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Performance Analysis of Closed-Form, ESPRIT
Based 2- D Angle Estimator for Rectangular Arrays

Cherian P. Mathews, Martin Haardt, and Michael D. Zoltowski

Abstract—The 2-D DFT beamspace ESPRIT is a recently devel-
oped algorithm for use in conjunction with uniform rectangular
arrays (URA’s) that provides automatically paired azimuth and
elevation angle estimates of incident signals via a closed-form
procedure. This letter investigates the statistical performance
of 2D DFT beamspace ESPRIT. Expressions for the 2D DFT
beamspace ESPRIT estimator variances are obtained. Samples
variances of the azimuth and elevation angle estimates obtained
through Monte Carlo simulations are shown to be in close
agreement with theoretically predicted variances.

"~ I. INTRODUCTION

'HE 2-D DFT beamspace ESPRIT is a recently developed

algorithm [1]-[3] for use with uniform rectangular arrays
(URA’s) that provides automatically paired source azimuth
and elevation angle estimates via a closed-form procedure.
The algorithm provides 2-D angle estimates without requiring
expensive search procedures or employing ad hoc pairing
procedures. Further, the algorithm does not break down if
several sources have a common bearing relative to one of the
array axes. Reduced dimensional beamspace processing pro-
vides a further reduction in the computauonal demands of the
algorithm. This paper investigates the statistical performance
of 2-D DFT beamspace ESPRIT. Asymptotic expressions for
the variances of the 2-D DFT beamspace ESPRIT DOA esti-
mators are obtained. Computer simulations showing agreement
between the experimental and theoretical results are presented.
The performance analysis results also apply to 2-D unitary
ESPRIT [2,3], the element space counterpart of 2-D DFT
beamspace ESPRIT.

II. SuMMARY OF 2-D DFT BEAMSPACE ESPRIT

The array geometry involves a URA of M x N sensors
located in the zy plane, with the array centroid located at the
origin. The array elements parallel to the z axis are spaced A,
apart, and those parallel to the y axis are spaced A, apart.

The DOA of a source is specified by the pair (u, v), where
u = sinfcos¢ and v = sinfsin ¢ are the direction cosines
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with respect to the z and y axes, respectively. When a narrow-
band source (of wavelength \) impinges on the array from the
direction (u, v), the phase shifts between successive clements
along the x and y axes are p = 27r%£u and v. = 27r—v
respectively. Note that u and v lie in the range [—7, 7 when
Ay, = Ay = A2 . 2
The array output is modeled as x(t) = As(t) + n(t),
where x(¢) is the MN vector formed by stacking the
columns of the URA outputs, A is the MN x d DOA
matrix (assuming d incident sources), s(¢) is the. vector of
signal complex envelopes at the origin, and n(¢) is the
stacked noise vector. The columns of ‘A have the form
vec[ap (p)ag (v)], where vec( ) denotes the column stacking
operator, and an(p) = e I T AL, ed# ... eI MDHT o
D DFT beamspace ESPRIT is summanzed below followed by
an explanation of pertinent points. (® denotes the Kronecker
matrix product below.) *

1) Construct Ry
FZx(k) and F¥ =

2) Perform an EVD of R = Re {Ry} and obtain an
estimate of the number of sources, d, in the sector.”
Obtain the beamspace signal subspace estimate S via
the d “largest” eigenvectors. of . R.

3) Obtain ‘I’ and ‘Il as the least squares (or total
least squares) solutlons to the real-valued systems of
equations rulsw = I“U,QS and I‘l,ls\ll = F,,ZS

4) Perform an EVD of ¥ = \Il + j¥,. The eigenvalues
of ¥ are \; = dzi-}—j&-, where @; = tan(fi;/2) and 5 =
tan(;/2). We thus have 4; = A/(7A,) tan™*(&;), and
b = AJ(xA,) tan=1(6;).

The beamforming matrix F¥ in step 1 synthesizes B, B,
2D DFT beams. B, consecutive beams (beginning at beam
m € [0,M — 1]) are formed along u, and B, consecutive
beams (beginning at beam n € [0,N — 1]) are formed

along v. We have ng) = [ans (2mm /M) : aps (2m(m +
/M): ...

lan(27n/N)ay(2n(n + 1)/N): - ‘ay(2r(n + B, —
1)/N)]. The rows of WJ(BWZ)H are scaled M -point DFT weight
vectors corresponding to bins m,m + 1,---,m + B, —

(computed modulo M). The rows of W( ) have a similar
interpretation. The beamformer F# thus narrows the scope of

the search for sources to the spatial sector roughly specified
by 2rm/M < p < 2rn(m + B, — 1)/M, 2z7n/N < v <

LYK y(k)yH (k), whete y(k) =
W(n)H W(m)H

lan(2r(m + B, — 1)/M)] and WY =
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2r(n + By — 1)/N. Note also that a steering angle o > 7
(along p or v) is identical to a steering angle o — 2.

The equations in step 3 follow from a relationship between
any two adjacent 2-D DFT beams (adjacency in p or v). The
matrices T'$, and I', defined, at the bottom of the page,
summarize these relationships. Row i of these matrices give
the relationship between the ith and (i + 1)th beams (modulo
M). For the case of reduced dimension beamspace processing
form: T; = J9 15,357, 1, = 357, 15,3507,

=3y Ty J(")T, and Ty = J§)_ T3, J(")T Here

J(m) denotes a selectlon matrix that pleS out B, consecutive
rows from the matrix it operates on (beginning with row m).
Note again that the last row (row M —1) is followed by the first
row (row 0). The matrices needed for step 3 are constructed as
follows: I‘ul = IBy oIy, I‘ﬂz = IBy T, IT'yy =13 ®IBm7
and I'y2 = T4 ®Ip, . 2-D unitary ESPRIT [2,3] is similar to 2-
D DFT beamspace ESPRIT except that it employs a different
(sparse) transformation matrix F¥ and thus different selection
matrices instead of the I'(.) of step 3, and that these matrices
have full dimension. The performance analysis below applies
to 2-D unitary ESPRIT with minor changes.

III. PERFORMANCE ANALYSIS

The analysis of 2-D DFT beamspace ESPRIT presented
below follows the analysis of UCA-ESPRIT [4]. In [4] it is
shown that the error free matrix ¥ = ¥, + j¥, has the
spectral decomposition, where ¥ = T‘l(ﬂﬂ + j,)T
Q, + j2, is the diagonal matrix whose elements are
the eigenvalues \; = w; + jé;,¢ = 1,...,d, and T is
real-valued. Thus ¥, and ¥, have a common set of real-
valued eigenvectors given by the columns of T~!. Let
the left and right eigenvectors of ¥ be denoted as qf
and x; [%51, T, ..., 754) T, tespectively. The columns
of the matrices S and G are the signal eigenvectors,
s;, and noise eigenvectors, g;, respectively, of R. Let
lii = -,d, denote the d largest eigenvalues of R,
and o be the noise power (the noise is assumed to be
Gaussian and spatially and temporally white). The signal
eigenvector estimation errors s{ = §; — s; are asymptot-
ically (for large number of snapshots K) zero mean with
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Fig. 1. Theoretical performance and Monte Carlo simulation results

for 2-D DFT beamspace ESPRIT and 2-D unitary ESPRIT with 8x8
URA (A:A, = A/2) and d = 3 sources at (u1,vi) = (0,0),
(u2,v2) = (1/8,0), and (us,v3) = (0,1/8). (a) Source 1 at
(u1,v1) = (0,0). (b) Source 2 at (uz,v2) = m(1/8,0).

covariance matrices given by [4] Cov (s¢,sS) = E[sf sz] = ] r ¥
Drais T 1 1 T where 6;; denotes the Kronecker delta, I've;i = 3{lil,
K Z;;ﬁ; Z;é; T A% T %3007 CC¢ bij» 8556ms + 118,680 + WT (38T +5;8T)w;} and w; =
ro1 cos(m/M) 0 0 0
0 cos(m/M) cos(2n /M) 0 : 0
Ty=| f : : :
0 0 0 cos[(M — 2)x/M] cos[(M —1)r/M]
L(—1)™ 0 0 0 cos[(M — 1)7/M]
0 sin(n/M) 0 0 0
0 sin(x/M) sin(2x/M) 0 0
Ly = |t : : : :
0 0 0 sin[(M — 2)r/M)] sin[(M — 1)7/M]
LO 0 0 0 sin[(M — 1)r/M]:
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Im {FH R, F}s;. The theorem below, proved along lines
of a similar theorem in [4], gives asymptotic expressions
for the variances/covariance of the 2-D DFT beamspace
ESPRIT estimators &; and 6;. Approximate expressions for
the variances of the direction cosine estimators i, and 9; were
derived based on w; and Si being concentrated about their true
values. Details are not included here due to space limitations.

Theorem 3.1: The 2-D DFT beamspace ESPRIT estimators
&; and &; are asymptotically unbiased with asymptotic vari-
ances/covariance expressed as follows (superscript f denotes
Moore—Penrose pseudo-inverse):

var (&) = alp H ayg, var(8;) = oy H; euig,

and cov ((I)i,&-) =opHiair ey

where H; = Z‘jizl S T cov(sé,sf), alp =
af (,18) (T2 — wiT1), and of) = oF (0,18)T(T2 -
8;T',1). The direction cosine estimator variances are given by

Vo (8% | 3

2
—.H——wz)] Var (@),

X A e (F
Var () ~ [m] Var (6;). @

IV. RESULTS OF COMPUTER SIMULATIONS

An 8x8 URA (M = N = 8) with A, = Ay = /2 was
employed. The source scenario consisted of d = 3 equipow-
ered uncorrelated sources at (ui,vi) = (0,0), (uz,v2) =
(1/8,0), and (us;vs) = (0,1/8) corresponding to a mutual
separation of a half-beamwidth. K = 64 snapshots were
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employed in each of 7" = 1000 independent trials. The root
mean square error (RMSE) was employed as the performance
metric: RMSE; = (/£ 50, {(, —us)? + (35, — v:)2),
where (;,,0;,) are the direction cosine estimates of the ith
source in the #th trial. 2-D DFT beamspace ESPRIT was
implemented with a set of 9 beams (3x3) with mainlobes
centered at (u,v) = (0,0) . The RMSE’s of 2-D DFT
beamspace ESPRIT for sources 1 and 2 are plotted together .
with the theoretical performance curves in Fig. 1(a) and (b),
respectively (curves for source 3 are similar and thus not
included). Observe that the empirical RMSE’s closely follow
the theoretical predictions, except for deviations at low SNR’s.
Performance curves for 2-D unitary ESPRIT are also depicted.
The performance of 2-D DFT beamspace ESPRIT is observed
to be comparable to that of 2-D unitary ESPRIT. However, the
former requires significantly less computation than the latter; it,
operates in 9-D beamspace as opposed to 64-D element space.
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