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-
Objective

y = Hx + z.

H is a linear transformation which might be uncertain (H + H )

H could be i.i.d random or ill-conditioned

2

z is the additive noise of unknown variance o,

x is the desired that we want to estimate or detect

x can be deterministic or random with unknown statistics

We will focus on regularized least-squares (and variants) for
detection /estimation

min [|y — Hx|[> + 5 x|



Optimal Tuning of Regularized Least Squares

Joint work with Mohamed Suliman & Tarig Ballal



@ Data model:
y = Hx + z.

o H € C"*™ is the linear transformation matrix. (Known)
e y € C™*! s the observation vector. (Known)

e x € C™ ! is the desired signal. (Unknown)

e Stochastic: Ryx £ E (xx).

o Deterministic: R, £ xx.



@ Data model:
y = Hx + z.

e H € C™*" is the linear transformation matrix. (Known)

e y € C™*! is the observation vector. (Known)

e x € C"*! is the desired signal with covarince matrix Rx. (Unknown)
e z € C™ ! is AWGN with variance o2. (Unknown)

@ z and x are independent.

@ Given y and H, find an estimate of x.

@ Optimally tune ~
]



-
What type of H 7

(1) H ~ CN(0,1). (2) H is highly ill-conditioned matrix.
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What type of H 7

(1) H~ CN(0,1). (2) H is highly ill-conditioned matrix.
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Optimal Regularizer if Statistics are Known

2 is available

o Desired signal statistics are available
o Stochastic: Rx 2 E (XXH).

o Deterministic: Ry £ xx*.

@ Noise variance o

@ Minimize MSE
MSE = E[||x — x/?]

mo?
Yo R =0~
Tr (Rx)
Random matrix scenario Discrete ill-posed scenario
o Use deterministic o Use some trace bounds
equivalents approximations



-
Relation Between v, and the LMMSE

. - . mo’2
Our optimal regularizer is v, ~ RS-

Note that the LMMSE is given by

Ximvse = (HPH + CTZR;l)i1

@ When x is i.i.d. with zero mean, Ry = o21.

[+ ] ’)/ g 703 — U—g
° Tr(Rx)/m 02"

@ This shows that y, is optimal when the input is white.

Hy.



|
Proposed Approach

@ Recall the model: y = Hx + z.

@ Recall how the SV structure affects the result.



|
Proposed Approach

@ Recall the model: y = Hx + z.

@ Recall how the SV structure affects the result.

@ We propose adding perturbation AH € C"™*" to H.

e We will impose bound on AH (i.e., 0 < [|[AH]||]; < A ), why ?

@ Perturbed model:
y~H+AH)x + z. (3)



|
Proposed Approach

@ Recall the model: y = Hx + z.

@ Recall how the SV structure affects the result.

@ We propose adding perturbation AH € C"™*" to H.

e We will impose bound on AH (i.e., 0 < [|[AH]||]; < A ), why ?

@ Perturbed model:
y~H+AH)x + z. (3)

We know neither AH nor .

@ Judicious choice of A is necessary.



|
Proposed Approach

@ We call the proposed approach COnstrained Perturbation
Regularization Approach (COPRA).




COPRA

@ For now, let us assume we know the best choice of \.
@ We propose bounding the worst-case residual error
i —(H+ AH) %
min max ||y — (H+ AH) x|z
subject to: ||AH][2 < A. (4)

. g



|
COPRA

@ For now, let us assume we know the best choice of .

@ We propose bounding the worst-case residual error
min ma —(H+AH)x
i max ||y — (H+ AF) %]l

subject to: ||AH]|[s < .

@ After manipulations, the problem can be reduced to

minmax [ly — (H + AH) K[l = min [y — Hxl2 + A [%]]>
x AH X

subject to: ||AH||2 < A

10



COPRA
@ Starting from
min ||y — Hx|lz + X ||X[]2- (6)
@ Solution .
x = (H"H++1) H"y. (7)
o Where

—1 —1
K (7,0) = =X*|[H (H¥H+ 1) HYy - y|12 + || (HH+ 1) Hy|? =0.
(8)

e We call (8) COPRA fundamental equation.
@ How to proceed further ?

11



COPRA
@ Starting from
min ||y — Hx|lz + X ||X[]2- (6)
@ Solution )
x = (H"H++1) H"y. (7)
o Where

—1 —1
K (7,0) = =X*|[H (H¥H+ 1) HYy - y|12 + || (HH+ 1) Hy|? =0.
(8)

We call (8) COPRA fundamental equation.
How to proceed further ?

@ We will use the MSE criterion to select the bound \ for
e Random matrix scenario.
e Linear discrete ill-posed scenario.

11



(1) Random Matrix Scenario.

12



How to Find the Perturbation Bound A 7 (1) Random
Scenario (R-COPRA)

@ Recall COPRA fundamental equation (8)

—1 -1
7020 (HTH +501) Hy||? = 3%([H (HTH + 1) Hy —y|[2 =o.



|
How to Find the Perturbation Bound A 7 (1) Random

Scenario (R-COPRA)
@ Recall COPRA fundamental equation (8)
o2l (HTH 4 01) T Hy|2 - 02 H (BT 4 01) Hy — g =0,
@ Consider obtaining a perturbation bound that is approximately

feasible for all the cases

Ao2 E[agTr (HHH (HHH 4 m:,ol) _2) T ((HHH 4 m:,ol) - HHHRX) ]

Qo) R(%0)

~ E[O‘ZTF (HHH (HHH + m%l)fz) +Tr (HHH (HHH + m:,oI)72 HHHRx) ] )

G (o) T(50)

(©)
. i



+0(m™2). (10

3
E (R (50)) = (V 1) TrPz>+0(m 2. (11)

32 (-1 + Vj‘l) Tr (Rx)

- 4 (=445 (-1+ /=)

Yo

(@] (m_2) .
(12)

v

] 14



|
R-COPRA

o After manipulations, we obtain

2 %(2+&0_W)+2m%2 ((W_l):/o"rm—ig)
. 2ot — 0 (0 (VIF BT - 1) —2) :

A0

(13)

15



)

(13)

R-COPRA
@ After manipulations, we obtain
o i (25 = VIF ) o (VIFET - 1) 50+ VI AT -3
2% — A (:,O (\/1 Fa5,-1 — 1) - 2)
e From the MSE solution (1)
crg :LO
Tr (Rx) m’

@ Recall COPRA fundamental equation (8)
2ol (HPH 4 o0) Hy|? 22| H (HYH +01) Py —y|P =0
e Combining (13) and (8), then solving, yields to R-COPRA

characteristic equation.

15



R-COPRA

R-COPRA Characteristic Equation

Sk (50) = Tr (22 (22 + myeI) 2 be) [», ( Yotd _ 1) - 4]
(s
+Tr((22+m~701) be { <<,/”°+4 1> ,o+2,/%+4 4)] 0, (14)

where b = Ufy.

@ Solving Sgr (7,) results in the regularization parameter 7.

ONISEl Can we solve (14) ?

. e



]
Summary of the Properties for Sy (7,)

@ Sk () is continuous over the interval (0, +00).

limﬁ/o*)Jroo SR (;5/0) == 0

lims__,o+ Sk (o) = —4 Tr (=~ ?bb’).

Sk (%) is completely monotonic in the interval (0, +00).

Starting from 779, Newton's method will produce a consecutive
increase estimation for A,.

15




Simulation Results: Stochastic x

NMSE [dB]

SNR [dB] SNR [dB]
(a) x is i.i.d. (b) x is i.n.d.
Figure: NMSE versus SNR for H ~ N(0,1I), H € R100x100,

18



Simulation Results: Deterministic x

T T T

“ < -L-curve ||
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. .\Q Q- Quasi
10}, ~ |~ R-COPRA |

NMSE [dB]

SNR [dB]

Figure: NMSE versus SNR for H ~ A/(0,I), H € R199X100 and x is square pulse
signal.
]
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Simulation Results: Imperfect H

BER

1072

1073
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LS
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-»- GCV
—o— R-COPRA

Ey/N, [dB]
(a) Perfect H.

(b) Imperfect H: H = H — 2.
Figure: BER comparison when H ~ CN(0,1), H € C190%190 and x is 8-QAM
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e
Average Run Time
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Figure: Average run time.



(2) lll-posed Scenario.

22



How to Find the Perturbation Bound A ? (2) lll-posed
Scenario (I-COPRA)

o Recall COPRA fundamental equation (8)

—1 —1
7020 (HTH +501) Hy||? = 36%([H (HTH + 1) Hy —y|[2 =o.

@ Manipulate to obtain

o2Tr (B2 (B2 4 71) ) + Tr (22 (T2 + 901) * B2V RV
Ao’ &~

o2Tr (B2 (22 +961) °) + Tr (22 4+ 71) *E2VHRLV)

(15)

23



|
I-COPRA

@ Recall the singular value
structure.

o =g o
S o> © =

Normalized singular values
o
o
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|
I-COPRA

@ Divide 3 into my large and my
small singular values.

o =g o
S o> © =

Normalized singular values
o
o

[spicn]
y .~
jRaac OO A
10 20 30 40 50
Index
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|
I-COPRA

Divide X into m; large and mo
small singular values.

3; 0
0 3
¥, € R™>*™1 (Jarge singular
values).
3y € R™2X™2 (small singular
values).
122 <[22

Write ¥ = [

o =g o
S o> © =

Normalized singular values
o
o

Index

24



@ Recall the optimal bound relation (15)

L, T (22 (22 400) ) + T (B2 (B2 4 7]) P BPVHRLV)
Ao’ &

o2Tr (22 (22 4 701) %) + Tr (B2 +701) " Z2VHRxV)

@ Apply the partitioning to (15), with some manipulations and
reasonable approximations to obtain

2
o (B (B )
Ao” = 5 —
Te (37 +900) ™ (S + A0 ) + 2 i

@ From the MSE solution

2
mio, 5 mivo

Tr (Rx) m

(16)

25



@ Recall the optimal bound relation (15)
o2Tr (22 (22 4+ 701) ) + Tr (B2 (32 4+ 901) *Z2VHRxV)

o o2Tr (22 (22 4 701) %) + Tr (B2 +701) " Z2VHRxV)

@ Apply the partitioning to (15), with some manipulations and
reasonable approximations to obtain

— m (7'2
Tr (zg (52 4 oL, 2 (zg + T;(;{:)Il))
No? & 5 —.
T (22 00) 77 (B4 100 ) + 2 4

@ From the MSE solution

(16)

2
mio, 5 mivo

Tr (Rx) m

e From COPRA fundamental equation (8)
1 —1
7% (HTH +71)  Hy|” = Xo%|[H (HTH+ 1) H7y —y|? = 0.

e Combining (16) and (29), then solving, yields to I-COPRA
characteristic equation.

. e



|
I-COPRA

[-COPRA Characteristic Equation

St (76) = Tr (22 (22 4 701) be) Tr ((2? +ly) T (BE2 %Il))

+ %Tr (22 (22 4+ 901) b ) = Tr (224 95) b

X Tr (33 (234 900) (8% + 70L) ) =0, (17)

where b £ Ufly and = mﬂl

@ Solving St (7o) results in the regularization parameter 7,.

@ The properties of the Sy (7,) are studied and it is shown that
Newton’s method converges to the solution.

@ We studied the special case of this function when s, = n and

B P
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I-COPRA Properties
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|
Simulation Results. (2) I-COPRA

@ The algorithm is applied to a set of 11 real-worlds discrete ill-posed
problems.

28



|
Simulation Results. (2) I-COPRA

@ The algorithm is applied to a set of 11 real-worlds discrete ill-posed
problems.

Regularization Tools

A Matlab Package for
Analysis and Solution of Discrete Ill-Posed Problems

Version 4.1 for Matlab 7.3

Per Christian Hansen

Informatics and Mathematical Modelling
Building 321, Technical University of Denmark
DK-2800 Lyngby. Denmark

pch@imm. dtu. dk
http://wuw.imm.dtu.dk/ pch

March 2008

The software described in this report was originally published in
Numerical Algorithms 6 (1994), pp. 1-35.

The current vers

on is published in Numer. Algo. 46 (2007), pp. 189-194
awvailable from www.net1lib.org/nuneralgo
and www.mathworks.com/matlabcentral/fileexchange

and it

28



|
Simulation Results. (2) I-COPRA

@ The algorithm is applied to a set of 11 real-worlds discrete ill-posed problems.

Table: Summary of the test problems.

Problem Description Condition Number
Tomo Two-dimensional tomography 1.07 x 103
Shaw One-dimensional image restoration 2.04 x 1018
Heat Inverse heat equation 2.94 x 1028
Deriv2 Computation of second derivative 3.03 x 1093
Gravity One-dimensional gravity surveying problem 2.97 x 10T
I-laplace Inverse Laplace transformation 2.43 x 1033
Baart First kind Fredholm integral equation 4.09 x 1017
Spikes Test problem with a "spiky” solution 4.65 x 10™8
Wing Test problem with a discontinuous solution 1.68 x 1018
Foxgood Severely ill-posed test problem 2.43 x 10™8
Phillips Phillips "famous” test problem 1.91 x 10°

28



|
Simulation Results. (2) I-COPRA

@ The algorithm is applied to a set of 11 real-worlds discrete ill-posed problems.

Table: Summary of the test problems.

Problem Description Condition Number
Tomo Image processing 1.07 x 107
Shaw 2.04 x 108
Heat 2.94 x 1076
Deriv2 : ; 3.03 x 1093
Gravity Applied Physics 2.97 x 1011
I-laplace 2.43 x 1033
Baart 4.09 x 10%7
Spikes 4.65 x 1018
Wing Signal Processing 1.68 x 1018
Foxgood 2.43 x 1018
Phillips 1.91 x 10°

28



|
Simulation Results. (2) I-COPRA

@ The algorithm is applied to a set of 11 real-worlds discrete ill-posed

problems.
1 =\ T
7)) ' - &~ Baart
;g i Spikes
f>UO8 A - 4~ Wing 1
.« i —e— Heat
o . —4— |-Laplace
5006 3‘ - =g = Deriv2
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@ Heat Problem

NMSE [dB]

Normalized singular value

002040 60 80 100
Index
Singular values.

Condition number of H = 6.8 x 1035, (
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| | | -
-10 0 10 20 30
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Performance.

,my = 40).

29



@ Baart Problem
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o Wing Problem

o 1 : ‘
= = - L-curve
[ .
Z 08} - --0-- Quasi
o m .| —e—|-COPRA
= -E- YT~ 1
%0 0.6 N N &
n ) s&
T 04+ - =
N = ..
202 : —4r
g 0 | | | I - -
0 10 20 30 40 50 -0 0 10 20 30
Index SNR [dB]
Singular values. Performance.
Condition number of H = 1.68 x 1018, ( ,mao = 47).
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@ Rank Deficient Matrices

N, .. ..‘ " é‘;. x.. ..‘ "

100 | ° Quasi 0% |° Quasi
= vgr-o- L-curve = g -~ - L-curve
3, —o— [-COPRA T, —e— |-COPRA
el e
= =
= =2

0

|

|

| |
-10 0 10 20 30 -10 0 10 20 30
SNR [dB] SNR [dB]
(a) x is i.i.d. (b) x is i.n.d.

Figure: H = L BB, where B ~ N(0,I), B € R%0x%,

32



@ Special Case: (m; =n and mg = 0)

[ T T
LS
-~ - L-curve
= 20 - GOV ]
3, ‘. w0+ Quasi
w ‘o, —— |-COPRA
n
E 0 .:.'0"..\ —
=2 '8,
—20

~10 0 10 20 30
SNR [dB]

Figure: H € R109%100 js Toeplitz matrix and x is i.i.d.

Condition number of H = 389.51.
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Example of the Average Run Time

Average run time [sec]

-+ - L-curve
I S QU S XY < TN QuaSi
-»- GCV

—o— |-COPRA

SNR [dB]

Figure: Average run time
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Sensitivity to the Choice of m;

@ Problem: Heat.

Normalized singular values
o o o o
o ~ > o -

o

0 10 20 30 40 50
Index
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-
Sensitivity to the Choice of m;

@ Problem: Heat.

SNR[dB]
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-
Discriminant Analysis

o Widely used statistical method for supervised classification
@ Principle: Builds a classification rule that allows to assign for an
unseen observation its corresponding class.

3

Class 1

2 .
* ok Kk
F ¥
* * ¥ *
Hsy * *
1 o T
* ' KR
ok **
e R *
3 +
* =
o il o * e —"
+',//t/ 7=
1 t— = + +
e .+ B
Classifier g, o .
4 o oyt
2 i e e +

;
¥ "
R N

4 Hy +

+ 4+t
o

%

i

Class 2

05 o 05 1 15 2 25 3 a5

@ Let x be the input data and f be the classification rule.

Classifier 2 Assign class 1 if f(z) =>0
B Assign class 2 if f(z) =<0



Gaussian Discriminant Analysis

Gaussian mixture model for binary classification (2 classes)
@ Iy, - ,mnERp
@ Class k is formed by = ~ N (ug, k), k = 0,1

LDA Decision rule is linear in x:3¢ = X3

WLDA _ (:E _ Ho-gm )TE_I(MO _ Nl) _ %)
{ Assign x to class 0 if WEPA >0

Assignx to class 1 if otherwise

@ Statistics are unknown and so need to be estimated.

@ Covariance matrix will be ill-conditioned when sample size is less than
the data dimension p.

@ Regularization could solve the problem but the choice of the
regularization parameter is an issue.

37



Re-write the LDA score function as

- 0 + 1\ 1, - -
WEPA() = (x — EE)TE7 (i — ju)
_ JI-1/250-1/2,
=wlz
where
w="12 & =212

which can be obtained by solving the liner systems

a=3"2w & b=



-
Classification of digits from MINST data set

[ —>—RUDA (1) —8—GCV ——DAS —— RRLDA|

MNIST (1,7) MNIST (4.9)

Avg. Percentage Error

S0 10 150 200 20 30 5 100 150 200 250 30
MNIST (7.9) MNIST (5.8)

1
510
[}
p
g9
8
§8
e -
5
7

5 10 150 20 250 300 S0 100 150 200 250 300

#of samples #0f samples

Figure: Error rate performance of different LDA classifiers using handwritten
digits from MNIST dataset. The results are averaged over 50 Monte Carlo trials.



-
Beamforming

@ The output of the beamformer can be written as

yer[t] = wy[t], (18)
@ For the Capon/MVDR beamformer, the weighing coefficients are
given by

Cla
w = . 19
MVDR al Cyla (19)

where a is the array steering vector and Cyy is the sample covariance
matrix of the received signals

@ Based on (18) and (19), we can write

1

AL L
HC,¢Cyyy blgz
yerl) = SO Y _ Bt (20)

l =

99
O>

vy Cyy
where b £ C a and z £ C;}?y
_

40



Application: Beamforming

@ The two relationships of a and b can be thought of as

A1
a= Cyyb, (21)
and
gt
y =Cyyz. (22)

.1
@ Since Cyy is ill-conditioned, direct inversion does not provide a viable
solution.

@ Our regularization approach can be used to obtain estimates of b and
z given that they are noisy.

41



Application: Beamforming

@ Recall (20)

yerlt] = T = (23)

o Using regularization we can write

allU (22 + 1) 7' (22 4 4.1) " 22Uy
allU (32 + 1) > £?UHa

YBF-RLS = , (24)

e Equation (24) suggests that the weighting coefficients for the RLS
approach are given by

alU (32 + 1) (22 4 1.1) ' 22UH

. - (25)
al'U (2% 4+ 1) " =*Ufa

WBF-RLS =

42



Beamforming: Simulation result

SINR [dB]

30

25

151

101

—e—Optimal
—=—MVDR-COPRA

-—RVO LCMV
—Quasi
---MVDR

5
SNR [dB]

10 15

20
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Conclusion of Part |

@ We proposed a new regularization approach for linear least-square
problems based on allowing a bounded perturbation into the linear
transformation matrix.

@ We chose the perturbation bound based on the MSE criteria and as a
result, the proposed approach minimizes the MSE approximately.

@ The solution of the proposed approach characteristic equation does
not require knowledge of the signal and noise statistics.

@ Solution performs well compared to other methods over a wide SNR
range.

@ The proposed approach is shown to have the lowest run time.

44



Regularized Least Squares for Massive MIMO:
Precise Analysis and Optimal Tuning

Joint work with Ismail Atitallah, Ayed Alrashdi , and & Christos Thrampoulidis

45



-
MIMO System model: AWGN channel

y=Axp+z

y € R™ is the measurement vector at the receive antennas.

A € R™*"™ is the channel matrix, with iid Gaussian entries, with zero
mean and variance %

xp € {—1,1}" is a BPSK signal.

z € R™ is a additive white Gaussian noise vector with variance o
= SNR= %

@ 0 = is the ratio of the number of receive/transmit antennas.

2
z

46



-
MIMO System model: AWGN channel

y=Axp+z

@ y € R™ is the measurement vector at the receive antennas.
@ A € R™*"™ is the channel matrix, with iid Gaussian entries, with zero
mean and variance %
e xo € {—1,1}" is a BPSK signal.
@ z € R™ is a additive white Gaussian noise vector with variance o
= SNR= 1.
@ ="is the ratio of the number of receive/transmit antennas.
Optimum Receiver: Maximum Likelihood:

2
z

XML = argmin [|[Ax —y||
xe{-1,1}n

= computationally prohibitive in a massive MIMO_context

46



Low-Complexity Receivers (1)

Two-step implementation of low-complexity receivers:

@ Solve a convex optimization.
@ Hard-threshold.

Examples of common low-complexity receivers:
@ Least Squares (LS), aka Zero-Forcing receiver,
XLs = argmin |[Ax — y||*> = (ATA)1ATy,
xeRn
x1g = sign(XLs)-

47



Low-Complexity Receivers (1)

Two-step implementation of low-complexity receivers:

@ Solve a convex optimization.
@ Hard-threshold.

Examples of common low-complexity receivers:
@ Least Squares (LS), aka Zero-Forcing receiver,
XLs = argmin |[Ax — y||*> = (ATA)1ATy,
XER
x1g = sign(XLs)-

@ Regularized Least Squares (RLS),
XrLs = argmin [|[Ax — y||? + \|x]|? = (ATA + \I) ' ATy,

XER

Xﬁ*ii = Siin QRLS)-

47



Low-Complexity Receivers (2)

@ RLS with Box Relaxation Optimization (RLS-BRO)

Xpro = argmin ||Ax — y|| + A||x||°,
x€[-1,1]"

Xpro = SIgN(XBRO)-

e No closed-form expression
e quadratic program = the complexity is also cubic.

48



Low-Complexity Receivers (2)

@ RLS with Box Relaxation Optimization (RLS-BRO)
Xpro = argmin [[Ax —y| + Xl
xe€[—1,1]"

Xpro = SIgN(XBRO)-

e No closed-form expression

e quadratic program = the complexity is also cubic.
@ Aim:

e Derive precise BER expression

e Find optimum regularizer A

e Find optimum Box threhsold

48



Relevant literature

1
BER := 03071, L scns 0,4} -

Receiver BER approach Reference
LS Exact Exact non-asymptotic formula, e.g. Tse and Viswanath !
RLS RMT Tulino and Verdu 2

LS-BRO CGMT Thrampoulidis and Hassibi3

RLS-BRO CGMT This Talk

RMT: Random Matrix Theory
CGMT: Convex Gaussian Min-max Theorem




-
Asymptotic BER Analysis

@ LS: limy,—oo BERLs = Q ((6 — 1)snr), (for § > 1).

-l
@ RLS: limy o BERRLs = Q( W) where
T+Y(X,9)
(1=6+X)24+4X5
28 '

snr

T\, 8) = 15+ A+
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-
Asymptotic BER Analysis

@ LS: limy,—oo BERLs = Q ((6 — 1)snr), (for § > 1).

() +a

(1— 6+>\)2+4>\5
20

snr

S—— 1
@ RLS: limn— 00 BERRLS = Q( W””’“) where

T\, 8) = 15+ A+

e The optimal X that minimizes the asymptotic BER,, ¢ is
= LMMSE receiver is also optimal in the BER sense.

e A high SNR approximation of the BER of LMMSE is
Q (6= 1+ —ow ) SNR) = Q((6 — 1)SNR).

1
SNR
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Convex Gaussian Min-max Theorem

Convex-Gaussian Min-Max Theorem (CGMT)

?Consider the following two min-max problems:

Primary Optimization (PO) Problem: ®(G) := mgl m%x u’ Gw + ¢ (w,u)

weSy ue
Auxilary Optimization (AO) Problem: ¢(g, h) := mgl max ||WHg u-— ||u|\hTw + ¢(w,u)
we ues

@ 1) is convex-concave.
@ wg any optimal minimizers in the (PO).
@ w, any optimal minimizers in the (AO).

Then, if lim, 00 Pr(wg € S) =1, it also holds lim,, o Pr(we € S) = 1.

?C. Thrampoulidis, E. Abbasi and B. Hassibi “Precise error analysis of regularized
M-estimators in high-dimensions”- arXiv preprint arXiv:1601.06233, 2016

@ We apply the CGMT to the set in which the BER concentrates, i.e.

S= {w; IBER — E[BER]| < e}. (26)
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Precise Bit Error Rate (BER) Analysis

Theorem (BER of RLS-BRO)

As n,m — oo, such that ™ — § € (0, 00), it holds in probability

. 1
nlin;o BERggro = Q(;),

*

where T, is the unique solution to the following

. B \3% 4B (2
D L= P E o z
I;ﬂ>1£l 151>a())< (7, 8) orh + SNRt 2 + T Q T +

=N

)

2,2\ B [F _2)°
_4ﬂp(7_+ﬂ> €+2/— 3(h ﬁ) p(h)dh.

2 _
B

@ 7. can be efficiently computed by writing the first order optimality conditions, i.e.
V(T’ﬁ)D(Tv B) =0.

@ 7. (and hence the BER) depends on § = 2

™, SNR and the regularizer .
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Optimal tuning of the Regularizer

101og;q(snr)

@ The optimal regularizer A\BR© is an decreasing function of the ratio 2

: 1
@ It is always below gy -

@ Jsar € Ry, such that, ABRO =0 for all snr ¢ (snr, 00).
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LMMSE vs RLS-BRO

107 F E
107" E
o 1072 g E
i F ]
m N 1
10 H[--- RLS-BRO: 6 = 0.7 E
[|--- LMMSE:§=0.7 ]
—4||—— RLS-BRO: 6 =1 |
10 LMMSE: § = 1 \
[l e simulations ]

10_5 I I |

0 5 10 15
101og;(snr)

Figure: n = 500.

Recall the following high-SNR approximations:
@ lim,oBER,,, ~ Q((6 — 3)snr)
@ limpooBER,, ¢ ~ Q((d — 1)snr)
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Is [—1, 1] the optimal relaxation interval?

Kpro = argmin ||Ax — y| + Alx|?
x€E[—t,t]m

XBRO = Sig“(ﬁBRO)

@ In a similar fashion, we can prove that lim, o BERgz, = Q (%), where
T+ = argmin_. , maxgso D(7, 8;t,\, 6, SNR).

@ 7.(t,\,0,SNR) is a function of SNR, the sampling ratio d, the regularizer A and
the relaxation threshold ¢.

@ We select the optimal relaxation threshold ¢*, and the optimal regularizer A\*, such
that:

(t*,A%) € argmin(ty)\)eRi T« (t, A, 0,SNR)
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Joint optimization of the regularizer and the relaxation
threshold

0.95 -

0.9}

ABRO

0.85 |-

08"

Optimal relaxation threshold

0.75

15
101ogo(snr)

101ogo(snr)



N
What if we don’'t know the SNR?

If the signal and noise variances are not known, we use the expression of the cost
function of RLS to estimate the SNR, to ultimately allow for an optimal tuning of the

regularizer. Let J(o2,02) denote the asymptotic cost function of RLS.

J(07,02,7,6) := lim min||Ax —y|* + Ax|*.
n—oo X

= a(\, 5)02 +b(A, 5)03,

where ) )
SA A A T AT
a()"(s)_(T_W_T+T2><5(1+T)2—1)_1+T+)"
YRS A (1+7)? A
b(“)_(T_ﬁ_r+r2>(5(1+r)2—1)+?
and

1=+ A+ /(A= + N2 +4NS

T
26



N
What if we don’'t know the SNR?

0.6 : : : : : : 30
0.5}
20
0.4 o
7 :
& 03f 10
= z
0.2
0
0.1 Theoretical | |
o Empirical
0 | | | | -10

0 1 2 3 4 5 6 7

—— True SNR
« Estimated SNR

|
10 20 30
101og;((SNR)

Figure: m = 500, n = 800, 02 = 1 and Figure: m = 500, n = 800 and

ol =03. 02 =1.
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N
What if we don’'t know the SNR?

0.6 T T T T T T 30
0.5
20 { b
0.4F .~
— <
g S 10 y
‘5 0.3} > 1
S Z
0.2
0 il
01 Theoretical | | —  True SNR
o Empirical «  Estimated SNR
0 I | | I ~10 | I
0 1 2 3 4 5 6 7 —10 0 10 20 30
A 101og;((SNR)

Figure: m = 500, n = 800, 02 = 1 and Figure: m = 500, n = 800 and
0?=0.3. 02 =1.

@ Use one observation y to estimate the SNR.

@ Use the SNR estimate to set the regularization parameter A and the box threshold
t.
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SNR Estimation under Correlation

—m =N -7
|| @ Proposed —
——Exact SNR -

o 5 10 15 20
SNR [dB]

(a) var(ML)=0.2358, var(proposed) = 0.1348.



Equalization Performance: Uncertain Channel Case

y=(H1-€A+eA)xg+z
where
e cc0,1).
@ A is the estimation noise matrix with iid Gaussian entries with var.
2
0—5.
e c=20:
01 T(1A )2
_ T,
BERRLs = @ T \Z 3
0 c#0:

o —

1
2 )
TONS
(1—¢) (1+1(r(A,)5)> +1L +e2
where T (), 6) = 176”‘*\/(;6*5“\%‘
60

BERRLs = Q(




Equalization Performance: Uncertain Channel Case

105 L L L

5
SNR (dB)

Figure: BER performance § = 1.3,n = 256

[4] Ayed M. Alrashdi, Ismail Ben Atitallah, Tareq Y. Al-Naffouri and Mohamed-Slim Alouini “Precise Performance Analysis of
the LASSO Under Matrix Uncertainties”, GlobalSIP, 2017.
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Optimum Training

@ Given a power budget at the transmitter

o We can use some for channel estimation (reduces ¢).

o We can use some for data transmission (reduces BER)

Training

(reduces estimation error)

Data Transmission
(reduces BER)
o Total Energy

E=E,+Ey

=aE+(1-a)E
@ What is the optimum trade-off?
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How to find o7

RLS-Theory
RLS-Simulation
Theory

[:4
& 102
W10

Figure: Optimal Power vs. BER for the LS and RLS equalizers.

[5] Ayed M. Alrashdi, Ismail Ben Atitallah, Tarig Ballal, Christos Thrampoulidis, Anas Chaaban and Tareq Y. Al-Naffouri
“Optimum Training for MIMO BPSK Transmission”, SPAWC, 2018 (submitted).



Conclusion of Part Il

Precise Asymptotic BER analysis of the Box Relaxation Optimization
for BPSK signal recovery, that allow efficient optimal tuning of the
paramters.

Tuning is possible even if SNR is not known as we are able to
estimate it precisely.

Analysis is extended to the case where channel exhibits uncertainty.

Analysis used to find optimize training power to minimize SNR.

@ Future work: We are extending the work to other constellations
(PAM, QAM), other equalizers, and correlated channel case.
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Thank you
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What is KAUST?

Graduate Level research university governed
by an independent Board of Trustees =

Merit based, open to all from around the world

Research Centers as primary organizational
units

Research funding and collaborative
educational programs

Collaborative research projects, linking
industry R&D and economic development

Environmentally responsible campus
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- . > ® An iconic part of campus, the Campus Library is
20 more than just a place to house periodicals. This
o contemporary building encased in translucent stone
engages light to create a tranquil space for people
b to gather, think, and learn. It's distinctive
™ architecture won the 2011 AIA/ALA Library Building
Award given by the American Institute of Architects
(AIA) and the American Library Association (ALA).
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The Student Center is a one-stop spot for many
student-related services to support academic,
personal, and professional development.




