7. Stochastische Prozesse

Original- und Korrelationsfunktionen bzw. Spektralfunktionen

Tafel 1.4 Übersicht zum Zusammenhang von Original- und Korrelationsfunktionen bzw. Spektralfunktionen für die betrachteten Signalarten

stochastisch

Leistungssignal x(t)

$$x_{T}(t) \circ \longrightarrow X_{T}(f)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\varphi_{xx}(\tau) \circ \longrightarrow \Phi_{xx}(f)$$

mittlere Leistung

$$\varphi_{xx}(0) = \int_{-\infty}^{+\infty} \Phi_{xx}(f) df$$

Original- und Korrelationsfunktionen bzw. Spektralfunktionen

Tafel 1.4 Übersicht zum Zusammenhang von Original- und Korrelationsfunktionen bzw. Spektralfunktionen für die betrachteten Signalarten

stochastisch Leistungssignal $x(t)$	determiniert periodisch Leistungssignal $u_p(t)$
$x_{T}(t) \circ \longrightarrow X_{T}(f)$ $\downarrow \qquad \qquad \downarrow$ $\varphi_{xx}(\tau) \circ \longrightarrow \Phi_{xx}(f)$	$u_{p}(t) \circ - \bullet U_{p}(f) = \sum_{\mu = -\infty}^{+\infty} C(\mu) \delta(f - \mu f_{0})$ $\downarrow \qquad \qquad \downarrow$ $\phi_{pp}(\tau) \circ - \bullet \Phi_{pp}(f)$ $= \sum_{\mu = -\infty}^{+\infty} C(\mu) ^{2} \delta(f - \mu f_{0})$
mittlere Leistung $\Phi_{xx}(0) = \int_{-\infty}^{+\infty} \Phi_{xx}(f) df$	mittlere Leistung $\phi_{pp}(0) = \sum_{\mu = -\infty}^{+\infty} C(\mu) ^2$ $= \int_{-\infty}^{+\infty} \Phi_{pp}(f) df$

Original- und Korrelationsfunktionen bzw. Spektralfunktionen

Tafel 1.4 Übersicht zum Zusammenhang von Original- und Korrelationsfunktionen bzw. Spektralfunktionen für die betrachteten Signalarten

stochastisch Leistungssignal $x(t)$	determiniert periodisch Leistungssignal $u_p(t)$	aperiodisch Energiesignal $u(t)$
$x_{T}(t) \circ \longrightarrow X_{T}(f)$ $\downarrow \qquad \qquad \downarrow$ $\varphi_{xx}(\tau) \circ \longrightarrow \Phi_{xx}(f)$	$u_{p}(t) \circ \longrightarrow U_{p}(f) = \sum_{\mu = -\infty}^{+\infty} C(\mu) \delta(f - \mu f_{0})$ $\downarrow \qquad \qquad \downarrow$ $\phi_{pp}(\tau) \circ \longrightarrow \Phi_{pp}(f)$ $= \sum_{\mu = -\infty}^{+\infty} C(\mu) ^{2} \delta(f - \mu f_{0})$	
mittlere Leistung $\Phi_{xx}(0) = \int_{-\infty}^{+\infty} \Phi_{xx}(f) df$	mittlere Leistung $\phi_{pp}(0) = \sum_{\mu = -\infty}^{+\infty} C(\mu) ^{2}$ $= \int_{-\infty}^{+\infty} \Phi_{pp}(f) df$	Energie $ \phi_{uu}^{E}(0) = \int_{-\infty}^{+\infty} \Phi_{uu}^{E}(f) df $

7.5 Kreuzkorrelationsfunktionen und zugehörige Spektralfunktionen

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\}$$

$$\varphi_{XY}(\tau) = E\{X(t)Y(t+\tau)\}$$

$$\varphi_{XY}(-\tau) = \varphi_{YX}(\tau) = \mathbb{E}\{Y(t)X(t+\tau)\}$$

$$\varphi_{XY}(\tau) = \mathrm{E}\{X(t)Y(t+\tau)\}$$

$$\varphi_{XY}(-\tau) = \varphi_{YX}(\tau) = \mathbb{E}\{Y(t)X(t+\tau)\}$$

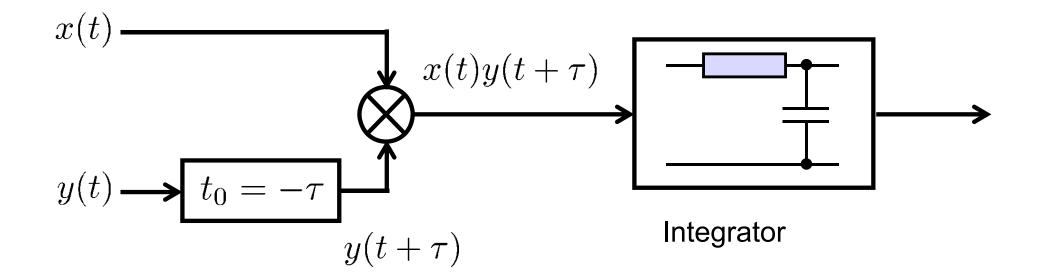
Ergodischer Prozess

$$\varphi_{XY}(\tau) = \overline{x(t)y(t+\tau)}$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{T} x(t)y(t+\tau) dt$$

Maß für die lineare statistische Abhängigkeit zweier Zufallfunktionen x(t) und y(t) als Realisierungen zweier verschiedener ergodischer Prozess

mögliche Implementierung:



Zusammenhang KKF <=> Leistung der Einzelsignale

Annahme x(t), y(t) reell

$$x(t) \neq \pm y(t+\tau) \Rightarrow$$
 falls nicht ausgeschlossen " \geq "

$$\overline{[x(t) \pm y(t+\tau)]^2} > 0$$

Zusammenhang KKF <=> Leistung der Einzelsignale

Annahme x(t), y(t) reell

 $x(t) \neq \pm y(t+\tau) \Rightarrow$ falls nicht ausgeschlossen " \geq "

$$\overline{[x(t) \pm y(t+\tau)]^2} > 0$$

$$\overline{x^2(t)} \pm 2\overline{x(t)y(t+\tau)} + \overline{y^2(t+\tau)} > 0$$

Zusammenhang KKF <=> Leistung der Einzelsignale

Annahme x(t), y(t) reell

 $x(t) \neq \pm y(t+\tau) \Rightarrow$ falls nicht ausgeschlossen " \geq "

$$\overline{[x(t) \pm y(t+\tau)]^2} > 0$$

$$\overline{x^2(t)} \pm 2 \overline{x(t)y(t+\tau)} + \overline{y^2(t+\tau)} > 0$$

$$\varphi_{XX}(0) \pm 2 \varphi_{XY}(\tau) + \varphi_{YY}(0)$$

Zusammenhang KKF <=> Leistung der Einzelsignale

Annahme x(t), y(t) reell

$$x(t) \neq \pm y(t+\tau) \Rightarrow$$
 falls nicht ausgeschlossen " \geq "

$$\overline{[x(t) \pm y(t+\tau)]^2} > 0$$

$$\underline{x^2(t)} \pm 2 \overline{x(t)y(t+\tau)} + \underline{y^2(t+\tau)} > 0$$

$$\varphi_{XX}(0) \pm 2 \varphi_{XY}(\tau) + \varphi_{YY}(0)$$

$$\pm 2\varphi_{XY}(\tau) > -\varphi_{XX}(0) - \varphi_{YY}(0)$$

Zusammenhang KKF <=> Leistung der Einzelsignale

Annahme x(t), y(t) reell

$$x(t) \neq \pm y(t+\tau) \Rightarrow$$
 falls nicht ausgeschlossen " \geq "

$$\overline{[x(t) \pm y(t+\tau)]^2} > 0$$

$$\overline{x^2(t)} \pm 2 \overline{x(t)y(t+\tau)} + \overline{y^2(t+\tau)} > 0$$

$$\varphi_{XX}(0) \pm 2 \varphi_{XY}(\tau) + \varphi_{YY}(0)$$

$$\pm 2\varphi_{XY}(\tau) > -\varphi_{XX}(0) - \varphi_{YY}(0)$$

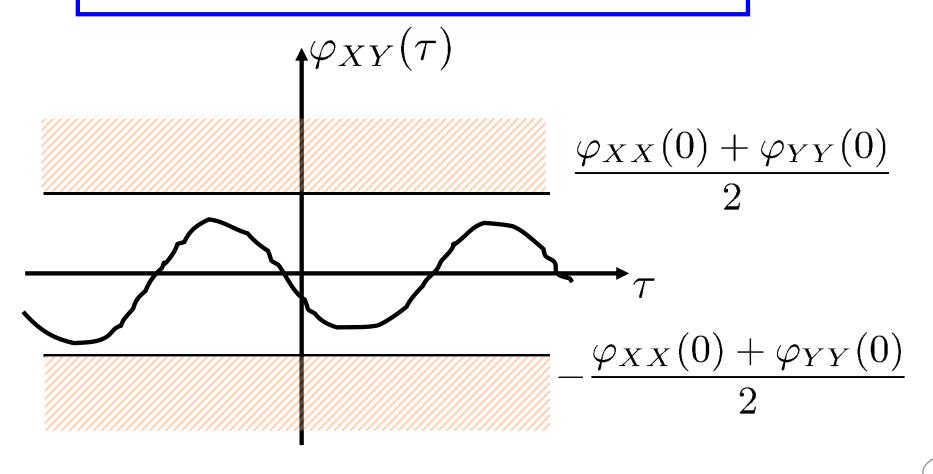
$$\mp \varphi_{XY}(\tau) < \frac{1}{2} [\varphi_{XX}(0) + \varphi_{YY}(0)]$$

14

>0

$$|\varphi_{XY}(\tau)| < \frac{1}{2} \left[\varphi_{XX}(0) + \varphi_{YY}(0) \right]$$

$$|\varphi_{XY}(\tau)| < \frac{1}{2} \left[\varphi_{XX}(0) + \varphi_{YY}(0) \right]$$



KKF periodischer Zeitfunktionen

Vorausetzung: periodische deterministische Zeitfunktionen $\,u_{p_1}(t)\,$ und $\,u_{p_2}(t)\,$ haben die gleiche Periode $\,t_p\,$ (Sonderfall stochastischer Signale)

$$\varphi_{p_{12}}(\tau) = \frac{1}{kt_p} \int_{kt_p} u_{p_1}(t) u_{p_2}(t+\tau) dt, \quad k \in \mathbb{N} \setminus \{0\}$$

KKF periodischer Zeitfunktionen

Vorausetzung: periodische deterministische Zeitfunktionen $\,u_{p_1}(t)\,$ und $\,u_{p_2}(t)\,$ haben die gleiche Periode $\,t_p\,$ (Sonderfall stochastischer Signale)

$$\varphi_{p_{12}}(\tau) = \frac{1}{kt_p} \int_{kt_p} u_{p_1}(t) u_{p_2}(t+\tau) dt, \quad k \in \mathbb{N} \setminus \{0\}$$

KKF aperiodischer Zeitfunktionen $u_1(t)$ und $u_2(t)$

analog zur AKF aperiodischer Zeitfunktionen

$$\varphi_{u_{12}}^{\mathrm{E}}(\tau) = \int_{-\infty}^{\infty} u_1(t) u_2(t+\tau) \mathrm{d}t$$
 (aperiodisch)

wie bei der AKF kann auch die KKF aperiodischer Zeitfunktionen als Faltung ausgedrückt werden

Faltung:
$$u_1(t)*u_2(t) = \int_{-\infty}^{\infty} u_1(\tau)u_2(t-\tau)\mathrm{d}\tau$$
$$= \int_{-\infty}^{\infty} u_1(\beta)u_2(t-\beta)\mathrm{d}\beta$$

wie bei der AKF kann auch die KKF aperiodischer Zeitfunktionen als Faltung ausgedrückt werden

Faltung:
$$u_1(t) * u_2(t) = \int_{-\infty}^{\infty} u_1(\tau) u_2(t-\tau) d\tau$$
$$= \int_{-\infty}^{\infty} u_1(\beta) u_2(t-\beta) d\beta$$

Behauptung:

$$\varphi_{u_{12}}^{\mathrm{E}}(\tau) = u_1(-\tau) * u_2(\tau)$$

reis:
$$u_1(-\tau) * u_2(\tau) = \int_{z=-\infty}^{z=\infty} u_1(-z)u_2(\tau-z)\mathrm{d}z$$

$$\frac{-z=t}{\mathrm{d}z=-\mathrm{d}t}$$

Beweis:

$$u_1(- au) * u_2(au) = \int_{z=-\infty}^{\infty} u_1(-z)u_2(au-z) dz$$

weis:
$$u_1(-\tau) * u_2(\tau) = \int_{z=-\infty}^{z=\infty} u_1(-z)u_2(\tau-z)\mathrm{d}z$$

$$\frac{-z=t}{\mathrm{d}z=-\mathrm{d}t} = \int_{t=-\infty}^{t=-\infty} u_1(t)u_2(\tau+t)(-\mathrm{d}t)$$

Beweis:

$$u_1(-\tau) * u_2(\tau) = \int_{z=-\infty} u_1(-z)u_2(\tau-z)dz$$

weis:
$$u_1(-\tau) * u_2(\tau) = \int_{z=-\infty}^{z=\infty} u_1(-z)u_2(\tau - z)dz$$

$$\frac{-z = t}{dz = -dt} = \int_{t=\infty}^{t=-\infty} u_1(t)u_2(\tau + t)(-dt)$$

$$= \int_{-\infty}^{\infty} u_1(t)u_2(t+\tau)dt$$

Beweis:

vers:
$$u_1(-\tau) * u_2(\tau) = \int_{z=-\infty}^{z=-\infty} u_1(-z)u_2(\tau-z)\mathrm{d}z$$

$$= \int_{t=\infty}^{t=-\infty} u_1(t)u_2(\tau+t)(-\mathrm{d}t)$$

$$= \int_{-\infty}^{\infty} u_1(t)u_2(t+\tau)\mathrm{d}t$$

$$\varphi_{u_{12}}^{\mathcal{E}}(\tau) = u_1(-\tau) * u_2(\tau) = \int_{-\infty}^{\infty} u_1(t)u_2(t+\tau)dt$$

Anwendung: Bildung der KKF durch LTI-Systeme

$$u_e(t) \longrightarrow g(t) \longrightarrow u_a(t) = u_e(t) * g(t)$$

$$u_e(t) = u_1(-t)$$
 $g(t) = u_2(t)$

$$g(t) = u_2(t)$$

$$u_a(t) = \varphi_{u_{12}}^{\mathbf{E}}(t)$$

2 stochastische Prozesse sind orthogonal, falls

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\} = \overline{x(t)y(t+\tau)} = 0$$

2 stochastische Prozesse sind orthogonal, falls

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\} = \overline{x(t)y(t+\tau)} = 0$$

$$Z(t) = X(t) + Y(t)$$
 AKF?

2 stochastische Prozesse sind orthogonal, falls

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\} = \overline{x(t)y(t+\tau)} = 0$$

$$Z(t) = X(t) + Y(t)$$
 AKF?

$$\varphi_{ZZ}(\tau) = E\{Z(t)Z(t+\tau)\}$$

$$= E\{[X(t) + Y(t)][X(t+\tau) + Y(t+\tau)]\}$$

2 stochastische Prozesse sind orthogonal, falls

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\} = \overline{x(t)y(t+\tau)} = 0$$

$$Z(t) = X(t) + Y(t)$$
 AKF?

$$\varphi_{ZZ}(\tau) = \mathbb{E}\{Z(t)Z(t+\tau)\}$$

$$= \mathbb{E}\{[X(t)+Y(t)][X(t+\tau)+Y(t+\tau)]\}$$

$$= \mathbb{E}\{X(t)X(t+\tau)\} + \mathbb{E}\{X(t)Y(t+\tau)\} + \mathbb{E}\{Y(t)X(t+\tau)\} + \mathbb{E}\{Y(t)Y(t+\tau)\}$$

$$\varphi_{XX}(\tau) \qquad \varphi_{XY}(\tau) \qquad \varphi_{YX}(\tau) = \varphi_{XY}(-\tau) \qquad \varphi_{YY}(\tau)$$

2 stochastische Prozesse sind orthogonal, falls

$$\varphi_{XY}(\tau) = \mathbb{E}\{X(t)Y(t+\tau)\} = \overline{x(t)y(t+\tau)} = 0$$

$$Z(t) = X(t) + Y(t)$$
 AKF?

$$\varphi_{ZZ}(\tau) = \mathbb{E}\{Z(t)Z(t+\tau)\}$$

$$= \mathbb{E}\{[X(t)+Y(t)][X(t+\tau)+Y(t+\tau)]\}$$

$$= \mathbb{E}\{X(t)X(t+\tau)\} + \mathbb{E}\{X(t)Y(t+\tau)\} + \mathbb{E}\{Y(t)X(t+\tau)\} + \mathbb{E}\{Y(t)Y(t+\tau)\}$$

$$\varphi_{XX}(\tau) \qquad \varphi_{XY}(\tau) \qquad \varphi_{YX}(\tau) = \varphi_{XY}(-\tau) \qquad \varphi_{YY}(\tau)$$

$$\varphi_{XY}(\tau) + \varphi_{YX}(\tau)$$
 ist gerade

Falls X(t) und Y(t) orthogonal sind,

d.h.
$$\varphi_{XY}(\tau) = \varphi_{YX}(\tau) = 0$$
, gilt

$$\varphi_{ZZ}(\tau) = \varphi_{XX}(\tau) + \varphi_{YY}(\tau)$$

Falls X(t) und Y(t) orthogonal sind,

d.h.
$$\varphi_{XY}(\tau) = \varphi_{YX}(\tau) = 0$$
, gilt

$$\varphi_{ZZ}(\tau) = \varphi_{XX}(\tau) + \varphi_{YY}(\tau)$$

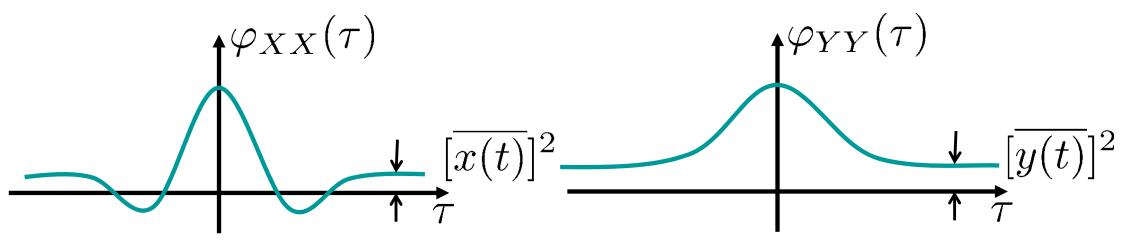
Für $\tau = 0$:

$$\varphi_{ZZ}(0) = \varphi_{XX}(0) + \varphi_{YY}(0)$$

Die Summe der mittleren Leistung der Einzelsignale ist gleich der mittleren Leistung der Vorgangs.

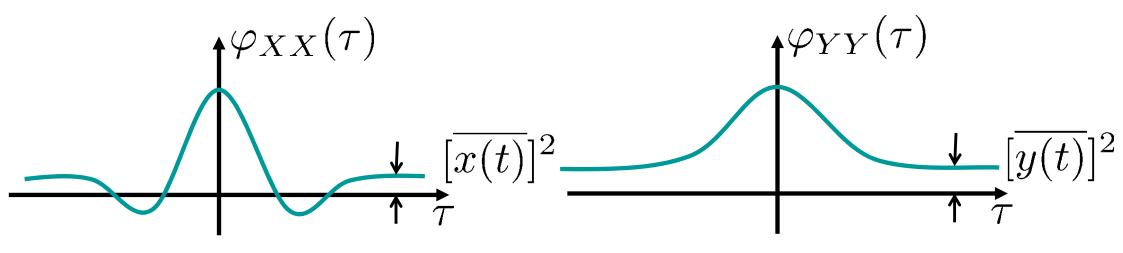
Bedeutung der Gleichkomponenten

$$\frac{\overline{x(t)}}{\overline{y(t)}} = E\{X(t)\}\$$



Bedeutung der Gleichkomponenten

$$\frac{\overline{x(t)}}{\overline{y(t)}} = E\{X(t)\}\$$



$$\overline{z(t)} = \overline{x(t)} + \overline{y(t)}$$

Unkorrelierte Prozesse

Bei unkorrelierten Prozessen ist die KKF eine Konstante

$$\varphi_{XY}(\tau) = E\{X(t)\}E\{Y(t)\} = \overline{x(t)} \cdot \overline{y(t)}$$

orthogonal falls
$$\overline{x(t)} = 0, \ \overline{y(t)} = 0$$

Orthogonalität für periodische deterministische Signale

2 periodische deterministische Signale heißen orthogonal, wenn eine schwächere Bedingung

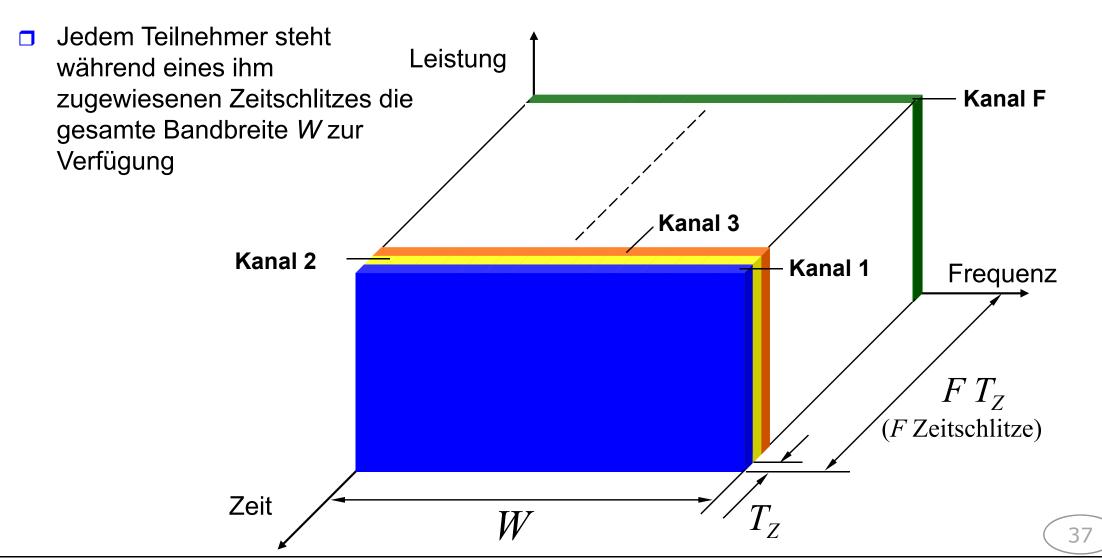
$$\varphi_{p_{12}}(0) = \overline{u_{p_1}(t)u_{p_2}(t+0)}$$

$$= \frac{1}{t_p} \int_{t_p} u_{p_1}(t)u_{p_2}(t) dt$$

$$= 0$$

erfüllt ist.

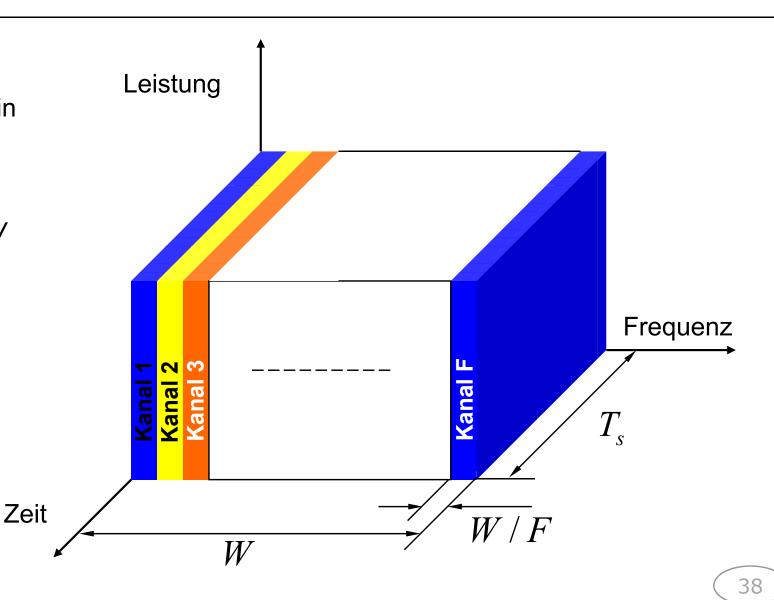
TDMA



Technische Universität Ilmenau Fachgebiet Nachrichtentechnik

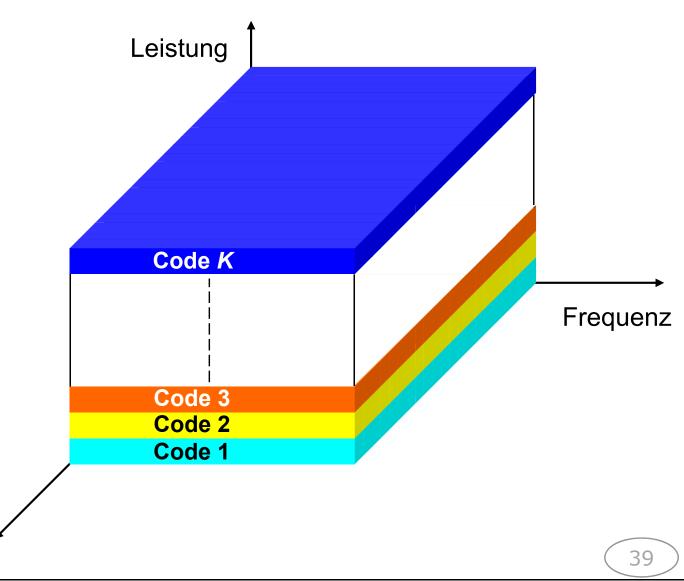
FDMA

 □ Jedem Teilnehmer steht durchgehend ein begrenztes Frequenzband innerhalb der Gesamtbandbreite W zur Verfügung



CDMA

- Zu jeder Zeit steht die gesamte spektrale Bandbreite W zur Verfügung.
- Die Trennung der einzelnen Signale wird durch Verwendung teilnehmerspezifischer Codes ermöglicht.



Zeit

Wdh.

Abtastung einer Zeitfunktionen

$$A_{t_0}\{x(t)\} = x(t) \sum_{n=-\infty}^{\infty} \delta(t - nt_0)$$
$$= \sum_{n=-\infty}^{\infty} x(nt_0) \delta(t - nt_0)$$

Voraussetzung:

- die stochastischen Signale x(t) & y(t) enthalten keine periodischen Komponenten

KKF der abgetasteten Vorgänge

(Definition als Zeitmittelwert)

$$t_0 \cdot A_{t_0} \{x(t)\}\$$
 und $t_0 \cdot A_{t_0} \{y(t)\}\$

$$\varphi_{A(xy)}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} t_0 A_{t_0} \{x(t)\} t_0 A_{t_0} \{y(t+\tau)\} dt$$

KKF der abgetasteten Vorgänge

(Definition als Zeitmittelwert)

$$t_0 \cdot A_{t_0} \{x(t)\}\$$
 und $t_0 \cdot A_{t_0} \{y(t)\}\$

$$\varphi_{A(xy)}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} t_0 A_{t_0} \{x(t)\} t_0 A_{t_0} \{y(t+\tau)\} dt$$

mit
$$A_{t_0}\{y(t+\tau)\} = y(t+\tau)\sum_{m=-\infty}^{\infty} \delta(t+\tau-mt_0)$$

KKF der abgetasteten Vorgänge

(Definition als Zeitmittelwert)

$$t_0 \cdot A_{t_0} \{x(t)\}$$
 und $t_0 \cdot A_{t_0} \{y(t)\}$

$$\varphi_{A(xy)}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{T} t_0 A_{t_0} \{x(t)\} t_0 A_{t_0} \{y(t+\tau)\} dt$$

mit
$$A_{t_0}\{y(t+\tau)\} = y(t+\tau)\sum_{m=-\infty}^{\infty} \delta(t+\tau-mt_0)$$

$$\varphi_{A(xy)}(\tau) = \lim_{T \to \infty} \frac{t_0^2}{T} \int_T x(t) y(t+\tau) \sum_{n=-\infty}^{\infty} \delta(t-nt_0) \sum_{m=-\infty}^{\infty} \delta(t+\tau-mt_0) dt$$

Bekannt:
$$u(t) \delta(t - nt_0) = u(nt_0) \delta(t - nt_0)$$

$$\delta(t + \tau - mt_0) \,\delta(t - nt_0) = \delta(nt_0 + \tau - mt_0) \,\delta(t - nt_0)$$
$$= \delta\left(\tau - \underbrace{[m - n]}_{t_0} t_0\right) \delta(t - nt_0)$$

Substitution: k = m - n

Bekannt:
$$u(t) \delta(t - nt_0) = u(nt_0) \delta(t - nt_0)$$

$$\delta(t + \tau - mt_0) \,\delta(t - nt_0) = \delta(nt_0 + \tau - mt_0) \,\delta(t - nt_0)$$
$$= \delta\left(\tau - [m - n]t_0\right) \delta(t - nt_0)$$

Substitution: k = m - n

$$\varphi_{A(xy)}(\tau) = \lim_{T \to \infty} \frac{t_0^2}{T} \int_T \left[x(t) y(t+\tau) \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(t-nt_0) \delta(\tau-kt_0) \right] dt$$

$$= t_0 \cdot \lim_{T \to \infty} \frac{t_0}{T} \int_T \left[\underbrace{x(t) y(t+\tau)}_{z(t)} \sum_{n=-\infty}^{\infty} \delta(t-nt_0) \right] dt \sum_{k=-\infty}^{\infty} \delta(\tau-kt_0)$$

Allgemein: z(t) enthalte keine periodischen Komponenten

$$\lim_{T \to \infty} \frac{t_0}{T} \int_T z(t) \sum_{n = -\infty}^{\infty} \delta(t - nt_0) dt$$

$$= \lim_{T \to \infty} \frac{t_0}{T} \int_T \sum_{n = -\infty}^{\infty} z(nt_0) \delta(t - nt_0) dt = \cdots$$

Setze: $T=Nt_0$ Integrationsintervall der Länge T (N Stöße), z. B. Normalabtastung $t_0 = 2t_0$ Normalabtastung $t_0 = 2t_0$ Normalabtastung $t_0 = 2t_0$ Normalabtastung

46

 $T = Nt_0$

$$\dots = \lim_{N \to \infty} \frac{t_0}{Nt_0} \int_{\frac{t_0}{2}}^{\frac{t_0}{2} + Nt_0} \sum_{n=1}^{N} z(nt_0) \, \delta(t - nt_0) \, dt$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} z(nt_0) \underbrace{\int_{\frac{t_0}{2}}^{\frac{t_0}{2} + Nt_0} \delta(t - nt_0) \, dt}_{1}$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} z(nt_0) = \overline{z(t)} = \lim_{T \to \infty} \frac{1}{T} \int_{T} z(t) \, dt$$

Falls z(t) keine periodischen Komponenten enthält, muß das Abtasttheorem nicht erfüllt sein.

$$\dots = \lim_{T \to \infty} \frac{t_0}{T} \int_T \underbrace{x(t) y(t+\tau)}_{n=-\infty} \sum_{n=-\infty}^{\infty} \delta(t-nt_0) dt$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \underbrace{x(nt_0) y(nt_0 + \tau)}_{z(nt_0)}$$

$$= \varphi_{xy}(\tau) = \overline{x(t)y(t+\tau)} = \lim_{T \to \infty} \frac{1}{T} \int_T x(t) y(t+\tau) dt$$

$$arphi_{A(xy)}(au) = t_0 \ arphi_{xy}(au) \sum_{k=-\infty}^{\infty} \delta\left(au - kt_0\right)$$

$$= t_0 \cdot A_{t_0}\{\varphi_{xy}(au)\}$$

KKF:

$$\varphi_{A(xy)}(\tau) = t_0 \cdot A_{t_0} \{ \varphi_{xy}(\tau) \} = t_0 \ \varphi_{xy}(\tau) \sum_{k=-\infty}^{\infty} \delta \left(\tau - kt_0 \right)$$

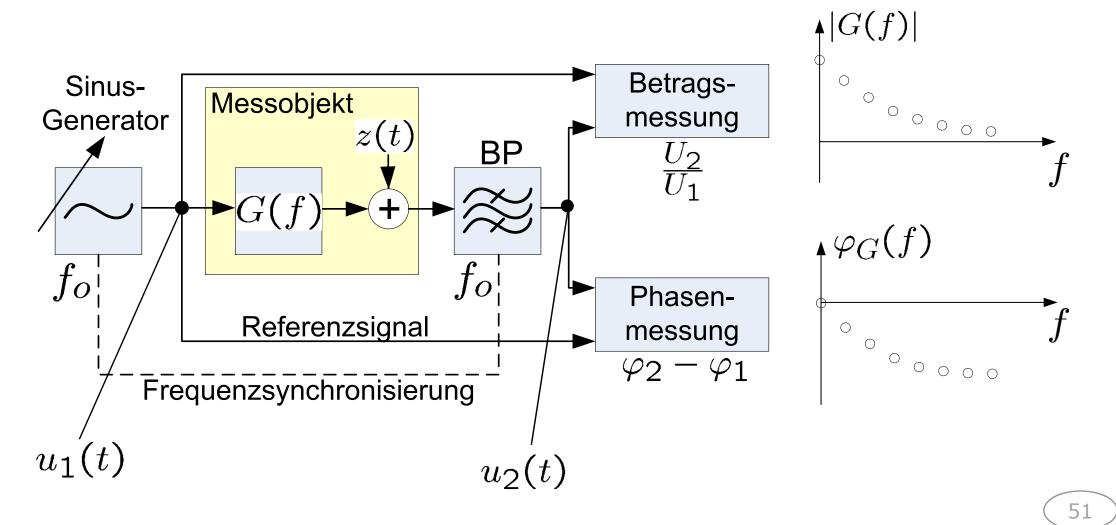
AKF:

$$\varphi_{A(xx)}(\tau) = t_0 \cdot A_{t_0} \{ \varphi_{xx}(\tau) \} = t_0 \ \varphi_{xx}(\tau) \sum_{k=-\infty}^{\infty} \delta \left(\tau - kt_0 \right)$$

- ⇒ Die Korrelationsfunktionen der abgetasteten kontinuierlichen Zeitfunktionen sind gleich den Abgetasteten der Originalfunktionen
- ⇒ Abtastung von Zeitfunktionen korrespondiert zur Abtastung der zugehörigen Korrelationsfunktionen

8. Stochastische Signale und LTI Systeme

Sinusmeßtechnik (1)



Sinusmeßtechnik (2)

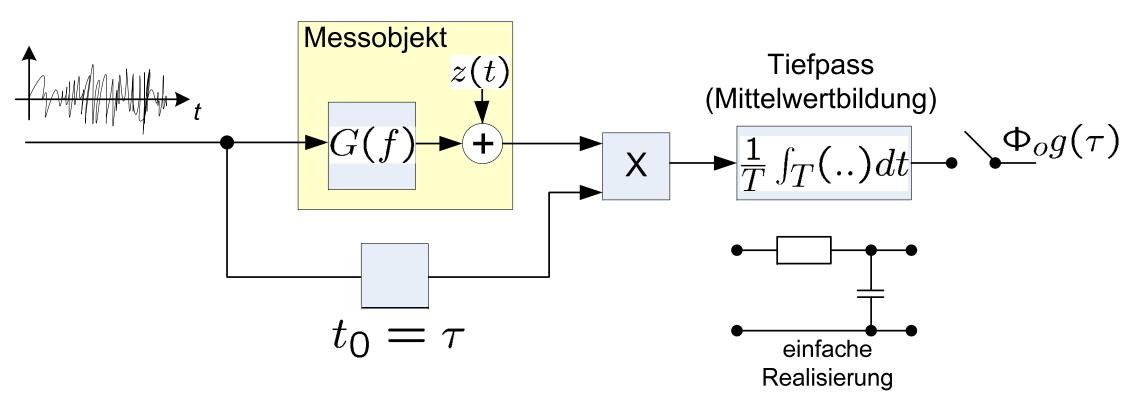
Meßsignal ist ein deterministisches Schmalbandsignal

$$u_1(t) = U_1 \cdot \sin(2\pi f_0 t + \varphi_1)$$

$$u_2(t) = U_2 \cdot \sin(2\pi f_0 t + \varphi_2)$$

- Meßgröße in Abhängigkeit von f_0
- Bestimmung von G(f)
- *G*(*f*₀) wird punktweise bestimmt
- prinzipiell ist eine totale Störunterdrückung möglich (Restfehler, da die Bandbreite des Bandpasses > 0)

Korrelationsmeßtechnik (1)



Korrelationsmeßtechnik (2)

Meßsignal ist ein breitbandiges Zufallssignal

$$x(t) \sim$$
 weißes Rauschen

Autokorrelationsfunktion (AKF)

- Meßgröße in Abhängigkeit von $t_0 = au$
- Bestimmung von g(t)
- $q(t_0) = q(\tau)$ wird punktweise bestimmt
- prinzipiell ist eine totale Störunterdrückung möglich (Restfehler, da Integrationszeit $< \infty$: endliche Meßzeit)

alternative Breitbandmessung

• Ermittlung von g(t) im Zeitbereich mit einmaligem (bzw. in der technischen Ausführung periodisch wiederholtem) Stoß als deterministischem Meßsignal

> Vorteil: geringe Meßzeit

g(t) kann direkt auf einem Oszilloskop dargestellt werden

> Nachteil: fehlende Störunterdrückung, da keine Mittelwertbildung

Korrelationsmeßtechnik mit farbigem Meßsignal

$$\Phi_{xx}(f) \neq \Phi_o = const.$$

$$\Phi_{xy}(f) = G(f) \cdot \Phi_{xx}(f)$$

$$G(f_o) = \frac{\Phi_{xy}(f_o)}{\Phi_{xx}(f_o)}$$
, falls $\Phi_{xx}(f_o) \neq 0$

→ Entzerrung erforderlich

9. Komplexe Signale und Systeme

9.1 Komplexe stochastische Prozesse

z.B. wichtig bei komplexer Basisbandbeschreibung modulierter Signale

Definition

$$Z(t) = X(t) + jY(t)$$

ist ein komplexwertiger (kurz: komplexer) stochastischer Prozess, wenn sowohl X(t) als auch Y(t) reellwertige Zufallsprozesse sind.

9.1 Komplexe stochastische Prozesse

z.B. wichtig bei komplexer Basisbandbeschreibung modulierter Signale

Definition

$$Z(t) = X(t) + jY(t)$$

ist ein komplexwertiger (kurz: komplexer) stochastischer Prozess, wenn sowohl X(t) als auch Y(t) reellwertige Zufallsprozesse sind.

Die gemeinsamen Dichten der Zufallsvariablen

$$Z(t_n); n = 1, 2, \dots, N,$$

sind durch die gemeinsamen Dichten der Komponentenprozesse von $\left[egin{array}{c} X(t) \\ Y(t) \end{array} \right]$ bestimmt.

$$f_{XY}(x_{t_1}, x_{t_2}, \dots, x_{t_N}; y_{t_1}, y_{t_2}, \dots, y_{t_N})$$

$$\varphi_{ZZ}(t_1, t_2) = E\{Z^*(t_1)Z(t_2)\}$$

$$\varphi_{ZZ}(t_1, t_2) = E\{Z^*(t_1)Z(t_2)\}$$

$$= E\{[X(t_1) - jY(t_1)][X(t_2) + jY(t_2)]\}$$

$$\varphi_{ZZ}(t_1, t_2) = E\{Z^*(t_1)Z(t_2)\}$$

$$= E\{[X(t_1) - jY(t_1)][X(t_2) + jY(t_2)]\}$$

$$= \varphi_{XX}(t_1, t_2) + \varphi_{YY}(t_1, t_2) \dots$$

$$\dots + j [\varphi_{XY}(t_1, t_2) - \varphi_{YX}(t_1, t_2)]$$

$$\varphi_{ZZ}(t_1, t_2) = \varphi_{ZZ}(t_2 - t_1) = \varphi_{ZZ}(\tau) = E\{Z^*(t)Z(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZZ}(t_1, t_2) = \varphi_{ZZ}(t_2 - t_1) = \varphi_{ZZ}(\tau) = E\{Z^*(t)Z(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZZ}^*(\tau) = E\{Z(t)Z^*(t+\tau)\}$$

Falls X(t) und Y(t) gemeinsam schwach stationär sind $\rightarrow Z(t)$ ist schwach stationär

$$\varphi_{ZZ}(t_1, t_2) = \varphi_{ZZ}(t_2 - t_1) = \varphi_{ZZ}(\tau) = E\{Z^*(t)Z(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZZ}^*(\tau) = E\{Z(t)Z^*(t+\tau)\}$$

= $E\{Z(t'-\tau)Z^*(t')\}$ mit $t' = t + \tau$

$$\varphi_{ZZ}(t_1, t_2) = \varphi_{ZZ}(t_2 - t_1) = \varphi_{ZZ}(\tau) = E\{Z^*(t)Z(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZZ}^*(\tau) = E\{Z(t)Z^*(t+\tau)\}$$

$$= E\{Z(t'-\tau)Z^*(t')\} \quad \text{mit } t' = t+\tau$$

$$= E\{Z^*(t')Z(t'-\tau)\}$$

$$= \varphi_{ZZ}(-\tau)$$

Falls X(t) und Y(t) gemeinsam schwach stationär sind $\rightarrow Z(t)$ ist schwach stationär

$$\varphi_{ZZ}(\tau) = E\{Z^*(t)Z(t+\tau)\}$$

$$= \varphi_{XX}(\tau) + \varphi_{YY}(\tau) \dots$$

$$\dots + j \left[\varphi_{XY}(\tau) - \varphi_{YX}(\tau)\right]$$

Sonderfall: *X*(*t*) und *Y*(*t*) sind mittelwertfrei, unkorreliert und gemeinsam stationär

Sonderfall: *X*(*t*) und *Y*(*t*) sind mittelwertfrei, unkorreliert und gemeinsam stationär

$$\varphi_{ZZ}(\tau) = \varphi_{XX}(\tau) + \varphi_{YY}(\tau)$$

$$\Phi_{ZZ}(f) = \Phi_{XX}(f) + \Phi_{YY}(f)$$

beide: gerade & reell

Kreuzkorrelationsfunktion (1)

$$Z(t) = X(t) + jY(t)$$
$$W(t) = U(t) + jV(t)$$

Kreuzkorrelationsfunktion (1)

$$Z(t) = X(t) + jY(t)$$
$$W(t) = U(t) + jV(t)$$

$$\varphi_{ZW}(t_1, t_2) = E\{Z^*(t_1)W(t_2)\}$$

$$Z(t) = X(t) + jY(t)$$
$$W(t) = U(t) + jV(t)$$

$$\varphi_{ZW}(t_1, t_2) = E\{Z^*(t_1)W(t_2)\}$$

$$= E\{[X(t_1) - jY(t_1)][U(t_2) + jV(t_2)]\}$$

$$Z(t) = X(t) + jY(t)$$
$$W(t) = U(t) + jV(t)$$

$$\varphi_{ZW}(t_1, t_2) = E\{Z^*(t_1)W(t_2)\}$$

$$= E\{[X(t_1) - jY(t_1)][U(t_2) + jV(t_2)]\}$$

$$= \varphi_{XU}(t_1, t_2) + \varphi_{YV}(t_1, t_2) \dots$$

$$\dots + j[\varphi_{XV}(t_1, t_2) - \varphi_{YU}(t_1, t_2)]$$

$$\varphi_{ZW}(t_1, t_2) = \varphi_{ZW}(\tau) = E\{Z^*(t)W(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZW}(t_1, t_2) = \varphi_{ZW}(\tau) = E\{Z^*(t)W(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZW}^*(\tau) = E\{Z(t)W^*(t+\tau)\}$$

$$\varphi_{ZW}(t_1, t_2) = \varphi_{ZW}(\tau) = E\{Z^*(t)W(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZW}^*(\tau) = E\{Z(t)W^*(t+\tau)\}$$

$$= E\{Z(t'-\tau)W^*(t')\} \text{ mit } t'=t+\tau$$

$$\varphi_{ZW}(t_1, t_2) = \varphi_{ZW}(\tau) = E\{Z^*(t)W(t + \tau)\}$$

$$\tau = t_2 - t_1$$

$$\varphi_{ZW}^*(\tau) = E\{Z(t)W^*(t+\tau)\}$$

$$= E\{Z(t'-\tau)W^*(t')\} \quad \text{mit } t' = t+\tau$$

$$= E\{W^*(t')Z(t'-\tau)\}$$

$$= \varphi_{WZ}(-\tau)$$

Signalraumdiagramme für digitale PAM Signale

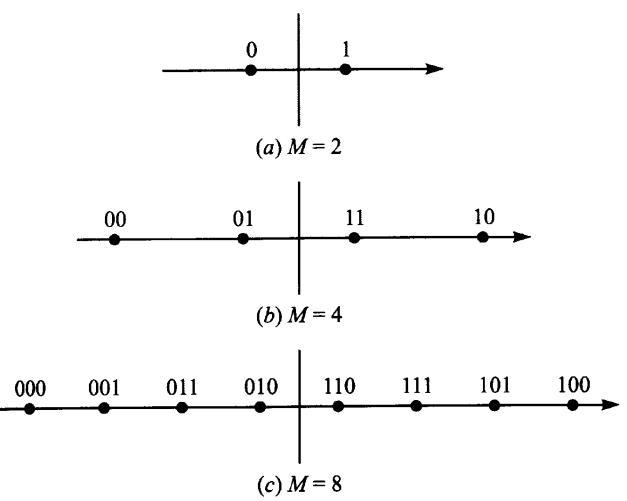
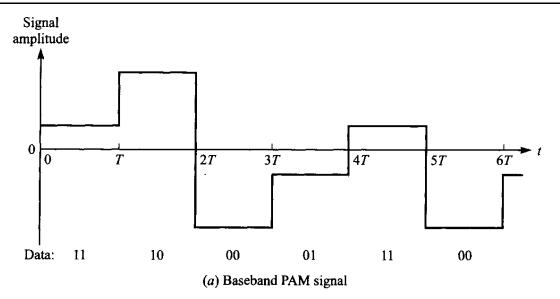


FIGURE 4.3–1

Signal space diagram for digital PAM signals.

Quelle: J. G. Proakis, Digital Communications, McGraw-Hill, 4th edition, 2000.

Basisband und Bandpass PAM Signale



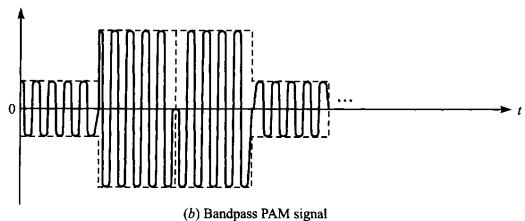


FIGURE 4.3–2 Baseband and band-pass PAM signals.

Quelle: J. G. Proakis, Digital Communications, McGraw-Hill, 4th edition, 2000.

Signalraumdiagramme für QAM

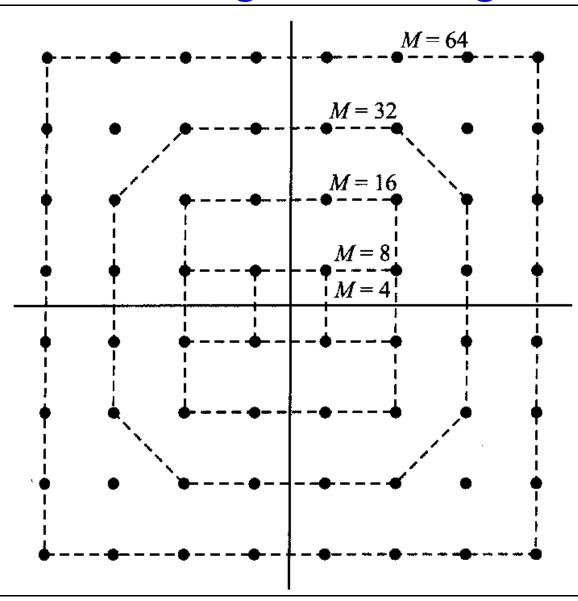
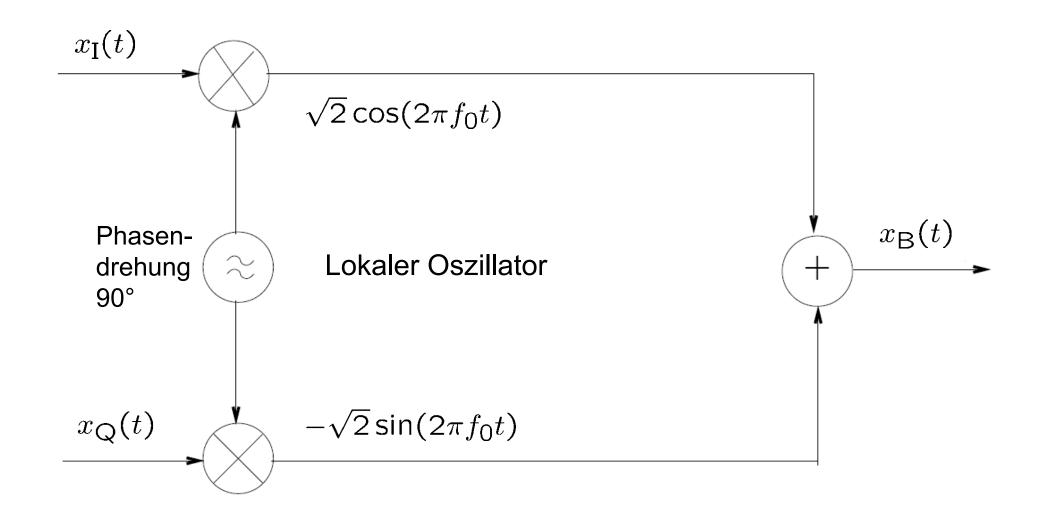


FIGURE 4.3–5

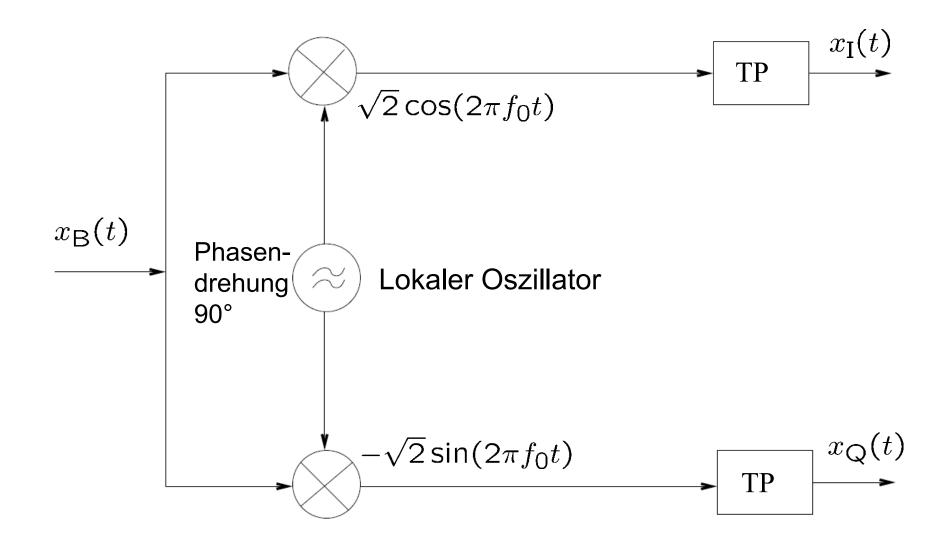
Several signal space diagrams for rectangular QAM.

Quelle: J. G. Proakis, Digital Communications, McGraw-Hill, 4th edition, 2000.

Quadraturmodulator



Quadraturdemodulator



9.5 Spektrale Leistungsdichte linear modulierter Signale

Rechteckimpuls und dessen spektrale Energiedichte

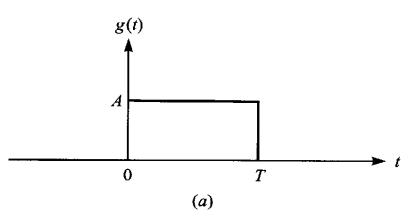
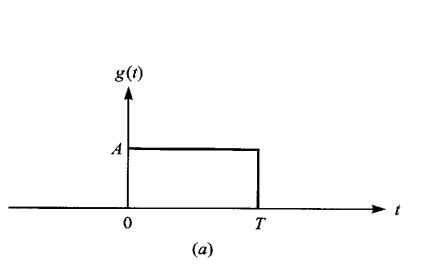


FIGURE 4.4–1 Rectangular pulse and its energy density spectrum $|G(f)|^2$.

Quelle: John G. Proakis, "Digital Communications", 2001.

Rechteckimpuls und dessen spektrale Energiedichte



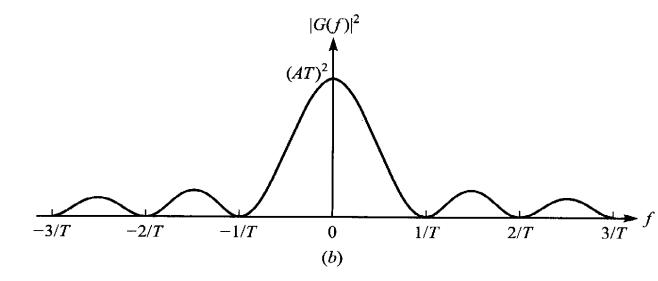


FIGURE 4.4–1 Rectangular pulse and its energy density spectrum $|G(f)|^2$.

Quelle: John G. Proakis, "Digital Communications", 2001.

Kosinus-Roll-Off-Impuls (β = 1) im Zeitbereich und dessen spektrale Energiedichte

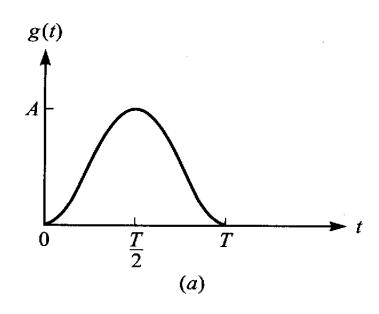
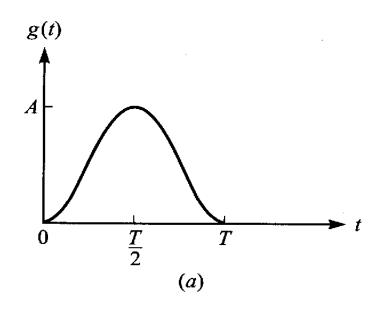


FIGURE 4.4–2

Raised cosine pulse and its energy density spectrum $|G(f)|^2$.

Quelle: John G. Proakis, "Digital Communications", 2001.

Kosinus-Roll-Off-Impuls (β = 1) im Zeitbereich und dessen spektrale Energiedichte



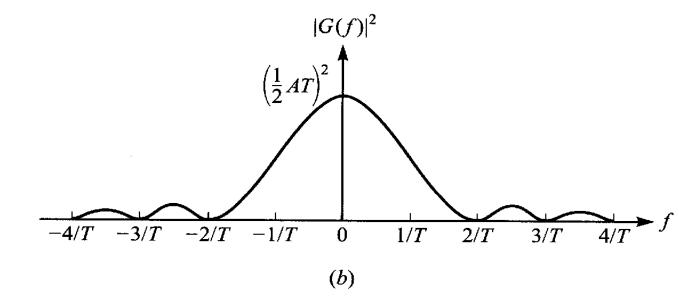


FIGURE 4.4–2

Raised cosine pulse and its energy density spectrum $|G(f)|^2$.

Quelle: John G. Proakis, "Digital Communications", 2001.

10. Nachrichtenübertragung über Kanäle mit additiven Rauschstörungen

1. Nyquist-Bedingung: ISI-Freiheit in benachbarten Abtastzeitpunkten (1)

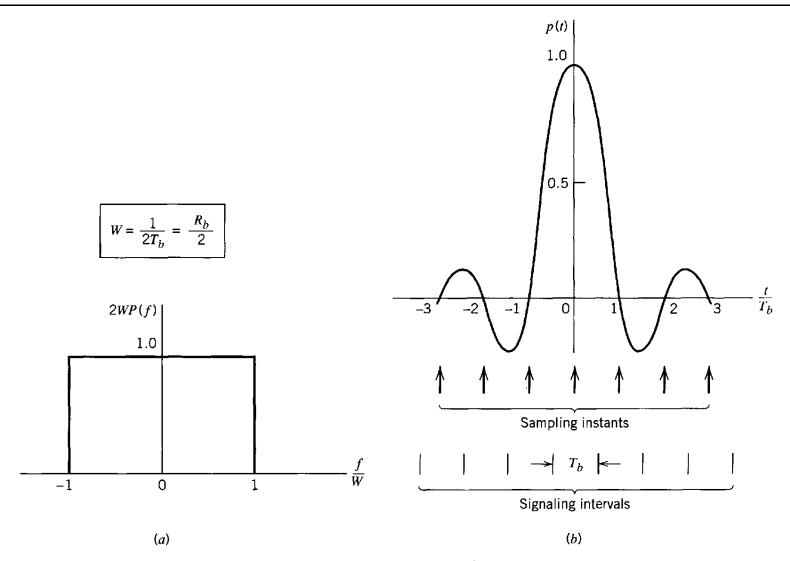
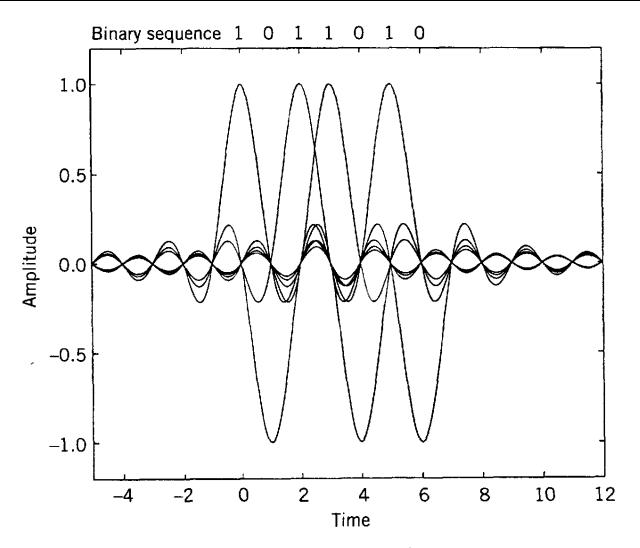


FIGURE 4.8 (a) Ideal magnitude response. (b) Ideal basic pulse shape.

Quelle: S. Haykin, "Communication Systems, Wiley, 2000.

1. Nyquist-Bedingung: ISI-Freiheit in benachbarten Abtastzeitpunkten (2)



Quelle: S. Haykin, "Communication Systems," Wiley, 2000.

FIGURE 4.9 A series of sinc pulses corresponding to the sequence 1011010.

Signalraumdiagramme für QAM

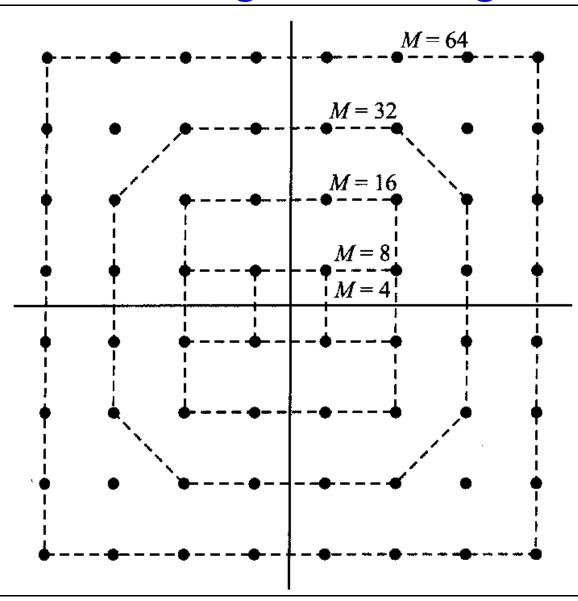
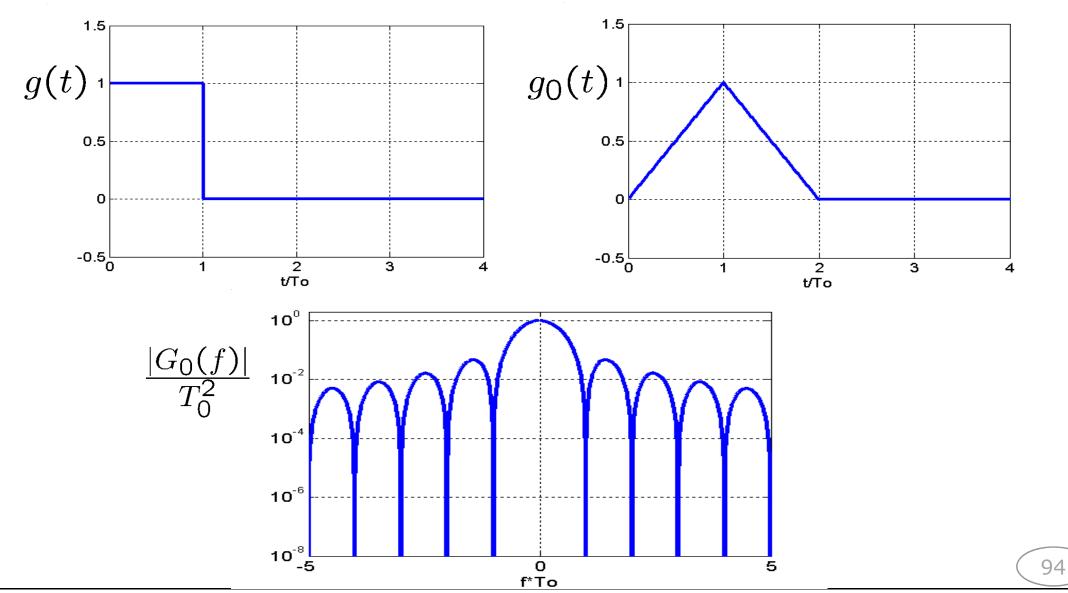


FIGURE 4.3–5

Several signal space diagrams for rectangular QAM.

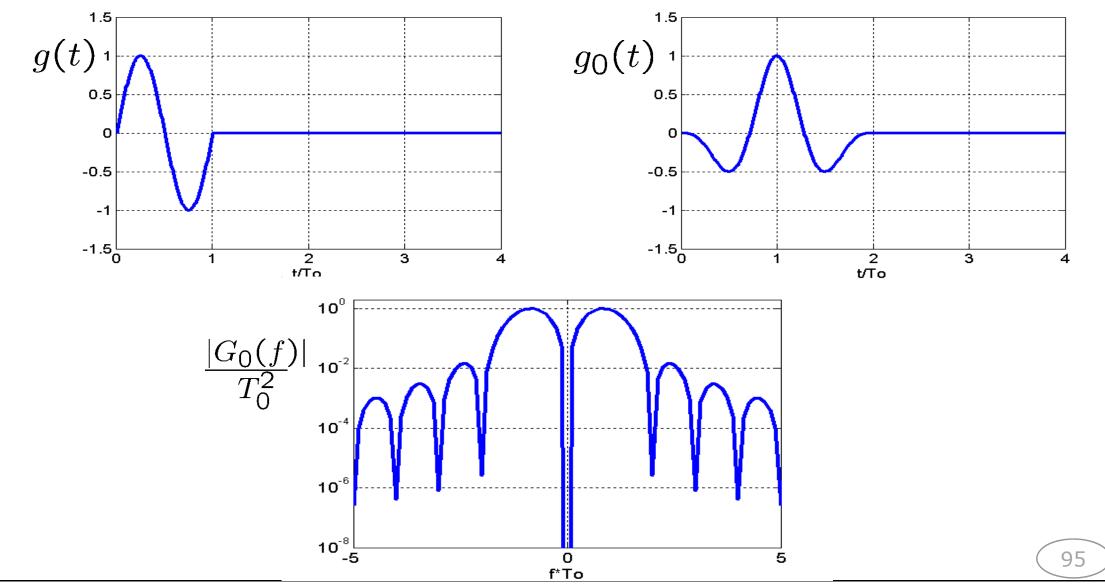
Quelle: J. G. Proakis, Digital Communications, McGraw-Hill, 4th edition, 2000.

Rechteckimpuls g(t)



Technische Universität Ilmenau Fachgebiet Nachrichtentechnik

Zeitbegrenzter Sinusimpuls g(t)



Technische Universität Ilmenau Fachgebiet Nachrichtentechnik

Kosinus-Roll-Off-Filter

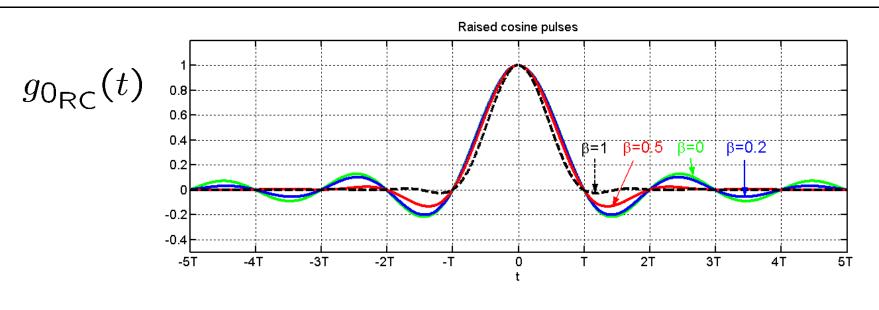
- Werden in der Praxis oft zur Impulsformung eingesetzt
 - Wurzel-Kosinus-roll-off Charakteristiken (root raised cosine) für Sende- und Empfangsfilter
- β ...roll-off-Faktor
- $\beta \cdot 100\%$...excess bandwidth (zusätzliche Bandbreite gegenüber idealem Tiefpaß)

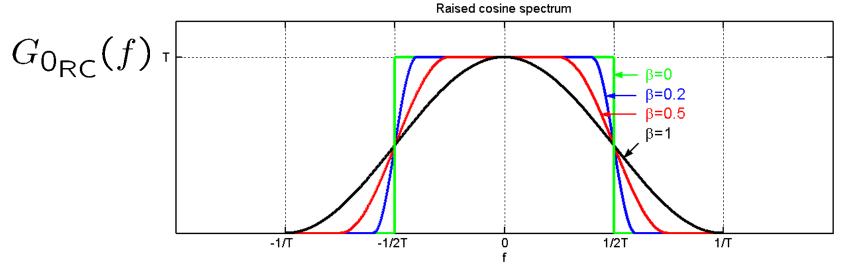
Nichtkausale Formulierung:

$$G_{o_{RC}}(f) = \begin{cases} T & , 0 \le |f| \le \frac{1-\beta}{2T} \\ \frac{T}{2} \{1 + \cos\left[\frac{\pi T}{\beta}(|f| - \frac{1-\beta}{2T})\right]\}, \frac{1-\beta}{2T} < |f| < \frac{1+\beta}{2T} \\ = T \cdot \cos^{2}\left[\frac{\pi T}{2\beta}(|f| - \frac{1-\beta}{2T})\right] \\ 0 & , |f| \ge \frac{1+\beta}{2T} \end{cases}$$

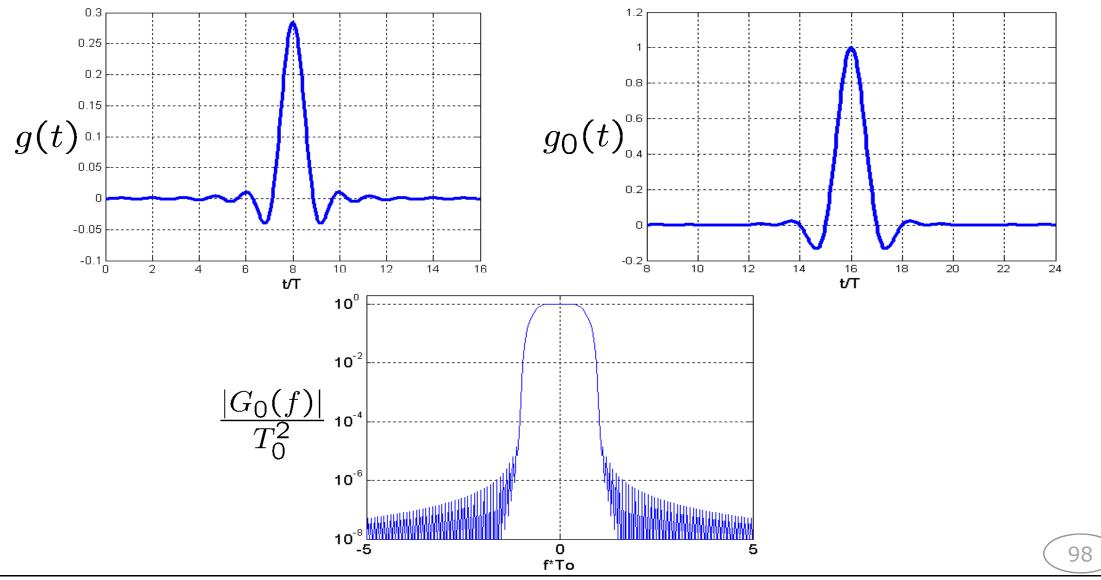
$$g_{o_{\rm RC}}(t) = \frac{\sin(\frac{\pi t}{T})}{\frac{\pi t}{T}} \cdot \frac{\cos(\frac{\pi \beta t}{T})}{1 - \frac{4\beta^2 t^2}{T^2}}$$

Kosinus-Roll-Off-Impuls

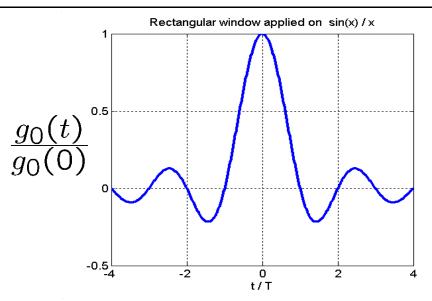


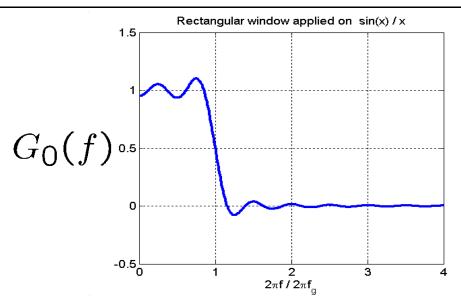


Zeitbegrenzter Wurzel-Kosinus-Roll-Off-Impuls (β = 0.5)

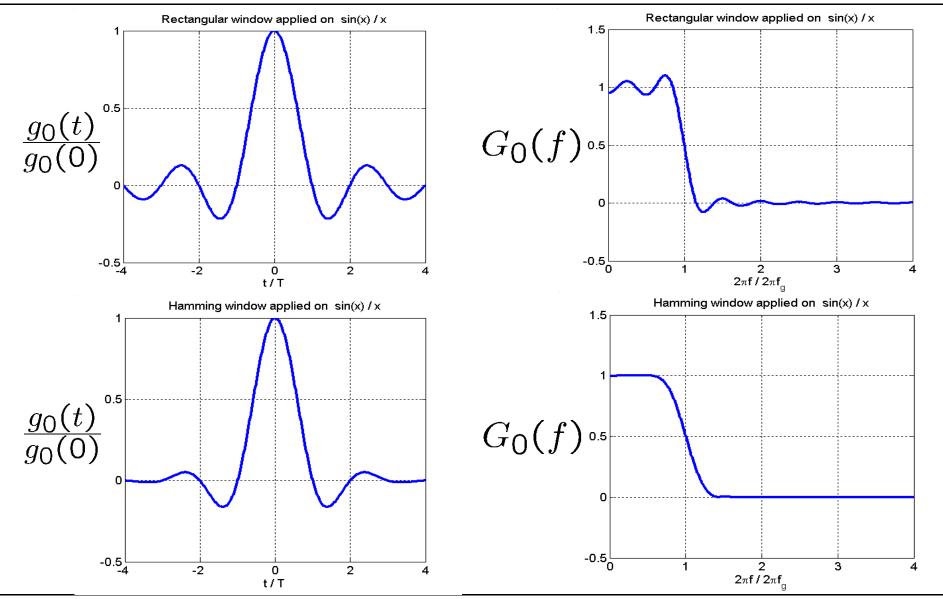


Gefensterte Impulsantworten (2 t_o = 8 T = 4 / f_g)





Gefensterte Impulsantworten (2 t_o = 8 T = 4 / f_g)



Nachrichtenübertragung mittels orthogonaler Basisfunktionen: Implementierung des Detektors als Bank signalangepaßter Filter

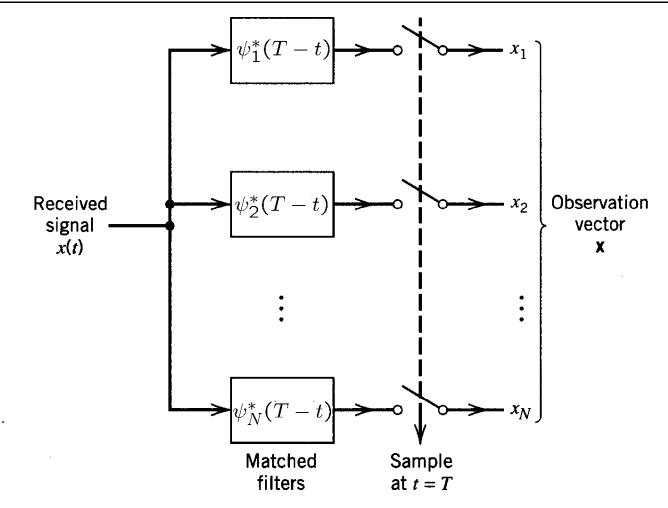


FIGURE 5.10 Detector part of matched filter receiver; the signal transmission decoder is as shown in Fig. 5.9b.

Quelle: S. Haykin, "Communication Systems," 2000.

Detektor und Decoder bei der Übertragung von Signalen im Signalraum: Nachrichtenübertragung mittels orthogonaler Signale

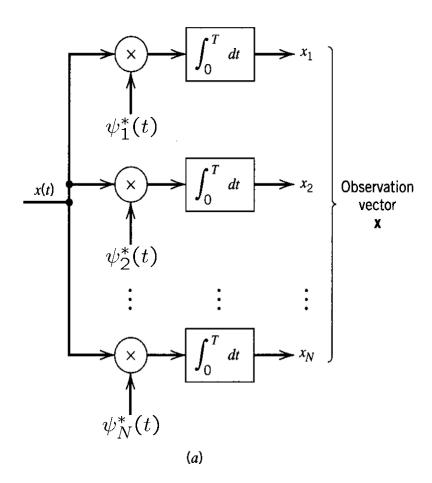


FIGURE 5.9 (a) Detector or demodulator. (b) Signal transmission decoder

Quelle: S. Haykin, "Communication Systems," 2000.

Detektor und Decoder bei der Übertragung von Signalen im Signalraum: Nachrichtenübertragung mittels orthogonaler Signale

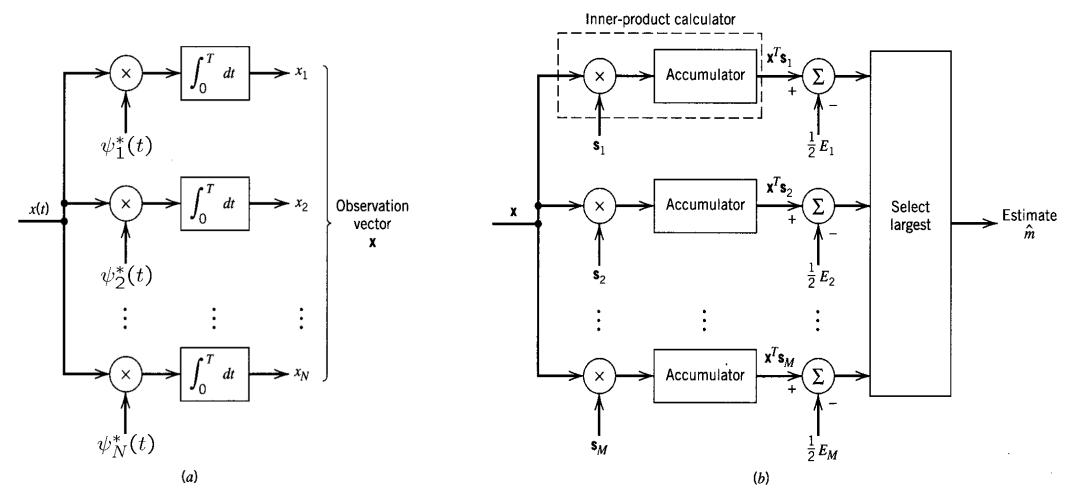


FIGURE 5.9 (a) Detector or demodulator. (b) Signal transmission decoder

Quelle: S. Haykin, "Communication Systems," 2000.

Matched Filter vs. Integrate-and-Dump Empfänger

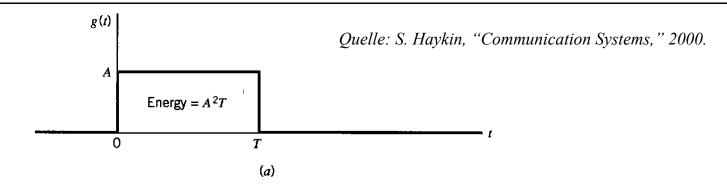


FIGURE 4.2 (a) Rectangular pulse. (b) Matched filter output. (c) Integrator output.

Matched Filter vs. Integrate-and-Dump Empfänger

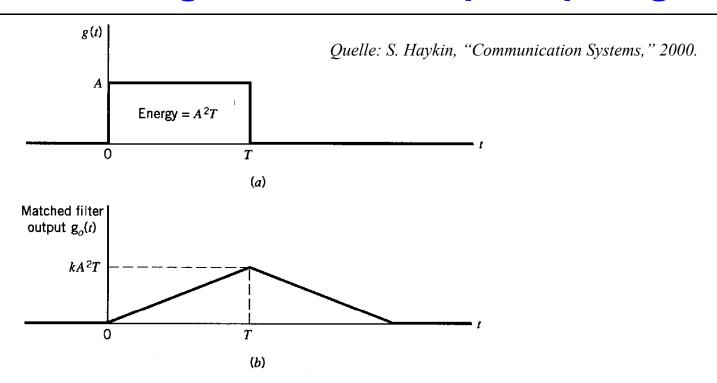
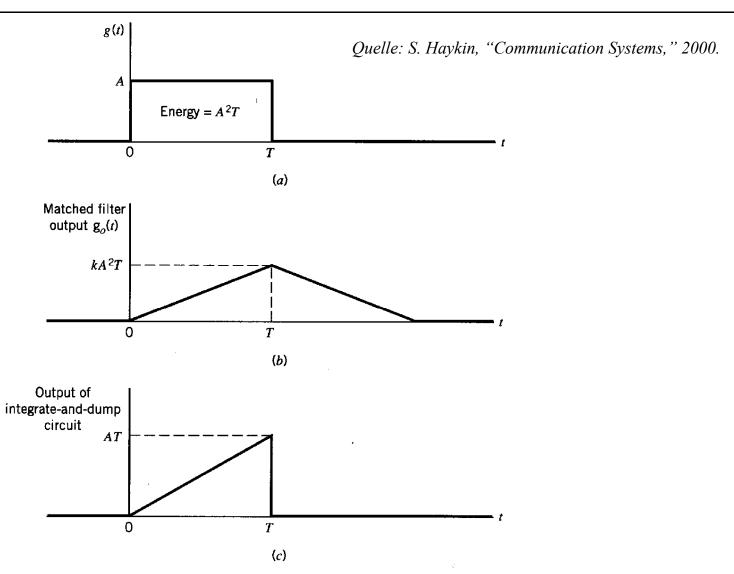
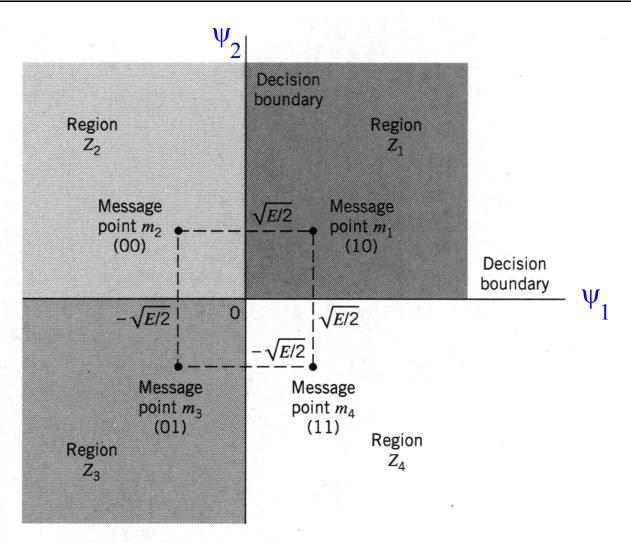


FIGURE 4.2 (a) Rectangular pulse. (b) Matched filter output. (c) Integrator output.

Matched Filter vs. Integrate-and-Dump Empfänger



Signalraum-Diagramm für kohärentes QPSK

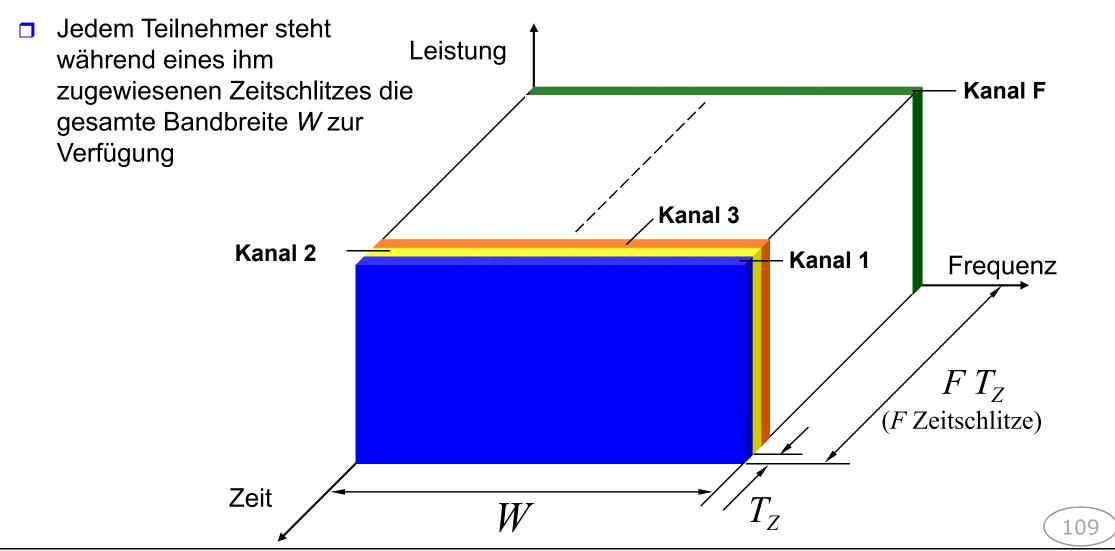


Quelle: S. Haykin, "Communication Systems," 2000.

FIGURE 6.6 Signal-space diagram of coherent QPSK system.

11. Vielfachzugriffsverfahren

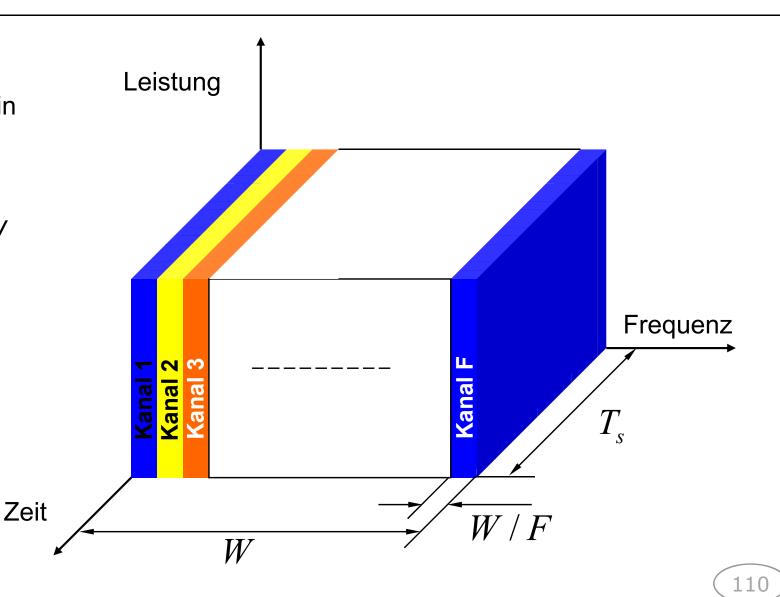
TDMA



Technische Universität Ilmenau Fachgebiet Nachrichtentechnik

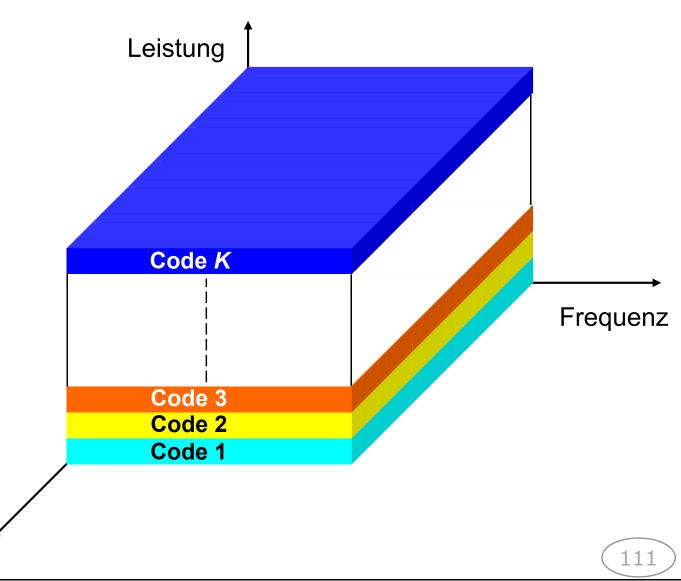
FDMA

 □ Jedem Teilnehmer steht durchgehend ein begrenztes Frequenzband innerhalb der Gesamtbandbreite W zur Verfügung



CDMA

- Zu jeder Zeit steht die gesamte spektrale Bandbreite W zur Verfügung.
- Die Trennung der einzelnen Signale wird durch Verwendung teilnehmerspezifischer Codes ermöglicht.



Zeit

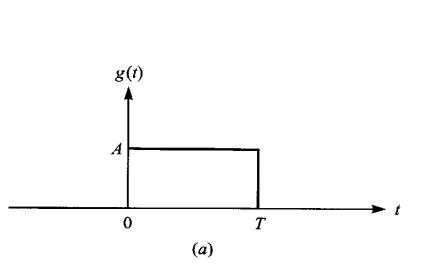
Code Division Multiple Access (CDMA)

- **□ Bandspreizverfahren** (*Spread Spectrum*)
 - \Rightarrow Informationssignal der Bandbreite R_b wird auf die Übertragungsbandbreite $W = R_c >> R_b$ gespreizt
 - ⇒ ursprünglich: militärische Anwendungen
 - ⇒ heute: auch viele kommerzielle Anwendungen, insbesondere im Mobilfunk
 - ⇒ 2 grundlegende Verfahren
 - Direct Sequence (DS), z.B. bei UMTS (WCDMA)
 - Frequency Hopping (FH), z.B. bei Bluetooth

Vorteile

- ⇒ große Toleranz gegenüber Interferenz
- ⇒ Störunempfindlichkeit
- ⇒ Toleranz gegenüber Mehrwegeausbreitung
- ⇒ vergrößerte Reichweite
- ⇒ unerwünschte Detektion kaum möglich / Abhörsicherheit (gespreiztes Signal sieht wie Rauschen aus)

Rechteckimpuls und dessen spektrale Energiedichte



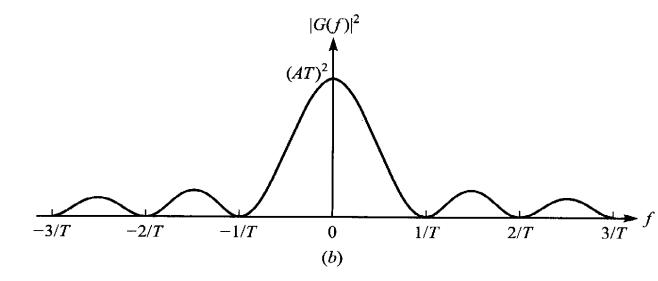
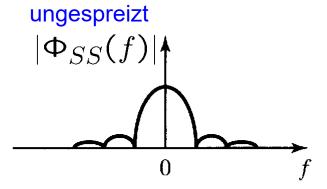


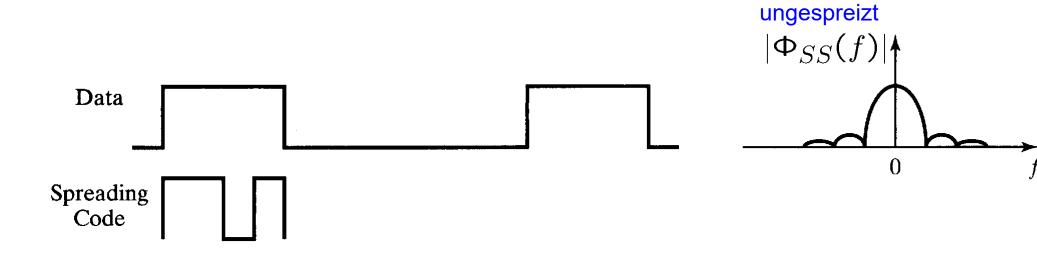
FIGURE 4.4–1 Rectangular pulse and its energy density spectrum $|G(f)|^2$.

Quelle: John G. Proakis, "Digital Communications", 2001.

Spreizung mit Q = 4



Spreizung mit Q = 4



Spreizung mit Q = 4

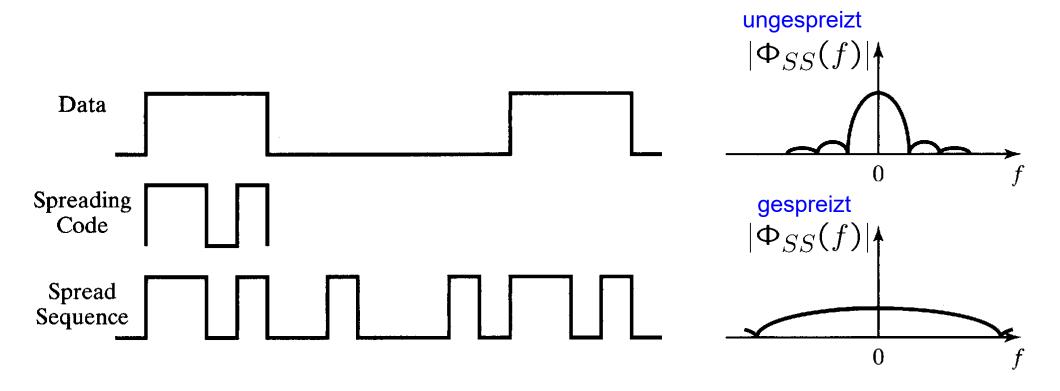


FIGURE 5.1 Spreading by a factor of four in the time and frequency domains.

Quelle: S. Haykin, M. Moher,

116

"Modern Wireless

Communications," 2005.

CDMA Modulator und Demodulator (MF implementiert als Korrelationsempfänger)

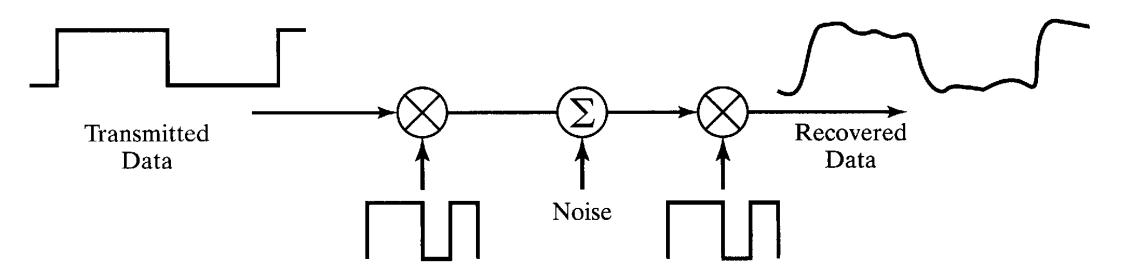


FIGURE 5.2 A simple CDMA modulator and optimum demodulator, with representative waveforms.

Quelle: S. Haykin, M. Moher,

117

"Modern Wireless

Communications," 2005.

Einfluß von Interferenz

SNR am Ausgang eines DS-Empfängers entspricht

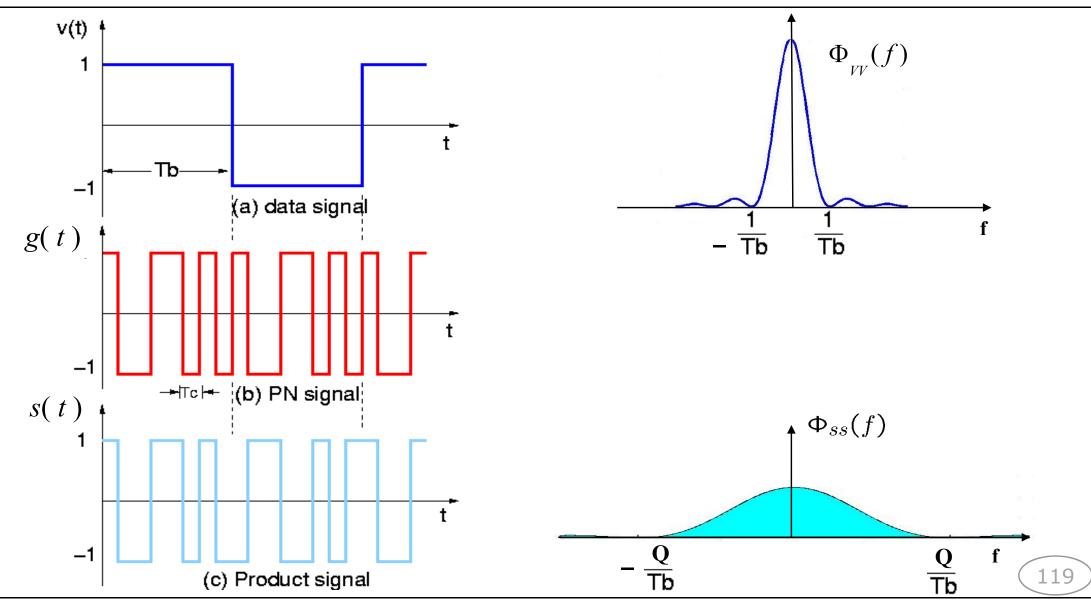
SNR am Ausgang eines Empfängers für nicht-gespreiztes BPSK oder QPSK

Uncodierte Bitfehlerrate bei kohärenter Detektion

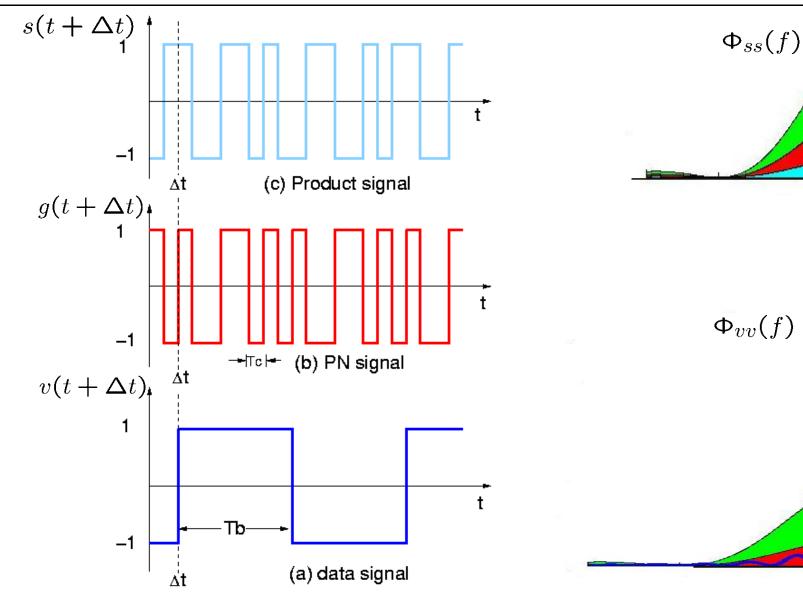
$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_b}{N_0}}\right)$$

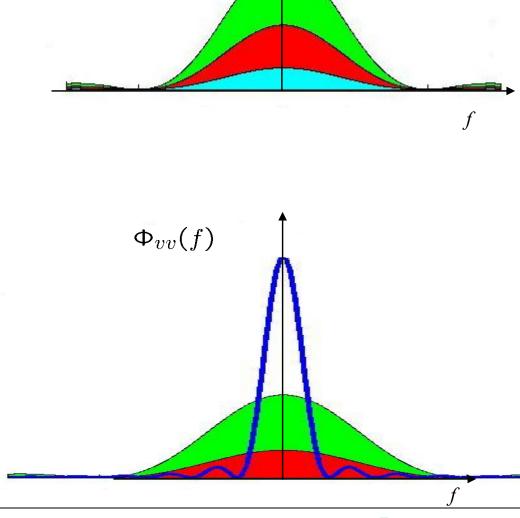
- DS-Empfänger reduziert die Empfindlichkeit gegenüber Interferenz
 - ⇒ Entspreizung wirkt als Spreizung auf Signale, auf die sie nicht angepaßt ist

Erzeugung eines DS-CDMA Signals



Entspreizung eines DS-CDMA Signals





Technische Universität Ilmenau

Fachgebiet Nachrichtentechnik

Walsh-Hadamard Codes der Länge Q = 4

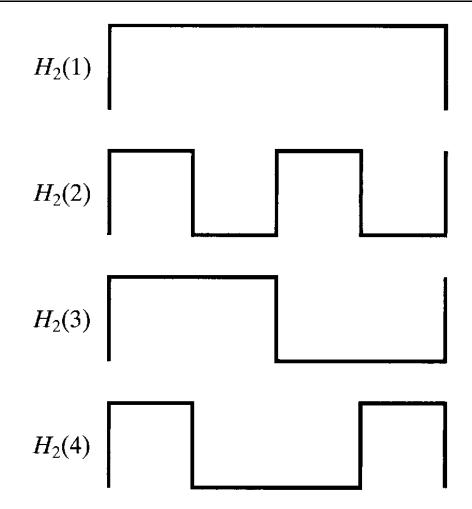
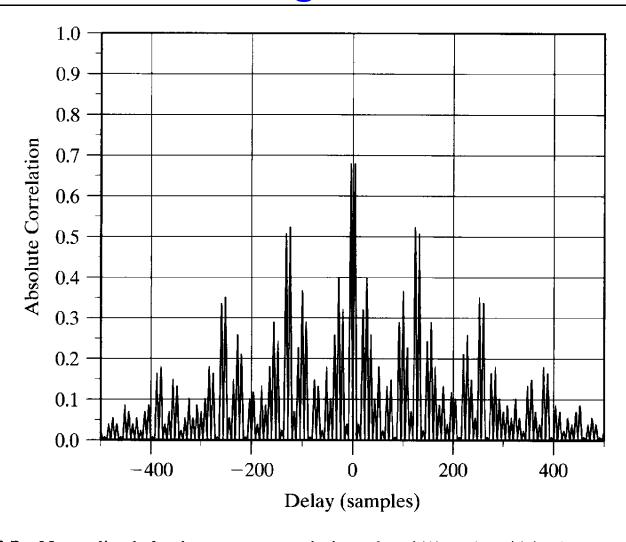


FIGURE 5.4 Walsh–Hadamard codes of length 4.

Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005. 121

KKF zwischen Walsh-Hadamard Codes der Länge Q = 128



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.5 Normalized absolute cross-correlation of $H_7(63)$ and $H_7(64)$ with four times oversampling.

OVSF Codes

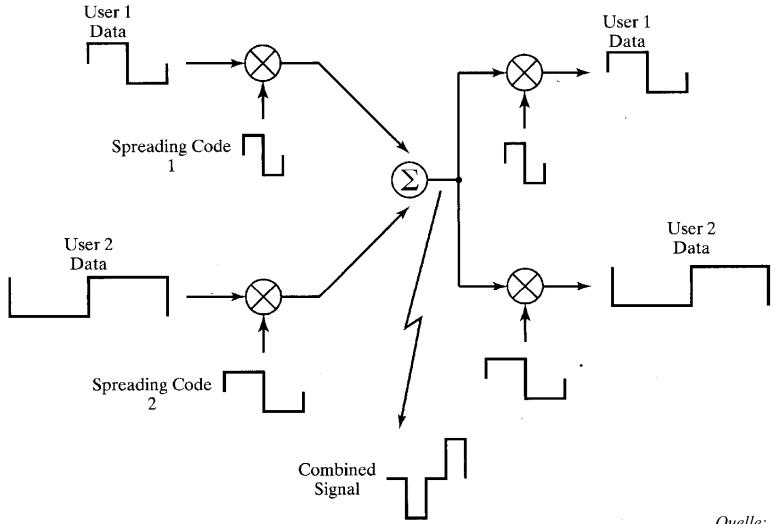
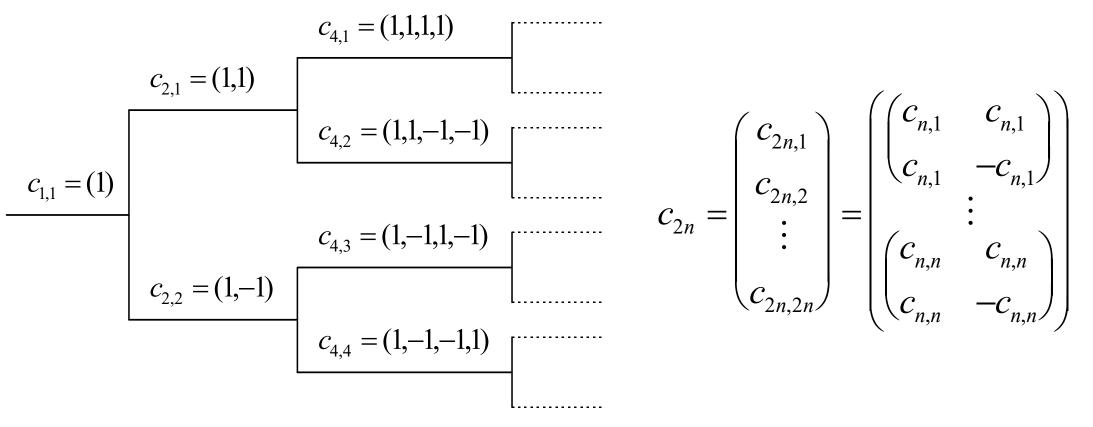


FIGURE 5.6 Illustration of orthogonal variable spreading factors.

Quelle: S. Haykin, M. Moher, "Modern Wireless 123

Communications," 2005.

OVSF code tree for channelization codes



$$SF = 2$$

SF = 4 (spreading factor, code length)

Source: 3GPP

m - (Maximal Length) Sequenzen

- Zur einfachen Erzeugung von binären Pseudo-Zufallsfolgen benutzt man *m*-stufige rückgekoppelte Schieberegister
 - ⇒ periodische binäre Sequenz
 - ⇒ die Ausgangssignale mehrerer Schieberegisterstufen werden Modulo-2-addiert und auf den Eingang zurückgeführt
 - ⇒ der Zustand { 0, 0, ..., 0 } ist auszuschließen
- Maximale Sequenzlänge bei m Flip-Flops: $Q = N = 2^m 1$
- Anzahl aller möglichen Zustände: 2^m -1

$$t_p = (2^m - 1) T_c$$

Schieberegister zur Erzeugung einer m-Sequenz für m = 3

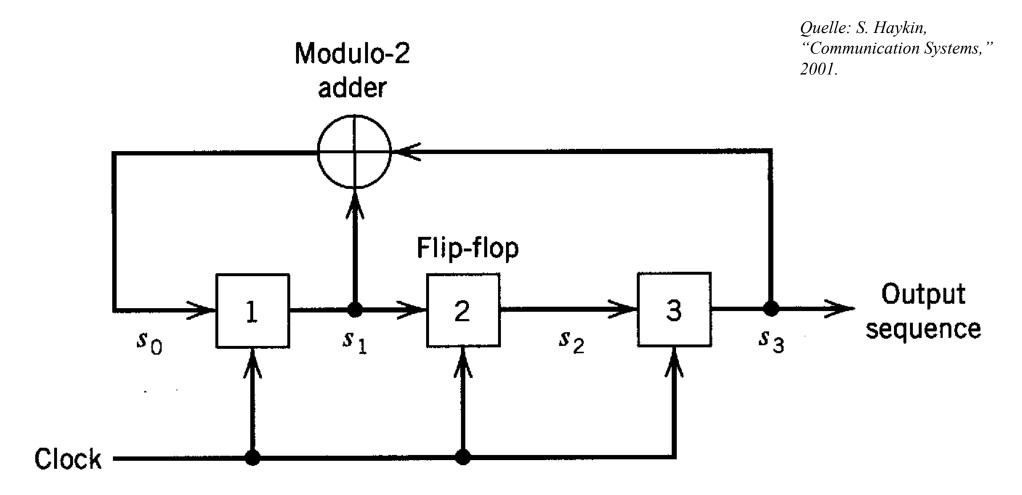


FIGURE 7.2 Maximal-length sequence generator for m = 3.

Eigenschaften von *m*-Sequenzen

- ☐ Jede m-Sequenz der Länge $Q = N = 2^m$ -1 enthält
 - \Rightarrow 2^{*m*-1} Einsen und
 - \Rightarrow 2^{*m*-1} 1 Nullen
- □ Die Modulo-2-Summe aus einer *m*-Sequenz und einer zyklisch verschobenen Version der gleichen *m*-Sequenz
 - ⇒ ergibt eine zyklisch verschobene Version dieser *m*-Sequenz
- □ Die Autokorrelationsfunktion (AKF) einer *m*-Sequenz ist
 - ⇒ binärwertig und
 - \Rightarrow periodisch mit der Periode $N = 2^m 1$
- Schieberegister zur Erzeugung von m-Sequenzen (siehe nächste Folie)
 - ⇒ plus dem "image set," das eine *m*-Sequenz mit gespiegeltem Zeitverlauf generiert

m-Sequenzen mit Schieberegistern der Länge 2 bis 8

TABLE 7.1 Maximal-length sequences of shift-register lengths 2–8

Shift-Register Length, m	Feedback Taps
2*	[2, 1]
3*	[3, 1]
4	[4, 1]
5*	[5, 2], [5, 4, 3, 2], [5, 4, 2, 1]
6	[6, 1], [6, 5, 2, 1], [6, 5, 3, 2]
7*	[7, 1], [7, 3], [7, 3, 2, 1], [7, 4, 3, 2], [7, 6, 4, 2], [7, 6, 3, 1], [7, 6, 5, 2], [7, 6, 5, 4, 2, 1], [7, 5, 4, 3, 2, 1]
8	[8, 4, 3, 2], [8, 6, 5, 3], [8, 6, 5, 2], [8, 5, 3, 1], [8, 6, 5, 1], [8, 7, 6, 1], [8, 7, 6, 5, 2, 1], [8, 6, 4, 3, 2, 1]

* Marsenne Prime Length Sequences, für die $N = 2^m - 1$ eine Primzahl ist.

Quelle: S. Haykin, "Communication Systems," 2001.

Codesequenzen für unterschiedliche Teilnehmer eines CDMA-Systems

- unterschiedlich verschobene Versionen (Shifts) der gleichen m-Sequenz für verschiedene Teilnehmer
 - ⇒ Probleme bei fehlender Synchronisation und bei Mehrwegeausbreitung
- unterschiedliche *m*-Sequenzen, die durch unterschiedliche Schieberegister erzeugt werden, für verschiedene Teilnehmer
 - ⇒ oft schlechte Kreuzkorrelationseigenschaften

□ Gold-Codes

- ⇒ besitzen gute Kreuzkorrelationseigenschaften
- ⇒ bilde die Modulo-2-Summe zweier *m*-Sequenzen der gleichen Länge, die von unterschiedlichen Schieberegistern erzeugt werden

Erzeugung einer Gold-Sequenz

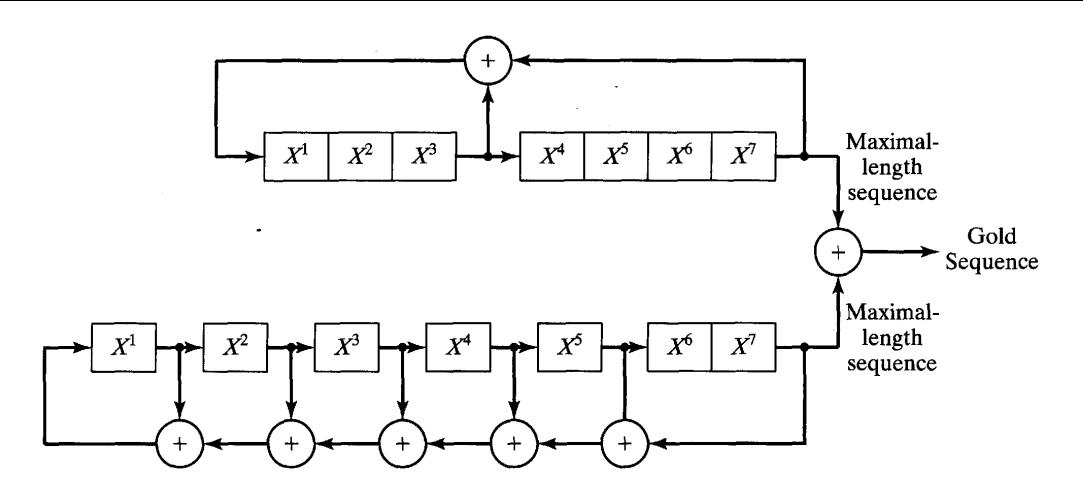
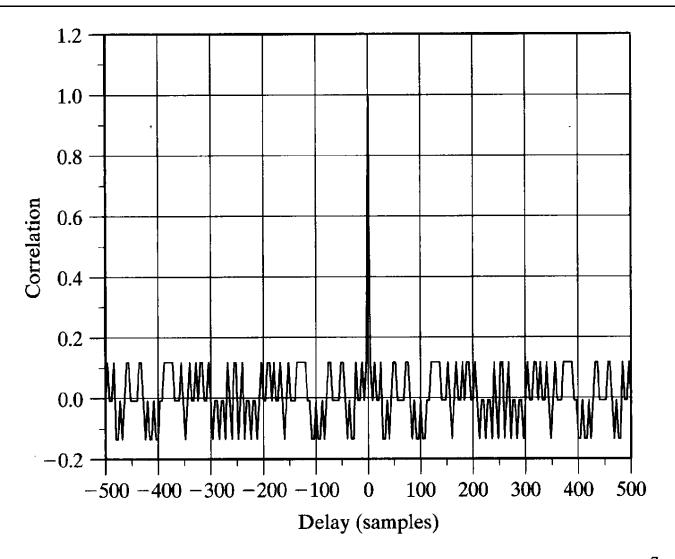


FIGURE 5.11 Generation of a Gold sequence.

Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

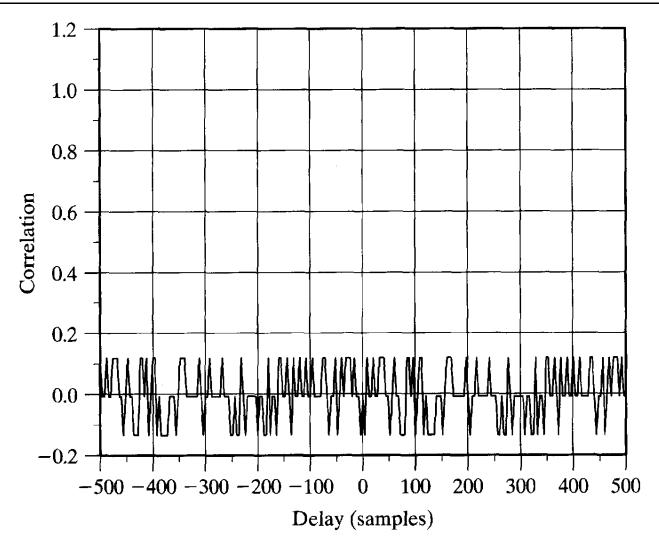
AKF einer periodischen Gold-Sequenz



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.12 Normalized circular autocorrelation of a Gold code of length $2^7 - 1$.

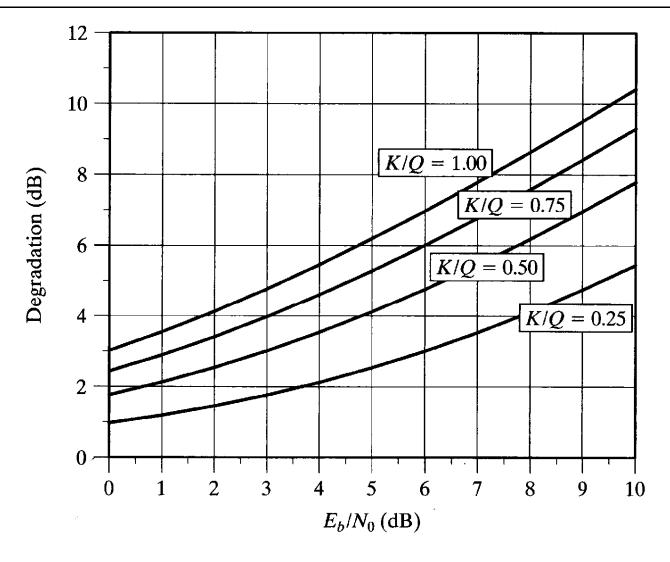
KKF zweier periodischer Gold-Sequenzen



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.13 Normalized circular cross-correlation of two Gold codes of length $2^7 - 1$.

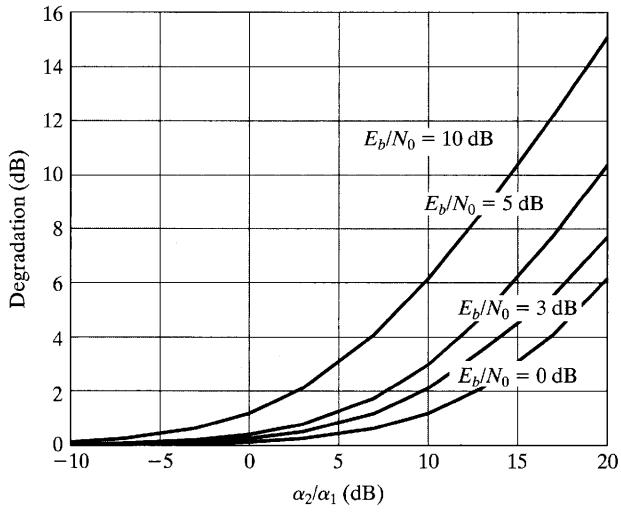
Degradation durch Vielfachzugriff (MAI)



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.15 Performance degradation due to multiple-access interference (large Q).

Degradation des 1. Teilnehmers als Funktion der relativen Leistung



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.22 Performance degradation of first of two users as a function of relative power and processing gain.

Kanal mit Mehrwegeausbreitung

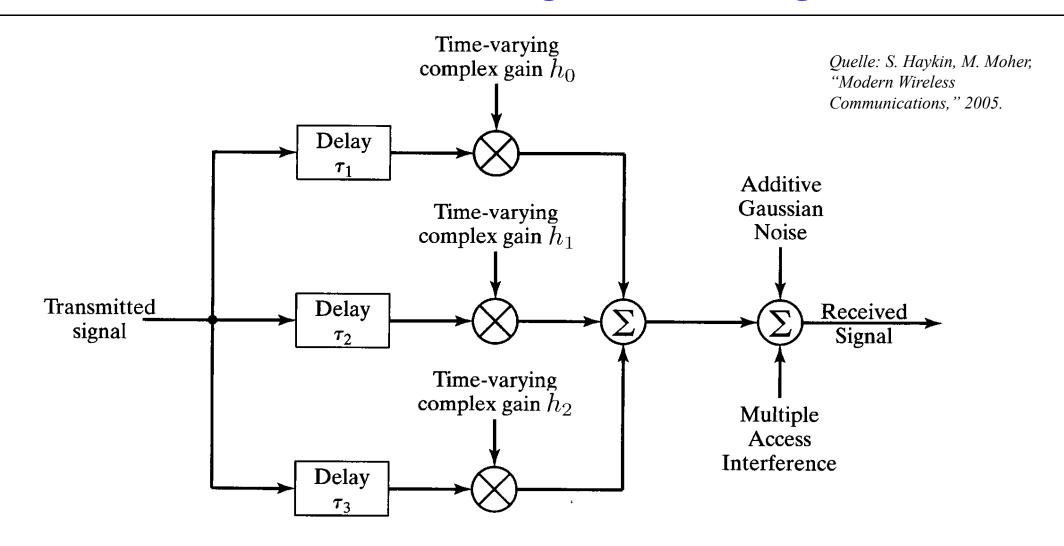


FIGURE 5.16 Multipath channel model.

RAKE Empfänger für CDMA Systeme mit Mehrwegeausbreitung

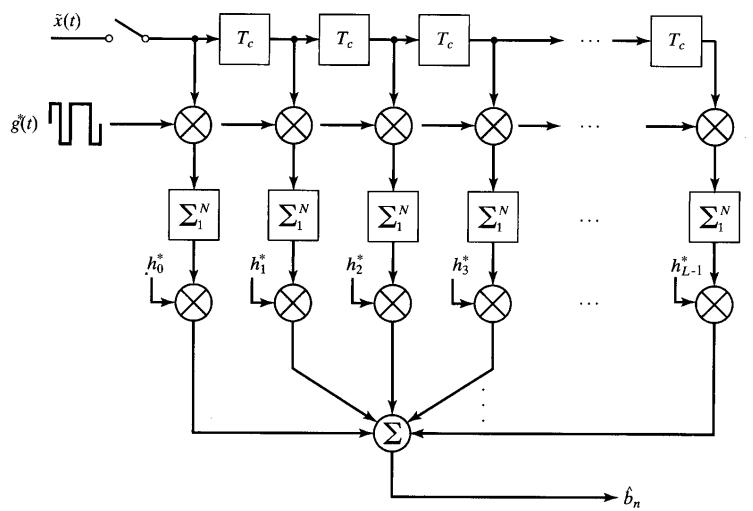
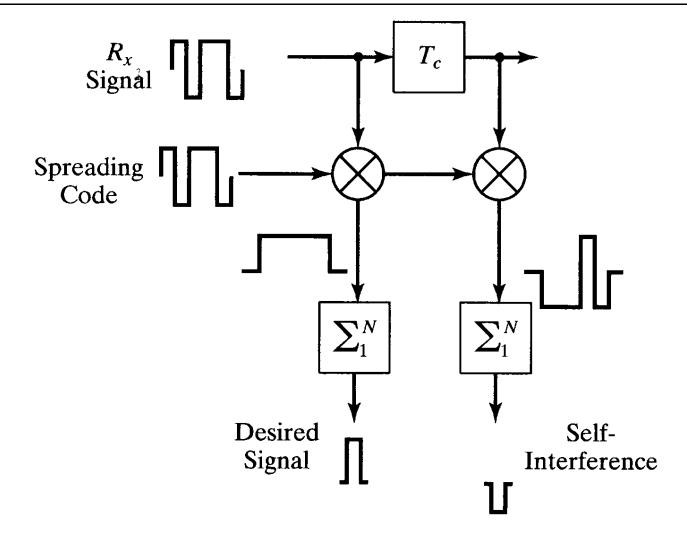


FIGURE 5.17 RAKE receiver for CDMA over multipath channels.

Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

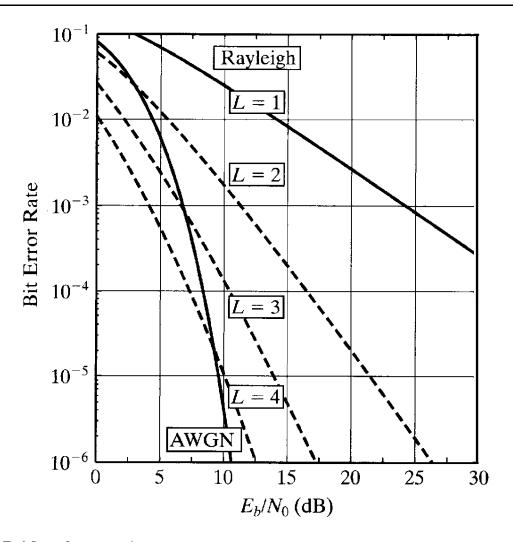
Selbstinterferenz durch Mehrwegeausbreitung



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.18 Illustration of multipath cross-correlation noise.

AWGN Kanal bzw. Rayleigh Kanal mit unterschiedlichen Diversitätsordnungen L



Quelle: S. Haykin, M. Moher, "Modern Wireless Communications," 2005.

FIGURE 5.19 Comparison of performance in AWGN with that of Rayleigh fading with different diversity orders.

