90$ dBm at a distance $d_2 = 100$ m.
 - (a) What is the path loss exponent n? Hint: $10 \cdot \log_{10}(2) \approx 3$.
 - (b) Compute the power received at a distance of $d_3 = 500$ m.
 - (c) Compute the maximum distance d_{max} so that the received power level maintains above the detection threshold of -166.7 dBm (Hint: $-166.7 \approx -500/3$, $10^{2.3} \approx 200$, $10^{2.6} \approx 400$).
 - (d) Assume the path loss is n = 3 and the maximum distance $d_{max} = 600$ m. We would like to double the cell radius to 1200 m without changing the transmit power or the noise power. Explain how this can be achieved by deploying multiple antennas at the receiver: What is the appropriate receive filtering technique and how many antenna elements are needed?

We now consider a base station (BS) with a transmit power of $P_{T,1} = 42$ dBm and a relay station (RS) with a transmit power of $P_{T,2} = 33$ dBm. The distance between base station and relay station is $d_R = 600$ m. Our goal is to assign users to the base station or the relay station depending on the received power level.

- (e) Compute the distance d_1 where the power received from the base station is equal to the power received from the relay station. As before, assume a path loss exponent of n = 3. Hint: $10^{0.3} \approx 2$.
- 2. Let the random variable X by Gaussian distributed with zero mean and variance one, i.e., $X \sim \mathcal{N}(0, 1)$. (5 pt) Then a new random variable Y is given by Y = g(X), where $g(x) = x^2 \quad \forall x$. Derive the probability density function $f_Y(y)$.
- 3. Consider an *L*-path model with L = 2 paths that have the following parameters: $c_1 = 2$, $\tau_1 = 100$ ns, (14 pt) $f_{D,1} = -10$ Hz, $c_2 = 1$, $\tau_2 = 200$ ns, $f_{D,2} = 20$ Hz.
 - (a) Provide the explicit expressions for $h(\tau, t)$, H(f, t), $H(f, f_D)$, and $h(\tau, f_D)$.
 - (b) Give the explicit expression for the power-delay profile $\varphi_h(\tau)$ and sketch it.
 - (c) Compute the average delay $\overline{\tau}$, the squared average $\overline{\tau^2}$, and the RMS delay spread $\tau_{\rm rms}$ (Hint: no calculator needed).

- (d) Provide the explicit expression for the spaced-frequency correlation function $\varphi_h(\Delta f)$.
- (e) Give the formula for the scattering function $\Phi_h(\tau, f_D)$ and sketch it (pseudo-3D or view from top).

Next, consider L = 3 paths that have the following (transmit) directions of departure $\theta_{T,\ell}$ and (receive) directions of arrival $\theta_{R,\ell}$: $\theta_{T,1} = -10^{\circ}$, $\theta_{T,2} = 40^{\circ}$, $\theta_{T,3} = 30^{\circ}$, $\theta_{R,1} = 70^{\circ}$, $\theta_{R,2} = -60^{\circ}$, $\theta_{R,3} = 0^{\circ}$. Moreover, the amplitudes of the three paths are $c_1 = 1$, $c_2 = 3$, $c_3 = 2$.

- (f) Sketch the angular power spectrum at the transmitter $\varphi_{h,T}(\theta_T)$.
- (g) Sketch the angular power spectrum at the receiver $\varphi_{h,R}(\theta_R)$.
- (h) Sketch the 2-D angular power spectrum $\varphi_h(\theta_R, \theta_T)$ (pseudo-3D or view from top).
- (i) Sketch the 2-D angular power spectrum $\varphi_{h,kron}(\theta_T, \theta_R)$ that is obtained by computing a Kronecker approximation to the channel (pseudo-3D or view from top).
- 4. The following graph shows the bit error rate performance of an uncoded QPSK transmission under dif- (8 pt) ferent conditions:
 - (i) a pure AWGN channel.
 - (ii) a single-input single-output (SISO) frequency-flat fading Rayleigh channel;
 - (iii) a multiple-input single-output (MISO) frequency-flat fading Rayleigh channel (H_w) with $M_T = 2$ transmit antennas using Alamouti Space-Time Coding at the transmitter;
 - (iv) a single-input multiple-output (SIMO) frequency-flat fading Rayleigh channel (H_w) with $M_R = 2$ receive antennas using Maximum Ratio Combining (MRC) at the receiver;

- (a) Identify the curves (A), (B), (C), and (D) with the propagation conditions (i), (ii), (iii), and (iv). Which curve belongs to which scenario?
- (b) Explain in your own words: Why and how does diversity improve the reliability of a transmission in a fading noisy environment?
- (c) Explain in your own words: Why and how does array gain improve the reliability of a transmission in a fading noisy environment?
- (d) For the curves (A), (B), and (C), what is the diversity order?
- (e) For the curves (A), (B), and (C), what is the transmit and receive array gain?

- (f) How do the diversity order and the array gain change for (iii) if the transmitter possesses channel knowledge and therefore changes its transmission scheme from Alamouti Space-Time Coding to transmit MRC?
- (g) How do the diversity order and the array gain change for (iii) if a second receive antenna is added (i.e., a 2×2 MIMO system is considered), where the receiver performs MRC (the transmitter still performs Alamouti Space-Time Coding)?
- 5. Consider the following channel realizations of a 2×2 MIMO system:

$$\boldsymbol{H}^{(a)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \boldsymbol{H}^{(b)} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

The corresponding singular values are given by

$$\begin{split} \sigma_1^{(a)} &= 2, \ \sigma_2^{(a)} = 0 \text{ for } \boldsymbol{H}^{(a)} \\ \sigma_1^{(b)} &= \sqrt{2}, \ \sigma_2^{(b)} = \sqrt{2} \text{ for } \boldsymbol{H}^{(b)} \end{split}$$

- (a) For $P_{\rm T} = 1$, $\sigma_{\rm n}^2 = 1$ (SNR = 0 dB), compute the open-loop MIMO capacity of $H^{(\rm a)}$ and $H^{(\rm b)}$.
- (b) What is the optimal power distribution γ_1^{opt} , γ_2^{opt} for SNR $\rightarrow \infty$ obtained via water pouring for $H^{(a)}$ and $H^{(b)}$? You can leave the result as $\log_2(X)$ once you found the (scalar) X.
- (c) Describe how the water pouring solution changes for lower SNRs for $H^{(a)}$ and $H^{(b)}$.
- (d) What is the spatial multiplexing gain (i.e., the number of streams that can be multiplexed over the channel) in the system if the optimal (capacity-achieving) prefiltering scheme is applied for $H^{(a)}$ and $H^{(b)}$? Why?
- (e) (Bonus +2 pt): Compute the closed-loop MIMO capacity for $P_{\rm T} = 1$, $\sigma_{\rm n}^2 = 1$ (SNR = 0 dB) for $H^{\rm (a)}$ and $H^{\rm (b)}$.

(6+2 pt)