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ABSTRACT Knowledge of channel state information (CSI) is fundamental to many functionalities for
mobile communication systems. With the advance of machine learning (ML) and digital maps, i.e., digital
twins, we have a big opportunity to learn the propagation environment and design novel methods to derive
and report CSI. In this work, we propose to combine untrained neural networks (UNNs) and conditional
generative adversarial networks (cGANs) for MIMO channel recreation based on prior knowledge. The
UNNs learn the prior-CSI for some locations which are used to build the input to a cGAN. Based on the
prior-CSI estimates, their locations and the location of the desired channel, the cGAN is trained to output
the channel expected at the desired location. This combined approach can be used for low overhead CSI
reporting as, after training, we only need to report the desired location. Our results show that our CSI
recreation method is successful in modelling the wireless channel under different configurations of prior-
CSI spatial sampling. In addition, the results consider a real world measurement campaign for indoor line
of sight and non-line of sight channels. The signal to noise ratio (SNR) achieved by our CSI recreation is
better than the SNR reported by the measured campaign providers. Moreover, our CSI recreation provides
means for low overhead CSI reporting as the UNN structure is underparameterized compared to the full
explicit CSI, and only the desired location is needed for the cGAN to recreate the desired CSI.

INDEX TERMS Channel estimation, channel interpolation, UNN, cGAN, digital twin.

I. INTRODUCTION

VISIONS for the 6th generation of mobile communica-
tions point towards the fusion of the real and the digital

worlds, e.g., mixed-reality experiences, where the network
needs to develop useful knowledge of the physical world
based on collected data [1]. In that context, artificial intel-
ligence and machine learning (AI/ML) applications play an
important role for the design of 6G systems. Today, AI/ML
applications for physical layer are gaining momentum in
standardization bodies, such as 3GPP [2] and O-RAN [3].
Specifically for 3GPP release 18, a study item was initiated
in the physical layer working group (RAN 1) to discuss
AI/ML for the new radio (NR) air interface [4].

A digital twin is a virtual model that represents at least
in some relevant and predefined aspects a real object. The
digital model conveys real measurements, e.g., from sensors,

and simulations which allow to generate insights about the
physical object [5]. The concept arose from the product
life-cycle management area within NASA where different
sensed data would be conveyed in the digital twin to con-
tinuously monitor the health of the system, i.e., a flying
vehicle [6]. From a wireless communications prospective,
combining AI/ML capabilities with virtual representations
of the real world, enables a variety of possibilities for wire-
less network planning, deployment, and management. For the
radio access network (RAN), the digital twin could run at
the base station (BS) side processing collected data to store
environmental characteristics. For instance, the collected data
can be user equipment (UE) measurements, LIDAR data, or
ray-tracing simulations. This aggregated memory is used in
our case as prior knowledge to interpolate the channel state
information (CSI) and to reduce the reporting overhead. In
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order to leverage the potential of a digital twin for the wire-
less propagation environment, full knowledge of the CSI for
a set of known locations is desired such that most of the
real propagation effects can be represented. In this work, CSI
recreation refers to the combination of channel estimation
and channel interpolation for the purpose of reducing the
CSI reporting overhead. We propose to combine two AI/ML
methods, untrained neural networks (UNNs) and a condi-
tional generative adversarial network (cGAN), for channel
recreation on the digital twin. The main goal is to minimize
the overall complexity of the neural networks (NNs), reduce
the training time, and enable low CSI reporting overhead. In
that context, the UNNs provide accurate CSI for some known
locations, while the cGAN provides some interpolation func-
tionality to minimize the required number of locations with
accurate CSI.
The works in [7], [8], [9], and [10] have shown how

to combine multi-modal data from ray-tracing simulations,
lidar, and environment images for beam selection, either in
vehicular scenarios or in scenarios with unmanned aerial
vehicles. In all those papers, the CSI is generated from ray-
tracing and constitutes a feature for deciding on the best
beam. Furthermore, [10] shows an idea of what a digital
twin of the wireless propagation scenario should look like.
The authors in [11] propose to estimate large scale fading
maps based on top-view images of the propagation envi-
ronment. Their FadeNet method is inspired by the U-Net
NN architecture, and it is trained under supervised learning
using ray-tracing simulations as ground truth. In contrast
to the state of the art, our solution does not rely on multi-
modal data, such as lidar or environment images, which allow
us to reduce the complexity of our NN architectures. Our
CSI recreation method is different from RF fingerprinting
algorithms mainly because we are interested in the small-
scaling fading characteristics of the propagation environment,
and RF fingerprinting usually relies on the received signal
strength [12], [13].
UNNs were first proposed in [14] to solve inverse prob-

lems, such as denoising, super-resolution and inpainting. The
term ‘untrained’ refers to an algorithm that avoids a huge
data collection phase as the updates of the gradient descent
are for a single image measurement. The deep decoder archi-
tecture as proposed in [15] simplifies the structure of a
UNN, making it underparameterized. For wireless commu-
nications, this means that we can fit a UNN to directly
estimate the wireless channel based on a small noisy mea-
surement campaign, i.e., a few time snapshots, without the
need of noiseless labels. The work in [16] has proposed
the use of UNNs for MIMO channel estimation under pilot
contamination. Despite the limitation to statistical channel
models, UNNs could reduce the noise level of the measured
signal. In our recent work [17], we have shown that UNNs
store prior knowledge on the propagation environment. Our
UNN estimator provided an estimation gain of about 10 dB
in the low SNR regime when compared with the minimum
mean squared error (MMSE) estimator. Moreover, the stored

prior knowledge can be accessed by transfer learning, which
improves the MIMO channel estimation performance. Our
current work differentiates from [16] in the usage of the
UNN algorithm and its architecture. The novelty of our work
consists in using the UNN structures for low overhead CSI
reporting and taking their CSI estimates as prior information
for the cGAN.
The simplicity of UNNs comes at the cost of a lack

of generalization. Since there is no dataset collection for
the updates of the weights update, iterating the gradi-
ent descent algorithm is always needed when a new set
of channel measurements is acquired [17]. Different from
UNNs, generative adversarial networks (GANs) need a big
data collection and training phases, which steers the gen-
erator neural network to mimic the data distribution [18]
and leads to a high generalization capability. For wire-
less mobile radio systems, GANs are often concerned with
physical layer issues such as channel modeling and data
augmentation [19], [20]. Recently, [21] has proposed to use
a Wasserstein GAN to estimate the wireless channel and
later adjust the GAN’s input random vector to improve the
channel estimates. In [22], the authors study the GAN for
wideband channel estimation. Conditional GANs (cGANs)
provide some prior-knowledge to their generator and dis-
criminator NNs which should ease the mapping task [23].
A cGAN is used in [24] to estimate the millimeter wave
(mm-Wave) virtual channel covariance matrix based on prior
knowledge of a training sequence. A cGAN and a variational
autoencoder (VAE) GAN are used in [25], [26], but in a con-
text of end-to-end learning where the final objective is to
predict the transmitted symbols, not the wireless channel.
In our recent work [27], we have proposed to use a cGAN
for channel estimation in MIMO arrays with mixed radio
frequency chains, where in a part of the array, antenna ele-
ments were turned-off. Our results demonstrated the good
generalization capability of cGANs. Our current work differ-
entiates from applications of GANs, such as in [21], because
the input to the algorithm is random noise, while in cGANs
the input contains information with physical meaning to the
problem, e.g., CSI of neighbouring UEs. The use case of
cGANs proposed here is completely different from [27],
where the missing parts, aimed to be estimated, were the
channels of some antenna elements within a single time
snapshot MIMO orthogonal frequency-division multiplexing
(OFDM) radio channel.
Motivated by the generalization capabilities of cGANs and

the underparameterization of UNNs, we propose to combine
them for MIMO channel recreation within a digital twin of
a propagation area. The main contributions of this paper are:

• We introduce a new CSI recreation method where, first,
the UNNs are used to generate prior-CSI estimates for
a set of locations. Second, the cGAN uses the prior-CSI
estimates together with their locations to recreate the
CSI in a desired location. Hence, our approach can be
used to add the small scale fading characteristics of the

VOLUME 3, 2022 1579



VILAS BOAS et al.: ML FOR CSI RECREATION IN THE DIGITAL TWIN BASED ON PRIOR KNOWLEDGE

wireless channels to the digital twin. To the best of the
authors’ knowledge, this is the first work proposing to
combine UNNs with cGANs for CSI recreation.

• We present how to perform regular grid-like CSI
interpolation with UNNs and, based on these results,
motivate the choice of cGANs for CSI recreation. This
is the first work that shows the applicability of UNNs
for the purpose of channel interpolation. Moreover, we
compare them with standard interpolation using FIR
filters.

• We present results for CSI recreation using real world
channel measurements of line of sight (LOS) and
non-line of sight (NLOS) indoor propagation environ-
ments. Moreover, we evaluate the performance of CSI
recreation under different spatial sampling strategies of
prior-CSI measurements for the UNN CSI estimators.
In addition, we set up experiments to assess the impor-
tance of the location matrix to the cGAN models, and
the effect of inaccurate location estimates on the CSI
recreation performance.

• Moreover, after deriving the weights for all the AI/ML
models, only the desired location needs to be reported.
Therefore, our solution enables low CSI reporting over-
head if the AI/ML models are exchanged between the
UEs and the BS.

In this paper, Section II introduces our proposed method,
Section III presents details about our UNN for prior knowl-
edge CSI estimation and how to derive a UNN CSI
interpolator from a UNN CSI estimator. Next, Section IV
shows the processing performed at the cGAN for CSI
recreation using location and prior-CSI, Section V presents
our simulation methodology and results, and Section VI
concludes our paper.
Regarding the notation, a, a, A and A represent, respec-

tively, scalars, column vectors, matrices and D-dimensional
tensors. The superscript T , denotes transposition. For a
tensor A ∈ C

M1×M2×...MD , Md refers to the tensor dimen-
sion in the dth mode. A d-mode unfolding of a tensor
is written as [A](d) ∈ C

Md×M1...Md−1Md+1...MD where all
d-mode vectors are aligned as columns of a matrix fol-
lowing a forward cyclical index ordering. The d-mode
vectors of A are obtained by varying the dth index from
1 to MD and keeping all other indices fixed. Moreover,
Y = A ×d U ∈ C

M1×M2×···×Md−1×J×Md+1×···×MD is the
d-mode product between a D-way tensor A ∈ C

M1×M2···×MD

and a matrix U ∈ C
J×Md [28] In addition, the concatenation

operation [A �d B] denotes the concatenation of A and B
along the dth mode. The concatenation �d operation also
applies to matrices.

II. CSI RECREATION WITH PRIOR KNOWLEDGE
Here, we propose a functionality to the digital twin that we
name CSI recreation. In the simplest case, the digital twin
is a map that we need to populate with channel measure-
ments to allow better performance of other functions, such
as beam management, hand over, and network management.

FIGURE 1. Schematic of our proposed ML solution for CSI recreation for a digital
twin. Each measurement campaign is represented by a blue box where the UNN
performs channel estimation. In purple, we show the second ML part where a cGAN is
trained with knowledge of the prior-CSI (in blue), and the location of the desired
channels. The cGAN output is the CSI recreation of the desired channels.

The channels that characterize the digital twin can be col-
lected from measurement campaigns or realistic simulations.
Depending on the size of the propagation area that we con-
sider, this data collection phase may take a long time, which
is not desired. Hence, we propose the CSI recreation, where a
neural network (NN) is trained to recreate wireless channels
based on the knowledge of a few real channel measurements.
More specifically, we combine a UNN for channel estima-
tion of the prior-CSI with a cGAN for the final channel
recreation at the desired locations, as illustrated in Figure 1.
In this work, we consider a massive MIMO OFDM wire-

less channel H ∈ C
Nsp×Nsub×Nant , at a fixed BS equipped

with an uniform rectangular array (URA) containing Nant
antenna elements, a single-antenna UE that is moving along a
prescribed trajectory, operating with Nsub OFDM subcarriers,
and collecting Nsp time snapshots. Each time snapshot is col-
lected in a Cartesian location point � = {x, y, z} ∈ R

Nsp×3

relative to the BS position. The wireless channels for the
total area of the digital twin under consideration is referred
as H, from which a small part Hmes is selected for the
prior-CSI estimation.
Figure 1 shows our proposed AI/ML framework to recre-

ate CSI in a certain location area (in purple) based on
channel measurements of neighboring UEs (in blue). There
are two AI/ML instances which collaborate to recreate the
CSI at a desired location, the first in blue and the sec-
ond in purple. The first AI/ML instance aims to find the
prior-CSI Hp ∈ C

N′
sp×Nsub×Nant based on the measured

channels Hmes ∈ C
N′
sp×Nsub×Nant , where N′

sp � Nsp. We
employ a UNN for this purpose where each UNN estimates
Hp = [Re{Hp} �3 Im{Hp}] ∈ R

N′
sp×Nsub×2Nant , the channel

of a single UE over multiple time snapshots. Even though
UNNs are structures with low complexity [15], deriving
one UNN model for each possible location in a propaga-
tion environment is unfeasible as the weights should be
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adapted by new gradient iterations [17]. Therefore, we pro-
pose to use a second AI/ML instance based on a cGAN
for the interpolation functionality due to its generalization
capabilities. The second AI/ML instance is trained to com-
pute the recreated-CSI Hr ∈ R

(S+1)×Nsub×(2Nant+1) in the
desired location �r ∈ R

1×3 based on the knowledge of a
sub-set of S selected prior-CSI Hc ∈ R

(S+1)×Nsub×(2Nant+1)

and their respective locations �p ∈ R
S×3, more details will

be provided in Section IV.
Since UNNs do not need ‘labels’ to find their best weights,

we can perform a small measurement campaign and use the
UNN-estimated channels as conditional input to the cGAN.
In a ‘day-zero’ operation where not many CSI measurements
are available, the cGAN can be trained with target channels
(purple area in Figure 1) derived from simulations. Then, the
prior-CSI from the UNNs can help to adjust the model to real
propagation conditions. In the long run, we could update the
cGAN model based on collected real world measurements.
In this scenario, the availability of priors at the conditional
input reduces the complexity of the NN structure and its
training time if compared to common GANs. In the following
sections, we explain in detail how each part of the algorithm
is trained.
Due to the low computational complexity of UNNs, the

UE can derive the UNN weights and send it to the BS.
Then, the BS is able to reconstruct the prior-CSI and can
train a cGAN to recreate the CSI at a desired location,
which is different from the prior-CSI locations. Since the
BS collects and stores all the reported prior-CSI, there is
no direct collaboration between the UEs for CSI recreation.
After deriving the optimum weights of the cGAN, the UEs
within the representation area can report their location �r to
the BS instead of the full explicit CSI, which reduces the CSI
feedback overhead. Currently, the 3GPP type II CSI reporting
is a codebook based feedback that does not allow to recover
all the channel coefficients, which limits the use of these
reports. Once the CSI recreation is trained and the digital
twin is populated with environment knowledge, such as the
propagation channel, a map of the scenario, and other side
information, there is plenty of information available within
the digital twin that can be exploited for CSI prediction
or other applications. For improved reliability of the CSI
recreation method, the BS can send a trained cGAN model
to the UE. Hence, the UE is able to identify when the BS
will fail on its CSI recreation and may trigger a correction
procedure.

III. ESTIMATION OF PRIOR-CSI WITH UNNS
The underparametrization of a deep decoder [15] and its
capability to optimize noisy measurements and recover miss-
ing pixels of an image have motivated us to investigate UNNs
for prior-CSI estimation and prior-CSI interpolation. Since
a UNN does not need the true-labels for computing the gra-
dient iterations, the UE can perform a small measurement
campaign and directly use the channel measurements for
finding the best UNN weights. Different from prior art, in

FIGURE 2. General layer structure of a UNN P used to estimate the prior-CSI
Hp = P(K∗,Z0), where K∗ is the collection of optimum weights for the L layers.
There are L − 2 inner layers in orange, one pre-output layer in yellow, and one output
layer in olive. In blue, we represent Z0 the random input tensor.

this section we also describe how UNNs can be used for CSI
interpolation. In Section V, we show that this interpolation
capability is limited to successive close by measurements.
The following sections present the data pre-processing, the
UNN architecture and how the gradient descent algorithm
is used to update the UNN weights for channel estimation
and channel interpolation.

A. DATA PRE-PROCESSING FOR UNN
The input signal to a UNN is a random noise seed Z0 ∈
R
b×c×k1 , where b = N′

sp/2L−2, c = Nsub/2L−2, k1 is the
number of filters in the first layer, and L is the number
of layers. The input tensor Z0 is drawn from a uniform
distribution U(−a,+a) defined on the interval [ − a,+a]
and kept fixed during the iterations to update the gradient
descent. The measured channel Hmes is preprocessed as:

• Hmes is normalized by its Frobenius norm, which is
computed as

‖Hmes‖F =

√
√
√
√
√

N′
sp

∑

i=1

Nsub∑

j=1

Nant∑

m=1

|hmesi,j,m |2, (1)

and then multiplied by a scaling factor. This procedure is
taken to control the range of the values of the channel
coefficients. The values should not be too small and
should be within the operational range of the activation
function in the output layer. Hence, this preprocessing
step helps to ease convergence.

• Hmes ∈ C
N′
sp×Nsub×Nant is rearranged by concatenating

[Re{Hmes}�3Im{Hmes}] in the dimension correspond-
ing to the antenna elements.

After those operations, Hmes ∈ R
N′
sp×Nsub×2Nant is directly

used to compute the cost function.

B. UNN ARCHITECTURE
A UNN is a composition of L layers where there are (L−2)

inner layers, one pre-output layer (L−1) and one output layer
(L), according to the deep decoder architecture [15]. Figure 2
shows a generic organization of those layers, the random
noise seed Z0 in blue, the inner layers in orange, the pre-
output layer in yellow, and the output layer in olive. All the
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layer types contain convolutional filters Wl ∈ R
1×1×kl−1×kl

where l = {1, 2, . . . L}, kl−1 and kl are hyper-parameters
which define the number of filters on the respective (l−1)th

and lth layers. However, the types of layers differ with respect
to the upsampling computation and the operation of the batch
normalization (BatchNorm) [29]. The inner layers contain
linear and non-linear operations. First, there is a convolu-
tional filter Wl where the weights are updated by using
gradient descent. Second, there is a fixed bilinear upsam-
pling operation, where Al ∈ R

2lb×2l−1b and Cl ∈ R
2lc×2l−1c

are the linear upsampling matrices in the subcarrier and time
snapshots dimensions, respectively. Third, the rectifier lin-
ear unit (ReLu) activation function is applied, and a batch
normalization is computed per kl filter as

BatchNorm
(Zlj

) = Zlj − mean
(Zlj

)

√

var
(Zlj

)
γlj + βlj, (2)

where j = [1, 2, . . . , kl], the mean and variance (var) are
computed among the batch samples [29], which corresponds
to the number of data samples processed before updating
the model’s internal parameters. The trainable parameters
of the BatchNorm operation are Rl = [γ l,β l] ∈ R

kl×2.
The computation performed at each lth inner layer can be
written as

Zl = BatchNorm
(

ReLu
(

Zl−1 ×1 Al ×2 CT
l ×3 [Wl](4)

))

,

(3)

where [Wl](4) is the 4-mode unfolding of the convolu-
tional filter operating at the antenna elements dimension.
For example, the output of the first inner layer Z1 can be
written as

Z1 = BatchNorm
(

ReLu
(

Z0 ×1 A1 ×2 CT
1 ×3 [W1](4)

))

.

(4)

The pre-output layer (L− 1) differs from the inner layers
because it does not apply upsampling. Hence, it can be
written as

ZL−1 = BatchNorm
(

ReLu
(

ZL−2 ×3
[WL−1

]

(4)

))

. (5)

Next, the output layer is used to adjust the number of filters
of the pre-output layer to the size expected at the output
kL = 2Nant as

ZL = TanH
(ZL−1 ×3 [WL](4)

)

, (6)

where WL ∈ R
1×1×kl−1×2Nant , and TanH is the hyperbolic

tangent activation function. Since the upsampling operations
are pre-defined, the trainable parameters relate to the convo-
lutional filters Wl and the regularization parameters Rl of
the batch normalization operation. Therefore, Kl = {Wl,Rl}
is the set of trainable parameters of the lth layer, and K refers
to all trainable parameters of the L layers.

C. UPDATING THE WEIGHTS OF THE UNN CHANNEL
ESTIMATOR
Here, we refer to the UNN as a model
P : R

N → R
NsubN′

sp2Nant where N < NsubN′
sp2Nant is

the total number of parameters. The UNN P performs
the mapping operation ZL = P(K,Z0), where Z0 is the
random noise seed, and K is the tensor of weights that
represents all the UNN trainable parameters.
The cost function is the mean squared error (MSE),

calculated as

L(K) = E

{

‖P(K,Z0) − Hmes‖2
F

}

. (7)

The gradient descent is updated as in supervised learning,
performing I gradient algorithm iterations until the optimum
parameters are found, such that

K∗ = argmin
K

L(K), and Hp = P
(K∗,Z0

)

(8)

is the channel estimation of the prior-CSI. From the loss
function, we observe that the prior-CSI Hp derived by the
UNN P is specific to Hmes. Hence, the model P does not
directly generalize for other channels, it is specific to the
Hmes considered during gradient updates.

D. UPDATING THE WEIGHTS OF THE UNN CHANNEL
INTERPOLATOR
Since UNNs exploit the correlations between successive
channel measurements, we show how they can be adapted for
CSI interpolation. This operation mode can further reduce the
number of prior-CSI measurements needed. As the correla-
tion between the channels reduces with the distance between
successive time snapshots, in Section V we show that this
approach has limitations which motivates the use of cGANs
for CSI recreation.
The same UNN model P can be used for channel interpola-

tion. The difference here is that H′
mes has a lower resolution

when compared to Hmes. This low resolution is represented
by a 1/0 mask M ∈ R

N′
sp×Nsub×Nant , such that

H′
mes = M 	 Hmes, (9)

where 	 is an element-wise multiplication. Hence, the mask
represents time snapshots or subcarriers that are not present
in the initial measurement campaign, but we aim to have
them at the output of the UNN CSI interpolator. For that
purpose, the loss function becomes

L(K) = E

{

‖M 	 P(K,Z0) − H′
mes‖2

F

}

, (10)

and Gaussian noise N (0, σ 2) with zero mean and vari-
ance σ 2 is added to the input random seed tensor Z0 every
It < I iterations as a regularization measure. After I gradient
iterations, the prior-CSI from the UNN CSI interpolator is

Hp = P
(K∗,Z0

)

. (11)

This procedure is analogous to inpainting for a deep
decoder [15], where a UNN outputs missing parts of an
image.
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FIGURE 3. Conditional GAN, two NNs play a minmax game where the generator
tries to fool the discriminator. The discriminator should classify H̃r as a fake sample,
while Hr is classified as a real sample. The generator fools the discriminator when
H̃r is classified as real.

IV. CSI-RECREATION WITH cGAN
UNNs have interesting denoising and interpolation capa-
bilities [14], [15]. However, they use iterative algorithms
that have to be adapted for each new set of channel mea-
surements. This additional algorithm latency is not desired.
Hence, we propose to combine a few UNNs with a cGAN
to recreate the CSI in a digital twin over a larger area. The
channels estimated by the UNNs compose the prior knowl-
edge which is given to the cGAN which is composed of
a generator NN and a discriminator NN which compete in
a minmax game during the training phase, see Figure 3.
The generator NN follows an encoder-decoder architecture
where the prior-knowledge on the propagation environment
is the ‘semantic context’ [30] that should be leveraged by
the encoder to derive latent feature representations which are
used by the decoder to produce the desired wireless channel.
In this regard, cGANs constrain the solution search space
as prior information is available, while in common GANs
only the noise is seen at the generator’s input. In contrast to
UNNs, cGANs require data collection and training to be able
to model the data distribution. Nonetheless, it has great gen-
eralization capabilities [27]. In the following sections, we
present the dataset preprocessing, our cGAN architecture,
and the adversarial training.

A. DATASET PREPROCESING FOR cGAN
In this section, we present how we construct the signals to
train the cGAN: the conditional input Hc, the label Hr, and
the generator output H̃r.

The conditional input to our cGAN is derived from the
prior-CSI Hp, their locations �p, and the desired location �r
where we aim to recover the CSI of a certain UE. Each Hp ∈
R
N′
sp×Nsub×2Nant estimated by a UNN has CSI for N′

sp different
locations. Therefore, if NUE UNNs are used to estimate the
prior-CSIHNUE

p ∈ R
NUEN′

sp×Nsub×2Nant , there are NUEN′
sp CSI-

location pairs {Hpj,�pj} available, where Hpj = HNUE
p (j, :, :)

and j = {1, 2, . . .NUEN′
sp}. From the available CSI-location

pairs, a sub-set of S CSI-location pairs is selected according
to their minimum Euclidean distance to �r, as we assume
that the closer the channels are, the higher their chance of
being correlated. The S selected prior-CSI positions HS

p ∈
R
S×Nsub×2Nant are concatenated in the first dimension and

ordered according to the minimum Euclidean distance to the
desired location �r. The desired location vector �r ∈ R

1×3

and the prior location matrix �S
p ∈ R

S×3 are extended by
repeating their coordinates until �S

p ∈ R
S×Nsub and �r ∈

R
1×Nsub . Hence, the complete location matrix is formed as

HLOC = [�r �1 �S
p] ∈ R

(S+1)×Nsub . Finally, the conditional
input to the cGAN is constructed as

Hc =
[(

HN �1 HS
p

)

�3 HLOC

]

∈ R
(S+1)×Nsub×(2Nant+1),

(12)

where HN ∈ R
Nsub×2Nant is a matrix of random values

drawn from a Gaussian distribution. The desired chan-
nel Hr is recreated in the HN position at the generator
output.
Ideally, the true recreated CSIHr ∈ R

(S+1)×Nsub×(2Nant+1)

is found in the output of the cGAN. Hence, each d
time snapshot in H(d) = H(d, :, :) is used as ground
truth value for Hr, the CSI recreated at the desired loca-
tion �r. The pre-processing of the labels for the cGAN
include:

• H(d) ∈ C
Nsub×Nant is multiplied by a scaling factor.

• Hr = [Re{H(d)} �2 Im{H(d)}] ∈ R
Nsub×2Nant is the

desired real valued CSI at location �r.

Finally, the label for the semi-supervised learning of the
cGAN is constructed as

Hr =
[(

Hr �1 HS
p

)

�3 HLOC

]

∈ R
(S+1)×Nsub×(2Nant+1),

(13)

where the prior-CSI HS
p, the location matrix HLOC and the

recreated CSI Hr form the desired output. We refer to the
generator output as H̃r = G(Hc) ∈ R

(S+1)×Nsub×(2Nant+1),
where G is the generator mapping function that tries to
approximate the label Hr. Figure 4 summarizes the process
of configuring the conditional input and the desired output
for the generator NN. The discriminator D is a classifier for
which the inputs and labels are, respectively, Hr → {true}
and H̃r → {fake}.

B. ADVERSARIAL NETWORK ARCHITECTURE
Figure 3 shows the interconnection between the genera-
tor and the discriminator NNs for the adversarial training.
Here, the generator NN consists of a U-shaped deep
NN (U-Net) [31] which has two paths for the flow of
information between blocks: the encoder-decoder path and
the skip connections path, see Figure 5. The discriminator
NN consists of a Patch-NN [31] where the input is reduced
to a patch of arbitrary size; then, each coefficient of the
patch is classified as real or fake.
Figure 5 shows the U-Net architecture employed for the

generator, the Ng/2 downsampling blocks for the encoder
and the Ng/2 upsampling blocks for the decoder, where
Ng is the total number of processing units. Each downsam-
pling block consists of one convolutional 2-dimensional layer
(Conv2D), one batch normalization layer (BatchNorm), and
a leaky rectifier linear unit (LeakyReLU) activation func-
tion, where y = x for x > 0, and y = 0.3x for x < 0. Each
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FIGURE 4. Organization of the S prior-CSI estimates HS
p , their locations �S

p and
the desired channel Hr in the desired location �r at the input Hc and the output Hr
of the cGAN.

FIGURE 5. U-Net architecture deployed as the generator including encoder and
decoder pipeline and numbering for skip connections.

upsampling block consists of one transposed convolutional
2-dimensional layer (Conv2DT), followed by BatchNorm
and ReLU as activation function. A dropout layer [32] can
be included in some of the upsampling blocks to avoid
overfitting. The skip connection illustrated in Figure 5 hap-
pens between the output of the nth downsampling block
and the output of the (Ng − n)th upsampling block, where
n = [1, 2, . . . , (Ng/2 − 1)]. Those skip connections pro-
vide more information to the decoder block [31] since
the input to each upsampling block is the concatenation
X(Ng−n+1) = [Yn �3 Y(Ng−n)], where Yn is the output of the
nth block.
For the discriminator NN, we employ a Patch-NN [31]

as depicted in Figure 6. First, downsampling blocks are
used to reduce the dimensionality of the input signal to
some patch of arbitrary size. Second, the patch is pro-
cessed by a sequence of convolutional layers (Conv2D +
BatchNorm + LeakyReLU and Conv2D + Linear). Then,
the discriminator is trained to classify each patch coeffi-
cient as real or fake. Implementation details are provided in
Section V.

FIGURE 6. Patch-Net architecture deployed for the discriminator.

C. OPTIMIZATION WITH cGAN
As shown in Figure 3, in a cGAN there are two NNs play-
ing a minmax game where the generator G : {Hc} → Hr
tries to fool the discriminator D : {H̃r} → {true}, and it
is conditional because some prior knowledge is provided.
Mathematically, the optimization objective of a cGAN has
two terms

G∗ = arg min
G

max
D
LcGAN(G,D) + αLL2 , (14)

where LcGAN(G,D) is the adversarial loss, LL2 is the L2
loss, and α is the weighting factor [31]. The adversarial loss
is computed as

LcGAN(G,D) = E
[

logD(Hr)
]

+ E
[

log(1 − D(G(Hc))
]

, (15)

where the generator G learns to map the input data Hc
to the output data Hr such that H̃r = G∗(Hc), and the
discriminator D tries to recognize the channels generated
by G. In order to have the generated output wireless channels
H̃r close to the wireless channel labels Hr, a weighted
L2 loss

LL2(G) = E[‖Hr − G(Hc)‖F] (16)

is included as a regularization term.
The generator and the discriminator NNs have each their

own optimizer with a chosen learning rate that defines how
fast the weights of a NN should change according to the
computed gradient. Both the generator and the discriminator
NNs have their gradients updated in each epoch, which may
lead to instabilities during training. Hence, small learning
rates are usually considered. For testing, or inference, only
the generator architecture is used. Therefore, only knowledge
of Hc is needed. In practice, at inference time, we are able
to estimate/predict a channel based on its location and the
prior-knowledge provided by the UNNs.

V. SIMULATIONS AND RESULTS
In order to train and test our CSI recreation framework, we
use the MaMIMO dataset provided by KU Leuven [33]. The
MaMIMO dataset is a set of indoor MIMO channel measure-
ments collected under line of sight (LOS) and non-line of
sight (NLOS) conditions with recordings of the measurement
location relative to the BS. Table 1 presents the configu-
ration of the MaMIMO measurement campaign. From the
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TABLE 1. Characteristics of the MaMIMO indoor measurement campaign [33].

TABLE 2. Description of the UNN structures.

MaMIMO dataset, we select channels taken in an area of
1255 mm by 85 mm, such that H ∈ R

4267×64×128 there are
a total of 4267 channel measurements spaced 5mm from
each other. From the entire H dataset, a few measurements
are used as Hmes for adapting the UNN CSI estimator. The
remaining part of the dataset H is used as the ground truth
Hr for training and testing the cGAN CSI recreation. We

use the normalized squared error (NSE) NSE = ‖B−B̃‖2
F

‖B‖2
F

as

our performance metric for CSI recreation.
In order to show the power and the pitfalls of UNNs

and motivate the choice of combining UNNs with cGANs,
we present our results following a series of experiments.
First, we define a UNN CSI estimator to recover Hp with
an SNR ≈ 20 dB. Second, we show the limited inter-
polation capabilities of UNNs. Third, we present the CSI
recreation with a cGAN for different settings of prior-
CSI. Finally, we evaluate the dependencies of the models
on the location matrix and the impact of inaccuracies
on estimating the desired location �r on the performance
of the cGAN.
In Table 2 we define the UNN structures that we use to

derive the optimal weights for each small set of measure-
mentsHmes, where UNN-64 estimates 64 time snapshots and
UNN-16 estimates 16 time snapshots jointly. For CSI esti-
mation with UNNs, we choose Hmes to have time snapshots
every 15 mm, such that a UNN-64 estimates the CSI for a
sequence of measurements covering 64×15 mm = 960 mm
(≈ 8.35λ), and a UNN-16 covers 240 mm (≈ 2.08λ). The
input tensor Z0 is drawn from a uniform distribution as
U(−0.15,+0.15) and kept fixed for UNN CSI-estimation.
After setting the UNN structure, the trainable parameters K
are initialized from random values and I = 25000 gradient
updates are performed, using an Adam optimizer [32] with
a learning rate of 0.01, to find the best K∗ for each set of
measurements, separately. Figure 7 presents the cumulative
distribution function (CDF) of the NSE for CSI estima-
tion for the two UNN structures in Table 2 at LOS and
NLOS propagation conditions. The number of prior sets
indicates how many different measurement areas are con-
sidered. Note that, if the channel measurements have the
same dimensionality, a UNN structure P can be reused,
but a different set of UNN parameters K∗ needs to be

FIGURE 7. Cumulative distribution function F (x) of the normalized squared error for
UNN and cGAN results for CSI recreation.

FIGURE 8. Cumulative distribution function F (x) of the normalized squared error for
NLOS channel interpolation using UNN-64 in inpainting mode. Best case and worst
case using resampling function from MATLAB are plotted for reference. The
performance of UNN-64 for channel estimation is also plotted for reference.

found for each different area where Hmes is collected [17].
From Figure 7 we can observe that the UNN-64 has a
better performance than UNN-16, this is expected since
UNN-64 has more parameters and also access to more chan-
nel snapshots than a UNN-16. Moreover, for the same UNN
structure, LOS channel measurements have better estimation
performance than NLOS channel measurements. The LOS
channels have smoother variations; therefore, the UNN takes
better advantage of the correlations between the measured
snapshots which leads to better estimation results. Overall,
our UNN CSI-estimators provide more than 10 dB estima-
tion gain if compared with the normalized received signal
strength (RSS) of the MaMIMO measurements [33], see
Table 1.

For UNN based CSI interpolation, we use the UNN-64
presented in Table 2 and follow the loss function in
equation (10). Since the MaMIMO dataset has a resolution
of 5 mm, the UNN CSI-interpolator is iterated to recover
the channel measurements at 5 mm spacing from each other.
Hence, for this experiment, the UNN-64 covers an area of
64 × 5 mm = 320 mm (≈ 2.78λ). The mask M is used to
reduce the resolution of Hmes such that the resolution of the
starting channel measurements H′

mes vary between 10 mm
to 20 mm. This is the distance between each time snapshot.
In the first row of Figure 9, we present Hmes on the left and
H′

mes on the right for a single antenna element with initial
measurement resolution of 10 mm. Figure 10 has the same
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FIGURE 9. Comparison of the results for interpolation by a factor of 2 with the UNN
CSI interpolator and resampling from MATLAB. On the first row left, there is a plot of
the expected 5 mm resolution measurement Hmes for one antenna element. On the
first row right, there is a plot of the initial measurement H′

mes with 10 mm resolution.
The second row present the results of interpolation with resampling function from
MATLAB on the left and the UNN CSI interpolator on the right. On the x-axis there is
the number of subcarriers, and on the y-axis there is the number of time snapshots.

FIGURE 10. Comparison of the results for interpolation by a factor of 4 with the UNN
CSI interpolator and resampling from MATLAB. On the first row left, there is a plot of
the expected 5 mm resolution measurement Hmes for one antenna element. On the
first row right, there is a plot of the initial measurement H′

mes with 20 mm resolution.
The second row present the results of interpolation with resampling function from
MATLAB on the left and the UNN CSI interpolator on the right. On the x-axis there is
the number of subcarriers, and on the y-axis there is the number of time snapshots.

structure, but for H′
mes with an initial resolution of 20 mm

which requires an upsampling by a factor of 4 to derive
channels every 5 mm. The input tensor Z0 is initially drawn
from a uniform distribution U(−0.15,+0.15). After every
It = 5000 gradient iterations, the input tensorZ0 is summed
with a random Gaussian noise with zero mean and a standard
deviation of 0.4. The channel interpolation is finished after
I = 25000 gradient updates are performed, using the Adam
optimizer [32] with 0.01 learning rate. Figure 8 shows the
results of the UNN CSI interpolator for the NLOS dataset
iterated using the inpainting procedure in Section III-D. We
can observe that the performance of the UNN CSI interpola-
tor degrades quickly when we increase the spacing between

the known measurement snapshots H′
mes. For comparison,

we plot the best and worst case results using the MATLAB
built-in function ‘resample’, with a FIR anti-aliasing filter
of order 20p with p = [2, 3, 4]. Figures 9 and 10 present
in their second row the results of the interpolation with the
resample function from MATLAB on the left, and the UNN
CSI interpolator on the right after upsampling by a factor of
2 (10 mm) and 4 (20 mm), respectively. From Figure 8, it
can be observed that the UNN based CSI interpolator has a
comparable performance as using the resample function from
MATLAB only for the case of increasing the resolution by
a factor of 2, from 10 mm to 5 mm in the purple curve. The
perfect results in the purple and blue dashed lines correspond
to the reconstruction error of the coefficients which are used
for interpolation. The UNN based CSI interpolator defines a
sequence of operations that impacts the known coefficients.
Hence, there are no perfect results in the CDF curve of the
UNN based CSI interpolator. The black dashed line denotes
the performance of the UNN CSI estimator when the chan-
nels are known every 15 mm. For the same UNN structure,
there is a performance degradation of about a 6 dB if we
use it for CSI-interpolation instead of CSI-estimation. Due
to its performance degradation and the need to re-iterate the
parameters, the UNN CSI interpolator is not our choice for
CSI recreation. Nonetheless, we use the UNN CSI estimator
to generate prior-CSI due to its great performance, but only to
a small set of measurements to avoid latency overhead with
the gradient iterations. Note that in this experiment we have
considered measurements taken along a line and performed
interpolation along the same direction. For CSI recreation,
however, we do not assume a regular grid of measured priors.
Hence, the resample function is not applicable.
Two sets of UNN-64 parameters are computed using

equation 8 for CSI estimation which represents a pool of
128 prior-CSI estimates. For UNN-16, three sets of param-
eters are computed using equation 8 which represent a
pool of 48 prior-CSI estimates. We assume the prior-CSI
locations �p are known. In our case, it is provided by
the dataset owner. In a practical implementation, we could
derive the location from the prior-CSI estimates by Unitary
Tensor ESPRIT [28], for instance. Then, for CSI recreation
with a cGAN, a sub-set of S = 3 CSI-location pairs are
selected according to their minimum Euclidean distance to
the location �r where we aim to recreate the CSI. Hence,
the input to our cGAN is Hc ∈ R

4×64×129, where 64 is
the number of subcarriers. The architecture details of our
generator and discriminator are presented in Table 3 and
Table 4, respectively. The adversarial training runs for 150
epochs with 60% of the simulated channels used for train-
ing and 40% for testing. Adam optimizers with a learning
rate of 2 × 10−4 are used for the discriminator and the
generator NNs.
Figure 7 presents the CDF curves of the NSE for CSI

recreation using a cGAN which has prior-knowledge and
the desired location as its input. The results for LOS and
NLOS channel measurements are provided. Overall, the
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FIGURE 11. Comparison of the importance of the location matrix HLOC for each
trained cGAN model. The full lines are the CDFs F (x) when there is full knowledge of
HLOC. After training, HLOC = 0 and the priors are selected at random. These CDF
results are shown in dashed lines.

TABLE 3. Description of the U-Net deployed as generator NN.

TABLE 4. Description of the Patch-Net deployed as discriminator NN.

cGAN has a performance degradation if compared with
UNNs. However, the cGAN is recreating channels on a non-
regular grid where the distance between the prior-CSI and
the desired channel is variable. It can be observed that CSI
recreation for LOS propagation has a better performance,
see blue dashed line. Furthermore, how the prior-CSI esti-
mates are selected also influences the performance of the CSI
recreation. Figures 12-17 present the NSE of the recreated
CSI according to their position in the propagation environ-
ment. The places where the prior-CSI estimates were selected
for the UNNs are highlighted in dark blue. Our best cGAN
model for LOS, the blue dashed line in Figure 7, has a
90% performance of about −20.76 dB and uses only 48
prior channels which are sampled in a diagonal manner, see
Figure 12. Nonetheless, for NLOS this set of priors pro-
vides the worst model performance, the red dashed line in
Figure 7, with a 90% performance of about −8.58 dB. In
Figure 15, we can observe that the cGAN has difficulty in
recreating channels in the transition area between the first
and second set of priors. For the NLOS measurements, the
best approach to collect priors is to use a single sequence
of measurements as in Figure 17 which provides a 90%
performance of about −19.1 dB, green dash-point line in
Figure 7. The best prior-CSI sampling for the LOS and the
NLOS cases are quite different, for the LOS they should

be spread within a small number of time snapshots (see
Figure 12), while for the NLOS they should be sequen-
tial (see Figure 17). We reason that a LOS environment has
smooth transitions (small variability), so that the cGAN takes
better advantage in knowing the channel at rather spaced
locations. On the other hand, NLOS environments have more
variations and the cGAN performs better when it observes
how the channel evolves for longer periods. However, it
seems that there is a limit on how many priors should be
provided as the results for the LOS and the NLOS environ-
ments based on two sets of priors degrade the performance
if compared with the best case in each environment.
We also evaluate the importance of the location matrix

HLOC for the cGAN to recreate the CSI. Given the trained
model, the experiment consists in setting the location matrix
to zero HLOC = 0. Since the location is not available,
the prior-CSI to the cGAN input are selected at random.
Figure 11 presents the results of this experiment and provides
a comparison with the CSI recreation with perfect knowledge
of location. It can be observed that nearly all cGAN models
have a large performance degradation when HLOC = 0. This
indicates that the model was able to learn some relationship
between the channels and their positions. Nonetheless, the
performance degradation for the cGAN trained for NLOS
channels with two sets of priors is of about 1 dB. In this
case, the location matrix has a low importance and the cGAN
can output a reasonable CSI recreation knowing any set of
3 priors. This result also contributes to our understanding
that providing more priors does not translate to a better
performance. In order to observe how inaccuracies on esti-
mating �r impact the performance of our CSI recreation
method, we include Gaussian noise to the desired location
�̃r and do not re-train the cGAN model. The location of
the prior-CSI �S

p are assumed to be accurate as the UE col-
lects many time snapshots for prior-CSI estimation, i.e., at
least 16 time snapshots for our experiments. The inaccuracy
in estimating the desired location is modeled by a Gaussian
distribution with mean μ = {0, 1, 2, 10, 15, 20} and standard
deviation σ = 0.5. Figure 18 presents the histogram of the
Euclidean distance between the correct desired location �r
and the estimated desired location �̃r for each inaccuracy
distribution. Figure 19 presents the CDF of the NSE for the
NLOS case with a single set of prior-CSI for the different
location inaccuracies �̃r. It can be observed that when the
location inaccuracy is around 1 cm (cyan), the performance
of the CSI recreation does not change. This is due to the
fact that the prior-CSI are taken 15 mm from each other.
Hence, a location estimation error below 1.5 cm does not
change the combination of prior-CSI used by the cGAN.
Increasing the desired location error �̃r also increases the
90% accuracy for recreating the CSI (red, purple and black).
However, it has a limit as desired location estimates �̃r with
error above 26 cm causes degradation of the CSI recreation
performance. Figure 20 presents the CDF of the NSE for
the LOS case with three sets of prior-CSI for different loca-
tion inaccuracies �̃r. As in the NLOS case, the performance
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FIGURE 12. CSI recreation performance map for LOS measurements with 3 sets of
prior-CSI estimated by a UNN 16 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

FIGURE 13. CSI recreation performance map for LOS measurements with 2 sets of
prior-CSI estimated by a UNN 64 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

FIGURE 14. CSI recreation performance map for LOS measurements with 1 set of
prior-CSI estimated by a UNN 64 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

of CSI recreation does not change when the error in the
desired location is below 1.5 cm. Some performance gain
can be achieved at the 70% accuracy level when increasing

FIGURE 15. CSI recreation performance map for NLOS measurements with 3 sets of
prior-CSI estimated by a UNN 16 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

FIGURE 16. CSI recreation performance map for NLOS measurements with 2 sets of
prior-CSI estimated by a UNN 64 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

FIGURE 17. CSI recreation performance map for NLOS measurements with 1 set of
prior-CSI estimated by a UNN 64 structure. The cGAN is trained with theLL2

loss.
The colors represent the NSE in dB values.

the desired location error �̃r. However, this gain is not as
large as in the NLOS case because the prior-CSI are already
distributed in the best LOS scenario. Increasing the location
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FIGURE 18. Histogram of the Euclidean distance between �r and �̃r. The estimation
error is drawn from a Gaussian distribution with μ-σ described in the legend of the
histogram.

FIGURE 19. Cumulative distribution function F (x) of the NSE for CSI recreation with
error in the desired location �̃r for the best NLOS case (Figure 17) without retraining.

FIGURE 20. Cumulative distribution function F (x) of the NSE for CSI recreation with
error in the desired location �̃r for the best LOS case (Figure 12) without retraining.

estimation error and improving the performance might sound
counter-intuitive. However, we should point out that this
experiment is performed at inference time, without retraining
the cGAN. Hence, error in estimating the desired location
can change the set of prior-CSI that the cGAN is taking
at its input, but does not change the statistical distribution
modeled by the cGAN. Those results indicate that selecting
the prior-CSI according to their minimum Euclidean distance
towards the desired location �r may not be the best approach
for CSI recreation.
Regarding the state of the art, our approach provides a

much better performance if compared to the 6 dB reported
in [11]. This is mainly due to two reasons, in [11] a much

larger area is considered and the authors just rely on super-
vised learning. It has been reported that the generative loss
function improves the richness of the images being gen-
erated as L2 norm tends to generate blurred outputs [30],
[31]. Moreover, our cGAN architecture is less complex
since we just use 13 layers for the U-Net at the genera-
tor while [11] has reported 28 layers to process the images
of the environment map and output the wireless channel. The
generator described in Table 3 has a total of 552513 train-
able parameters which correspond to about 3.16% of the
complex channel coefficients H ∈ C

4267×64×64 collected
in the studied area. Hence, the memory requirement for
the digital twin running at the BS side is also reduced.
Our cGAN takes about 6 hours to train in a computer
with 16 GB of RAM and a GPU with 2 GB of dedicated
memory.
Regarding complexity, the UNN-64 structure con-

tains 29312 trainable parameters which correspond to
11.18% of the coefficients in a channel measurement
Hmes ∈ C

64×64×64. The UNN-16 structure contains 3488
trainable parameters which correspond to 5.32% of the
coefficients in a channel measurement Hmes ∈ C

16×64×64.
Therefore, UNNs are an under-parameterized representation
of the wireless channels that provide channel estimation gain
in most cases. Due to the underparameterization, we assume
that the UEs can compute the UNN parameters based on
small measurement campaigns and send them to the BS.
The BS trains the cGAN based on the collected prior-CSI.
After the cGAN model is trained, the UEs within the repre-
sentation area can just report their location �r and the BS is
able to recreate their full explicit CSI. For a person walking
in this indoor environment (Table 1) with a velocity of 1 m/s,
a CSI report is needed at least every 57 mm in order to meet
the Nyquist sampling criteria. Assuming we can use 10 bits
to quantize 1 m space with 1 mm accuracy, reporting the
coordinates of the desired location �r can be very efficient
in reducing the CSI feedback overhead. The access to the
full characteristics of the wireless channel with low overhead
is the main contribution of this paper since we are not able
to recover all the channel coefficients in current 3GPP type
II CSI reporting. In order to track the reliability of the CSI
recreation method, from time to time, i.e., once per day, the
BS may send the cGAN model to the UEs. Hence, the UEs
can observe the recreated CSI and flag when it is completely
wrong. Which, then, may trigger collection of new prior-CSI
and re-training of the cGAN. For expanding the operational
area of the CSI recreation, we expect that more prior mea-
surements need to be collected. This would increase the
number of UNNs, but the cGAN could be re-trained for the
enlarged operational area. Nonetheless, we leave this study to
future work.

VI. CONCLUSION
In this paper we propose to combine UNNs with cGANs
to recreate wireless channels within the digital twin of a
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propagation environment. The channel is recreated based on
prior-CSI estimates from UNNs and the location where we
aim to recreate the channels. The CSI recreation allows to
access the full characteristics of the wireless channel with
low communication overhead, which is not possible with
current 3GPP type II CSI reporting. The cGAN is able to
recreate the CSI for indoor measurements under LOS and
NLOS propagation conditions. We show in our results that
the way we select the prior-CSI measurements impacts the
performance and that availability of more prior-CSI estimates
does not necessarily translates into improved CSI recreation
performance. Moreover, we provide results for CSI interpo-
lation with UNNs which has motivated our choice of cGANs
as the second AI/ML instance for CSI recreation. In addition,
we set up experiments to access how good the cGAN uses the
location information to recreate CSI, and how inaccuracies
in estimating the desired location impacts the performance of
the CSI recreation. Despite their differences, CSI recreation
outperforms the state of the art FadeNet and is less complex.
Future work may consider outdoor scenarios, increase the
CSI recreation area, and study the best approach to select
areas where the prior-CSI measurements should be collected.
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