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Closed-Form 2-D Angle Estimation with
Rectangular Arrays in Element Space
or Beamspace via Unitary ESPRIT

Michael D. Zoltowski, Senior Member, IEEE, Martin Haardt, Student Member, and Cherian P. Mathews

Abstract— UCA-ESPRIT is a recently developed closed-form
algorithm for use in conjunction with a uniform circular array
(UCA) that provides automatically paired source azimuth and
elevation angle estimates. 2-D unitary ESPRIT is presented as
an algorithm providing the same capabilities for a umiform
rectangular array (URA). In the final stage of the algorithm, the
real and imaginary parts of the ith eigenvalue of a matrix are one-
to-one related to the respective direction cosines of the ith source
relative to the two major array axes. 2-D unitary ESPRIT offers
a number of advantages over other recently proposed ESPRIT
based closed-form 2-D angle estimation techniques. First, except
for the final eigenvalue decomposition of dimension equal to the
number of sources, it is efficiently formulated in terms of real-
valued computation throughout. Second, it is amenable to efficient
beamspace implementations that will be presented. Third, it is
applicable to array configurations that do not exhibit identical
subarrays, e. g., two orthogonal linear arrays. Finally, 2-D unitary
ESPRIT easily handles sources having one member of the spatial
frequency coordinate pair in common. Simulation results are
presented verifying the efficacy of the method.

I. INTRODUCTION

OR 1-D arrays, if the elements are uniformly spaced,

root-MUSIC and ESPRIT' [1] avert a spectral search in
determining the direction of arrival (DOA) of each incident
signal. Instead, the DOA of each signal is determined from
the roots of a polynomial. For either root-MUSIC or ESPRIT?,
the roots of interest ideally lie on the unit circle and are related
one-to-one with each source as shown in Fig. 1.

For 2-D (planar) arrays, the fact that the fundamental
theorem of algebra does not hold in two dimensions typically
precludes a rooting type of formulation. Even for the highly
regular uniform rectangular array (URA), 2-D MUSIC requires
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YESPRIT may also be employed in the case of an array composed of at
least two translationally invariant subarrays.

2In ESPRIT the DOA’s are extracted from eigenvalues, which are roots of
the characteristic polynomial of a matrix.

u = dir. cosine wrt array/displacement axis

broadside

Fig. 1. Illustrating the form of signal roots obtained via root-MUSIC with
ULA or ESPRIT with single invariance (roots are eigenvalues.)

a spectral search of a multimodal 2-D surface, while both
multiple invariance ESPRIT [2], [3] and Clark and Scharf’s
2-D IQML [4] algorithm involve nonlinear optimization. Now,
it should be pointed out that a URA lends itself to separable
processing allowing one to decompose the 2-D problem into
two 1-D problems. -That is, one can estimate the DOA’s with
respect to one array axis via one set of calculations involving a
MUSIC- or ESPRIT- based polynomial formulation, and do the
same with respect to another array axis. Coupling information
may be employed to subsequently pair the respective members
of the two sets of 1-D angle estimates [S5].

In the algebraically coupled matrix pencil (ACMP) method
of van der Veen et al.,’ eigenvector information is employed
to pair the respective members of the two sets of 1-D angle
estimates [6].

In contrast, for a uniform circular array (UCA) the recently
developed UCA-ESPRIT [7], [8] algorithm provides closed-
form, automatically paired 2-D angle estimates as long as the
azimuth and elevation angle of each signal arrival is unique.

3van der Veen et al. do not actually give their method a name. In a later
paper, Vanpoucke _et al. label their method ACMP.

1053-587X/96$05.00 © 1996 IEEE
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u = dir. cosine wrt x-axis; v = dir. cosine wrt y-axis

0 = elevation angle; ¢ = azimuth angle

u,+jv,=sin ezeJ 2

u1+jV1=sin 91634’1

270

Fig. 2. Tlustrating the form of signal roots obtained via UCA-ESPRIT with
circular array or approximate 2-D DFT beamspace ESPRIT with rectangular
array. i

As illustrated in Fig. 2, in the final stage of UCA-ESPRIT, the
tth eigenvalue of a matrix is of the form sin§; &7, where
¢; and ; are the azimuth and elevation angles of the ith
source. Note that sin 8, e/% = u; + jv; where u; and v, are the
direction cosines of the sth source relative to the = and y axes,
respectively. The eigenvalue for each source is thus unique
such that UCA-ESPRIT does not have the aforementioned
problem when two sources have the same u; or the same ;.
‘We here develop a closed-form 2-D angle estimation algorithm
for a URA that provides automatic pairing in a similar fashion.
That is, in the final stage of new algorithm, referred to as 2-
D unitary ESPRIT, the real and imaginary parts of the ith
eigenvalue of a matrix are one-to-one related to u; and v;,
respectively.

2-D unitary ESPRIT is developed as an extension of the
recently proposed unitary ESPRIT [9], [10] algorithm for
a uniform linear array (ULA). Unitary ESPRITexploits the
conjugate centrosymmetry of the array manifold for a ULA
to formulate each of the three primary stages of ESPRIT in
terms of real-valued computations: 1) the computation of the
signal eigenvectors; 2) the solution to the system of equations
derived from these signal eigenvectors; and 3) the computation
of the eigenvalues of the solution to the system of equations
formed in stage 2. Note that Huarng & Yeh [11] and Linebarger
et al [12] previously exploited the conjugate centrosymmetry
of the ULA manifold to formulate the determination of the
noise eigenvectors and subsequent spectral search required
by MUSIC in terms of real-valued computation. The ability
to formulate an ESPRIT-like algorithm for a ULA that only
requires real-valued computations from start to finish, after an
initial sparse unitary transformation, is critically important in

developing a closed-form 2-D angle estimation algorithm for
a URA similar to UCA-ESPRIT for a UCA. unitary ESPRIT is
thus reviewed in Section III after a brief overview in Section
IT of CV to RV transformations facilitated by the conjugate
centro-symmetry of the ULA manifold.

A reduced dimension beamspace version of unitary ESPRIT
is developed in Section IV. There are a number of advantages
to working in beamspace: reduced computational complexity
[13], decreased sensitivity to array imperfections [14], and
lower signal-to-noise ratio (SNR) resolution thresholds [15]. In
contrast to the beamspace ESPRIT [16] algorithm of Xu et al,
the beamspace version of unitary ESPRIT exploits the real-
valued nature of the beamspace manifold to formulate each
of the three primary stages of ESPRIT in terms of real-valued
computations as in unitary ESPRIT, but in a reduced dimension
space. The relationship between beamspace ESPRIT and the
beamspace version of unitary ESPRIT is examined in Section
IV-B.

2-D unitary ESPRIT is developed in Section V. In addition
to the ability to handle sources having the same arrival
angle relative to either the z-axis or the y-axis, 2-D unitary
ESPRIToffers a number of advantages over other recently
proposed ESPRIT based closed-form 2-D angle estimation
techniques including ACMP. First, except for the final eigen-
value decomposition of dimension equal to the number of
sources, it is efficiently formulated in terms of real-valued
computation throughout. Second, it is amenable to a reduced
dimension beamspace implementation. In Section VI, we
develop a beamspace version of 2-D unitary ESPRIT as
an extension of the beamspace version of unitary ESPRIT
presented in Section IV.

Another advantage of 2-D unitary ESPRIT over ACMP is
that the former is applicable to array configurations that do
not exhibit identical 2-D subarrays, e. g., two noncollinear
ULA’s. In contrast, ACMP requires an array of sensor triplets
so that one can extract three identical subarrays from the
overall array. 2-D unitary ESPRIT only requires that the array
exhibit invariances in two distinct directions. In Section VII,
we show how 2-D unitary ESPRIT may be simply adapted for
the case of two orthogonal ULA’s having a common phase
center. ACMP is not applicable with such an array geometry.

Simulation results are presented in Section VIII verifying
the efficacy of 2-D unitary ESPRIT and its beamspace coun-
terpart, and comparing their respective performances with the
Cramér—Rao lower bound.

II. REAL-VALUED PROCESSING WITH A ULA

All of the developments in this paper rely on some well
known aspects of real-valued processing with a ULA, which
are quickly reviewed here [9]-[12], [17]. Employing the center
of the ULA as the phase reference, the array manifold is
conjugate centrosymmetric. For example, if the number of
elements comprising the ULA N is odd, there is a sensor
located at the array center and the array manifold is

N-1

ay(p) = [ffj( 2

where y1 = 25 A u with A equal te the wavelength A, is equal

. . L N— T
)MM"ae_]ﬂ;laeﬂt-'-7€J(N21)u:| (1)
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to the interelement spacing, and u equal to the direction cosine
relative to the array axis. The conjugate centrosymmetry of
an(p) is mathematically stated as TIyay () = ak (1) where
’ 1
My = 1 € RNXN,
1

As the inner product between any two conjugate centrosym-
metric vectors is real-valued, any matrix whose rows are each
conjugate centrosymmetric may be employed to transform the
complex-valued element space manifold ay (i) into a real-
valued manifold. As noted by numerous authors [9], {111, [12],

the simplest matrices. for accomplishing such are

@

1 Ik jIx ]
= . 3
Q2x NG} [HK Zitig ©))
if N is even, or :
Ix 0 jlIgx
Qort1 = 7 o V2  oF ¢
2| mg 0 —jlig

if N is odd. QF is a sparse unitary matrix that trans-
forms ay(u) into an N x 1 real-valued manifold, dy(u) =
QX an (). For example, if the number of elements comprising
the ULA is odd, the form in (4) is used and

dn(n) = Qray(p)

2 [oon (2500),cont 12,

- . (N-1
—sin | — v
in{ ==,

Let R, denote the N x N complex-valued element space
sample covariance matrix. Since the transformed manifold is
real-valued, the signal eigenvectors required at the front end
of ESPRIT may be computed as the “largest” eigenvectors
of Re{Q¥R.,,Qn}. Note that in addition to the obvious
computational reduction, taking the real part of the correlation
matrix effects signal decorrelation [17] in the case of highly
correlated or coherent sources. Alternatively, for robustness
to dynamic range, if X denotes the N x N, element space
data matrix containing N, snapshots as columns, the signal
eigenvectors may be computed as the “largest” left singular
vectors of the real-valued matrix [Re{Y},Zm{Y}|, where
Y = QIX.

Note that premultiplication of an N x lvector by Q¥
involves no multiplications (the scaling by /2 is unnecessary
in computing the signal eigenvectors) and only N additions.
In Section IV, we also consider the use of the V-point DFT
matrix, with appropriate scaling of the rows to make them each
conjugate centrosymmetric [17] to transform the data into a
real-valued beamspace. Although FFT’s are fast, this approach
ostensibly involves significantly more computation than the
use of Q. The utility of transforming to beamspace comes
into play when there is a priori information on the general an-
gular locations of the signal arrivals, as in a radar application,
for example. In this case, one may only apply those rows of
the DFT matrix that form beams encompassing the sector of
interest. This yields a reduced dimension beamspace and leads
to reduced computational complexity [13}-[15], [17].

—sin(u)r- ®)

Note that in this paper, we do not address the ‘problem
of estimating the number of sources. We will assume an
estimate is available via a procedure such as that described
by Xu et al in [18], which explicitly exploits the conjugate
centrosymmefry of the array manifold for a ULA.

III. REVIEW OF UNITARY ESPRIT FOR ULA

‘We here present a brief development of unitary ESPRITas
an alternative to that in [9] that provides further insight into
unitary ESPRIT and also facilitates its extension for closed-
form 2-D angle estimation scheme with.a URA. We begin
by developing an invariance relationship satisfied by the real-
valued manifold dy (1) in (5) that involves only. real-valued
quantities.

The element space manifold in (1) satisfies the invariance
relation [1]

e*Jray(u) = Jaan () (6)
where J; and J; are the (N — 1) x N selection matrices
10 0 .. 0 0]
6 10 .. 00
Jl | : ) X ) c §R(N_1)XN (7)
0 0 1 0]
0 1 0 07
0 0 1 00
=0 L | ERTI @
10 0 0 ... 0 1]

Ji and Jy select the first and last N — 1 components of an
N x 1 vector, respectively. Since Qv is unitary, it follows
that e’*J;QnQFan(1)=J2QnQay (1) which, invoking
the definition of dx(x) in (5), implies e/*J;Qndn(p) =
J2Qndy (). Premultiplying both sides by QX _, yields the
following invariance relationship:

QR _11Qndn(p) = QN J2Qudn(p). )
Note that J; and Jq satisfy TIy-1JoIIxy = J1. As a conse-
quence,
QN_1J2Qn = QF _ Ty Ty JTINTIN Qy
= Q%—lJlQ*N
= (QN-13:1Qn)*
where we have exploited the fact that IIyQy =
INIIy = Iy for any N.
Let K; and K5 be the real and imaginary parts of
QE_,J.Qn, as follows:

K; = Re{QR_1J:Qn}

(10)
QX and

an
K> = Im{Q¥_,3:Qu}. 12)

K; and K5 are real valued (N — 1) x N matnces With thcse
definitions, (9) may be expressed as

% (K — jKa)dy(p) = e 95 (K, +JK2)dN( ). (13)
Rearranging, we have
(€% — e ) Kadn(p) = j(e’f +e778)Kady (n). (14)

Invoking the definition of the tangent function' yields the
following invariance relationship satisfied by d(u) involving
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only real-valued quantities:
tan (%) Kidn (k) = Kadn ().

For d < N sources, we define the N x d real-valued
DOA matrix as D = [dn (1), dn(p2), ..., dn(pea)]. The real-
valued manifold relation in (15) translates into the real-valued
DOA matrix relation

KD}, = K;D, where:
Q, = diag{tan (%),.,.,tan (%d-)} (16)

Now, as discussed previously, if X denotes the N x N, element
space data matrix containing N, snapshots as columns, the
signal eigenvectors for unitary ESPRIT may be computed as
the “largest” left singular vectors of the real-valued matrix
[Re{Y},Im{Y}], where Y = QE¥X. Asymptotically (i.e.,
as the number of snapshots becomes infinitely large), the N x d
real-valued matrix of signal eigenvectors Eg is related to the
real-valued N X d real-valued DOA matrix D as

Es = DT 17

where T is an unknown d x d real-valued matrix. Substituting
D = EgT! into (16) yields

I'NEs® =T,E5, where: ¥ =T7'Q,T. (18)

Thus, the eigenvalues of the d x d solution W to the (N —1) xd
matrix equation above are tan(u;/2), ¢ = 1, ..., d. This reveals
a spatial frequency warping identical to the temporal frequency
warping incurred in designing a digital filter from an analog
filter via the bilinear transformation. Consider A, = A\/2 so
that ;4 = %’—‘Axu = 7u. In this case, there is a one-to-one
mapping between —1 < u; < 1, corresponding to the range
of possible values for a direction cosine, and —o0 < w; < 00.
unitary ESPRIT is summarized below.

15)

Summary of unitary ESPRIT

1) Compute E, via the d “largest” left singular vectors of
[Re{Y},Im{Y}], where Y = Q¥X. ‘

- 2) Compute ¥ as the solution to the (N — 1) x d matrix

equation (K1Eg)¥ = (K2Eg).

3) Compute w;, ¢ = 1, ..., d, as the eigenvalues of the d x d
real-valued matrix ¥. '

4) Compute the spatial frequency estimates as u; =
2tan‘1(wi), 1 =1,..d.

IV. DFT BEAMSPACE ESPRIT FOR ULA

As an alternative to unitary ESPRIT, we here develop a ver-
sion of ESPRIT for a ULA that works in DFT beamspace and
involves only real-valued computation from start to finish after
the initial transformation to beamspace. Reduced dimension
processing in beamspace is facilitated when one has apriori
information on the general angular locations of the signal
arrivals, as in a radar application, for example. In this case, one
may only apply those rows of the DFT matrix that form beams
encompassing the sector of interest, thereby yielding reduced
" computational complexity. If there is no a priori information,
one may examine the DFT spectrum and apply the algorithm
to be developed to a small set of DFT values around each

spectral peak above a particular threshold. In a.more general
setting, one may simply apply DFT beamspace ESPRIT via
parallel processing to each of a number of sets of successive
DFT values corresponding to overlapped sectors. Note, though,
that in the development to follow, we will initially employ all
N DFT beams for the sake of notational simplicity. A reduce
dimension example will follow. '

Applying the conjugate centrosymmetrized version of the
m-th row of the N-point DFT matrix

. [1 ,e ImE ,e—jzm%ﬂ e ,e_j(N"l)m%"’L] 19

the mth component of the DFT beamspace manifold 0 < m <
(N-1)is

N 27
N sin |5 (4 — mFr
boli) = el () = L2 E
sin [5 (4 - m
The row vector WX represents a DFT beam steered at the

spatial frequency p(*) = mZE (plus or minus integer multiples
of 27). Note that we can perform a front-end FFT (effectively
implementing the Vandermonde form of the rows of the DFT
matrix) and achieve conjugate symmetrized beamforming a
posteriori through simple scaling of the DFT values (see (19)).
The N x 1 real-valued beamspace manifold is then

by (1) = WRan (1) = [bo(w) ,b1(k) ;- . ,bv-1(w)]" @1)

where Wﬁ denotes the conjugate centrosymmetrized N pt.
DFT matrix whose rows are given by (19).

. __sin %(u—(m+1)%’)
Comparing by, 11(p) = sin [3 (i (m+1) 38))
(20), the numerator of b,,+1() is observed to be the negative
of that of b,,(u). Thus, two successive components of the

beamspace manifold are related as

sin [% (u —’m%)} b (1) +
sin [1 (u - (m+1)2ﬁﬂ)}bm+1(p,) =0.

with b,,(p) in

5 (22)

Trigonometric manipulations lead to

tan (g) {cos (m%)bm(u) + cos ((m + 1)%) bm+1(u)}

= sin (m%)bm(,u) + sin ((m + 1)%)bm+1(u).
(23)

Hence, we could define two selection matrices of size (N —
1) x N relating two successive components of the DFT
beamspace manifold, namely b,,(u) and by, 1(u), for 0 <
m < (N —2). Moreover, the beams with indices m = (N —1)
and m = 0 are physically adjacent to one another, since
they are steered at the spatial frequencies pgf,)_ 1 —2m =
(N-1)Z —2r = —ZT and p&) = 0, respectively. To relate,
therefore, the last and the first component the DFT beamspace
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by(p) =

“1) .gin (¥
= lisins(;u(—f 8 (=1 bo ().

Then, the desired relationship between by_1(x) and bo(p) is
obtained by setting m = (N — 1) in (23), namely

e
{eos (V=13 )bwoaw) + cos (1) -V Do(u) } =

sin (= 1) 7)o cs (1) + sin () (~1) VDo 1)

Compiling all N equations in vector form0 < m < (N —1)
yields an invariance relationship for the beamspace manifold
b(i), similar to that for the real-valued manifold dy(y), as
follows: ' ‘
tan (%) Tiby () = Taby(u) 4)
where (25) and (26) are the result (see the bottom of the page).
Notice that the last rows of I';and T’y are a linear combi-
nation of the other rows, i.e., both N x N selection matrices
are rank-deficient. They are only of rank (N — 1). One of the
N rows of Ty and T’y could, therefore, be dropped, if all NV
DFT beams were employed. In reduced dimension processing,
however, a subset of the row vectors defined in (19) is applied
to the data matrix X. Thus, only those subblocks of the
selection matrices I'y and I'; that relate the corresponding
components of by {u) will be used.
With d sources, the beamspace DOA matrix is B =
[ba (1), bn(p2), ..., ba(122)]- The beamspace manifold rela-
tion in (24) translates into the beamspace DOA matrix relation

’I‘lBQ# =T'2B, where: 2,

= diag{tan (%) y ey ban (%) }

Now, the appropriate signal eigenvectors for the algorithm
presently under development may be computed as the

27

“largest” left singular vectors of the real-valued matrix
[Re{Y},Zm{Y}] where Y = WEX. Asymptotically, the
N x d matrix of signal eigenvectors Eg satisfies Eg = BT,
where T is an unknown d x d real-valued matrix. Substituting
B = EsT into (27) yields '
I['Es® =TEs, where: ¥=T7'Q,T. (28)
Thus, the eigenvalues of the d x d solution ¥ to the (N —
1) x d matrix equation above are tan(y;/2), i = 1,...,d.

The algorithm based on this development, DFT beamspace
ESPRIT, is summarized below.

Summary of DFT beamspace ESPRIT

1) Compute E, via the d “largest” left singular vectors of
[Re{Y},Im{Y}] where Y = WX,

2) Compute ¥ as the solution to the (N — 1) x d matrix
equation (I'1E5)¥ = (T';Eg). ' ’

3) Compute w;, i = 1, ..., d; as the eigenvalues of the d x d
real-valued matrix W¥.

4) Compute spatial frequency estimates as pu; =
2tan " Hw;), i = 1,...,d.

A. Reduced Dimension Example

It is instructive to look at the structure of the selection
matrices for unitary ESPRIT, K; and K, defined in (11)
and (12), respectively. For example, for the case of N = 6
elements :

m 1 0 0 0 07
1101 1 00 0
Ki==[0 0 V2 0 0 0 and
210 o 0110
0o 0o 0.0 1 1]

0 0 0 -1 1 0-
(0 0 0 0 -1 1
Kzziooooo—\/i».
1 -1 0 0 O 0
01 -1 0 O 0

Note that Ky and K are sparse like T'; and I';. However, any
two rows of K; and the corresponding rows of K, involve
all of the elements of dy(u). (One needs two equations to -

1 cos (&) 0 0
0 cos (%) cos 2\,—”) 0
T, = 0 0 cos WW) cos (%—\’})
0 O 0 0
(=N 0 0 0
0 sin (%) 0 0
0 sin (%) sin (2—“) 0
0 0 sin (%) sin (37)
T, = . .
0 0 0 0
0 0 0 0

0 0

0 0

0 0

. € gV N (25)
cos ((N.—‘ 2)E) cos ((N‘— 1)%)

0 cos (N =1)%)

0 0

0 0

0 0 c %NXN

(26)

sin ((N'— 2)%) sin (N - %)
0 sin (N - 1)%)
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estimate the DOA of one source.) Thus, one cannot work with
a subset of the rows of QZ.

Again, the utility of DFT beamspace ESPRIT over unitary
ESPRIT is in scenarios where one employs a subset of the
rows of WX, the number of which depends on the width of
the sector of interest and may be substantially less than N, to
transform from element space to beamspace. Employing the
appropriate subblocks of I'y and T’y as selection matrices, the
algorithm is the same as that summarized previously except
for the reduced dimensionality. For example, if one employed
three successive rows of W& associated with the DFT bin
indices, m, m + 1, and m + 2, respectively, to form three
beams in estimating the angles of two closely spaced signal
arrivals, as in the low-angle radar tracking scheme described
by Zoltowski and Lee [19], the appropriate 3 x 2 selection
matrices are

p, cos (m%) cos ((m+1)%) 0
0 cos (m+1)Z%)  cos ((m+2)%)
and
r, :[sin (m%) s%n (m+1)F) . 0 ]
0 sin ((m+1)%) sin (m+2)%)
In this case, one would compute the d = 2 “largest” eigenvec-
tors of a 3 x 3 real-valued matrix, solve a 2 x 2 real-valued
system of equations, and compute the 2 eigenvalues of the
resulting 2 X 2 matrix solution.

B. Relationshfp Between DFT Beamspace
ESPRIT and Beamspace ESPRIT

In [16], Xu et al. develop a beamspace version of ESPRIT
that is applicable whenever the N, x N beamforming matrix
FH exhibits an invariance property similar to that exhibited
by the element space DOA matrix in (6). Here N, denotes
the number of beams. That is, if F satisfies J;F® = J.oF,
where © is an N X N, diagonal matrix, then Xu et al. provide
prescriptions for constructing (N — 1) x N matrices % and
3, satisfying e/ 3 b(p) = Zab(u), where b(u) is the Npx 1
beamspace manifold b(n) = F¥a(u). This facilitates the use
of ESPRIT in beamspace, ultimately yielding as eigenvalues
the quantities e?#+, ¢ = 1, ..., d as in standard ESPRIT, except
via processing in a reduced dimensional space.

Xu et al note that a beamforming matrix F# composed of
N, rows of the N pt. DFT matrix satisfies a relationship of the
form J;FO = J,F thereby facilitating the use of beamspace
ESPRIT. To see the relationship between DFT beamspace
ESPRIT and beamspace ESPRIT, substitute the expression for
tan(y/2) in (18) into the invariance relationship for b(y) in
(24). After some manipulation this yields

(e = Iyb(n) = j(e™* + Dab(n). =
e(Ty = jT2)b(n) = (T + jT2)b(k).
Thus, in this case the appropriate matrices X1 and 3 for
beamspace ESPRIT are £, = Ty — jI2 and Xy = 7.
Note, though, that even if through centrosymmetrization one
determines the signal eigenvectors via real-valued compu-
tation as discussed previously, the second and third stages
of beamspace ESPRIT require complex-valued computation
ultimately yielding as eigenvalues e#i, i = 1,...,d. Aside

from the increased computation complexity relative to DFT
beamspace ESPRIT, this does not facilitate an extension for
the URA vyielding automatically paired azimuth and elevation
angle estimates.

V. 2-D UNITARY ESPRIT FOR URA
We now develop an extension of unitary ESPRIT for a

_uniform rectangular array (URA) of N x M elements lying

in the z-y plane and equispaced by A, in the z direction and
A, in the y direction. In addition to 4 = 27 A u, where u is
the direction cosine variable relative to the x-axis, we define
the spatial frequency variable v = ZT"Ayv, where v is the
direction cosine variable relative to the y-axis.

In this development, in addition to representing the array
manifold as an NM x 1 vector, denoted a(u,v), it will
be convenient to represent it as an N x M matrix denoted
A(p,v), as well. The two forms are related through the
operators vec(-) and mat(-) as a(p,v) = vec(A(u,v)) and
A(u,v) = mat(a(p, v)). The operator vec(-) maps an N x M
matrix to'an NM x 1 vector by stacking the columns of the
matrix. The operator mat(-) performs the inverse mapping,
mapping an NM X 1 vector into an N X M matrix such that
mat(vec(X)) = X. An important property of the vec operator
that will prove useful throughout the development is

vec(ABC) = (CT @ A) vec(B)
where ® denotes the Kronecker matrix product.
In matrix form, the array manifold may be expressed as
A(p,v) = an(u)aiy (v) (30)
where ay;(v) is defined by (1) with NV replaced by M and p
replaced by v. Similar to the 1-D case, premultiplying A(x, v)
by QX and post-multiplying by Qj},, creates the N x M
real-valued manifold '
D(p,v) = QRA(L, ¥)Qi
= QRan(p)ag (V) Qi
= dy(u)d} (V)
where djs(v) is defined by (5) with N replaced by M and
1 replaced by v.

Given that dy(u) satisfies the invariance relationship in
(15), it follows that D(p,v) satisfies

29

(€)Y}

tan (%) K, D(u, v) = KoD(,v) (32)

where K; and K, are defined in (11) and (12), respectively.
Using the property of the vec operator in (29), we find that
the NM x 1 real-valued manifold in vector form, d(u,v) =
vec[D(p,v)] satisfies

tan (-g) K, 1d(p,v) = Kuod(p,v)
where K1 and K,; are the (N — 1)M x NM matrices
Ku=Ix9Ki

(33

and Ku=InyoKs (34)

Equation (33) represents (N — 1)M equations. Similarly,
the 1-D real-valued manifold dps(v) satisfies tan(v/2)
Kady(v) = Kudp(v) where Kg and Ky are defined
similar to (11) and (12) with N replaced by M such that they
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are (M — 1) x M. That is, K3 = Re{Q},_;J2Qu} and
K = Im{Q¥, _,3:Qu}. It follows that

tan (g«) D(u,v)KT = D(u, V)K:f. (35)
Again, using the vec operator, we find that d(u, v) satisfies
v
tan (5) K,1d(p,v) = K,ad(p, v)
where K1 f and K, are the N(M — 1) x N M matrices
Kii=K3®Iy and Ko =K;®Iy. 37

(36)

Equation (36) represents N(M — 1) equations.
Consider the NM x d real-valued DOA matrix D =

[d(p1,11); ..., d(pg, va)], where d(p, v) = vec[D{u,v)]. (33)
dictates that D satisfies

K, D2, = K,,D (38)
where ) '
Q, = diag{tan (%),...,tan (5‘21)} (39)
In turn, (36) dictates that D satisfies
K,:DQ, =K,.D (40)
where , )
Q, = diag{tan (V2—1> . tan (525) } @1)

Now, viewing the array output at a given snapshot as an
N x M matrix, premultiply by Q& and postmultiply by Q3,,
apply the vec operator and place the resulting N M x 1 vector
as a column of an NM x N, data matrix Y. Note that if
X denotes the NM x N, complex-valued element space data
matrix, the relationship between Y and X may be expressed
as Y = (Qf ® Q¥)X where we have again used the
property of the vec operator in (29). The appropriate NM x d
matrix of signal eigenvectors Eg for the algorithm presently
under development may be computed as the d “largest” left
singular vectors of the real-valued matrix [Re{Y},Zm{Y}].
Asymptotically, Es = DT where T is an unknown d X d
real-valued matrix. Substituting D = EgT ™" into (38) and
(40) yields the signal eigenvector relations

K, Es¥, =K, ;Es where: ¥,=T7'Q,T (42

K, Es¥, =K,,Es where: ¥,=T'Q,T. (43)

Automatic pairiﬁg of u and v spatial frequency estimates is
facilitated by the fact that all of the quantities in (42) and
(43) are real valued. Thus, ¥, + 7%, may be spectrally
decomposed as

T, +;¥, =THQ, +;Q,}T. (44)
The algorithm based on this development, 2-D unitary ES-
PRIT, is summarized below.

Summary of 2-D unitary ESPRIT

1) Compute E, via d “largest” left singular vectors of
[Re{Y},Zm{Y}] where Y = (Qf ® Q¥)X.

2a) Compute ¥, as the solution to the (N — 1)M x d

matrix equation K, Es¥, = K »2Eg.

2b) Compute ¥, as the solution to the N(M — 1) x d

matrix equation K,1Es®, = K,;Egs.

3) Compute \;, i = 1,...,d, as the eigenvalues of the d x d

matrix ¥, + j¥,. ‘

4) Compute spatial frequency ~ estimates  p; =

2tan Y (Re{\;}), v; = 2tan=Y(Tm{\;}),i=1,---,d

Note that the maximum number. of sources 2-D- unitary
ESPRIT can handle is minimum{M(N - 1), N(M - 1)},
assuming that at least d/2 snapshots are available (we are in-
herently effecting a forward-backward average that effectively
doubles the number of snapshots.) If only a single snapshot
is available, one can extract d/2 or more identical rectangular
subarrays out of the overall array to get the effect of multiple
snapshots, thereby decreasing the maximum number of sources
that can be handled.

Note that 2-D unitary ESPRIT provides closed-form, auto-
matically paired 2-D angle estimates as long as the spatial
frequency coordinate pairs (u;,v;),4 = 1,...,d are distinct.
That is, no additional effort is needed if a pair or more of
sources have the same p; or v;. Note that in order to avoid
the same problem as ACMP in this regard, one must solve
the complex eigenvalue problem signified by (44). If one
attempts to compute the real eigenvalues of ¥, alone, for
example, there is a degeneracy in the eigenvectors when two
sources have the same 1 spatial frequency coordinate thereby
precluding the ability to determine T. -

VI. 2-D DFT BEAMSPACE ESPRiT FOR URA

With 2-D DFT beamforming (and attendant conjugate cen-
trosymmetrization through simple scaling), the components
of the beamspace array manifold are separable real-valued
patterns of the form

_sin[¥(i—m3)] sin[%(v— )]

) = G = )] s (3 )]

Note that the matrix form of the beamspace manifold, denoted

. (45)

B(p,v), is related to the matrix form of the array manifold

via a 2-D DFT as B(u,v) = WEA(u, v)W3, where WE
denotes the conjugate centrosymmetrized N-point DFT matrix
whose rows are given by (19) and Wﬂ is defined similarly
with N replaced by M. Substituting the form of A(u,v) in
(30) into B(u,v) = WEA(u, v)W?, yields

B(p,v) = by ()b (v) (46)

where by (1) is defined in (21) and b (v) is defined similarly
with N replaced by M and 1 replaced by v. Given that b ()
satisfies the invariance relationship in (24), it follows that
B(p,v) satisfies

tan (l—;) I'1B(u;v) = ToB(u,v).

where I';. and T's are defined in (25) and (26). Using the
property of the vec operator in (29), we find thatthe NM x 1
beamspace manifold in vector form b(u,v) = vec[B{u;v)]
satisfies

(47)

tan (g) T ib(p,v) = Tuab(p, v), (48)
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where T';; and Ty are the (N — 1)M x N M matrices:

F,ul =I;,,®T; and I‘u2=IM®I‘2. (49)

Equation (48) represents (N — 1)M equations obtained by
comparing each pair of adjacent beams having the same
u pointing angle coordinate. Similarly, the 1-D beamspace
manifold by, (v) satisfies tan(v/2) T'sby(v) = Tyba(v)
where I's and T’y are defined similar to (25) and (26) with N
replaced by M such that they are (M —1) x M. It follows that

tan (5 ) B(u, )T = B(u, »)TT. 50)
Again, using the vec operator, we find that b(u, v) satisfies

v
tan (5) T,1b(u,v) = Tpob(p,v)

where I',; and T, are the N(M — 1) x NM matrices as
follows:

(51)

T,i=T3®Iy and T,o=T4®1Iy. (52)

Equation (51) represents N(M — 1) equations obtained by
comparing each pair of adjacent beams having the same v
pointing angle coordinate.

Consider the NM X d real-valued beamspace DOA matrix
B = [b(y11, 1), ..., b(eg, va)). (48) dictates that B satisfies

T,.1BS, =T,,B (53)

where §2, is defined in (39). In turn, (51) dictates that B
satisfies ~

r,;BQ, =T,,B (54)

where €1, is defined in (41).

Now, viewing the array output at a given snapshot as an
N x M matrix, we compute a 2-D DFT, apply the vec
operator, and place the resulting NM x 1 vector as a column
of an NM x N, data matrix Y. Recall that X denotes the
NM x N, data matrix prior to the 2-D DFT. Using the
vec operator, the relationship between Y and X may be
expressed as Y = (W1l @ WE)X. The appropriate NM x d
matrix of signal eigenvectors, Eg, for the algorithm presently
under development may be computed as the d “largest” left
singular vectors of the real-valued matrix [Re{Y},Zm{Y}].

Asymptotically, Eg = BT, where T is an unknown d X d -

real-valued matrix. Substituting B = EgT-! into (53) and
" (54) yields the signal eigenvector relations

T, Es¥, =T,,Es where: ¥,=T"'Q,T (55

T, Es®, =T,,Es where: ¥,=T7'Q,T. (56

As in the extension of unitary ESPRIT for a URA, automatic
pairing of s and v spatial frequency estimates is facilitated
by the fact that all of the quantities in (55) and (56) are real
valued. Thus, ¥, + j¥, may be spectrally decomposed as
¥, +5®, = T-HQ, + jQ,}T. The algorithm based on this
development, 2-D DFT beamspace ESPRIT, is summarized
below.

. Summary of 2-D DFT beamspace ESPRIT

1) Compute a 2-D DFT of the N x M matrix of array
outputs at each snapshot (scale for conjugate centrosym-
metrization), apply the vec operator, and place the result
as a column of Y.

2) Compute E, via the d “largest” left singular vectors of

Re{Y},Im{Y}].

3a) Compute ¥, as the solution to the (N — 1)M x d

matrix equation I'y,; Eg®, = T',nEs. :

3b) Compute ¥, as the solution to the N(M — 1) x d

matrix equation I'y,1 Eg¥®, = T',12Eg.

4) Compute \;, i = 1,...,d, as the eigenvalues of the dx d

matrix ¥, + j¥,.

5) Compute spatial frequency estimates u; =
2tan" (Re{\:}), vi = 2tan~Y(Im{N}), i=1,...d.

A. Reduced Dimension Example

As in the 1-D case, the utility of 2-D DFT beamspace
ESPRIT over 2-D unitary ESPRIT is in scenarios where one
works with a subset of 2-D DFT beams that encompass some
volume of space of interest. In fact, the ability to work in a
reduced dimension beamspace is even of more value in the
case of a URA since the total number of elements may be
quite high. As an example, consider a scenario, similar to
the low-angle radar tracking problem, in which we wish to
estimate the respective azimuth and elevation angles of each
of two closely spaced sources. To this end, we form four
2-D DFT beams steered to the spatial frequency coordinate
pairs (m 3, n38), ((m + D3, n37). (3, (n+ 1)3F), and
((m + 1), (n + 1)37), respectively, as depicted in Fig. 3.
Recalling that the components of the beamspace manifold have
the form in (45), the 4 x 1 beamspace manifold for this case is

b(u,v) =
[bm,n(ﬂv v), bm+1,n(l% v), bm,n+1(ﬂa V) » bm+l,n+1(ﬂa V)]T'
- (57)

. In this case, Eg is 4 x 2 and may be constructed from the

two “largest” eigenvectors of the real part of the 4 X 4 matrix
formed from the interbeam correlations. The 2 x 2 matrices ¥,
and ¥, would be computed as the corresponding solutions to
the 2 x 2 respective matrix equations I',;EsW®,; = I'\sEg
and PVlES‘PV = I‘,,gEs, where

T'n=

6P aumty ™ g
Lo = )

fm(?%) n () ) sn (1) ).
T',y=

[ S R R
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((m+1) n+1)-2-’5)

((mn)%’,‘," 2-M")

Ay

Fig. 3.
I‘V?‘:
[sin (ng) 0 sin ((n+1) %) 0 }
0 sin (n%) 0 sin ((n+1)7)

In the final stage of the algorithm tan(u;/2) + jtan(v;/2),
¢ = 1,2 would be computed as the eigenvalues of a 2 x 2
matrix.

B. Comparison with UCA-ESPRIT

As discussed in Section I, UCA-ESPRIT [7], {8]is a recently
developed closed-form 2-D angle estimation scheme for a
UCA. Asindicated in Fig. 2, in the final stage of UCA-ESPRIT,
the i-th eigenvalue of a matrix has the form u; + jv;, where
u; and v; are the direction cosines of the sth source relative
to the # and y axes, respectively, assuming the UCA to lie
in the z-y plane. This is in contrast to 2-D DFT beamspace
ESPRIT where there is spatial frequency warping such that
the final eigenvalues are of the form tan(u;/2) + j tan(v;/2),
1+ = 1,..,d. A notable difference between the development
of: UCA-ESPRIT and that of 2-D DFT beamspace ESPRIT is
that in the former the sampled aperture pattern was assumed

to be approximately equal to the continuous aperture pattern -

[71, [8] while no such approximation was made in the latter
case. We here briefly show that if a similar approximation
is made in the development of 2-D DFT beamspace ESPRIT,
the final eigenvalues yielded by the resulting approximate 2-
D DFT beamspace ESPRIT algorithm are identical in form to
those yielded by UCA-ESPRIT.

Aside from averting spatial frequency warping, this form of
the eigenvalue has a nice geometrical interpretation in that it
may be expressed as u; + jv; = sin 0; e/ where ¢; and §; are
the azimuth and elevation angles of the ith source, respectively.
This is illustrated in Fig. 2. 6; varies between 0° and 90° so
that sin 6; varies between 0 and 1, while ¢; varies between 0°
and 360°. Thus, one can immediately glean the azimuth angle
of the ith source from the polar angle of the ith eigenvalue. The
corresponding elevation angle is the arcsine of the magnitude
of theith eigenvalue. If the eigenvalue is at the origin, the
source is at boresite. If the eigenvalue is on the unit circle, the
source is in the same plane as the array. Also, we may use the

Beamforming

o\‘\ ’ beam centers
éensor locations

Ilustration of transformation from element space to beamspace, highlighting four-beam example for 2-D DFT beamspace ESPRIT.

fact that an eigenvalue should be located on or within the unit
circle to screen out false alarms.

Assume the interelement spacing in either direction to be
less than or equal to a half-wavelength. In this case, in the
vicinity of the mainlobe and first few sidelobes, by, (1, v) =

smi (‘L(I—'-;m— ] 51n£ EU(Vn %’;{7)7)] SubStltlltlng n= Z—A”ZAEU and

v = 2”Ayv define

. sin [& QWAxu— ==
bm’n(u,v) = l[f—g u——mzﬂ) )]
PANS N
sin [%( TA v—n%&})]
. -~ (58)
3 (A —n%f)

This is the far-field pattern that would result with a con-
tinuous rectangular aperture of dimension NA, by MA,.
The superscript a denotes approximate pattern. Sirmilar to the
development for the sampled -aperture pattern, observe that
b5 n(u,v) and by, ,(u,v) are related as

(Z;Awu m2T )b“ (1, 0)+

2@ 27 :
<TAzu—(m+1)N) 1,0 v) =0 (59)
which may be rearranged as '
u {b, o (u,v) + b y1,n(u,0)} =
A a a
']V—Am{mbm,n(ua U) + (m + 1)bm+1,n(ua 1})} . (60)
Similarly, b7, ,, (u,v) and b7, . (u,v) are related as
2r 2\ .
(—)\—Ayv - n—M> b (0, V)4
2T 2m
(—)\—Ayv —(n+ I)M‘)b%ﬂwl(u,v) =0 (61)
which may be rearranged as
v {bgn,n(u’ U) + bfrzn‘,n—}—l(u) 1))} =
A a N a 4
VA, {nby, (v, 0) + (n+ )by, 0 (w,0)} (62)
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example; (d) scatter plot of 2-D DFT beamspace ESPRIT elgenvalucs

For the sake of brevity, consider again the case of four 2-D
DFT beams to estimate the respective azimuth and elevation
angles of each of two closely spaced sources. In this’ case,
the 4 x 1 beamspace manifold is b®(u,v) = [b%, . (u,v),
B, (% 0) Ui 1 (1,0 By g (s v)]". Given the re-
lations above, it is readily deduced that uI'?;b%(u,v) =
I'¢,b%(u,v) and vI'¢, b*(u,v) = L% b%(u,v), where

. _[1 100

"1“[0 01 1] and

e _ A m (m+1) 0 0
27T NA, 0 m (m+l)
. [t 010

vl‘[o 10 1] and

e A n 0 (me)) 0
2T MA, 0 n 0 (n+l) ]|
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(a) Performance for source 1 in s1mu1at10n example; (b) performance for source 2 in simulation example; (c) performance for source 3 in simulation

Asymptotically, the 4 x 2 real-valued matrix of signal eigenvec-
tors Eg satisfies Eg = BT where B = [b(uq,v1), b(ua, v2)]
and T is an unknown 2 X 2 real-valued matrix. Expediting
the development, it follows that I'},, Eg¥, = I'?,Eg where
¥, =T'Q,T and Q, = diag{u1,us}. Also, ', Eg¥, =
I'%Es where ¥, = T~1Q,T and €, = diag{vy, v, }. Thus,
u1 + jvi and ug + jvg are the two eigenvalues of ¥, + jW,,.

The point is that with d < A/2, the sampled aperture pattern
is very well approximated by the continuous aperture pattern
in the vicinity of the mainlobe and first few sidelobes. Thus,
if only a relatively small number of beams is selected, the
modified version of 2-D DFT beamspace ESPRIT sketched

“above yields the direction cosines directly without spatial

warping.

VII. 2-D DFT BEAMSPACE ESPRIT FOR CROSS ARRAY

Consider an array composed of an N element ULA aligned
with the x-axis and an M element ULA aligned with the
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y-axis. The center of each leg is assumed to be at the
origin so that they have a common phase center. To ease
the development and for the sake of notational simplicity, we
will assume M and N are both even so that the two legs do
not share a common element at the origin. However, with
slight modification, the adaptation of 2-D DFT beamspace
ESPRIT for a cross array developed subsequently may also
be employed when M and/or N are odd. Also, due to space
limitations, we here only present the appropriate adaptation
of 2-D DFT beamspace ESPRIT. Note that ACMP is not
applicable with such an array geometry.

Let x(£) and y(£) be the N x 1 and M x 1 snapshot vectors

output by the two respective legs at time £. The (N + M) x 1

(o] =

are stacked as the columns of an (N + M) X N, matrix Z.
The array manifold for such an array is

a(u,v) = l:aN (1) }

composite snapshot vector is formed as z(£) =

ap (v) 63)
where ax (1) and aps(v) are each conjugate centrosymmetric,
as defined previously. Note that it is only because the two

_legs have a common phase center that we are able to express
the array manifold in this form. If this is not the case, as
with an L-shaped array, for example, either the upper N x 1
or lower M x 1 block of a(y,v) would not be conjugate
centrosymmetric and it would not be possible to convert
a(p,v) to a real-valued manifold through a simple matrix
transformation.

Transformation to beamspace is accomplished via

_[Wy O :
S
The beamspace manifold is
b(u,v) = Fa(u,v) = [E;((ﬁ%] (65)

where by (1) and bys(v) are as defined previously. In prac-
tice, transformation to beamspace is accomplished via an
N-point DFT of the z-axis leg and an M pt. DFT of the y-
axis leg, with a posteriori conjugate centrosymmetrization via
simple scaling of each DFT wvalue.

Let Eg be the (N 4+ M) x d matrix of signal eigen-
vectors computed as the d “largest” left singular vectors
of [Re{H},Im{H}] where H = FZZ. Asymptotically,
Es = BT where B = [b{u1,v1),...,b(ta,vq)] and T is
an unknown d X d real-valued matrix. Define the following
matrices: -

AM:\ I, S\O/"] IN-1 land Ay =[TI &] IN-1
N M N M

(66)
.,1—[ \)}M] and A,y = (]3 f'\f\‘%]}M-]
(67)

where I'y and T'y are defined similar to (25) and (26) with
N replaced by M. The following signal eigenvector relations
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follow quite readily from previous developments:

ALEsY, = ApEs where: ¥, =T71Q,T (68)

A, Es¥, = AEs where: ¥, =T'Q,T. (69)
Since all of the quantities in (68) and (69) are real ;falued
\I' + ¥, may be spectrally decomposed as ¥, + j ¥,
1{9 + 7, }T. The algorithm based on these observa-
tions is similar in form to 2-D DFT beamspace ESPRIT for

a URA.

VIII. SIMULATIONS

Simulations were conducted employing an 8 x 8 URA
G.e, N =M = 8) with A, = Ay = A\/2. The source sce-
nario consisted of d = 3 equipowered, uncorrelated sources lo-
cated at (u1,v1) = (0,0), (u2,v2) = (1/8,0), and (uz,v3) =
(0,1/8) where u; and v; are the direction cosines of the ith
source relative to the = and y axes, respectively. Sources 1 and
2 were separated by a half-beamwidth, i.e., half the Rayleigh
resolution limit, as were sources 2 :and 3. Sources 1 and 2
have the same v coordinate, while sources 2 and 3 have the
same u coordinate.

A given trial run at a given SNR level (per source per
element) involved N; = 64 snapshots. The noise was 4.i.d.
from element to element and from snapshot to snapshot. The

RMS error defined as

RMSE; = \/E{
i=1,2,3

(@i — u)?} + E{(0; — )},

70

was employed as the performance metric. Let (4, , 9;, ) denote
the coordinate estimates of the ith source obtained from a
particular algorithm at the kth run. Sample RMSE’s for both
2-D unitary ESPRIT and 2-D DFT beamspace ESPRIT were
computed from K = 500 mdependent trials as

+ (9s, — Ut) 1,
(71)

The bias of 2-D unitary ESPRIT for Ns = 64 snapshots over
the range of SNR’s simulated was found to be negligible, as
was the bias of 2-D DFT beamspace ESPRIT. This facilitated
comparison with the Cramér—Rao lower bound (CRLB). The
CRLB, computed according to formulas provided in [8], and
the theoretically predicted performance of both 2-D unitary’
ESPRIT and 2-D DFT beamspace ESPRIT, computed accord-
ing to formulas provided in [21], are plotted in Figures 4(a),
4(b), and 4(c) for sources 1, 2, and 3, respectively.

The respective RMSE’s of 2-D unitary ESPRIT and 2-D
DFT beamspace ESPRIT for sources 1, 2, and 3 are plotted in
Figures 4(a), 4(b), and 4(c), respectively. In accordance with
the summary of 2-D unitary ESPRIT at the end of Section III,
the computations required for a single run were as follows: °

i) sixty four additions per each of 64 snapshots to transform

from complex-valued space to real-valued space
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ii) calculation of the three “largest” left singular vectors of
a 64 x 128 real-valued matrix

iii} calculation of the solution to two systems of equations
of the form AX = B, where A and B are both 64 x 3
and real-valued

iv) calculation of the eigenvalues of a 3 x 3 complex-valued
matrix.

The performance of 2-D unitary ESPRIT is observed to be
very close to the CRLB for SNR’s greater than or equal to —6
dB, although it does not achieve the CRLB even at the rather
high SNR level of 12 dB.

To demonstrate the efficacy of working in a reduced di-
mension beamspace, 2-D DFT beamspace ESPRIT employed
a 3 x 3 set of 9 beams with mainlobes rectangularly spaced in
the u-v plane and centered at (u,v) = (0,0). In accordance
with the summary of 2-D DFT beamspace ESPRIT at the end
of Section IV, the computations required for a single run were
as follows:

i) nine sets of 64 multiplications and 63 additions for each
of 64 snapshots to transform from element space to
beamspace

ii) calculation of the 3 “largest” left singular vectors of a
9 x 128 real-valued matrix

iii) calculation of the solution to two systems of equations

of the form AX = B where A and B are both 6 x 3
and real-valued

iv) calculation of the eigenvalues of a 3 x 3 complex-valued

matrix.
A scatter plot of the three eigenvalues obtained from 2-D
DFT beamspace ESPRIT for each of 200 independent runs
at a SNR of 3 dB is displayed in Fig. 4(d). For SNR’s
greater than or equal to 6 dB, the performance of 2-D DFT
beamspace ESPRIT is observed to be only slightly worse than
that of 2-D unitary ESPRIT despite the dramatic reduction
in computational complexity. Similar to 2-D unitary ESPRIT,
there is a gap between the performance of 2-D DFT beamspace

ESPRIT and the CRLB and it is fairly constant as a function

of SNR over the range of SNR’s simulated (on a logarithmic
scale.)

An interesting observation is that for SNR’s lower than

—6 dB, 2-D DFT beamspace ESPRIT outperformed 2-D uni-
tary ESPRIT. This is in accordance with observations made by
Xu et al. [16] in comparing the performance of their version
of beamspace ESPRIT with that of ESPRIT in element space.
At low SNR’s, Xu et al.. argued that the better performance
of the former over that latter is due to fact that beamspace
ESPRIT exploits a priori information on the source locations
by forming beams pointed in the general directions of the
sources. This argument is applicable here as well.

IX. CONCLUSIONS

2-D unitary ESPRIT is a closed form 2-D angle estimation
algorithm for use in conjunction with a URA and is easily
adapted for other dual invariance arrays including a cross
array. 2-D DFT beamspace ESPRIT is an efficient beamspace
implementation of 2-D unitary ESPRIT facilitating reduced
dimension processing and an attendant reduction in computa-

tional complexity. The 2-D angle estimates provided by either
2-D unitary ESPRIT or 2-D DFT beamspace ESPRIT may
be used as starting points for localized Newton searches of
the 2-D MUSIC spectrum, the M L algorithm, or the multiple
invariance ESPRIT algorithm. Note that 2-D unitary ESPRIT
may also be employed in a variety of applications other than 2-
D angle estimation including 2-D harmonic retrieval for image
analys1s, for example.
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