IImenau University of Technology
Communications Research Laboratory
Prof. Dr.-Ing. Martin Haardt

Mobile Communications

23.03.2011

Total time: 120 min
Total points: $43+3$ Bonus
NB: Those tasks highlighted bold-faced can be solved independently from the previous ones. Label the axis of all your graphs properly.

1. We consider a 2×2 flat fading MIMO channel, the squared singular values of the channel matrix \boldsymbol{H} are given by $\lambda_{1}=\sigma_{1}^{2}=10, \lambda_{2}=\sigma_{2}^{2}=1$.
(a) Compute the open-loop capacity of the MIMO channel assuming that the signal-to-noise ratio (SNR) $\rho=P / \sigma_{n}^{2}$ is equal to 0.2 , i.e., $P /\left(M_{\mathrm{T}} \sigma_{n}^{2}\right)=0.1$. You can leave the result as $\log _{2}(X)$ once you have found the scalar X.
(b) What is the optimal power distribution $\gamma_{1}^{\text {opt }}$ and $\gamma_{2}^{\text {opt }}$ across the two eigenmodes for $\operatorname{SNR} \rightarrow \infty$ and for SNR $\rightarrow-\infty$?
(c) Compute the optimal power distribution $\gamma_{1}^{\text {opt }}$ and $\gamma_{2}^{\text {opt }}$ via the water pouring algorithm for the same SNR as in (a).
(d) Compute the closed-loop capacity of the MIMO channel for the same SNR as in (a).
(e) (Bonus 2p): Find the critical $\operatorname{SNR} \rho_{\text {crit }}$ above which water pouring activates the second stream, i.e., $\gamma_{2}^{\text {opt }}=0 \forall \rho<\rho_{\text {crit }}$ and $\gamma_{2}^{\text {opt }}>0 \forall \rho>\rho_{\text {crit }}$.
2. We consider a wireless link where the power received at distance d from the transmitter can be modeled via a path loss model with path loss exponent n, i.e., the received power $P_{\mathrm{R}}(d)$ is proportional to d^{-n}.
We have performed two measurements, one at $d_{1}=150 \mathrm{~m}$ and one at $d_{2}=300 \mathrm{~m}$. The received powers were $P_{\mathrm{R}}\left(d_{1}\right)=1.6 \mu \mathrm{~W}$ and $P_{\mathrm{R}}\left(d_{2}\right)=0.2 \mu \mathrm{~W}$.
(a) Express the measured $P_{\mathrm{R}}\left(d_{1}\right)$ and $P_{\mathrm{R}}\left(d_{2}\right)$ in dBW and in dBm .
(b) Find the path loss exponent n.
(c) Compute the power we receive at $d_{3}=600 \mathrm{~m}$ and express $P_{\mathrm{R}}\left(d_{3}\right)$ in Watt (linear scale).

To transmit data we consider a transmission scheme that has a diversity order D and achieves the target bit error rate of 10^{-3} at an SNR of $\rho=P_{\mathrm{R}} / \sigma_{\mathrm{n}}^{2}=10 \triangleq 10 \mathrm{~dB}$. The noise level is $\sigma_{\mathrm{n}}^{2}=0.16 \mathrm{nW}=$ $1.6 \cdot 10^{-10} \mathrm{~W}$.
(d) Find the maximum distance $d_{\max }$ so that the bit error rate is below the target bit error rate of 10^{-3}.
(e) Which BER is achieved at distance $d_{\max }$ if the transmitter increases its transmit power by a factor of 10 for (i) $D=1$ and (ii) $D=2$?
(f) (Bonus 1p): The increased transmit power (by a factor of 10) also leads to an increased range where the bit error rate is below 10^{-3}. For $D=3$, how is the new $d_{\max }$ where the target bit error rate is achieved?

Hints: $\log _{10}(1.6) \approx 0.2, \log _{10}(2) \approx 0.3,2^{2}=4,2^{3}=8,2^{4}=16$.
3. We consider a 2×2 MIMO system $\left(M_{\mathrm{R}}=M_{\mathrm{T}}=2\right)$ and assume frequency-flat fading. The transmitter has no channel state information, whereas the receiver knows the channel perfectly. We therefore decide to transmit the information via an Orthogonal Space-Time Block coding scheme.
The input-output relation of the MIMO system for one codeword is expressed as

$$
\begin{equation*}
\boldsymbol{Y}=\sqrt{\frac{P}{M_{\mathrm{T}}}} \cdot \boldsymbol{H} \cdot \boldsymbol{X}+\boldsymbol{N} \tag{1}
\end{equation*}
$$

where $\boldsymbol{H} \in \mathbb{C}^{M_{\mathrm{R}} \times M_{\mathrm{T}}}$ contains the MIMO channel coefficients, $\boldsymbol{X} \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ represents the Space-Time codeword matrix, $N \in \mathbb{C}^{M_{\mathrm{R}} \times T}$ contains the samples of the additive white Gaussian noise process, and $\boldsymbol{Y} \in \mathbb{C}^{M_{\mathrm{R}} \times T}$ is the received signal at the M_{R} antennas at T subsequent time instants. Moreover, P denotes the total transmit power.
Since $M_{\mathrm{T}}=2$ we construct the codeword \boldsymbol{X} from $K=2$ symbols s_{1} and s_{2} via the Alamouti SpaceTime Block Coding scheme.
(a) What is the number of time snapshots T needed to transmit the two symbols s_{1} and s_{2} ?
(b) Provide the explicit codeword matrix $\boldsymbol{X} \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ for $s_{1}=j$ and $s_{2}=1$.
(c) What is the array gain and the diversity order we can achieve?

The decoding process of the Alamouti Space-Time code can be described by

$$
\begin{equation*}
\boldsymbol{z}=\boldsymbol{H}_{\mathrm{eff}}^{\mathrm{H}} \cdot \tilde{\boldsymbol{y}} \tag{2}
\end{equation*}
$$

where $\boldsymbol{z} \in \mathbb{C}^{2 \times 1}$ is the output of the Alamouti receiver, $\tilde{\boldsymbol{y}} \in \mathbb{C}^{M_{\mathrm{T}} \cdot T \times 1}$ is a column vector constructed from \boldsymbol{Y}, and the matrix $\boldsymbol{H}_{\text {eff }} \in \mathbb{C}^{M_{\mathrm{T}} \cdot T \times 2}$ is a linear receive filtering matrix, which is constructed from the channel matrix \boldsymbol{H}.
(d) Describe how to construct $\tilde{\boldsymbol{y}}$ from \boldsymbol{Y}.
(e) Describe how to construct $\boldsymbol{H}_{\text {eff }}$ from \boldsymbol{H}.
(f) What is the general relation between the elements of \boldsymbol{z} and the transmitted symbols s_{1} and s_{2} ?

We now consider the following channel realization:

$$
\boldsymbol{H}=\left[\begin{array}{cc}
2 & 1 \tag{3}\\
1 & -1
\end{array}\right]
$$

(g) Compute the received signal matrix $\boldsymbol{Y} \in \mathbb{C}^{M_{\mathrm{T}} \times T}$ explicitly, ignoring the noise contribution $(\boldsymbol{N}=$ $0)$.
(h) Determine the vector $\tilde{\boldsymbol{y}}$ explicitly.
(i) Construct the linear receive filtering matrix $\boldsymbol{H}_{\text {eff }}$ explicitly.
(j) Compute the vector \boldsymbol{z}.
(k) How do we find the symbols s_{1} and s_{2} from z ?

Let $\rho=P / \sigma_{n}^{2}$ be the signal-to-noise ratio (SNR) of an equivalent SISO system, where σ_{n}^{2} is the variance of each noise sample in the noise matrix N. Furthermore, let η be the SNR after the Alamouti receive filtering.
(l) What is the SNR improvement η / ρ for the specific MIMO channel matrix that we consider here?
4. Let X be a random variable with probability density function (PDF) $f_{X}(x)$ and cumulative density function (CDF) $F_{X}(x)=\mathrm{P}(X \leq x)$. Furthermore, let Y be another random variable with $\operatorname{PDF} f_{Y}(y)$ and $\operatorname{CDF} F_{Y}(y)=\mathrm{P}(Y \leq y)$. We assume that X and Y are statistically independent.
Then, a new random variable Z is computed via $Z=\max (X, Y)$.
(a) Express the $\operatorname{CDF} F_{Z}(z)=\mathrm{P}(Z \leq z)$ of Z in terms of the CDFs of X and Y.
(b) Find an expression for the PDF $f_{Z}(z)$ in terms of the CDFs/PDFs of X and Y.
(c) Compute the $\operatorname{PDF} f_{Z}(z)$ of Z assuming that X and Y are uniformly distributed in the interval $[0,1]$, i.e., $f_{X}(x)=\operatorname{rect}(x-1 / 2)$, and sketch $f_{Z}(z)$.
(d) Sketch the $\operatorname{CDF} F_{Z}(z)$ of Z.

Hint: $(\max (X, Y) \leq z) \Leftrightarrow((X \leq z)$ and $(Y \leq z))$.
5. We investigate a wireless communication system operating at 2 GHz . We want to support moving mobile (8 pt) terminals. The maximum speed where a wireless connection is still guaranteed should be $v=30 \mathrm{~m} / \mathrm{s}$.
(a) Calculate the maximum Doppler shift $f_{\mathrm{D}, \text { max }}$ that can occur by a transmission from a mobile to the fixed base station.
(b) What does this mean for the coherence time of the channel $(\Delta t)_{c}$?

The signal is received by the base station via three distinct paths. The path delays are $\tau_{1}=300 \mathrm{~ns}$, $\tau_{2}=200 \mathrm{~ns}, \tau_{3}=500 \mathrm{~ns}$ and the Doppler shifts are $f_{\mathrm{D}, 1}=-50 \mathrm{~Hz}, f_{\mathrm{D}, 2}=0 \mathrm{~Hz}$, and $f_{\mathrm{D}, 3}=100 \mathrm{~Hz}$. Finally, the corresponding powers of the three paths are given by $\gamma_{1}=2 \mathrm{~W}, \gamma_{2}=6 \mathrm{~W}$, and $\gamma_{3}=2 \mathrm{~W}$.
(c) Provide an explicit expression for the scattering function $\Phi_{h}\left(\tau, f_{\mathrm{D}}\right)$ and sketch it (pseudo-3D or view from the top).
(d) Determine the Doppler power spectrum $\Phi_{H}\left(f_{\mathrm{D}}\right)$ and sketch it.
(e) Compute the average Doppler shift \bar{f}_{D}, the mean square Doppler shift $\overline{f_{\mathrm{D}}^{2}}$, and the RMS Doppler spread $f_{\mathrm{D}, \text { rms }}$. You can leave the result as \sqrt{X} once you have found the scalar X.

Hints: The speed of light is $c \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$.

