My Ongoing Journey of Experiences

Presenter:

MSc. Zeeshan Ansar

• Nanga Parbat 8,126 m)

Intellectual Growth Journey

Ongoing: PhD. Specialization in wireless sensor networks, Dresden

MSc. Communication and Signal Processing, Ilmenau

Worked as Network Engineer, Karachi

BSc. Telecommunication, Karachi

Beautiful Scenic Town

Friendly Advice

- Assignments are IMPORTANT!!
- Don't be shy! Clarify any doubts with tutors
- For better understanding of theoretical concepts → apply it on MATLAB (e.g. SVD)
- Develop your skills while earning money \rightarrow Look for HiWi
- Make new friends and enjoy every moment of this phase of life

Extensive Research Prospects

Internet of things

Signal Processing

Mobile Communication

RF and Antenna Design

Current Research Topic

Burst Transmission Scheme for Wireless Sensor Networks

Burst Communication

Burst Communication

Bursty links

- Data
 - generation
- Traffic pattern
- Sensor

mobility

Applications

- Health-care monitoring
- Wild-life monitoring
- Environmental monitoring

- Smart grid
- Military Surveillance

WHAT PROBLEM ARE WE TRYING TO SOLVE?

- Links are bursty
- Burstiness affects protocol performance
- Need a way to measure the performance
- Methods to determine the size of a burst

Conditional Probability Base Approach (CPB)

- Conditional CDF has been proposed to describe the stable duration of link quality
- CDF information can be utilized by MAC or application layer
- The conditional CDF of the stable duration for a given SNR is described as:

$$F(\tau|s_{th}) = P\{\mathbf{T} \le \tau | \mathbf{s} \ge s_{th}\}$$

SNR: signal-to-noise ratio

Algorithm Design: Empirical CDF

Conditional Probability Base Approach (CPB)

Summary: [CPB:2015]

- + Conditional CDF is utilized to model the long-term link quality fluctuation.
- + Value of SNR threshold determines the reliability of data and channel efficiency
- Threshold is chosen empirically which cannot be generalized (physical links have individual aspects)

Double Markov Based Approach K-mean clustering

ARR: acknowledgement reception ratio

DMB

 Fluctuation in link quality is described by state transition probabilities

$$a_{ij} = P\left(S_j | S_i\right) = \frac{N_{i \to j}}{\sum_{m=1}^{M} N_{i \to m}}$$

• SOJOURN Time or Expected State Duration (ESD)

$$\bar{d_n} = \sum_{d=1}^{\infty} dP_n(d) = \frac{1}{1 - a_{nn}} \longrightarrow 2$$

 $M \rightarrow$ is the total number of states $N \rightarrow$ is the number of transitions

a₁₂

a31

a21

S3

a32

a33

S2

a23

S1

a13

• Example: Acknowledgment Sequence of State 1

- Equation (1) helps in finding state transition probabilities
- Equation (2) helps in finding out consecutive success (CS) and consecutive failure (CF)

Double Markov Based Approach

Summary: [DMB:2015]

- + K-mean clustering is employed to model link quality fluctuations into countable regions
- + Furthermore, two-stage Markov model determines the stable duration and burst size
- Short-term link fluctuations are not taken into account

O-DMB (Online-DMB)

Short-term link fluctuation that may not be 'Perceived by the offline model'

System architecture

O-DMB

Transmission Technique

Link state	Burst size	ESD
Good	10	6
Intermediate	6	4
Bad	2	8

O-DMB (Online-DMB)

Summary: [O-DMB:2015]

- + Hybrid approach models both long-term and short-term link quality fluctuations
- + Long-term link quality fluctuations can be modelled using offline approach
- + Short-term link quality fluctuations can only be dealt through real-time feedback

Experiments Outdoor

Indoor

Parameter Settings for Experiments

Parameters	Indoor	Outdoor
Packet Sent	120,000	120,000
Inter-Packet Interval	20,50,100 (ms)	20,50,100 (ms)
Packet Size	28 bytes	28 bytes
Transmission Power (dBm)	-15,-10,3,0	-15,-10,3,0
Distance (m)	30,20,10	35,27,19,8

Results (Static scenario)

Results(Static scenario)

Energy

Thankyou for your attention...

 → Zeeshan Ansar
→ PhD. Student at TU Dresden
→ zeeshan.ansar@tu-dresden.de