

Ilmenau University of Technology Communications Research Laboratory Prof. Dr.-Ing. Martin Haardt

Mobile Communications

23.03.2011

Total time: 120 min

Total points: 43+3 Bonus

NB: Those tasks highlighted **bold-faced** can be solved independently from the previous ones. Label the axis of all your graphs properly.

- 1. We consider a 2 × 2 flat fading MIMO channel, the squared singular values of the channel matrix H are (8+2 pt) given by $\lambda_1 = \sigma_1^2 = 10$, $\lambda_2 = \sigma_2^2 = 1$.
 - (a) Compute the open-loop capacity of the MIMO channel assuming that the signal-to-noise ratio (SNR) $\rho = P/\sigma_n^2$ is equal to 0.2, i.e., $P/(M_T \sigma_n^2) = 0.1$. You can leave the result as $\log_2(X)$ once you have found the scalar X.
 - (b) What is the optimal power distribution γ_1^{opt} and γ_2^{opt} across the two eigenmodes for SNR $\rightarrow \infty$ and for SNR $\rightarrow -\infty$?
 - (c) Compute the optimal power distribution γ_1^{opt} and γ_2^{opt} via the water pouring algorithm for the same SNR as in (a).
 - (d) Compute the closed-loop capacity of the MIMO channel for the same SNR as in (a).
 - (e) (Bonus 2p): Find the critical SNR $\rho_{\rm crit}$ above which water pouring activates the second stream, i.e., $\gamma_2^{\rm opt} = 0 \ \forall \rho < \rho_{\rm crit} \text{ and } \gamma_2^{\rm opt} > 0 \ \forall \rho > \rho_{\rm crit}.$
- 2. We consider a wireless link where the power received at distance d from the transmitter can be modeled (8+1 pt) via a path loss model with path loss exponent n, i.e., the received power $P_{\rm R}(d)$ is proportional to d^{-n} .

We have performed two measurements, one at $d_1 = 150$ m and one at $d_2 = 300$ m. The received powers were $P_{\rm R}(d_1) = 1.6 \,\mu\text{W}$ and $P_{\rm R}(d_2) = 0.2 \,\mu\text{W}$.

- (a) Express the measured $P_{\rm R}(d_1)$ and $P_{\rm R}(d_2)$ in dBW and in dBm.
- (b) Find the path loss exponent n.
- (c) Compute the power we receive at $d_3 = 600$ m and express $P_R(d_3)$ in Watt (linear scale).

To transmit data we consider a transmission scheme that has a diversity order D and achieves the target bit error rate of 10^{-3} at an SNR of $\rho = P_{\rm R}/\sigma_{\rm n}^2 = 10 \triangleq 10$ dB. The noise level is $\sigma_{\rm n}^2 = 0.16$ nW = $1.6 \cdot 10^{-10}$ W.

- (d) Find the maximum distance d_{max} so that the bit error rate is below the target bit error rate of 10^{-3} .
- (e) Which BER is achieved at distance d_{max} if the transmitter increases its transmit power by a factor of 10 for (i) D = 1 and (ii) D = 2?
- (f) (Bonus 1p): The increased transmit power (by a factor of 10) also leads to an increased range where the bit error rate is below 10^{-3} . For D = 3, how is the new d_{max} where the target bit error rate is achieved?

Hints: $\log_{10}(1.6) \approx 0.2$, $\log_{10}(2) \approx 0.3$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$.

3. We consider a 2×2 MIMO system ($M_{\rm R} = M_{\rm T} = 2$) and assume frequency-flat fading. The transmitter (12 pt) has no channel state information, whereas the receiver knows the channel perfectly. We therefore decide to transmit the information via an Orthogonal Space-Time Block coding scheme.

The input-output relation of the MIMO system for one codeword is expressed as

$$\boldsymbol{Y} = \sqrt{\frac{P}{M_{\rm T}}} \cdot \boldsymbol{H} \cdot \boldsymbol{X} + \boldsymbol{N},\tag{1}$$

where $\boldsymbol{H} \in \mathbb{C}^{M_{\mathrm{R}} \times M_{\mathrm{T}}}$ contains the MIMO channel coefficients, $\boldsymbol{X} \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ represents the Space-Time codeword matrix, $\boldsymbol{N} \in \mathbb{C}^{M_{\mathrm{R}} \times T}$ contains the samples of the additive white Gaussian noise process, and $\boldsymbol{Y} \in \mathbb{C}^{M_{\mathrm{R}} \times T}$ is the received signal at the M_{R} antennas at T subsequent time instants. Moreover, P denotes the total transmit power.

Since $M_T = 2$ we construct the codeword X from K = 2 symbols s_1 and s_2 via the Alamouti Space-Time Block Coding scheme.

- (a) What is the number of time snapshots T needed to transmit the two symbols s_1 and s_2 ?
- (b) Provide the explicit codeword matrix $X \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ for $s_1 = j$ and $s_2 = 1$.
- (c) What is the array gain and the diversity order we can achieve?

The decoding process of the Alamouti Space-Time code can be described by

$$\boldsymbol{z} = \boldsymbol{H}_{\text{eff}}^{\text{H}} \cdot \boldsymbol{\tilde{y}},\tag{2}$$

where $\boldsymbol{z} \in \mathbb{C}^{2 \times 1}$ is the output of the Alamouti receiver, $\tilde{\boldsymbol{y}} \in \mathbb{C}^{M_{\mathrm{T}} \cdot T \times 1}$ is a column vector constructed from \boldsymbol{Y} , and the matrix $\boldsymbol{H}_{\mathrm{eff}} \in \mathbb{C}^{M_{\mathrm{T}} \cdot T \times 2}$ is a linear receive filtering matrix, which is constructed from the channel matrix \boldsymbol{H} .

- (d) Describe how to construct \tilde{y} from Y.
- (e) Describe how to construct H_{eff} from H.
- (f) What is the general relation between the elements of z and the transmitted symbols s_1 and s_2 ?

We now consider the following channel realization:

$$\boldsymbol{H} = \begin{bmatrix} 2 & 1\\ 1 & -1 \end{bmatrix} \tag{3}$$

- (g) Compute the received signal matrix $\mathbf{Y} \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ explicitly, ignoring the noise contribution ($\mathbf{N} = \mathbf{0}$).
- (h) Determine the vector \tilde{y} explicitly.
- (i) Construct the linear receive filtering matrix $H_{\rm eff}$ explicitly.
- (j) Compute the vector \boldsymbol{z} .
- (k) How do we find the symbols s_1 and s_2 from z?

Let $\rho = P/\sigma_n^2$ be the signal-to-noise ratio (SNR) of an equivalent SISO system, where σ_n^2 is the variance of each noise sample in the noise matrix N. Furthermore, let η be the SNR after the Alamouti receive filtering.

(1) What is the SNR improvement η/ρ for the specific MIMO channel matrix that we consider here?

4. Let X be a random variable with probability density function (PDF) $f_X(x)$ and cumulative density (7 pt) function (CDF) $F_X(x) = P(X \le x)$. Furthermore, let Y be another random variable with PDF $f_Y(y)$ and CDF $F_Y(y) = P(Y \le y)$. We assume that X and Y are statistically **independent**.

Then, a new random variable Z is computed via $Z = \max(X, Y)$.

- (a) Express the CDF $F_Z(z) = P(Z \le z)$ of Z in terms of the CDFs of X and Y.
- (b) Find an expression for the PDF $f_Z(z)$ in terms of the CDFs/PDFs of X and Y.
- (c) Compute the PDF $f_Z(z)$ of Z assuming that X and Y are uniformly distributed in the interval [0, 1], i.e., $f_X(x) = \text{rect}(x 1/2)$, and sketch $f_Z(z)$.
- (d) Sketch the CDF $F_Z(z)$ of Z.

Hint: $(\max(X, Y) \le z) \Leftrightarrow ((X \le z) \text{ and } (Y \le z)).$

- 5. We investigate a wireless communication system operating at 2 GHz. We want to support moving mobile (8 pt) terminals. The maximum speed where a wireless connection is still guaranteed should be v = 30 m/s.
 - (a) Calculate the maximum Doppler shift $f_{D,max}$ that can occur by a transmission from a mobile to the fixed base station.
 - (b) What does this mean for the coherence time of the channel $(\Delta t)_c$?

The signal is received by the base station via three distinct paths. The path delays are $\tau_1 = 300$ ns, $\tau_2 = 200$ ns, $\tau_3 = 500$ ns and the Doppler shifts are $f_{D,1} = -50$ Hz, $f_{D,2} = 0$ Hz, and $f_{D,3} = 100$ Hz. Finally, the corresponding powers of the three paths are given by $\gamma_1 = 2$ W, $\gamma_2 = 6$ W, and $\gamma_3 = 2$ W.

- (c) Provide an explicit expression for the scattering function $\Phi_h(\tau, f_D)$ and sketch it (pseudo-3D or view from the top).
- (d) Determine the Doppler power spectrum $\Phi_H(f_D)$ and sketch it.
- (e) Compute the average Doppler shift \overline{f}_D , the mean square Doppler shift \overline{f}_D^2 , and the RMS Doppler spread $f_{D,rms}$. You can leave the result as \sqrt{X} once you have found the scalar X.

Hints: The speed of light is $c \approx 3 \cdot 10^8$ m/s.