Malicious Input Detection for Deep Neural Networks

Emilio R. Balda

Outline

- Personal Background
 - home country
 - bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

Outline

Personal Background

- home country
- bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

Personal Background

Home Country

- My full name is Emilio Rafael Balda Cañizares
- I was born in the city of Guayaquil, located on the coast of Ecuador

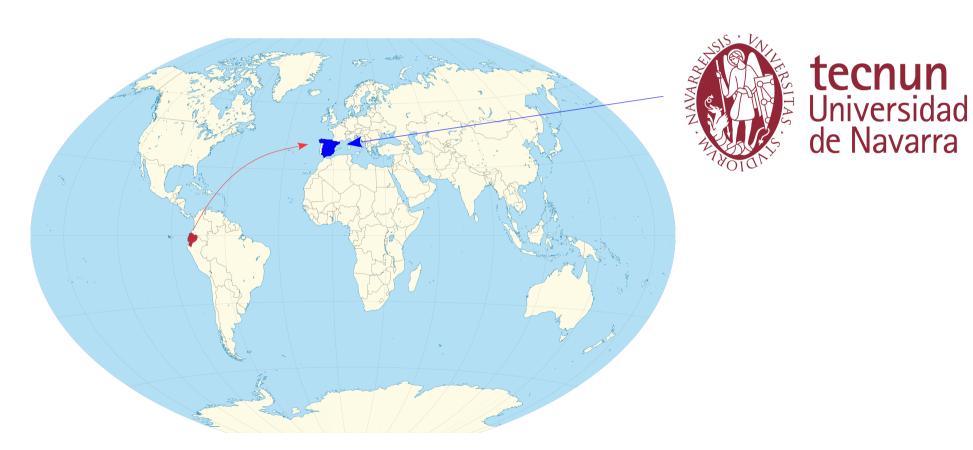
Ecuador

Language: Spanish
Population: 16 Million
Area: 283,560 km²

Guayaquil

Elevation: 0 mts

Temperature: 25 to 30 °C Humidity: 65 to 95%



Personal Background

Bachelor Studies

- Bachelor in Telecommunication Systems Engineering
 - at University of Navarra, Spain
 - in the Engineering faculty known as TECNUN

Outline

- Personal Background
 - home country
 - bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

Life as a MSCSP Student in Ilmenau

- Personal impression of the MSCSP program
 - strongly research oriented, the perfect choice for future Ph.D. candidates
 - highly specialized on communication networks and signal processing
 - provides several opportunities to explore and be creative on different research topics

Life as a MSCSP Student in Ilmenau

- Personal impression of the MSCSP program
 - strongly research oriented, the perfect choice for future Ph.D. candidates
 - highly specialized on communication networks and signal processing
 - provides several opportunities to explore and be creative on different research topics

- Life outside the academic
 - large variety of activities and clubs
 - Its easy to adopt the comfortable Ilmenau way of life
 - a 2 years stay allows you to experience many of the activities that Ilmenau offers

Life as a MSCSP Student in Ilmenau

- Personal impression of the MSCSP program
 - strongly research oriented, the perfect choice for future Ph.D. candidates
 - highly specialized on communication networks and signal processing
 - provides several opportunities to explore and be creative on different research topics

- Life outside the academic
 - large variety of activities and clubs

- Its easy to adopt the comfortable Ilmenau way of life
- a 2 years stay allows you to experience many of the activities that Ilmenau offers
- I personally can say that I really enjoyed my studies in Ilmenau

A Tensor-based Master Thesis

 Master Thesis Title: "Perturbation analysis of tensor-based algorithms" - Advisor: Prof. Dr.-Ing. Martin Haardt

A Tensor-based Master Thesis

- Master Thesis Title: "Perturbation analysis of tensor-based algorithms" - Advisor: Prof. Dr.-Ing. Martin Haardt
 - Conducted a theoretical perturbation analysis of:
 - the truncated Higher-Order Singular Value Decomposition (HOSVD), mainly used for dimensionality reduction [1]
 - the Joint Eigen-Value Decomposition (JEVD), mainly used for data analysis [2]
 - the Canonical Polyadic Decomposition (CPD), mainly used for data analysis (conference version currently being written)

[1]	E. R. Balda, S. A. Cheema, J. Steinwandt, M. Haardt, A. Weiss, and A. Yeredor, "First-order perturbation analysis of low-rank tensor approximations based on the truncated HOSVD," in <i>Proceedings of ASILOMAR</i> , Nov. 2016
[2]	E. R. Balda, S. A. Cheema, A. Weiss, M. Haardt, and A. Yeredor, "Perturbation Analysis of Joint Eigenvalue Decomposition Algorithms," in <i>Proceesings of ICASSP</i> , March. 2017

Outline

- Personal Background
 - home country
 - bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

- The Institute for Theoretical Information Technology (TI)
 - belongs to the RWTH Aachen University
 - as part of the Faculty of Electrical Engineering & Information Technology

- The Institute for Theoretical Information Technology (TI)
 - belongs to the RWTH Aachen University
 - as part of the Faculty of Electrical Engineering & Information Technology

- is led by Prof. Dr. Rudolf Mathar
 - Head of the Institute
 - Pro-Rector of Research and Structure at RWTH Aachen University

- The Institute for Theoretical Information Technology (TI)
 - is located in Aachen, Germany

The Institute for Theoretical Information Technology

- The Institute for Theoretical Information Technology (TI)
 - is located in Aachen, Germany
 - on the 3rd floor of the ICT Cubes of the RWTH Aachen Univeristy [BA+11]

[BA+11]

Böcherer, G., Altenbach, F., Malsbender, M., & Mathar, R. "Writing on the facade of RWTH ICT Cubes: Cost constrained geometric Huffman coding." in Proceedings of *IEEE Wireless Communication Systems (ISWCS)*, 2011.

- Staff:
 - Professor Dr. Rudolf Mathar is head of the institute
 - Prof. Dr-Ing. Anke Schmeink is head of the research group Information Theory and Systematic Design of Communication Systems

- Staff:
 - Professor Dr. Rudolf Mathar is head of the institute
 - Prof. Dr-Ing. Anke Schmeink is head of the research group Information Theory and Systematic Design of Communication Systems

- 2 + 22 academic staff (April 2017)
- 4 non-academic staff (April 2017)
- 5 student assistants (April 2017)

Our Research Fields

- Information Theory & Communication Theory
- Network Design, Control & Optimization
- OFDM Systems
- Compressed Sensing & Signal Classification
- Planning, Simulation, Evaluation for Energy Grids

Our Research Fields

- Information Theory & Communication Theory
- Network Design, Control & Optimization
- OFDM Systems
- Compressed Sensing & Signal Classification
- Planning, Simulation, Evaluation for Energy Grids
- Data Analysis and Deep Learning
 - Theoretical limits for Deep Learning architectures
 - Applying tensor algebra to machine learning problems (*)
 - Machine learning for signal processing and communication applications

Outline


- Personal Background
 - home country
 - bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

Introduction to Neural Networks

What the world gives us

$$\mathbf{y} = f(\mathbf{x})$$

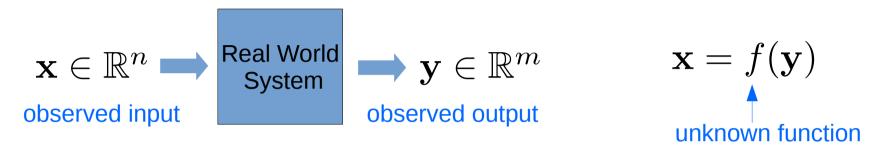
- How do we approximate $f(\cdot)$?
 - Naive approach: approximate it with a polynomial and "train" the polynomial weights. Example for n=5 and m=1

• e.g.
$$\hat{y} = w_1(x_1)^3 + w_2(x_1)^2 x_2 + w_3(x_1)^2 x_3 + \dots + w_N(x_5)^3$$

estimation

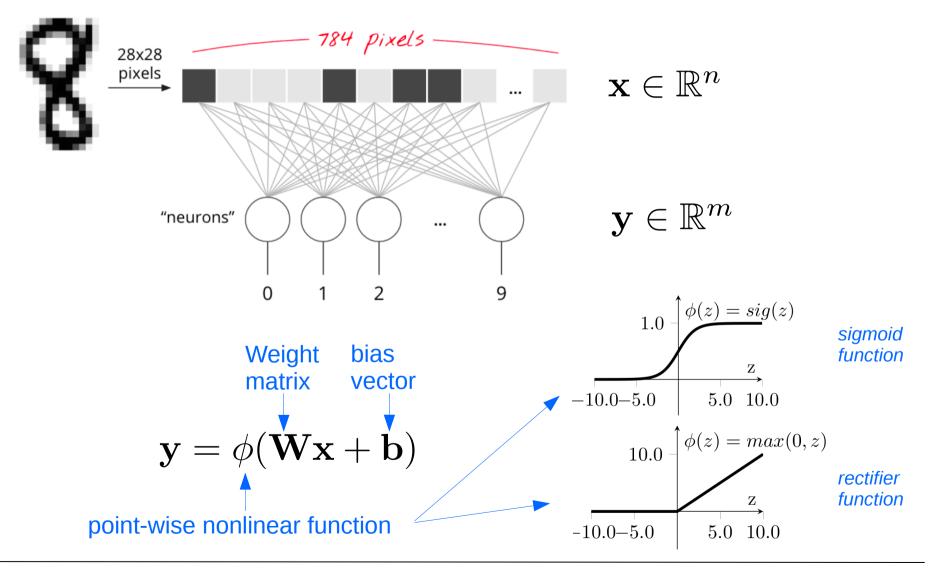
these weights are "trained" by minimizing

$$\min_{\mathbf{w}} \sum_{\mathbf{x} \in \mathcal{S}} (y - \hat{y})^2$$

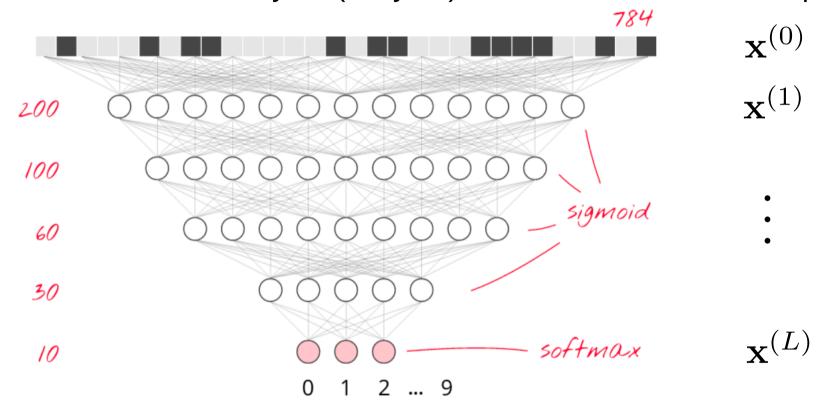

large set of observations

Introduction to Neural Networks

What the world gives us


- How do we approximate $f(\cdot)$?
 - Better approach: Use a "neural network" composed of linear and non-linear functions and train its parameters
 - a neural network with finite amount of parameters can approximate a wide variety of functions, see the universal approximation theorem
 - cost functions as $\min_{\mathbf{w}} \sum_{\mathbf{x} \in \mathcal{S}} \|\mathbf{y} \hat{\mathbf{y}}\|_2^2$ are also used here

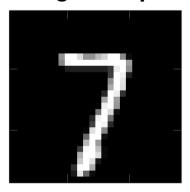
Introduction to Neural Networks


Lets start with a neural network of 1 layer

Introduction to Neural Networks

Now lets add more layers (L layers) to make this network "deep"

$$\mathbf{x}^{(l)} = \phi^{(l)} \left(\mathbf{W}^{(l)} \mathbf{x}^{(l-1)} + \mathbf{b}^{(l)} \right) \quad \forall l = 1, 2, \dots, L$$



Malicious Input Detection

 Malicious inputs are intentionally designed to "fool" a given neural network. These inputs can be "adversarial" or "rubbish" examples.

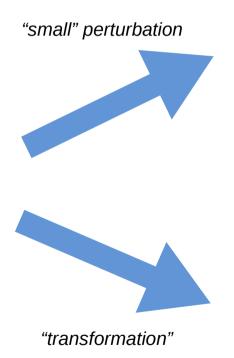
Adversarial Input

Original Input

Prediction: 7 Confidence: 99.9%

"small" perturbation

Prediction: 2 Confidence: 89.6%


Malicious Input Detection

 Malicious inputs are intentionally designed to "fool" a given neural network. These inputs can be "adversarial" or "rubbish" examples.

Adversarial Input

Original Input

Prediction: 7 Confidence: 99.9%

7

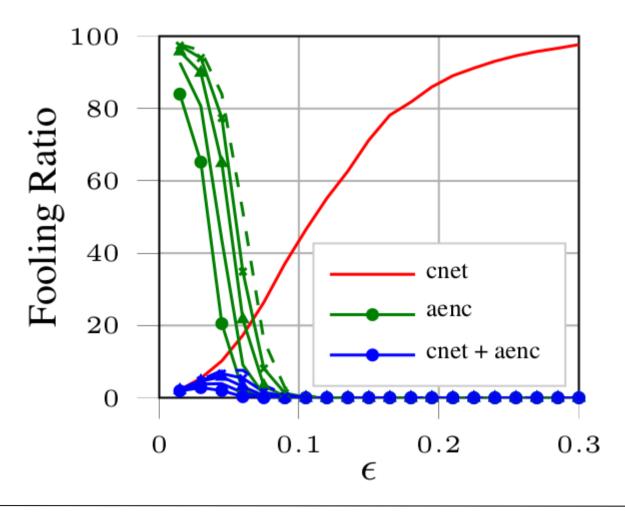
Prediction: 2 Confidence: 89.6%

Rubbish Input

Prediction: 3

Confidence: 99.9%

Malicious Input Detection


- Traditional approaches
 - include adversarial inputs during the training phase
 - denoise the input, using an autoencoder, before feeding it to the classifier
- All traditional approaches require adversarial and noisy data during training
- Proposed approach:
 - Use a hypothesis testing setup to detect malicious inputs
 - We make use of the hypothesis testing tools for designing an "optimal" test for detection

Results

- On the MNIST dataset, we are able to detect 100% of the rubbish inputs
- The detection ratio of adversarial inputs depends on the allowed perturbation norm (controlled by the parameter ϵ)

- Larger perturbations are easier to detect by the autoencoder (aenc)
- Smaller perturbations are less likely to fool the classifier network (cnet)

Outline

- Personal Background
 - home country
 - bachelor studies
- The Ilmenau Experience
 - life as a MSCSP student in Ilmenau
 - a tensor-based master thesis
- From Ilmenau to Aachen
 - the Institute for Theoretical Information Technology
 - our research fields
- Technical Talk
 - introduction to neural networks
 - malicious input detection
 - results
- Personal advice

Personal Advice

- If you intend to pursue a Ph.D. after your master studies, try to get 1
 publication before graduating
 - the BRP, ARP, and master thesis are perfect for this purpose
 - is not common for Ph.D. applicants to already have some publications
 - you will have more opportunities to select from
 - is better to spend 2 extra months for publishing a paper if you later save 3 or more months of Ph.D. search

Thank you

