Robust Multi-dimensional Model Order Estimation Using LineAr Regression of Global Eigenvalues (LaRGE)

Alexey A. Korobkov, Marina K. Diugurova, Jens Haueisen, Member, IEEE, and Martin Haardt, Fellow, IEEE

Abstract—The efficient estimation of an approximate model order is very important for real applications with multi-dimensional low-rank data that may be corrupted by additive noise. In this paper, we present a novel robust to noise method for model order estimation of noise-corrupted multi-dimensional low-rank data based on the LineAr Regression of Global Eigenvalues (LaRGE). The LaRGE method uses the multi-linear singular values obtained from the HOSVD of the measurement tensor to construct global eigenvalues. In contrast to the Modified Exponential Test (EFT) that also exploits the approximate exponential profile of the noise eigenvalues, LaRGE does not require the calculation of the probability of false alarm. Moreover, LaRGE achieves a significantly improved performance in comparison with popular state-of-the-art methods. It is well suited for the analysis of noisy multidimensional low-rank data including biomedical signals. The excellent performance of the LaRGE method is illustrated via simulations and results obtained from EEG recordings.

Index Terms—eigenvalue, global eigenvalue, tensor, the rank of the tensor, the model order of multi-dimensional data

I. INTRODUCTION

ULTI-DIMENSIONAL MODELS are widespread in a variety of applications, for example, radar, sonar, channel modeling in wireless communications, image processing, the estimation of MIMO channels parameters, blind source separation and many more [1]. According to these models the measured signals or the data can be stacked into multi-dimensional arrays or tensors. Moreover, in biomedical data processing multi-dimensional models have been widely used recently. For example, biomedical signals like Electroencephalograms (EEG), Magnetoencephalograms (MEG) or Electrocardiograms (ECG) can be recorded from many sensors simultaneously during different experimental conditions, for example different stimuli, and for different groups of participants [2]. Therefore, more than two dimensions can be identified. These include channels, time, frequency, and condition. It is natural to use multi-dimensional models or tensors to represent these signals.

Different types of tensor decompositions are used for the extraction of features from the data or to denoise recorded

Alexey A. Korobkov and Marina K. Diugurova are with the Institute for Radio-Electronics, Photonics, and Digital Technologies, Kazan National Research Technical University n.a. A.N Tupolev-KAI, Kazan, Russia, e-mail: korobkov@inbox.ru.

Jens Haueisen is with the Institute of Biomedical Engineering and Informatics, Ilmenau University of Technology, Ilmenau, Germany, email: jens.haueisen@tu-ilmenau.de.

Martin Haardt is with the Communications Research Laboratory, Ilmenau University of Technology, Ilmenau, Germany, email: martin.haardt@tuilmenau.de. signals. However, in many signal processing applications the most frequently used decompositions of multi-dimensional data are an approximate low-rank Canonical Polyadic (CP) decomposition [3] also known as Parallel Factor (PARAFAC) analysis [4] or Canonical Decomposition (CANDECOMP) [5] and the truncated Multi-Linear Singular Value Decomposition (MLSVD) [6] also known as Higher Order Singular Value Decomposition (HOSVD).

According to the CP model, a tensor is decomposed into the minimum number R of rank-one components. Hence, the proper choice of the model order affects the accuracy of the processing and subsequently also the interpretable results. This problem is very important when measured biomedical data are processed. However, in most cases, the observed data are corrupted by noise. Therefore, the problem of estimating the order of an approximate low-rank model is a non-trivial task.

The first attempts to develop methods for the model order estimation of two-dimensional data were made at the beginning of the 1970s. In [7] Akaike's information criterion (AIC) was proposed. This criterion takes the observed data structure into account. In [8] another criterion was proposed that penalizes the over parameterization more strongly than AIC. Schwarz proposed a Bayesian information criterion (BIC) for the estimation of the order of linear models that describe independent and identically distributed observations [9]. Wax and Kailath implemented the AIC and the Minimum Description Length (MDL) scheme that has been derived from the BIC for the detection of the number of signals in a multichannel time series [10]. However, these methods often fail when the number of the snapshots of the observed data is small.

To overcome this problem, the Exponential Fitting Test (EFT) based on the geometric profile of the noise-only eigenvalues has been developed and presented in [11]. It was shown that this profile has an exponential distribution for white Gaussian noise and the residuals between the actual and the approximated eigenvalues can be used for the model order estimation. Moreover, the EFT allows the probability of false alarms to be controlled and predefined, which is a crucial point for systems such as radars. Later, in [12] the modified EFT (M-EFT) was proposed. Furthermore, the authors presented the concept of global eigenvalues as the combination of the *d*-mode singular values of the tensor with observations. It was shown that an extension of the EFT, as well as the AIC and MDL methods, to multi-dimensional data outperforms the same approaches in the matrix case. In [13], another approach for computing the modified version of the global eigenvalues was proposed based on the summation of the singular values sets computed from the different unfoldings instead of the multiplication of the singular values of the dmode unfoldings [12] of the tensor. According to [13], the generalized algorithm N-D MDL based on the MDL criteria shows a better performance in comparison with the classical model order estimation methods.

In [14], the authors proposed to exploit one of the features of the closed-form PARAFAC (CFP) decomposition later called SECSI [15]. It is the fact that we get multiple estimates of each factor matrix before the last step of SESCI. If the model order is estimated correctly these estimates are not completely different.

Another technique for the model order selection (MOS) using the stochastic gradient Langevin dynamics (SGLD) method was presented in [16]. In the first step, the multi-linear data is sampled using the SGLD. Moreover, the authors proposed the preconditioned SGLD method (PSGLD) for sampling that takes into account the local geometry of the target data density. In the next step of the MOS, the marginal likelihood is estimated using stochastic thermodynamics integration (STI). It was shown that the mode of the estimated likelihood corresponds to the model order of the multi-dimensional data.

In [17], the authors proposed to determine the model order via the estimation of the redundancy in the resulting factor matrices after the CP decomposition. To this end, the correlation between components from the factor matrices is computed as a quantitative assessment of their similarity. Consequently, by changing the rank of the CP decomposition and by evaluating redundancy, the model order can be estimated.

In [18], the authors proposed a technique to find the "knee" of an error curve to determine the number of clusters. This technique can also be used to estimate the model order. In [19], the authors implemented the k-means clustering algorithm to separate the 1-mode singular values of the covariance tensor into two clusters: the signal cluster with large singular values and the noise cluster with the remaining smaller singular values. The number of elements in the signal cluster is assumed as the model order. Also, several methods for estimating the order of CP models were presented in [20], [21].

The estimation of the model order in biomedical signal processing problems is often based on the results of a visual inspection of the singular values or some assumptions about the structure of the data. To avoid this visual inspection and to provide a systematic approach for model order estimation in practical applications, we propose a novel robust to noise method based on the LineAr Regression of Global Eigenvalues (LaRGE). In addition to the initial results presented in [22], in this paper, we provide a more detailed derivation of the equations of the LaRGE method. Moreover, we introduce a heuristic alternative by incorporating a penalty function (LaRGE-PF) that shows an improved performance in the case of relatively small tensors. We compare the performance of LaRGE and LaRGE-PF with the classical AIC, MDL, and M-EFT schemes and their N-dimensional extensions. Furthermore, we provide detailed results of the model order estimation and the subsequent low-rank tensor decomposition

of measured EEG data during Intermittent Photic Stimulation.

In Section II the multi-dimensional data model is presented. Section III describes the proposed LaRGE and LaRGE-PF schemes. As a benchmark, classical methods AIC, M-EFT, and their extensions to the multi-dimensional cases are reviewed in Section IV. The discussion of the computational complexity is presented in Section V. Section VI describes the simulation scenarios and compares the performance of LaRGE, LaRGE-PF, AIC, MDL, M-EFT, N-D AIC, N-D MDL, and N-D EFT. Inspired by the good performance of LaRGE and LaRGE-PF, we also implemented them for model order estimation of EEG recordings. The results are presented in Section VII. In Section VIII, we conclude the paper.

II. DATA MODEL AND NOTATION

In this paper, the following notation, a, a, A, and A are used to denote scalars, column vectors, matrices, and tensors, respectively. Moreover, $\mathbf{a}(i)$ defines the element (i) of a vector **a**. The same applies to a matrix **A** (i, j) and a tensor \mathcal{A} (i, j, k). The tensor $\mathcal{I}_{D,R}$ is D-dimensional super-diagonal tensor of size $R \times R \times \ldots \times R$, which is equal to one if all D indices are equal and zero otherwise. The d-mode product between a D-way tensor of size M_d along mode $d = 1, 2, \dots, D$ represented as $\mathbf{A} \in \mathbb{C}^{M_1 \times M_2 \times \dots \times M_D}$ and a matrix $\boldsymbol{U} \in \mathbb{C}^{J \times M_d}$ is written as $\boldsymbol{\mathcal{A}} \times_d \boldsymbol{U}$. It is computed by multiplying all d-mode vectors of A with U, whereas the dmode vectors of \mathcal{A} are obtained by varying the *d*-th index from 1 to M_D and keeping all other indices fixed. Using the forward ordering [6] of all d-mode vectors as the columns of a matrix yields the *d*-mode unfolding of \mathcal{A} which is denoted by $[\mathcal{A}]_{(d)} \in \mathbb{C}^{M_d \times M_{d+1} \cdots M_D \cdot M_1 \cdots M_{d-1}}$. The CP decomposition of a *D*-way noiseless tensor $\mathcal{X}_0 \in \mathbb{C}^{M_d \times M_{d+1} \cdots M_D \cdot M_d}$.

 $\mathbb{C}^{M_1 \times M_2 \times M_3 \times \cdots \times M_D}$ is represented as

$$\boldsymbol{\mathcal{X}}_0 = \boldsymbol{\Lambda}_{D,R} \times_1 \boldsymbol{F}_1 \times_2 \boldsymbol{F}_2 \times_3 \boldsymbol{F}_3 \times \cdots \times_D \boldsymbol{F}_D, \qquad (1)$$

where $F_d \in \mathbb{C}^{M_d \times R}(d = 1, 2, 3, ..., D)$ are the factor matrices, R is the order of the CP model or the rank of the tensor \mathcal{X}_0 , and $\Lambda_{D,R}$ is a super-diagonal tensor with loading factors λ_r (r = 1, 2, 3, ..., R) on its super-diagonal that normalize the columns of the factor matrices to length one to avoid the scaling ambiguity of the CP decomposition.

In practice, the recorded data are corrupted by noise. The tensor that is constructed from observations can be defined as

$$\boldsymbol{\mathcal{X}} = \boldsymbol{\mathcal{X}}_0 + \boldsymbol{\mathcal{N}},\tag{2}$$

where $\mathcal{N} \in \mathbb{C}^{M_1 \times M_2 \times M_3 \times \cdots \times M_D}$ is the additive noise tensor. Therefore, (1) can be rewritten as

$$\boldsymbol{\mathcal{X}} = \boldsymbol{\Lambda}_{D,R} \times_1 \boldsymbol{F}_1 \times_2 \boldsymbol{F}_2 \times_3 \boldsymbol{F}_3 \times \cdots \times_D \boldsymbol{F}_D + \boldsymbol{\mathcal{N}}.$$
 (3)

Obviously, the rank of the tensor \mathcal{X} is not equal to R. In general, it is bigger. Therefore, after a CP decomposition of the tensor with observations \mathcal{X} , we obtain the estimates $\hat{F}_d \in$ $\mathbb{C}^{M_d \times R}(d = 1, 2, 3, \dots D)$ of factor matrices $F_d \in \mathbb{C}^{M_d \times R}(d = 1, 2, 3, \dots D)$ $1, 2, 3, \ldots D$)

$$\boldsymbol{\mathcal{X}} \approx \boldsymbol{\Lambda}_{D,R} \times_1 \hat{\boldsymbol{F}}_1 \times_2 \hat{\boldsymbol{F}}_2 \times_3 \hat{\boldsymbol{F}}_3 \times \cdots \times_D \hat{\boldsymbol{F}}_D.$$
(4)

On the other side, the HOSVD model of a tensor $\boldsymbol{\mathcal{X}}$ is defined by

$$\boldsymbol{\mathcal{X}} = \boldsymbol{\mathcal{S}} \times_1 \boldsymbol{U}_1 \times_2 \boldsymbol{U}_2 \times_3 \boldsymbol{U}_3 \times \cdots \times_D \boldsymbol{U}_D, \qquad (5)$$

where $\boldsymbol{\mathcal{S}} \in \mathbb{C}^{M_1 \times M_2 \times M_3 \times \cdots \times M_D}$ is the core tensor and $\boldsymbol{U}_r \in \mathbb{C}^{M_d \times M_d}$, $(d = 1, 2, 3, \dots D)$ are the unitary factor matrices.

As shown in [11], [12], [23] the *d*-mode singular values that are contained in the core tensor S play a major role in the problem of multi-dimensional model order estimation. The *d*-mode singular values can be computed via the Singular Value Decomposition (SVD) of the *d*-mode unfolding of the tensor \mathcal{X} according to

$$[\boldsymbol{\mathcal{X}}]_{(d)} = \boldsymbol{U}_d \cdot \boldsymbol{\Sigma}_d \cdot \boldsymbol{V}_d^{\mathrm{H}},\tag{6}$$

where $U_d \in \mathbb{C}^{M_d \times M_d}$, $V_d \in \mathbb{C}^{\tilde{M}_d \times \tilde{M}_d}$ are unitary matrices and $\Sigma_d \in \mathbb{C}^{M_d \times \tilde{M}_d}$ is a diagonal matrix that has the *d*-mode singular values $\sigma_i^{(d)}$ on the main diagonal, $\tilde{M}_d = \frac{M}{M_d}$, and $M = \prod_{d=1}^{D} M_d$. Moreover, equations (2) and (6) connect the tensor case and the matrix case.

III. LARGE METHOD FOR MULTI-DIMENSIONAL MODEL ORDER ESTIMATION

A. Global Eigenvalues

As is shown in (5), the *d*-mode singular values represent the internal structure of the data and should be exploited for model order estimation. However, tensors with real data may have different *d*-ranks in different modes. Moreover, when an approximate low-rank CP decomposition is computed, an estimate of the rank of the noiseless model that is equal for all *d*-mode unfoldings has to be found. Therefore, we can define *global eigenvalues* as proposed in [12] and [23] as the product of all squared *d*-mode singular values with the same indices as follows

$$\tilde{\lambda}_{i}^{[G]} = \prod_{d=1}^{D} \left(\sigma_{i}^{(d)}\right)^{2}, i = 1, 2, 3, \dots, M^{[G]}, \tag{7}$$

where $M^{[G]} = \min(M_d), d = 1, 2, 3, \dots, D$.

Assuming that the global eigenvalues include the information about the signals and the noise, the set of global eigenvalues can be divided into two subsets. One subset contains the global eigenvalues that represent the noise in the observations. These global eigenvalues are called *noise global eigenvalues*. The other subset contains the *signal global eigenvalues*. The number of the signal global eigenvalues corresponds to the model order or the rank of the tensor \mathcal{X}_0 as well as the number of sources or components in the noisy observations. Furthermore, the global eigenvalues contain the information about the model order in all *d*-mode unfoldings. Therefore, the multi-linear structure of the information is kept for the tensors and can be evaluated.

B. LaRGE method

The presented LaRGE algorithm for model order estimation based on the global eigenvalues uses the following assumptions that correspond to the most practical cases of calculating an approximate CP decomposition in case of noise-corrupted low rank data.

- The smallest dimension of the multi-linear data is greater than the model order.
- The set of global eigenvalues includes at least one noise global eigenvalue that is represented by the smallest global eigenvalue. Therefore, the maximum value of the estimating model order is not greater than $M^{[G]} 1$ [12], [23].
- According to [12] and [23] the noise global eigenvalues have approximately an exponential profile.

Hence, starting from the smallest global eigenvalue, the noise global eigenvalues follow a straight line on a logarithmic scale (due to their approximate exponential distribution)

$$\lambda_i^{[G]} = \ln\left(\tilde{\lambda}_i^{[G]}\right). \tag{8}$$

Therefore, we want to determine a linear approximation $\hat{\lambda}_i^{[G]}$ of the actual noise global eigenvalues profile $\lambda_i^{[G]}$ on a logarithmic scale based on the least squares criterion

$$\min\left(\sum_{i=M^{[G]}}^{M^{[G]}-k} \left(\hat{\lambda}_i^{[G]} - \lambda_i^{[G]}\right)^2\right),\tag{9}$$

where $\hat{\lambda}_i^{[G]} = a_1 \cdot i + a_2$, $i = M^{[G]}, M^{[G]} - 1, M^{[G]} - 2, \ldots, M^{[G]} - k$, and k is the step index. We sequentially approximate the profile of the noise global eigenvalues via a straight line starting from the smallest global eigenvalues with indices $i = M^{[G]}$ and $i = M^{[G]} - 1$ for k = 1. Using this linear approximation the value of the next largest noise eigenvalue can be predicted.

In each step $k = 1, 2, ..., M^{[G]} - 1$ the absolute prediction error $\Delta^{[G]}_{M^{[G]}-k}$ is calculated according to

$$\Delta_{M^{[G]}-k}^{[G]} = \lambda_{M^{[G]}-k}^{[G]} - \hat{\lambda}_{M^{[G]}-k}^{[G]}.$$
 (10)

A small value of the absolute prediction error indicates that a noise global eigenvalue is found. On the contrary, a big prediction error can be indicative of a signal global eigenvalue.

To normalize the scale of values of the prediction errors, we define the relative prediction error

$$\delta_{M^{[G]}-k} = \frac{\Delta_{M^{[G]}-k}^{[G]}}{\left|\hat{\lambda}_{M^{[G]}-k}^{[G]}\right|} = \frac{\lambda_{M^{[G]}-k}^{[G]} - \hat{\lambda}_{M^{[G]}-k}^{[G]}}{\left|\hat{\lambda}_{M^{[G]}-k}^{[G]}\right|}.$$
 (11)

We consider the standard deviation of the approximation error $\sigma^2_{M^{[G]}-k}$ to automatically find the first signal global eigenvalue

$$\sigma_{M^{[G]}-k} = \sqrt{\frac{1}{k} \sum_{i=M^{[G]}}^{M^{[G]}-k} \left(\Delta_i^{[G]} - \mu_{\Delta_{M^{[G]}-k}^{[G]}}\right)^2}, \quad (12)$$

where the $\mu_{\Delta_{M^{[G]}-k}^{[G]}}$ is the mean value of $\Delta_{i}^{[G]}$ for $i = M^{[G]} - k, \dots M^{[G]}$ that is defined as

$$\mu_{\Delta_{M^{[G]}-k}^{[G]}} = \frac{1}{k} \sum_{i=M^{[G]}}^{M^{[G]}-k} \Delta_i^{[G]}.$$
 (13)

The standard deviation $\sigma_{M^{[G]}-k-1}$ takes into account all errors in previous steps. Intuitively, starting from the smallest

Fig. 1: The global eigenvalues profile (top) and the PESDR curve (bottom) for a random tensor $\mathcal{X} \in \mathbb{R}^{100 \times 350 \times 30}$ with a known rank 5. (a) Uncorrelated case, SNR=-3 dB, (b) correlated case, SNR=11 dB

noise global eigenvalue, the first signal global eigenvalue can be automatically found by comparing the relative prediction error and the standard deviation of the approximation errors in the previous steps. To this end, we consider the Prediction Error to Standard Deviation Ratio (PESDR)

$$\text{PESDR}_{k} = \frac{\delta_{M^{[G]}-k}}{\sigma_{M^{[G]}-k-1}}, \ k = 1, 2, ..., M^{[G]} - 1.$$
(14)

To illustrate the behavior of the PESDR curve with respect to the profile of the global eigenvalues, we have constructed two random tensors with a known rank equal to five and dimensions $100\times350\times30$ for the CP model (1). The first tensor has uncorrelated columns in all factor matrices. The correlation of all factor matrices for the second tensor is defined by the vector $\mathbf{r}_2 = [0.6 \ 0.7 \ 0.3]^T$ according to [24]. Gaussian noise is added to each tensor according to the CP model (3) with SNR=-3 dB and SNR=11 dB for the uncorrelated and the correlated case, respectively. The SNR is defined as

$$\operatorname{SNR} = 10 \cdot \log_{10} \frac{\mathbb{E}\{\|\boldsymbol{\mathcal{X}}_0\|_{\mathrm{F}}^2\}\}}{\mathbb{E}\{(\|\boldsymbol{\mathcal{N}}\|_{\mathrm{F}}^2)\}}, \, \mathrm{dB},$$
(15)

where the $\mathbb{E}\{\cdot\}$ denotes the expected value.

Figure 1 depicts the profile of the global eigenvalues and the computed PESDR coefficients for the constructed tensors. The straight line fits the profile of the noise global eigenvalues. It is

seen that the first number i, where the PESDR curve exceeds a certain threshold ρ corresponds to the rank of the noisy tensor.

To formalize this criterion for the model order or the rank estimation, we can consider the following hypotheses:

$$H_k^{(N)} : \lambda_{M^{[G]}-k}^{[G]} \text{ is a noise global eigenvalue}$$
(16)
$$H_k^{(S)} : \lambda_{M^{[G]}-k}^{[G]} \text{ is a signal global eigenvalue}$$
(17)

$$H_k^{(G)} : \lambda_{M^{[G]}-k}^{[G]}$$
 is a signal global eigenvalue. (17)

In each step $k = 1, 2, ..., M^{[G]} - 1$ or for each index $i = M^{[G]} - k$ the PESDR is compared to the threshold ρ according to

$$H_k^{(N)} : \text{PESDR}_k < \rho \tag{18}$$

$$H_k^{(S)} : \mathsf{PESDR}_k \ge \rho \tag{19}$$

The first index k for which the hypothesis $H_k^{(N)}$ fails determines the estimated model order or the rank of the tensor and which is computed as $\hat{R}_{\text{LaRGE}} = M^{[G]} - k - 1$.

C. LaRGE with penalty function (LaRGE-PF)

According to the global eigenvalues approach [12], [23] the number of global eigenvalues that are used for model order estimation is equal to the smallest dimension of the tensor. In real-world applications, the smallest dimension can be relatively small compared to the rank. In the first steps of estimating the standard deviation of the approximation error $\sigma_{M^{[G]}-k-1}$, the resulting estimate tends to zero. Hence, the PESDR can have outliers that exceed the threshold ρ . To avoid such a misclassification, we additionally ensure that $\sigma_{M^{[G]}-k-1}$ exceeds a threshold ϵ . If not, then the current step k is not taken into account for the model order estimation. In this paper, we set $\epsilon = 1.2 \cdot 10^{-3}$.

Moreover, we also consider the slightly modified "PESDR with penalty function (PESDR-PF)" criterion that penalizes the standard deviation in the first steps

$$PESDR-PF_{k} = \frac{\delta_{M^{[G]}-k}}{PF(M^{[G]}, k-1) \cdot \sigma_{M^{[G]}-k-1}} = \frac{1}{\log_{10}(M^{[G]}-k-1)} \cdot \frac{\delta_{M^{[G]}-k}}{\sigma_{M^{[G]}-k-1}}.$$
(20)

In the first estimation steps, the indices of the corresponding global eigenvalues k are small and the argument of the logarithm $(M^{[G]} - k - 1)$ in the denominator of the penalty function is relatively big. Therefore, the values of the penalty function (PF) have big weights. Hence, the denominator of the ratio becomes bigger and outliers are damped. As the number of steps increases, i.e., as the index k increases, the value of the penalty function decreases and the damping effect is reduced.

D. Threshold determination

The threshold ρ is related to the statistical distribution of the absolute prediction error $\Delta_i^{[G]}$ or the relative prediction error $\delta_i^{[G]}$. This statistical distribution is not known for applications with measured real data. Therefore, numerical methods can instead be used for the threshold determination.

In this paper, the threshold ρ is obtained by the Monte Carlo simulations. For this purpose, we define the probability of false alarm or false positive $P_{\rm fp}$, the probability of missing or false negative $P_{\rm fn}$, and the probability of detection PoD.

The probability of false positive $P_{\rm fp}$ is the conditional probability of the hypotheses $H_k^{(S)}$ and $H_k^{(N)}$ that the proposed method in step $k = 1, 2, ..., M^{[G]} - 1$ falsely classifies a noise global eigenvalue as a signal global eigenvalue and is defined as

$$P_{\rm fp} = \Pr\left(H_k^{(S)} \mid H_k^{(N)}\right) = \Pr\left(\hat{R}_{\rm LaRGE} > R \mid R\right).$$
(21)

A big value of this probability means that the rank or the model order can be overestimated.

The probability of false negative P_{fn} expresses the conditional probability of the hypotheses $H_k^{(N)}$ and $H_k^{(S)}$ that the proposed method mistakenly determines the model order smaller than the actual order in step $k = 1, 2, \ldots M^{[G]} - 1$. This probability is defined as

$$P_{\rm fn} = \Pr\left(H_k^{(N)} \mid H_k^{(S)}\right) = \Pr\left(\hat{R}_{\rm LaRGE} < R \mid R\right).$$
(22)

The model order or the rank can be underestimated if the value of $P_{\rm fn}$ is big.

The probability of detection is the conditional probability of the hypotheses $H_k^{(S)}$ and $H_k^{(S)}$ that in step $k = 1, 2, \ldots M^{[G]} - 1$ the model order is estimated correctly

$$\operatorname{PoD} = \operatorname{Pr}\left(H_k^{(S)} \mid H_k^{(S)}\right) = \operatorname{Pr}\left(\hat{R} = R\right).$$
(23)

By considering a large number of trials we have obtained the functional dependency of the probabilities of false positive $P_{\rm fp}(\rho)$, false negative $P_{\rm fn}(\rho)$, and the probability of detection PoD(ρ) as a function of the threshold ρ .

To this end, we generate a data tensor \mathcal{X}_0 for the CP model (1). All elements of the factor matrices are drawn from a zero-mean real-valued Gaussian distribution. Moreover, all columns of the factor matrices \mathbf{F}_d , d = 1, 2, 3, ..., D are not correlated. For all simulations, noiseless tensors of rank R = 5 are constructed. The elements of the noise tensor \mathcal{N} are drawn independently from a zero-mean Gaussian distribution with the variance σ_n^2 and the SNR that is defined as in (15).

For the first simulation, the size of the noisy tensor is set to $M_1 = 25$, $M_2 = 30$, $M_3 = 35$. The SNR is fixed at SNR=8 dB, and the value of the threshold ρ varies in the range from 0.1 to 2.1. The curves of the probabilities $P_{\rm fp}$, $P_{\rm fn}$, and PoD of the LaRGE method obtained after 5000 Monte Carlo trials are shown in Figure 2.

For the second simulation, the size of the noisy tensor is set to $M_1 = 60, M_2 = 100, M_3 = 70$ and SNR=0 dB. Figure 3 shows the curves of the probabilities $P_{\rm fp}, P_{\rm fn}$, and PoD of the LaRGE method obtained after 5000 Monte Carlo trials for this scenario.

For the third simulation, the size of the noisy tensor (SNR= -9 dB) is significantly increased and is set to $M_1 = 78, M_2 = 1000, M_3 = 102$. The resulting curves of the probabilities $P_{\rm fp}$, $P_{\rm fn}$, and PoD of the LaRGE method are depicted in Figure 4.

For the forth scenario, a four-dimensional noisy tensor (SNR= -9 dB) of size $M_1 = 60, M_2 = 60, M_3 = 60, M_4 = 60$ is generated. The obtained curves of the probabilities $P_{\rm fp}, P_{\rm fn}$, and PoD of the LaRGE method are shown in Figure 5.

Fig. 2: The functional dependencies of $P_{\rm fn}$ (top), PoD (middle), $P_{\rm fp}$ (bottom) on the threshold ρ for the noisy CP model, SNR=8 dB, $\mathcal{X} \in \mathbb{R}^{25 \times 30 \times 35}$, the true rank is R = 5.

Using the results of the Monte Carlo simulations, a numerical value for the threshold ρ can be obtained by setting the probabilities $P_{\rm fp}$ and $P_{\rm fn}$ to an appropriate value. In this paper, we want to keep these probabilities below 1% as used in [11] and [12]. Simulations for small tensors show that the probability $P_{\rm fn} = 0.01$ corresponds to the threshold $\rho = 0.57$ (Figure 2). Moreover, a smaller value of the false negative probability $P_{\rm fn}$ of the LaRGE-PF method eventually provides a gain in terms of the correct detection probability PoD as shown in Figure 2.

On the other hand, for bigger tensors (Figure 3) the threshold $\rho = 0.57$ corresponds to $P_{\rm fp} = 0.01$. Furthermore, Figure 3 shows that for an implementation of LaRGE-PF for tensors of size $60 \times 100 \times 70$ the probabilities $P_{\rm fp}$ and $P_{\rm fn}$ are equal to zero, and hence, a correct detection probability PoD = 100% is obtained for the values of ρ from 1 to 1.2. Both LaRGE and LaRGE-PF can provide a probability of correct detection PoD = 100% for tensors of larger sizes or dimensions as shown in Figures 4 and 5.

For instance, LaRGE provides PoD = 100% for the threshold ρ in the range from 0.63 to 0.77 and LaRGE-PF in the range from 0.75 to 0.98 for tensors of size $78 \times 1000 \times 102$. For 4-dimensional tensors of size $60 \times 60 \times 60 \times 60$ a probability of correct detection PoD = 100% can be obtained for the threshold ρ in the range from 0.5 to 0.75 using LaRGE and in the range from 0.6 to 0.92 using LaRGE-PF.

Summing up, we can note that considering the $P_{\rm fp}$, $P_{\rm fn}$, or PoD, the value of the threshold can be chosen. In this paper, we consider the value of the threshold $\rho = 0.57$ that provides a good trade-off between small values of $P_{\rm fp}$ and $P_{\rm fn}$ for both small and large tensors and can be chosen in real applications.

Fig. 3: The functional dependencies of P_{fn} (top), PoD (middle), P_{fp} (bottom) on the threshold ρ for the noisy CP model, SNR=0 dB, $\mathcal{X} \in \mathbb{R}^{60 \times 100 \times 70}$, the true rank is R = 5.

IV. CLASSICAL METHODS FOR MULTI-DIMENSIONAL MODEL ORDER ESTIMATION

To compare the performance of the proposed LaRGE method to the state-of-the-art, we use AIC, MDL, and M-EFT as well as their multi-dimensional extensions N-D AIC, N-D MDL, N-D EFT as a benchmark in this paper.

The classical AIC and MDL methods are based on information theory and these methods have originally been applied to one dimensional data. According to [10] the AIC criterion is given by

$$AIC_{i} = -2N^{[s]}(M^{[\sigma]} - i)L(i) + 2i(2M^{[\sigma]} - i), \qquad (24)$$

where $N^{[s]}$ and $M^{[\sigma]}$ are the number of snapshots and the number of the eigenvalues σ_i of the covariance matrix $\mathbf{R}_{xx} \in \mathbb{C}^{M^{[\sigma]} \times M^{[\sigma]}}$ of the observation \mathbf{X} , respectively. The covariance matrix \mathbf{R}_{xx} is the Gram matrix of the $\mathbf{X} \in \mathbb{C}^{M^{[\sigma]} \times M}$ and is defined as $\mathbf{R}_{xx} = \mathbf{X}\mathbf{X}^H$. Note that the L(i)in (24) is the log-likelihood that represents the residual error and is defined as

$$L(i) = \log_{10}\left[\frac{g(i)}{a(i)}\right].$$
(25)

The functions g(i) and a(i) are the geometric and arithmetic means of the eigenvalues σ_i of the covariance matrix R_{xx} , respectively. The second term in (24) is a penalty for overfitting.

Contrary to the AIC criterion, the MDL criterion penalizes the over-fitting more strongly

$$MDL_{i} = -N^{[s]}(M^{[\sigma]} - i)L(i) + \frac{1}{2}i(2M^{[\sigma]} - i)\log_{10}(N^{[s]}).$$
(26)

Fig. 4: The functional dependencies of $P_{\rm fn}$ (top), PoD (middle), $P_{\rm fp}$ (bottom) on the threshold ρ for the noisy CP model, SNR= -9 dB, $\mathcal{X} \in \mathbb{R}^{78 \times 1000 \times 102}$, the true rank is R = 5.

Minimizing these cost functions, the model order can be estimated as

$$\hat{R}_{AIC} = \arg\min_{i} \left\{ AIC_{i} \right\}, \tag{27}$$

$$\hat{R}_{\text{MDL}} = \arg\min\left\{\text{MDL}_i\right\}.$$
(28)

In [12] and [23], the authors have proposed an extension of the AIC (24) and MDL (26) methods to multidimensional data. This can be achieved by replacing the eigenvalues σ_i of the covariance matrix \mathbf{R}_{xx} by the global eigenvalues $\lambda_i^{[G]}$ defined in equation (8). Replacing the eigenvalues of the covariance matrix by the global eigenvalues in (24) - (26), with some straightforward manipulations, we obtain

$$\operatorname{AIC}_{i}^{[G]} = -2N^{(s)}(M^{[G]} - i)L^{[G]}(i) + 2i\left(2M^{[G]} - i\right), \quad (29)$$

$$MDL_{i}^{[G]} = -N^{(s)}(M^{[G]} - i)L^{[G]}(i) + \frac{1}{2}i(2M^{[G]} - i)\log_{10}(N^{(s)}),$$
(30)

where

$$L^{[G]}(i) = \log\left[\frac{\left(\prod_{k=i+1}^{M^{[G]}} \lambda_{k}^{[G]}\right)^{\frac{1}{M^{[G]} - i}}}{\frac{1}{M^{[G]} - i} \cdot \sum_{k=i+1}^{M^{[G]}} \lambda_{k}^{[G]}}\right].$$
 (31)

Finaly, the model order is estimated by the minimization of the costs functions

$$\hat{R}_{N-\text{D}AIC} = \arg\min_{i} \left\{ \text{AIC}_{i}^{[G]} \right\}, \qquad (32)$$

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information Authorized licensed use limited to: TU Ilmenau. Downloaded on November 17,2022 at 14:53:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: The functional dependencies of P_{fn} (top), PoD (middle), P_{fp} (bottom) on the threshold ρ for the noisy CP model, SNR= -9 dB, $\mathcal{X} \in \mathbb{R}^{60 \times 60 \times 60 \times 60}$, the true rank is R = 5.

$$\hat{R}_{N-\text{D MDL}} = \arg\min_{i} \left\{ \text{MDL}_{i}^{[G]} \right\}.$$
(33)

The M-EFT method is based on the assumption that the eigenvalue profile of the covariance matrix $\mathbf{R}_{xx} \in \mathbb{C}^{M^{[\sigma]} \times M^{[\sigma]}}$ of the observations X with white Gaussian noise has an exponential distribution in the noiseonly case [12]. Sequentially approximating this profile by a decaying exponential and finding the biggest gap between the predicted and the actual eigenvalue, the model order can be estimated. In each step $k = 1, 2, \dots M^{[\sigma]} - 1$ the predicted value is computed using the following equation

$$\hat{\lambda}_{M^{[\sigma]}-k}^{[\sigma]} = \left(1 + \frac{1}{k}\right) \cdot \frac{1 - q(k+1, N^{[\sigma]})}{1 - q(k+1, N^{[\sigma]})^{k+1}} \cdot \sum_{i=0}^{k-1} \sigma_{M^{[\sigma]}-i},$$
(34)

where the approximating function $q(\alpha, \beta)$ is defined as

$$q(\alpha, \beta) = \exp\left[-\sqrt{\frac{30}{\alpha^2 + 2} - \sqrt{\frac{900}{(\alpha^2 + 2)^2} - \frac{720 \cdot \alpha}{\beta(\alpha^4 + \alpha^2 - 2)}}}\right]$$
(35)

By setting a threshold η and testing the following hypotheses

$$H_{k+1}^{(N)}: \frac{\sigma_{M^{[\sigma]}-k} - \hat{\lambda}_{M^{[\sigma]}-k}^{[\sigma]}}{\hat{\lambda}_{M^{[\sigma]}-k}^{[\sigma]}} \le \eta$$

$$(36)$$

$$H_{k+1}^{(S)}: \frac{\sigma_{M^{[\sigma]}-k} - \hat{\lambda}_{M^{[\sigma]}-k}^{[\sigma]}}{\hat{\lambda}_{M^{[\sigma]}-k}^{[\sigma]}} > \eta.$$
(37)

the model order $\hat{R}_{\text{M-EFT}} = M^{[\sigma]} - k$ can be estimated when the noise hypothesis $H_{k+1}^{(N)}$ fails in step $k = 1, 2, ..., M^{[\sigma]} - 1$. A similar approach as for *N*-D AIC and *N*-D MDL is used to extend M-EFT to *N*-D EFT and can be easily implemented by replacing the eigenvalues σ_i of the covariance matrix \mathbf{R}_{xx} in the equations (34) - (37) by the global eigenvalues $\lambda_i^{[G]}$.

It might appear at first sight that the ideas of M-EFT, *N*-D EFT and the proposed LaRGE and LaRGE-PF are related. However, they have significant differences. The transformation of the global eigenvalues to the logarithmic scale allows us to obtain the best fit of a linear approximation to the profile of the global eigenvalues for all possible cases, sizes, and dimensions. In contrast to the M-EFT, the restriction on the white Gaussian distribution of the noise is removed and a preliminary specification of the probability of false alarm is not required. Furthermore, considering the PESDR as an objective function, the gap between the noise and the signal global eigenvalues can be found more precisely.

V. COMPUTATIONAL COMPLEXITY

The proposed LaRGE and LaRGE-PF methods overall require $\mathcal{O}(M^3) + \mathcal{O}(10M^2) + \mathcal{O}(7M)$ operations, where the $M = M^{[G]}$ is the number of the global eigenvalues that are used for the model order estimation. The greatest complexity of the methods is given by the linear regression $(\mathcal{O}(6M^2))$ and the calculation of the PESDR coefficients $(\mathcal{O}(M^3) + \mathcal{O}(4M^2) + \mathcal{O}(4M))$.

The AIC and MDL methods have complexity $\mathcal{O}(M^2) + \mathcal{O}(0.5M^2 + 0.5M) + \mathcal{O}(10M)$ [25], while, M-EFT scheme requires $\mathcal{O}(27M^2) + \mathcal{O}(6M)$ operations. Moreover, for all methods that take into account the multi-linear structure of the data, additional (D-1)M multiplications are needed to compute the global eigenvalues, where D is the number of the tensor dimensions.

However, the major complexity of all MOS schemes comes from the computation of the HOSVD of the tensor $\mathcal{X} \in \mathbb{C}^{M_1 \times M_2 \times M_3 \times \cdots \times M_D}$ to obtain the *d*-mode singular values. For each set of the *d*-mode singular values, the SVD of the *d*-mode unfolding is computed that requires $\mathcal{O}(M_d^2 \cdot M_1 \cdot M_2 \cdots M_{d-1} \cdot M_{d+1} \cdots M_D)$ operations [26]. For example, the HOSVD of the symmetric tensor \mathcal{X} with dimensions $M = M_1 = M_2 = M_3 = \cdots = M_D$ has complexity $\mathcal{O}(D \cdot M^4)$ that is increased by increasing the tensor size. Note that several schemes to compute an approximate CPD also require an initial HOSVD (e.g., SECSI [15]). As a result, only the additional steps for model order estimation should be counted, whereas the complexity of these steps is relatively small compared to the complexity of the HOSVD.

In Figure 6 the results of simulations to evaluate the computational complexity of the HOSVD and all considered MOS schemes are shown. All simulations are performed on a laptop computer with an Intel(R) Core(TM) i5-9300H 2.4 GHz CPU with a 8 GB RAM. During the 5000 trials 3-D symmetric tensors of different sizes are constructed. The size of each tensors dimension $M = M_1 = M_2 = M_3$ is varied from 30 to 140 and the mean time of the HOSVD and all considered MOS schemes are separately estimated.

Clearly, the mean time of the HOSVD steadily increases with the size of the tensor dimensions. When the size of the

Fig. 6: The mean time of the HOSVD and MOS schemes versus the size $M = M_1 = M_2 = M_3$ of each dimension of 3-D symmetric tensor, model order R = 5, SNR = 10 dB.

symmetric tensor dimensions is bigger than fifty, the HOSVD requires more time in comparison with the proposed MOS schemes.

VI. EXPERIMENTAL RESULTS. SYNTHETIC SIMULATIONS

In this section, we present simulation results to demonstrate the performance of the proposed LaRGE and LaRGE-PF methods in comparison with the classical AIC, MDL, *N*-D AIC, *N*-D MDL, M-EFT, and *N*-D EFT methods. We set the threshold $\eta_{\text{M-EFT}} = 0.23$ for the M-EFT, $\eta_{N-\text{D} \text{ EFT}} = -0.033$ for the *N*-D EFT, and $\rho = 0.57$ for the LaRGE and LaRGE-PF methods and compare the probability of correct detection PoD = Pr($\hat{R} = R$) versus the SNR.

A data tensor for the CP model (1) with factor matrices $F_d, d = 1, 2, 3 \dots D$, is generated. The factor matrices contain elements drawn from a zero-mean Gaussian distribution with unit variance σ_s^2 . Two different scenarios are used for the simulations with respect to the correlation of the columns in the factor matrices. In the first scenario, the correlation between the columns in the factor matrices F_d , d = 1, 2, 3...D, is parameterized by the vectors $\boldsymbol{r}_1 = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ and $\boldsymbol{r}_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}^T$ for 3-D and 4-D tensors, respectively. The second scenario corresponds to the correlated case, and the correlation of the columns of the factor matrices is parameterized by the vectors $r_2 = [0.6 \ 0.3 \ 0.9]^T$ and $r_2 = [0.6 \ 0.3 \ 0.9 \ 0.1]^T$ for 3-D and 4-D tensors, respectively [15]. We consider two cases when the rank of the generated noiseless tensors is fixed at R = 5and R = 20. According to the model (3), the elements of the noise tensor \mathcal{N} are drawn independently from a zero-mean Gaussian distribution with variance σ_n^2 . The results have been averaged over 5000 Monte Carlo trials.

In Figure 7 we compare the performance of the classical methods AIC, MDL, 3-D AIC, 3-D MDL, M-EFT, 3-D EFT and the proposed LaRGE and LaRGE-PF methods for a tensor with the following dimensions $M_1 = 25, M_2 = 30, M_3 = 35$. The obtained results confirm the better performance of the 3-D extensions of AIC, MDL, and M-EFT. Also, the proposed LaRGE and LaRGE-PF methods outperform the classical methods in the uncorrelated case. However, in the correlated case the LaRGE, LaRGE-PF, and 3-D EFT show close results for low SNRs.

Fig. 7: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{25 \times 30 \times 35}$, the true rank is R = 5, uncorrelated case (top), correlated case (bottom).

Fig. 8: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{25 \times 30 \times 35}$, the true rank is R = 20, uncorrelated case (top), correlated case (bottom).

Similarly, in Figure 8 we evaluate the probability of correct detection of all considered methods using tensors of the same size but with a higher rank R = 20. In this case, 3-D AIC, 3-D MDL, LaRGE, and LARGE-PF show a close performance in terms of the probability of correct detection, especially in the correlated case. Moreover, the 3-D EFT method shows a better performance for low SNRs. However, the PoD of this method does not reach one and stays close to 0.9 even for high SNRs. Therefore, LaRGE and LaRGE-PF in the uncorrelated case as well as 3-D AIC and 3-D MDL in the correlated case are preferred for the model order estimation when the size of the tensors is small and the rank is high.

Figures 9 and 10 depict a scenario where the rank of the tensor with dimensions $M_1 = 78, M_2 = 1000, M_3 = 102$ is equal to 5 and 20, respectively. The LaRGE and LaRGE-PF methods outperform other considered classical methods in the correlated and the uncorrelated cases. Moreover, we can see that the 3-D AIC, 3-D MDL, AIC, and MDL methods show similar results. This effect can be explained as follows.

Fig. 9: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{78 \times 1000 \times 102}$, the true rank is R = 5, uncorrelated case (top), correlated case (bottom).

Fig. 10: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{78 \times 1000 \times 102}$, the true rank is R = 20, uncorrelated case (top), correlated case (bottom).

For AIC and MDL, the *d*-mode singular values are used from the biggest dimension of the tensor and their number is equal to the biggest dimension $M^{[\sigma]} = \max(M_d), d =$ $1, 2, 3, \ldots, D$. In our case, the largest number of *d*-mode singular values is $M^{[\sigma]} = 1000$ for the second dimension of the tensor with dimensions $M_1 = 78, M_2 = 1000, M_3 =$ 102. However, for 3-D AIC and 3-D MDL the number of global eigenvalues is limited by the smallest tensor dimension $M^{[G]} = \min(M_d), d = 1, 2, 3, \ldots, D$. In the considered case, the first dimension is the smallest $(M_1 = 78)$. Therefore, the accuracy of the AIC and MDL is better and close to that of 3-D AIC and 3-D MDL.

We have also performed Monte Carlo simulations for a 4-D tensor scenario with dimensions $M_1 = 60, M_2 = 60, M_3 = 60, M_4 = 60$ and ranks R = 5 and R = 20. Figures 11 and 12 show the results for this scenario. The curves are grouped in three groups and demonstrate a better performance of the methods that take into account the multi-linear structure of the data. M-EFT and 4-D EFT outperform AIC, MDL and 4-D

Fig. 11: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{60 \times 60 \times 60 \times 60}$, the true rank is R = 5, uncorrelated case (top), correlated case (bottom).

Fig. 12: Probability of correct detection PoD versus the SNR for the noisy CP model, $\mathcal{X} \in \mathbb{R}^{60 \times 60 \times 60 \times 60}$, the true rank is R = 20, uncorrelated case (top), correlated case (bottom).

AIC, 4-D MDL, respectively. Moreover, LaRGE and LaRGE-PF outperform the methods based on AIC and MDL by more than 12 dB and 4-D EFT by 10 dB.

Summarizing the results of the simulations, we can note that for small size low-rank tensors, the advantage of LaRGE-PF in terms of the probability of correct detection is more pronounced than for big 3-D tensors or 4-D tensors in comparison with the LaRGE method. Moreover, it is advantageous to use the LaRGE method for the model order estimation of tensors with a large rank and size.

VII. BIOMEDICAL SIGNAL PROCESSING

A. Preprocessing and Decomposition

The proposed LaRGE and LaRGE-PF methods presented in this paper are used to analyze measured EEG data. These data were recorded from twelve healthy volunteers, numbered 1 to 12 in this paper, at the Biomagnetic Center of the University Hospital in Jena, Germany, for the investigation of the Photic Driving (PD) effect [27],[28]. This effect occurs when the brain is stimulated by Intermittent Photic Stimulation (IPS). The PD effect is used to assess the effects of medications and for the diagnosis of several neurophysiological diseases like Alzheimer, schizophrenia, and some forms of epilepsy.

The recorded EEG signals were filtered in the frequency range from 3 Hz to 40 Hz in a preprocessing step. The individual frequency of alpha rhythm f_{α} was determined for each volunteer prior to the main experiment. The resulting alpha frequencies for volunteers 1 to 12 are, in this order, 9.6, 10.7, 10.4, 10.8, 10.7, 10.8, 7.5, 10.8, 11.0, 10.7, 12.2, and 10.3 Hz. To investigate the PD effect, twenty stimulation frequencies $f_{stim} = [0.40 \ 0.45 \ 0.50 \ 0.55 \ 0.60 \ 0.70 \ 0.80 \ 0.90 \ 0.95 \ 1.00 \ 1.05 \ 1.10 \ 1.30 \ 1.60 \ 1.90 \ 1.95 \ 2.00 \ 2.05 \ 2.10 \ 2.30] \cdot f_{\alpha}$ were generated. Each stimulation of the particular frequency was presented in 30 stimulation trains. Each train consisted of 40 periods with pulse/cycle duration of 0.5. Between each train and frequency block there were resting periods of 4 seconds and 30 seconds, respectively.

To investigate the proposed LaRGE method for the model order estimation, two different cases are considered in this paper. 3-D tensors are constructed for the first case. To this end, the Fast Fourier Transform is used for obtaining the frequency distribution of the EEG signals. As a result, we have different complex tensors with dimensions channels \times frequency \times trains for each stimulation frequency and volunteer. The frequency and train dimensions have fixed sizes: 281 and 30, respectively. The size of the channel dimension varies, because a small number of non-functional EEG channels are excluded in the preprocessing step. The resulting 3-D tensors have dimensions channels×frequency×train.

For the second case that is considered in this paper, the wavelet decomposition is used to construct 4-D tensors. The second and third dimensions of these tensors represent the frequency-time distribution obtained after the complex Morlet decomposition. The wavelet coefficients between 3.003 Hz (1000/333 Hz) and 15.15 Hz (1000/66 Hz) are selected for the analysis. This frequency range spans the frequencies of the theta and alpha rhythms [29]. The size of the time dimension varies from 5 seconds up to 20 seconds depending on the stimulation frequency. The resulting 4-D tensors have dimensions channels ×frequency×time×train.

In the first step of the model order estimation, the HOSVD of the constructed tensors is computed. Next, the global eigenvalues are obtained and the model order is estimated using the LaRGE method, the LaRGE method with penalty function (LaRGE-PF), and classical AIC and MDL methods (*N*-D AIC, *N*-D MDL, AIC, and MDL). To obtain the factor matrices of the dominant components, the CP decomposition of each tensor is computed via SECSI [15] in the 3-D case and via SECSI-GU [30] in the 4-D case using the estimated rank of LaRGE and LaRGE-PF. The threshold $\rho = 0.57$ is fixed for both LaRGE and LaRGE-PF to ensure that the probability $P_{\rm fn}$ is not greater than 0.01. To eliminate the scaling ambiguity, the loading factors of the components are computed if the rank is more than one according to

$$\lambda_r = \prod_{d=1}^{D} \left\| \hat{\boldsymbol{F}}_d(r) \right\|_{\mathrm{F}}, r = 1 \dots \hat{R}, \tag{38}$$

Fig. 13: The global eigenvalues profile (top) and PESDR curve (bottom) for the tensor with EEG data $\mathcal{X} \in \mathbb{C}^{103 \times 281 \times 30}$ of volunteer 4 at stimulation frequency $0.5 \cdot f_{\alpha}$.

where $\hat{F}_d(r) \in \mathbb{C}^{M_d \times \hat{R}}$ is the *r*-column of the estimated factor matrix \hat{F}_d according to the CP model (4), \hat{R} is the estimated rank and, *D* is the number of tensor dimensions.

In the rest of this section, we present some results that have been obtained during the analysis of 3-D and 4-D tensors. In the following figures, the profiles of global eigenvalues and the PESDR curves are shown. Moreover, the channel, frequency, and train signatures are presented for the 3-D case, and the channel, frequency, time, and train signatures are presented for the 4-D case. All components of the factor matrices are sorted in the order of decreasing loading factors computed according to (38).

B. Processing of 3-D tensors

Figure 13 depicts the profile of the global eigenvalues and the PESDR coefficients for the tensor of volunteer 4 at stimulation frequency $0.5 \cdot f_{\alpha}$. Starting from the global eigenvalue $\lambda_{M[G]}, M^{[G]} = 30$ we look for the first PESDR coefficient that exceeds the threshold ρ . In the considered case, this PESDR coefficient has the index 2 and the second global eigenvalue is classified as a signal global eigenvalue. Therefore, the LaRGE method estimates the rank 2 for this case. Figure 14 depicts the dominant components of the factor matrices obtained via the CP decomposition with the assumption that the rank of the tensor is equal to 2. During the whole stimulation, the theta rhythm dominates which is evidenced by the distributions of both components in the spatial and frequency domains that are presented in Figure 14. The other state-of-the-art model order estimation schemes considered in this paper have estimated the rank as follows $R_{\text{LaRGE-PF}} = 3$, $R_{3-D \text{ AIC}} = 10$, $R_{3-D \text{ MDL}} = 13$, $\hat{R}_{3-D EFT} = 29, \ \hat{R}_{AIC} = 49, \ \hat{R}_{MDL} = 43, \ \hat{R}_{M-EFT} = 280.$

C. Processing of 4-D tensors

The results of processing a 4-D tensor with dimensions channel×frequency×time×train for volunteer 1 are depicted in Figures 15 and 16. The LaRGE method reliably estimates the model order as 2. Moreover, the bottom plot of Figure 15

Fig. 14: Channel, frequency, and train signature for volunteer 4 and stimulation frequency $0.5 \cdot f_{\alpha}$ after the CP decomposition of the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{103 \times 281 \times 30}$ and estimated rank 2. The loading factors of the components are $\lambda_1 = 0.2941$, $\lambda_2 = 0.2382$.

shows the PESDR curve that is obtained according to LaRGE-PF. The suppression effect of the penalty function is clearly seen in this figure.

The dominant components of the factor matrices after the tensor decomposition show response in the alpha and theta frequencies. The alpha rhythm, as expected, is observed in the occipital region of the brain while the theta rhythm is dominant in the central region. Moreover, the theta rhythm has a resonance effect that is visible in the frequency and time dimensions in Figure 16 for component one. The other state-of-the-art model order estimation schemes considered in this paper estimate the model order of this tensor as \hat{R}_{4-DAIC} = 24, $\hat{R}_{4-D \text{ MDL}} = 25$, $\hat{R}_{4-D \text{ EFT}} = 29$, $\hat{R}_{AIC} = 205$, $\hat{R}_{MDL} = 203$, $\ddot{R}_{\text{M-EFT}}$ = 219. In the considered cases with EEG data the N-D AIC, N-D MDL, as well as N-D EFT methods overestimate the model order. Moreover, the classical AIC, MDL, and M-EFT schemes overestimate the model order significantly. It makes the factor matrices after the CP decomposition more redundant that leads to the difficulties in the interpretation of results.

D. Special cases

A number of interesting cases could be observed during our investigations. Fig. 17 depicts the profile of the global eigenvalues and the PESDR curves for LaRGE and LaRGE-PF. None of the PESDR coefficients computed according to the LaRGE method exceeds the threshold $\rho = 0.57$. In such a case, the model order can be estimated as one. Or the threshold can be decreased to the value equal to the largest PESDR coefficient. Therefore, the threshold can be updated to the new value $\rho = 0.5236$ in the considered case. Alternatively, the estimated model order based on LaRGE-PF can be used (see Figure 18).

The profile of the global eigenvalues and the PESDR curves for a tensor with EEG data recorded from volunteer 11 at stimulation frequency $f_{\text{stim}} = 0.6 \cdot f_{\alpha}$ are depicted in Figure 19. As in the previous case, none of the PESDR coefficients exceeds the threshold. However, the PESDR coefficients with numbers 4 and 18 are very close to the threshold. As proposed

Fig. 15: The global eigenvalues profile (top), PESDR curve (middle) and PESDR-PF curve (bottom) for the tensor with EEG data $\mathcal{X} \in \mathbb{C}^{268 \times 838 \times 105 \times 30}$ of volunteer 1 at stimulation frequency $0.40 \cdot f_{\alpha}$.

Fig. 16: Channel, frequency, time and train signature for volunteer 1 and stimulation frequency $0.40 \cdot f_{\alpha}$ after the CP decomposition of the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{268 \times 838 \times 105 \times 30}$ and estimated rank 2. The loading factors of the components are $\lambda_1 = 0.1809 \ \lambda_2 = 0.1037$.

before, the model order estimated with LaRGE-PF can be used in this case.

The factor matrices obtained after the CP decomposition with rank 4 are depicted in Figure 20. In all topographic plots, a channel that has an abnormally big amplitude as compared to the adjacent channels is clearly revealed. This channel can be marked as "bad" channel, and it means that the corresponding sensor had an imperfect connection with the surface of the skin during the measurements. Such channels contain artifacts with low or high amplitudes and should be removed from the observations during preprocessing (which failed for this channel in this case). After removing this channel, the tensor was constructed and the model order was estimated again. In Figure 21 the profile of the global eigenvalues and the PESDR

Fig. 17: The global eigenvalues profile (top), PESDR curve (middle) and PESDR-PF curve (bottom) computed for the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{106 \times 281 \times 30}$ of volunteer 8 at stimulation frequency $0.50 \cdot f_{\alpha}$.

Fig. 19: The global eigenvalues profile (top), PESDR curve (middle) and PESDR-PF curve (bottom) computed for the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{103 \times 281 \times 30}$ of volunteer 11 at stimulation frequency $0.60 \cdot f_{\alpha}$.

Fig. 18: Channel, frequency, and train signature for volunteer 8 and stimulation frequency $0.5 \cdot f_{\alpha}$ after the CP decomposition of the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{106 \times 281 \times 30}$ and estimated rank 4. The loading factors of the components are $\lambda_1 = 0.2476, \lambda_3 = 0.2239, \lambda_4 = 0.2090, \lambda_2 = 0.1728$.

Fig. 20: Channel, frequency, and train signature for volunteer 11 and stimulation frequency $0.6 \cdot f_{\alpha}$ after the CP decomposition of the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{103 \times 281 \times 30}$ and estimated rank 4. The loading factors of the components are $\lambda_3 = 0.2883$, $\lambda_2 = 0.2830$, $\lambda_1 = 0.2751$, $\lambda_4 = 0.2092$. The arrows indicate a "bad" channel.

Fig. 21: The global eigenvalues profile (top) and PESDR curve (bottom) computed for the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{102 \times 281 \times 30}$ of volunteer 11 at stimulation frequency $0.60 \cdot f_{\alpha}$ after "bad" channel removal.

Fig. 22: Channel, frequency, time and train signature for volunteer 11 and stimulation frequency $0.60 \cdot f_{\alpha}$ after the CP decomposition of the tensor with real EEG data $\mathcal{X} \in \mathbb{C}^{102 \times 281 \times 30}$ and estimated rank 1.

curve are depicted after removing the "bad" channel. The eighteenth PESDR coefficient becomes significantly smaller and the first coefficient exceeds the threshold now. The obtained factor matrices after channel removal and subsequent tensor decomposition are depicted in Figure 22.

VIII. CONCLUSION

In this paper, we have presented the robust to noise LaRGE and LaRGE-PF methods of model order estimation based on the global eigenvalues of noise-corrupted low-rank tensors. Using the HOSVD of a measurement tensor, these global eigenvalues can be computed. Starting from the smallest global eigenvalues, the PESDR is calculated using linear regression. If it is larger than a predefined threshold ρ we have found the smallest signal global eigenvalue, i.e., the approximate model order \hat{R} . To prevent the misclasification in the first steps of this procedure, the modified LaRGE method with a heuristic penalty function (LaRGE-PF) has been proposed. LaRGE-PF suppresses the outliers of the PESDR curve for the tensors with small dimensions.

Monte Carlo simulations have been conducted to determine the best value of the threshold. To this end, the probabilities of false positive, false negative, and correct detection have been defined. To achieve a small probability of false positive and false negative for both small and large tensors the selected value of the threshold is $\rho = 0.57$. Moreover, we have compared LaRGE and LaRGE-PF with classical AIC, MDL, M- EFT, *N*-D AIC, *N*-D MDL, and *N*-D EFT methods. LaRGE and LaRGE-PF show an increased robustness to noise and outperform the classical methods significantly.

In this paper, we have also used the LaRGE and LaRGE-PF methods to estimate the model order of measured EEG data during an experimental investigation of the photic driving effect. The dominant components can be reliably detected by exploiting the PESDR curve.

If "bad" channels have been identified from the extracted dominant components, PESDR coefficients with a high amplitude could be observed. This effect might be very important for practical applications such as the automatic detection and removal of artifactual EEG channels and could be investigated in future research. Moreover, LaRGE could be extended to coupled tensors decompositions.

REFERENCES

- [1] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, "Tensor decompositions for signal processing applications: From two-way to multiway component analysis," *IEEE Signal Processing Magazine*, vol. 32, no. 2, pp. 145–163, March 2015.
- [2] T. R. Knösche and J. Haueisen, EEG/MEG Source Reconstruction: Textbook for Electro-and Magnetoencephalography. Springer, 2022.
- [3] T. G. Kolda and B. W. Bader, "Tensor decompositions and applications," *SIAM Review*, vol. 51, no. 3, pp. 455–500, September 2009.
- [4] R. A. Harshman, "Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis," UCLA Working Papers in Phonetics, vol. 16, pp. 1 – 84, 1970.
- [5] J. D. Carroll and J. J. Chang, "Analysis of individual differences in multidimensional scaling via an N-way generalization of 'Eckart-Young' decomposition," *Psychometrika*, vol. 35, pp. 283 – 319, 1970.
- [6] L. De Lathauwer, B. De Moor, and J. Vandewalle, "A multilinear singular value decomposition," *SIAM J. Matrix Analysis Applications*, vol. 21, pp. 1253–1278, 2000.
- [7] H. Akaike, "A new look at the statistical model identification," *IEEE Trans. Autom. Control*, vol. 19, no. 6, p. 716–723, December 1974.
- [8] J. Rissanen, "Modeling by shortest data description," *Automatic*, vol. 14, no. 5, p. 465–471, 1978.
- [9] G. Schwarz, "Estimating the dimension of a model," Ann. Statist., vol. 6, no. 2, p. 461–464, 1978.
- [10] M. Wax and T. Kailath, "Detection of signals by information theoretic criteria," *IEEE Transactions on Acoustics, Speech, and Signal Processing*, vol. 33, no. 2, pp. 387–392, April 1985.
- [11] A. Quinlan, J.-P. Barbot, P. Larzabal, and M. Haardt, "Model order selection for short data: An exponential fitting test (EFT)," *EURASIP Journal on Advances in Signal Processing*, vol. 2007, pp. 1–11, 2006.
- [12] J. P. C. L. da Costa, M. Haardt, F. Roemer, and G. Del Galdo, "Enhanced model order estimation using higher-order arrays," in *Proc.* 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Nov 2007, pp. 412–416.
- [13] K. Liu, J. P. C. L. da Costa, H.-C. So, L. Huang, and J. Ye, "Detection of number of components in CANDECOMP/PARAFAC models via minimum description length," *Digit. Signal Process.*, vol. 51, pp. 110– 123, 2016.
- [14] J. P. C. L. da Costa, F. Roemer, M. Weis, and M. Haardt, "Robust *R*d parameter estimation via closed-form parafac," in 2010 International ITG Workshop on Smart Antennas (WSA), Feb 2010, pp. 99–106.
- [15] F. Roemer and M. Haardt, "A semi-algebraic framework for approximate cp decompositions via simultaneous matrix diagonalizations (SECSI)," *Signal Processing*, vol. 93, no. 9, pp. 2722 – 2738, 2013.
- [16] T. H. Nguyen, U. Şimşekli, G. Richard, and A. T. Cemgil, "Efficient Bayesian model selection in parafac via stochastic thermodynamic integration," *IEEE Signal Processing Letters*, vol. 25, no. 5, pp. 725– 729, May 2018.
- [17] S. Fernandes, H. Fanaee-T, and J. Gama, "Normo: A new method for estimating the number of components in cp tensor decomposition," *Engineering Applications of Artificial Intelligence*, vol. 96, p. 103926, 2020.

- [18] S. Salvador and P. Chan, "Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms," in *16th IEEE International Conference on Tools with Artificial Intelligence*, Nov 2004, pp. 576–584.
- [19] R. Yu and E. A. Ince, "A reduced complexity tensor approach for order selection and frequency estimation," *IEEE Access*, pp. 1–1, 2021.
- [20] T. Yokota, N. Lee, and A. Cichocki, "Robust multilinear tensor rank estimation using higher order singular value decomposition and information criteria," *IEEE Transactions on Signal Processing*, vol. 65, no. 5, pp. 1196–1206, March 2017.
- [21] S. Pouryazdian, S. Beheshti, and S. Krishnan, "CANDE-COMP/PARAFAC model order selection based on reconstruction error in the presence of Kronecker structured colored noise," *Digit. Signal Process.*, vol. 48, pp. 12–26, 2016.
- [22] A. A. Korobkov, M. K. Diugurova, J. Haueisen, and M. Haardt, "Multidimensional model order estimation using linear regression of global eigenvalues (LaRGE) with applications to EEG and MEG recordings," in *Proc. 28th European Signal Processing Conference (EUSIPCO 2020)*, Jan. 2021, pp. 1005–1009.
- [23] J. P. C. L. da Costa, F. Roemer, M. Haardt, and R. T. de Sousa Jr, "Multidimensional model order selection," *EURASIP Journal on Advances in Signal Processing*, 2011.
- [24] R. Edlin, C. McCabe, C. Hulme, P. Hall, and J. Wright, *Correlated Parameters and the Cholesky Decomposition*. Cham: Springer International Publishing, 2015, pp. 119–132.
- [25] Y. Yang, F. Gao, C. Qian, and G. Liao, "Model-aided deep neural network for source number detection," *IEEE Signal Processing Letters*, vol. 27, pp. 91–95, 2020.
- [26] R. Badeau and R. Boyer, "Multilinear singular value decomposition for structured tensors," SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 3, 2008.
- [27] K. Schwab, C. Ligges, T. Jungmann, B. Hilgenfeld, J. Haueisen, and H. Witte, "Alpha entrainment in human electroencephalogram and magnetoencephalogram recordings," *Neuroreport*, vol. 17, pp. 1829 – 1833, 2006.
- [28] C. Salchow, D. Strohmeier, S. Klee, D. Jannek, K. Schiecke, H. Witte, A. Nehorai, and J. Haueisen, "Rod driven frequency entrainment and resonance phenomena," *Frontiers in Human Neuroscience*, vol. 10, p. 413, 2016.
- [29] K. Naskovska, S. Lau, A. A. Korobkov, J. Haueisen, and M. Haardt, "Coupled cp decomposition of simultaneous meg-eeg signals for differentiating oscillators during photic driving," *Frontiers in Neuroscience*, vol. 14, p. 261, 2020.
- [30] F. Roemer, C. Schroeter, and M. Haardt, "A semi-algebraic framework for approximate CP decompositions via joint matrix diagonalization and generalized unfoldings," in *Proc. 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers*, 2012, pp. 2023–2027.