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Objective

y = Hx + z.

H is a linear transformation which might be uncertain (H + H̃ )

H could be i.i.d random or ill-conditioned

z is the additive noise of unknown variance σ2
z

x is the desired that we want to estimate or detect

x can be deterministic or random with unknown statistics

We will focus on regularized least-squares (and variants) for
detection/estimation

min
x
||y −Hx||2 + γ ||x||2
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Optimal Tuning of Regularized Least Squares

Joint work with Mohamed Suliman & Tarig Ballal
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Data model:
y = Hx + z.

H ∈ Cm×n is the linear transformation matrix. (Known)

y ∈ Cm×1 is the observation vector. (Known)

x ∈ Cn×1 is the desired signal. (Unknown)

Stochastic: Rx , E
(
xxH

)
.

Deterministic: Rx , xxH .
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Data model:
y = Hx + z.

H ∈ Cm×n is the linear transformation matrix. (Known)

y ∈ Cm×1 is the observation vector. (Known)

x ∈ Cn×1 is the desired signal with covarince matrix Rx. (Unknown)

z ∈ Cm×1 is AWGN with variance σ2
z. (Unknown)

z and x are independent.

Problems

Given y and H, find an estimate of x.

Optimally tune γ
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What type of H ?

(1) H ∼ CN (0, I).
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(2) H is highly ill-conditioned matrix.
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Condition Number =
1.821× 103.

(2) H is highly ill-conditioned matrix.

Index
0 10 20 30 40 50

N
o
rm

a
liz

e
d
 s

in
g
u
la

r 
v
a
lu

e
s

0

0.2

0.4

0.6

0.8

1

30 40 50

×10-3

0

0.5

1

1.5

2

2.5

3

Condition Number = 2.49× 1028.
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Optimal Regularizer if Statistics are Known

Noise variance σ2
z is available

Desired signal statistics are available

Stochastic: Rx , E
(
xxH

)
.

Deterministic: Rx , xxH .

Minimize MSE
MSE = E[||x− x̂||2]

γo ≈
mσ2

z

Tr (Rx)
(1)

Random matrix scenario

Use deterministic
equivalents

Discrete ill-posed scenario

Use some trace bounds
approximations
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Relation Between γo and the LMMSE

Our optimal regularizer is γo ≈ mσ2
z

Tr(Rx) .

Note that the LMMSE is given by

x̂LMMSE =
(
HHH + σ2

zR−1
x

)−1
HHy. (2)

When x is i.i.d. with zero mean, Rx = σ2
xI.

γo = σ2
z

Tr(Rx)/m = σ2
z
σ2
x
.

This shows that γo is optimal when the input is white.
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Proposed Approach

Recall the model: y = Hx + z.

Recall how the SV structure affects the result.

We propose adding perturbation ∆H ∈ Cm×n to H.

We will impose bound on ∆H (i.e., 0 ≤ ||∆H||2 ≤ λ ), why ?

Perturbed model:
y ≈ (H + ∆H)x + z. (3)

Problem We know neither ∆H nor λ.

Judicious choice of λ is necessary.

8



Proposed Approach

Recall the model: y = Hx + z.

Recall how the SV structure affects the result.

We propose adding perturbation ∆H ∈ Cm×n to H.

We will impose bound on ∆H (i.e., 0 ≤ ||∆H||2 ≤ λ ), why ?

Perturbed model:
y ≈ (H + ∆H)x + z. (3)

Problem We know neither ∆H nor λ.

Judicious choice of λ is necessary.

8



Proposed Approach

Recall the model: y = Hx + z.

Recall how the SV structure affects the result.

We propose adding perturbation ∆H ∈ Cm×n to H.

We will impose bound on ∆H (i.e., 0 ≤ ||∆H||2 ≤ λ ), why ?

Perturbed model:
y ≈ (H + ∆H)x + z. (3)

Problem We know neither ∆H nor λ.

Judicious choice of λ is necessary.

8



Proposed Approach

We call the proposed approach COnstrained Perturbation
Regularization Approach (COPRA).
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COPRA

For now, let us assume we know the best choice of λ.

We propose bounding the worst-case residual error

min
x̂

max
∆H
||y − (H + ∆H) x̂||2

subject to: ||∆H||2 ≤ λ. (4)
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COPRA

For now, let us assume we know the best choice of λ.

We propose bounding the worst-case residual error

min
x̂

max
∆H
||y − (H + ∆H) x̂||2

subject to: ||∆H||2 ≤ λ. (4)

After manipulations, the problem can be reduced to

min
x̂

max
∆H
||y − (H + ∆H) x̂||2 = min

x̂
||y −Hx̂||2 + λ ||x̂||2.

subject to: ||∆H||2 ≤ λ (5)
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COPRA

Starting from

min
x̂
||y −Hx̂||2 + λ ||x̂||2. (6)

Solution
x̂ =

(
HHH + γI

)−1
HHy. (7)

Where

K (γ, λ) = −λ2||H
(
HHH + γI

)−1
HHy − y||2 + γ2||

(
HHH + γI

)−1
Hy||2 = 0.

(8)

We call (8) COPRA fundamental equation.

How to proceed further ?

We will use the MSE criterion to select the bound λ for

Random matrix scenario.‘

Linear discrete ill-posed scenario.
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(1) Random Matrix Scenario.
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How to Find the Perturbation Bound λ ? (1) Random
Scenario (R-COPRA)

Recall COPRA fundamental equation (8)

γo
2||
(
HHH + γoI

)−1
Hy||2 − λo

2||H
(
HHH + γoI

)−1
HHy − y||2 = 0.

Consider obtaining a perturbation bound that is approximately
feasible for all the cases

λo
2 E
[
σ2
zTr

(
HHH

(
HHH +mγ̃oI

)−2
)

︸ ︷︷ ︸
Q(γ̃o)

+ Tr

((
HHH +mγ̃oI

)−2
HHHRx

)
︸ ︷︷ ︸

R(γ̃o)

]

≈ E
[
σ2
zTr

(
HHH

(
HHH +mγ̃oI

)−2
)

︸ ︷︷ ︸
G(γ̃o)

+ Tr

(
HHH

(
HHH +mγ̃oI

)−2
HHHRx

)
︸ ︷︷ ︸

T (γ̃o)

]
.

(9)
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E (Q (γ̃o)) =

σ2
z

(√
γ̃o+4
γ̃o
− 1
)3
(

1− 1
4

(√
γ̃o+4
γ̃o
− 1
)2
γ̃o

)
γ̃o

3

8

(
γ̃o

2 − 1
16

(√
γ̃o+4
γ̃o
− 1
)4
γ̃o

4

) +O
(
m−2

)
. (10)

E (R (γ̃o)) =
γ̃o

(√
γ̃o+4
γ̃o
− 1
)3

Tr (Rx)

4m
(

4− γ̃o

(√
γ̃o+4
γ̃o
− 1
)) +O

(
m−2

)
. (11)

E (T (γ̃o)) =
γ̃o

4

(
−1 +

√
γ̃o + 4

γ̃o

)2

Tr (Rx)−
γ̃o

2
(
−1 +

√
γ̃o+4
γ̃o

)3
Tr (Rx)

4
(
−4 + γ̃o

(
−1 +

√
γ̃o+4
γ̃o

)) +O
(
m−2

)
.

(12)
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R-COPRA

After manipulations, we obtain

λo
2 ≈

σ2
z

Tr(Rx)

(
2 + γ̃o −

√
1 + 4γ̃o

−1
)
+ 2mγ̃o

2
((√

1 + 4γ̃o
−1 − 1

)
γ̃o +

√
1 + 4γ̃o

−1 − 3
)

2
σ2
z

Tr(Rx)
− γ̃o

(
γ̃o

(√
1 + 4γ̃o

−1 − 1
)
− 2
) .

(13)
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R-COPRA

After manipulations, we obtain

λo
2 ≈

σ2
z

Tr(Rx)

(
2 + γ̃o −

√
1 + 4γ̃o

−1
)
+ 2mγ̃o

2
((√

1 + 4γ̃o
−1 − 1

)
γ̃o +

√
1 + 4γ̃o

−1 − 3
)

2
σ2
z

Tr(Rx)
− γ̃o

(
γ̃o

(√
1 + 4γ̃o

−1 − 1
)
− 2
) .

(13)

From the MSE solution (1)

σ2
z

Tr (Rx)
→

γ̃o

m
.

Recall COPRA fundamental equation (8)

γo
2||
(
HHH + γoI

)−1
Hy||2 − λo

2||H
(
HHH + γoI

)−1
HHy − y||2 = 0.

Combining (13) and (8), then solving, yields to R-COPRA
characteristic equation.
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R-COPRA

R-COPRA Characteristic Equation

SR (γ̃o) = Tr
(
Σ2
(
Σ2 +mγ̃oI

)−2
bbH

)[
γ̃o

(√
γ̃o + 4

γ̃o
− 1

)
− 4

]

+ Tr
((

Σ2 +mγ̃oI
)−2

bbH
)[

mγ̃o

((√
γ̃o + 4

γ̃o
− 1

)
γ̃o + 2

√
γ̃o + 4

γ̃o
− 4

)]
= 0, (14)

where b = UHy.

Solving SR (γ̃o) results in the regularization parameter γ̃o.

Question Can we solve (14) ?
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Summary of the Properties for SR (γ̃o)

SR (γ̃o) is continuous over the interval (0,+∞).

limγ̃o→+∞ SR (γ̃o) = 0.

limγ̃o→0+ SR (γ̃o) = −4 Tr
(
Σ−2bbH

)
.

SR (γ̃o) is completely monotonic in the interval (0,+∞).

Starting from γ̃n=0
o , Newton’s method will produce a consecutive

increase estimation for γ̃o.

γ
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Simulation Results: Stochastic x
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(b) x is i.n.d.

Figure: NMSE versus SNR for H ∼ N (0, I),H ∈ R100×100.
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Simulation Results: Deterministic x
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Figure: NMSE versus SNR for H ∼ N (0, I),H ∈ R100×100 and x is square pulse
signal.
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Simulation Results: Imperfect H
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(b) Imperfect H: Ĥ = H− eΩ.

Figure: BER comparison when H ∼ CN (0, I),H ∈ C100×100 and x is 8-QAM
signal.
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Average Run Time
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Figure: Average run time.
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(2) Ill-posed Scenario.
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How to Find the Perturbation Bound λ ? (2) Ill-posed
Scenario (I-COPRA)

Recall COPRA fundamental equation (8)

γo
2||
(
HHH + γoI

)−1
Hy||2 − λo

2||H
(
HHH + γoI

)−1
HHy − y||2 = 0.

Manipulate to obtain

λo
2 ≈

σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
(
Σ2
(
Σ2 + γoI

)−2
Σ2VHRxV

)
σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
((

Σ2 + γoI
)−2

Σ2VHRxV
) . (15)
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I-COPRA

Recall the singular value
structure.
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I-COPRA

Divide Σ into m1 large and m2

small singular values.
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I-COPRA

Divide Σ into m1 large and m2

small singular values.

Write Σ =

[
Σ1 0
0 Σ2

]
Σ1 ∈ Rm1×m1 (large singular
values).

Σ2 ∈ Rm2×m2 (small singular
values).

‖Σ2‖2 � ‖Σ1‖2.
Index

0 10 20 30 40 50
N

o
rm

a
liz

e
d
 s

in
g
u
la

r 
v
a
lu

e
s

0

0.2

0.4

0.6

0.8

1

Trivial

Significant

24



Recall the optimal bound relation (15)

λo
2 ≈

σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
(
Σ2
(
Σ2 + γoI

)−2
Σ2VHRxV

)
σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
((

Σ2 + γoI
)−2

Σ2VHRxV
) .

Apply the partitioning to (15), with some manipulations and
reasonable approximations to obtain

λo
2 ≈

Tr

(
Σ2

1

(
Σ2

1 + γoI1

)−2
(

Σ2
1 +

m1σ
2
z

Tr(Rx)
I1

))
Tr
((

Σ2
1 + γoI1

)−2
(
Σ2

1 +
m1σ2

z
Tr(Rx)

I1

))
+ m2
γo

2

m1σ2
z

Tr(Rx)

. (16)

From the MSE solution
m1σ2

z

Tr (Rx)
→

m1γo
2

m
.

From COPRA fundamental equation (8)

γo
2||
(
HHH + γoI

)−1
Hy||2 − λo

2||H
(
HHH + γoI

)−1
HHy − y||2 = 0.

Combining (16) and (29), then solving, yields to I-COPRA
characteristic equation.

25



Recall the optimal bound relation (15)

λo
2 ≈

σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
(
Σ2
(
Σ2 + γoI

)−2
Σ2VHRxV

)
σ2
zTr

(
Σ2
(
Σ2 + γoI

)−2
)

+ Tr
((

Σ2 + γoI
)−2

Σ2VHRxV
) .

Apply the partitioning to (15), with some manipulations and
reasonable approximations to obtain

λo
2 ≈

Tr

(
Σ2

1

(
Σ2

1 + γoI1

)−2
(

Σ2
1 +

m1σ
2
z

Tr(Rx)
I1

))
Tr
((

Σ2
1 + γoI1

)−2
(
Σ2

1 +
m1σ2

z
Tr(Rx)

I1

))
+ m2
γo

2

m1σ2
z

Tr(Rx)

. (16)

From the MSE solution
m1σ2

z

Tr (Rx)
→

m1γo
2

m
.

From COPRA fundamental equation (8)

γo
2||
(
HHH + γoI

)−1
Hy||2 − λo

2||H
(
HHH + γoI

)−1
HHy − y||2 = 0.

Combining (16) and (29), then solving, yields to I-COPRA
characteristic equation.

25



I-COPRA

I-COPRA Characteristic Equation

SI (γo) = Tr
(
Σ2
(
Σ2 + γoI

)−2
bbH

)
Tr
((

Σ2
1 + γoI1

)−2 (
βΣ2

1 + γoI1

))
+
m2

γo
Tr
(
Σ2
(
Σ2 + γoI

)−2
bbH

)
− Tr

((
Σ2 + γoI

)−2
bbH

)
× Tr

(
Σ2

1

(
Σ2

1 + γoI1

)−2 (
βΣ2

1 + γoI1

))
= 0, (17)

where b , UHy and β = m
m1

.

Solving SI (γo) results in the regularization parameter γo.

The properties of the SI (γo) are studied and it is shown that
Newton’s method converges to the solution.

We studied the special case of this function when m1 = n and
m2 = 0 in [2].

[2] T. Ballal, M. Suliman, T. Y. Al-Naffouri, and K. N. Salama, ”Constrained perturbation regularization algorithm for linear

least-squares problems”. Submitted to TSP, 2016.
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I-COPRA Properties
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Simulation Results. (2) I-COPRA

The algorithm is applied to a set of 11 real-worlds discrete ill-posed
problems.
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Simulation Results. (2) I-COPRA

The algorithm is applied to a set of 11 real-worlds discrete ill-posed problems.

Table: Summary of the test problems.

Problem Description Condition Number
Tomo Two-dimensional tomography 1.07× 103

Shaw One-dimensional image restoration 2.04× 1018

Heat Inverse heat equation 2.94× 1026

Deriv2 Computation of second derivative 3.03× 1003

Gravity One-dimensional gravity surveying problem 2.97× 1011

I-laplace Inverse Laplace transformation 2.43× 1033

Baart First kind Fredholm integral equation 4.09× 1017

Spikes Test problem with a ”spiky” solution 4.65× 1018

Wing Test problem with a discontinuous solution 1.68× 1018

Foxgood Severely ill-posed test problem 2.43× 1018

Phillips Phillips ”famous” test problem 1.91× 105
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Simulation Results. (2) I-COPRA

The algorithm is applied to a set of 11 real-worlds discrete ill-posed problems.

Table: Summary of the test problems.

Problem Description Condition Number
Tomo Image processing 1.07× 103

Shaw 2.04× 1018

Heat

Applied Physics

2.94× 1026

Deriv2 3.03× 1003

Gravity 2.97× 1011
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Baart

Signal Processing

4.09× 1017

Spikes 4.65× 1018
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Simulation Results. (2) I-COPRA

The algorithm is applied to a set of 11 real-worlds discrete ill-posed
problems.
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Heat Problem
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Baart Problem

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Index

N
or

m
al

iz
ed

si
n

gu
la

r
va

lu
e

Singular values.

−10 0 10 20 30
−15

−10

−5

0

SNR [dB]
N

M
S

E
[d

B
]

Proposed

Quasi

L-curve

Performance.

Condition number of H = 2.89× 1018. (m1 = 3,m2 = 47).

30



Wing Problem
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Rank Deficient Matrices
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Figure: H = 1
50BBH , where B ∼ N (0, I),B ∈ R50×45.

32



Special Case: (m1 = n and m2 = 0)
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Figure: H ∈ R100×100 is Toeplitz matrix and x is i.i.d.

Condition number of H = 389.51.
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Example of the Average Run Time
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Sensitivity to the Choice of m1

Problem: Heat.
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Sensitivity to the Choice of m1

Problem: Heat.
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Discriminant Analysis

Widely used statistical method for supervised classification
Principle: Builds a classification rule that allows to assign for an
unseen observation its corresponding class.

Let x be the input data and f be the classification rule.

Classifier ,

{
Assign class 1 if f(x) => 0

Assign class 2 if f(x) =< 0
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Gaussian Discriminant Analysis

Gaussian mixture model for binary classification (2 classes)

x1, · · · , xn ∈ Rp

Class k is formed by x ∼ N (µk,Σk), k = 0, 1

LDA Decision rule is linear in x:Σ0 = Σ1

WLDA = (x− µ0+µ1

2 )TΣ−1(µ0 − µ1)− π1
π0

){
Assign x to class 0 if WLDA > 0

Assignx to class 1 if otherwise

Statistics are unknown and so need to be estimated.

Covariance matrix will be ill-conditioned when sample size is less than
the data dimension p.

Regularization could solve the problem but the choice of the
regularization parameter is an issue.
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Re-write the LDA score function as

ŴLDA(x) = (x− µ̂0 + µ̂1

2
)T Σ̂−1(µ̂0 − µ̂1)

= aT Σ̂−1/2Σ̂−1/2b

= wT z

where

w = Σ̂−1/2a & z = Σ̂−1/2b

which can be obtained by solving the liner systems

a = Σ̂1/2w & b = Σ̂1/zb
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Classification of digits from MINST data set
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Figure: Error rate performance of different LDA classifiers using handwritten
digits from MNIST dataset. The results are averaged over 50 Monte Carlo trials.
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Beamforming

The output of the beamformer can be written as

yBF[t] = wHy[t], (18)

For the Capon/MVDR beamformer, the weighing coefficients are
given by

wMVDR =
Ĉ−1

yya

aHĈ−1
yya

, (19)

where a is the array steering vector and Ĉyy is the sample covariance
matrix of the received signals.
Based on (18) and (19), we can write

yBF[t] =
âHĈ

− 1
2

yy Ĉ
− 1

2
yy y

aH Ĉ
− 1

2
yy Ĉ

− 1
2

yy a
=

bHz

bHb
, (20)

where b , Ĉ
− 1

2
yy a and z , Ĉ

− 1
2

yy y.
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Application: Beamforming

The two relationships of a and b can be thought of as

a = Ĉ
1
2
yyb, (21)

and

y = Ĉ
1
2
yyz. (22)

Since Ĉ
1
2
yy is ill-conditioned, direct inversion does not provide a viable

solution.

Our regularization approach can be used to obtain estimates of b and
z given that they are noisy.
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Application: Beamforming

Recall (20)

yBF[t] =
âHĈ

− 1
2

yy Ĉ
− 1

2
yy y

aH Ĉ
− 1

2
yy Ĉ

− 1
2

yy a
=

bHz

bHb
, (23)

Using regularization we can write

yBF-RLS =
aHU

(
Σ2 + γbI

)−1 (
Σ2 + γzI

)−1
Σ2UHy

aHU
(
Σ2 + γbI

)−2
Σ2UHa

, (24)

Equation (24) suggests that the weighting coefficients for the RLS
approach are given by

wBF-RLS =
aHU

(
Σ2 + γbI

)−1 (
Σ2 + γzI

)−1
Σ2UH

aHU
(
Σ2 + γbI

)−2
Σ2UHa

. (25)
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Beamforming: Simulation result
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Conclusion of Part I

We proposed a new regularization approach for linear least-square
problems based on allowing a bounded perturbation into the linear
transformation matrix.

We chose the perturbation bound based on the MSE criteria and as a
result, the proposed approach minimizes the MSE approximately.

The solution of the proposed approach characteristic equation does
not require knowledge of the signal and noise statistics.

Solution performs well compared to other methods over a wide SNR
range.

The proposed approach is shown to have the lowest run time.
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Regularized Least Squares for Massive MIMO:
Precise Analysis and Optimal Tuning

Joint work with Ismail Atitallah, Ayed Alrashdi , and & Christos Thrampoulidis
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MIMO System model: AWGN channel

y = Ax0 + z

y ∈ Rm is the measurement vector at the receive antennas.

A ∈ Rm×n is the channel matrix, with iid Gaussian entries, with zero
mean and variance 1

n .

x0 ∈ {−1, 1}n is a BPSK signal.

z ∈ Rm is a additive white Gaussian noise vector with variance σ2
z

⇒ SNR= 1
σ2
z

.

δ = m
n is the ratio of the number of receive/transmit antennas.

Optimum Receiver: Maximum Likelihood:

x̂ML = arg min
x∈{−1,1}n

‖Ax− y‖

⇒ computationally prohibitive in a massive MIMO context
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Low-Complexity Receivers (1)

Two-step implementation of low-complexity receivers:

Solve a convex optimization.
Hard-threshold.

Examples of common low-complexity receivers:

Least Squares (LS), aka Zero-Forcing receiver,

x̂LS = arg min
x∈Rn

‖Ax− y‖2 = (ATA)−1ATy,

x∗LS = sign(x̂LS).

Regularized Least Squares (RLS),

x̂RLS = arg min
x∈Rn

‖Ax− y‖2 + λ‖x‖2 = (ATA + λI)−1ATy,

x∗RLS = sign(x̂RLS).

Matrix inversion ⇒ the complexity is cubic.
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Low-Complexity Receivers (2)

RLS with Box Relaxation Optimization (RLS-BRO)

x̂BRO = arg min
x∈[−1,1]n

‖Ax− y‖+ λ‖x‖2,

x∗BRO = sign(x̂BRO).

No closed-form expression
quadratic program ⇒ the complexity is also cubic.

Aim:

Derive precise BER expression
Find optimum regularizer λ
Find optimum Box threhsold
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Relevant literature

BER := 1
n

∑n
i=1 1{x∗i 6=x0,i}.

Receiver BER approach Reference

LS Exact Exact non-asymptotic formula, e.g. Tse and Viswanath 1

RLS RMT Tulino and Verdu 2

LS-BRO CGMT Thrampoulidis and Hassibi3

RLS-BRO CGMT This Talk

RMT: Random Matrix Theory
CGMT: Convex Gaussian Min-max Theorem
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Asymptotic BER Analysis

LS: limn→∞ BERLS = Q ((δ − 1)snr) , (for δ > 1).

RLS: limn→∞ BERRLS = Q

(√
δ− 1

(1+Υ(λ,δ))2(
Υ(λ,δ)

1+Υ(λ,δ)

)2
+ 1

snr

)
, where

Υ(λ, δ) =
1−δ+λ+

√
(1−δ+λ)2+4λδ

2δ
.

The optimal λ that minimizes the asymptotic BER
RLS

is 1
SNR

⇒ LMMSE receiver is also optimal in the BER sense.

A high SNR approximation of the BER of LMMSE is

Q
((
δ − 1 + 1

(δ−1)SNR

)
SNR

)
' Q((δ − 1)SNR).
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Convex Gaussian Min-max Theorem

Convex-Gaussian Min-Max Theorem (CGMT)

aConsider the following two min-max problems:

Primary Optimization (PO) Problem: Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(w,u)

Auxilary Optimization (AO) Problem: φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu− ‖u‖hTw + ψ(w,u)

ψ is convex-concave.

wΦ any optimal minimizers in the (PO).

wφ any optimal minimizers in the (AO).

Then, if limn→∞ Pr(wφ ∈ S) = 1, it also holds limn→∞ Pr(wΦ ∈ S) = 1.

aC. Thrampoulidis, E. Abbasi and B. Hassibi “Precise error analysis of regularized
M-estimators in high-dimensions”- arXiv preprint arXiv:1601.06233, 2016

We apply the CGMT to the set in which the BER concentrates, i.e.

S =
{
w; |BER− E[BER]| < ε

}
. (26)
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Precise Bit Error Rate (BER) Analysis

Theorem (BER of RLS-BRO)

As n,m→∞, such that m
n
→ δ ∈ (0,∞), it holds in probability

lim
n→∞

BERBRO = Q(
1

τ∗
),

where τ∗ is the unique solution to the following

min
τ>0

max
β>0

D(τ, β) : = δτβ +
β

SNRτ
− λβ2

2
+

4β

τ
Q

(
2

τ
+

2

β

)
− 4βp

(
2

τ
+

2

β

)
− β2

β
τ

+ 2

∫ 2
β

− 2
β
− 2
τ

(
h− 2

β

)2

p(h)dh.

τ∗ can be efficiently computed by writing the first order optimality conditions, i.e.
∇(τ,β)D(τ, β) = 0.

τ∗ (and hence the BER) depends on δ = m
n

, SNR and the regularizer λ.
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Optimal tuning of the Regularizer
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LMMSE vs RLS-BRO
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Figure: n = 500.

Recall the following high-SNR approximations:
limn→∞BERBRO ' Q((δ − 1

2
)snr)

limn→∞BERRLS ' Q((δ − 1)snr)
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Is [−1, 1] the optimal relaxation interval?

x̂BRO = arg min
x∈[−t,t]n

‖Ax− y‖+ λ‖x‖2

x∗BRO = sign(x̂BRO)

In a similar fashion, we can prove that limn→∞ BERBRO = Q
(

1
τ∗

)
, where

τ∗ = arg minτ>0 maxβ>0 D(τ, β; t, λ, δ, SNR).

τ∗(t, λ, δ, SNR) is a function of SNR, the sampling ratio δ, the regularizer λ and
the relaxation threshold t.
We select the optimal relaxation threshold t∗, and the optimal regularizer λ∗, such
that:

(t∗, λ∗) ∈ argmin
(t,λ)∈R2

+

τ∗(t, λ, δ, SNR)
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Joint optimization of the regularizer and the relaxation
threshold
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What if we don’t know the SNR?

If the signal and noise variances are not known, we use the expression of the cost
function of RLS to estimate the SNR, to ultimately allow for an optimal tuning of the
regularizer. Let J(σ2

x, σ
2
z) denote the asymptotic cost function of RLS.

J(σ2
x, σ

2
z , λ, δ) := lim

n→∞
min
x
‖Ax− y‖2 + λ‖x‖2.

= a(λ, δ)σ2
x + b(λ, δ)σ2

z ,

where

a(λ, δ) =

(
δλ

Υ
− λ2

Υ2
− λ

Υ + Υ2

)(
Υ2

δ(1 + Υ)2 − 1

)
− λΥ

1 + Υ
+ λ,

b(λ, δ) =

(
δλ

Υ
− λ2

Υ2
− λ

Υ + Υ2

)(
(1 + Υ)2

δ(1 + Υ)2 − 1

)
+
λ

Υ
,

and

Υ =
1− δ + λ+

√
(1− δ + λ)2 + 4λδ

2δ
.
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What if we don’t know the SNR?
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SNR Estimation under Correlation
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Equalization Performance: Uncertain Channel Case

y = (
√

1− ε2A + ε∆)x0 + z

where

ε ∈ [0, 1).
∆ is the estimation noise matrix with iid Gaussian entries with var.
σ2
δ .
ε = 0:

BERRLS = Q

(√
δ− 1

(1+Υ(λ,δ))2(
Υ(λ,δ)

1+Υ(λ,δ)

)2
+ 1

snr

)
ε 6= 0:

BERRLS = Q

(√√√√√ δ − 1
(1+Υ(λ,δ))2

(1− ε2)
(

Υ(λ,δ)
1+Υ(λ,δ)

)2
+ 1

snr + ε2

)
,

where Υ(λ, δ) =
1−δ+λ+

√
(1−δ+λ)2+4λδ

2δ .
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Equalization Performance: Uncertain Channel Case
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Figure: BER performance δ = 1.3, n = 256

[4] Ayed M. Alrashdi, Ismail Ben Atitallah, Tareq Y. Al-Naffouri and Mohamed-Slim Alouini “Precise Performance Analysis of
the LASSO Under Matrix Uncertainties”, GlobalSIP, 2017.
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Optimum Training

Given a power budget at the transmitter

We can use some for channel estimation (reduces ε).
We can use some for data transmission (reduces BER).

Total Energy

E = Ep + Ed

= αE + (1− α)E

What is the optimum trade-off?
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How to find α?
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Figure: Optimal Power vs. BER for the LS and RLS equalizers.

[5] Ayed M. Alrashdi, Ismail Ben Atitallah, Tarig Ballal, Christos Thrampoulidis, Anas Chaaban and Tareq Y. Al-Naffouri
“Optimum Training for MIMO BPSK Transmission”, SPAWC, 2018 (submitted).
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Conclusion of Part II

Precise Asymptotic BER analysis of the Box Relaxation Optimization
for BPSK signal recovery, that allow efficient optimal tuning of the
paramters.

Tuning is possible even if SNR is not known as we are able to
estimate it precisely.

Analysis is extended to the case where channel exhibits uncertainty.

Analysis used to find optimize training power to minimize SNR.

Future work: We are extending the work to other constellations
(PAM, QAM), other equalizers, and correlated channel case.
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Thank you
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