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NB: Those tasks highlighted bold-faced can be solved independently from the previous ones. Label the axis of

all your graphs properly.

1. Consider a propagation model where the received power is proportional to d−n, where d is the distance (7 pt)

between transmitter and receiver and n is the path loss exponent. The received power has been measured

to be PR,1 = −80 dBm at a distance d1 = 50 m and PR,2 = −90 dBm at a distance d2 = 100 m.

(a) What is the path loss exponent n? Hint: 10 · log10(2) ≈ 3.

(b) Compute the power received at a distance of d3 = 500 m.

(c) Compute the maximum distance dmax so that the received power level maintains above the detection

threshold of -166.7 dBm (Hint: −166.7 ≈ −500/3, 102.3 ≈ 200, 102.6 ≈ 400).

(d) Assume the path loss is n = 3 and the maximum distance dmax = 600 m. We would like to double

the cell radius to 1200 m without changing the transmit power or the noise power. Explain how

this can be achieved by deploying multiple antennas at the receiver: What is the appropriate receive

filtering technique and how many antenna elements are needed?

We now consider a base station (BS) with a transmit power of PT,1 = 42 dBm and a relay station

(RS) with a transmit power of PT,2 = 33 dBm. The distance between base station and relay station is

dR = 600 m. Our goal is to assign users to the base station or the relay station depending on the received

power level.

BS RS

0 dRd1 d [m]

(e) Compute the distance d1 where the power received from the base station is equal to the power

received from the relay station. As before, assume a path loss exponent of n = 3. Hint: 100.3 ≈ 2.

2. Let the random variable X by Gaussian distributed with zero mean and variance one, i.e., X ∼ N (0, 1). (5 pt)

Then a new random variable Y is given by Y = g(X), where g(x) = x2 ∀x. Derive the probability

density function fY (y).

3. Consider an L-path model with L = 2 paths that have the following parameters: c1 = 2, τ1 = 100 ns, (14 pt)

fD,1 = −10 Hz, c2 = 1, τ2 = 200 ns, fD,2 = 20 Hz.

(a) Provide the explicit expressions for h(τ, t), H(f, t), H(f, fD), and h(τ, fD).

(b) Give the explicit expression for the power-delay profile ϕh(τ) and sketch it.

(c) Compute the average delay τ̄ , the squared average τ2, and the RMS delay spread τrms (Hint: no

calculator needed).
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(d) Provide the explicit expression for the spaced-frequency correlation function ϕh(∆f).

(e) Give the formula for the scattering function Φh(τ, fD) and sketch it (pseudo-3D or view from top).

Next, consider L = 3 paths that have the following (transmit) directions of departure θT,ℓ and (receive)

directions of arrival θR,ℓ: θT,1 = −10◦, θT,2 = 40◦, θT,3 = 30◦, θR,1 = 70◦, θR,2 = −60◦, θR,3 = 0◦.

Moreover, the amplitudes of the three paths are c1 = 1, c2 = 3, c3 = 2.

(f) Sketch the angular power spectrum at the transmitter ϕh,T(θT).

(g) Sketch the angular power spectrum at the receiver ϕh,R(θR).

(h) Sketch the 2-D angular power spectrum ϕh(θR, θT) (pseudo-3D or view from top).

(i) Sketch the 2-D angular power spectrum ϕh,kron(θT, θR) that is obtained by computing a Kronecker

approximation to the channel (pseudo-3D or view from top).

4. The following graph shows the bit error rate performance of an uncoded QPSK transmission under dif- (8 pt)

ferent conditions:

(i) a pure AWGN channel.

(ii) a single-input single-output (SISO) frequency-flat fading Rayleigh channel;

(iii) a multiple-input single-output (MISO) frequency-flat fading Rayleigh channel (Hw) with MT = 2
transmit antennas using Alamouti Space-Time Coding at the transmitter;

(iv) a single-input multiple-output (SIMO) frequency-flat fading Rayleigh channel (Hw) with MR = 2
receive antennas using Maximum Ratio Combining (MRC) at the receiver;
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(a) Identify the curves (A), (B), (C), and (D) with the propagation conditions (i), (ii), (iii), and (iv).

Which curve belongs to which scenario?

(b) Explain in your own words: Why and how does diversity improve the reliability of a transmission

in a fading noisy environment?

(c) Explain in your own words: Why and how does array gain improve the reliability of a transmission

in a fading noisy environment?

(d) For the curves (A), (B), and (C), what is the diversity order?

(e) For the curves (A), (B), and (C), what is the transmit and receive array gain?
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(f) How do the diversity order and the array gain change for (iii) if the transmitter possesses channel

knowledge and therefore changes its transmission scheme from Alamouti Space-Time Coding to

transmit MRC?

(g) How do the diversity order and the array gain change for (iii) if a second receive antenna is added

(i.e., a 2 × 2 MIMO system is considered), where the receiver performs MRC (the transmitter still

performs Alamouti Space-Time Coding)?

5. Consider the following channel realizations of a 2× 2 MIMO system: (6+2 pt)

H
(a) =

[

1 1
1 1

]

H
(b) =

[

1 1
1 −1

]

The corresponding singular values are given by

σ
(a)
1 = 2, σ

(a)
2 = 0 for H(a)

σ
(b)
1 =

√
2, σ

(b)
2 =

√
2 for H(b)

(a) For PT = 1, σ2
n = 1 (SNR = 0 dB), compute the open-loop MIMO capacity of H(a) and H

(b).

(b) What is the optimal power distribution γopt1 , γopt2 for SNR → ∞ obtained via water pouring for

H
(a) and H

(b)? You can leave the result as log2(X) once you found the (scalar) X .

(c) Describe how the water pouring solution changes for lower SNRs for H(a) and H
(b).

(d) What is the spatial multiplexing gain (i.e., the number of streams that can be multiplexed over the

channel) in the system if the optimal (capacity-achieving) prefiltering scheme is applied for H(a)

and H
(b)? Why?

(e) (Bonus +2 pt): Compute the closed-loop MIMO capacity for PT = 1, σ2
n = 1 (SNR = 0 dB) for

H
(a) and H

(b).
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