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Abstract—The efficient estimation of an approximate model or-
der is very important for real applications with multi-dimensional
low-rank data that may be corrupted by additive noise. In this
paper, we present a novel robust to noise method for model order
estimation of noise-corrupted multi-dimensional low-rank data
based on the LineAr Regression of Global Eigenvalues (LaRGE).
The LaRGE method uses the multi-linear singular values ob-
tained from the HOSVD of the measurement tensor to construct
global eigenvalues. In contrast to the Modified Exponential Test
(EFT) that also exploits the approximate exponential profile of
the noise eigenvalues, LaRGE does not require the calculation
of the probability of false alarm. Moreover, LaRGE achieves a
significantly improved performance in comparison with popular
state-of-the-art methods. It is well suited for the analysis of noisy
multidimensional low-rank data including biomedical signals.
The excellent performance of the LaRGE method is illustrated
via simulations and results obtained from EEG recordings.

Index Terms—eigenvalue, global eigenvalue, tensor, the rank
of the tensor, the model order of multi-dimensional data

I. INTRODUCTION

MULTI-DIMENSIONAL MODELS are widespread in
a variety of applications, for example, radar, sonar,

channel modeling in wireless communications, image pro-
cessing, the estimation of MIMO channels parameters, blind
source separation and many more [1]. According to these
models the measured signals or the data can be stacked into
multi-dimensional arrays or tensors. Moreover, in biomedical
data processing multi-dimensional models have been widely
used recently. For example, biomedical signals like Elec-
troencephalograms (EEG), Magnetoencephalograms (MEG) or
Electrocardiograms (ECG) can be recorded from many sen-
sors simultaneously during different experimental conditions,
for example different stimuli, and for different groups of
participants [2]. Therefore, more than two dimensions can
be identified. These include channels, time, frequency, and
condition. It is natural to use multi-dimensional models or
tensors to represent these signals.

Different types of tensor decompositions are used for the
extraction of features from the data or to denoise recorded
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signals. However, in many signal processing applications the
most frequently used decompositions of multi-dimensional
data are an approximate low-rank Canonical Polyadic (CP)
decomposition [3] also known as Parallel Factor (PARAFAC)
analysis [4] or Canonical Decomposition (CANDECOMP) [5]
and the truncated Multi-Linear Singular Value Decomposition
(MLSVD) [6] also known as Higher Order Singular Value
Decomposition (HOSVD).

According to the CP model, a tensor is decomposed into
the minimum number R of rank-one components. Hence, the
proper choice of the model order affects the accuracy of the
processing and subsequently also the interpretable results. This
problem is very important when measured biomedical data
are processed. However, in most cases, the observed data are
corrupted by noise. Therefore, the problem of estimating the
order of an approximate low-rank model is a non-trivial task.

The first attempts to develop methods for the model order
estimation of two-dimensional data were made at the be-
ginning of the 1970s. In [7] Akaike’s information criterion
(AIC) was proposed. This criterion takes the observed data
structure into account. In [8] another criterion was proposed
that penalizes the over parameterization more strongly than
AIC. Schwarz proposed a Bayesian information criterion
(BIC) for the estimation of the order of linear models that
describe independent and identically distributed observations
[9]. Wax and Kailath implemented the AIC and the Minimum
Description Length (MDL) scheme that has been derived from
the BIC for the detection of the number of signals in a multi-
channel time series [10]. However, these methods often fail
when the number of the snapshots of the observed data is
small.

To overcome this problem, the Exponential Fitting Test
(EFT) based on the geometric profile of the noise-only eigen-
values has been developed and presented in [11]. It was
shown that this profile has an exponential distribution for
white Gaussian noise and the residuals between the actual
and the approximated eigenvalues can be used for the model
order estimation. Moreover, the EFT allows the probability
of false alarms to be controlled and predefined, which is
a crucial point for systems such as radars. Later, in [12]
the modified EFT (M-EFT) was proposed. Furthermore, the
authors presented the concept of global eigenvalues as the
combination of the d-mode singular values of the tensor with
observations. It was shown that an extension of the EFT, as
well as the AIC and MDL methods, to multi-dimensional data
outperforms the same approaches in the matrix case. In [13],
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another approach for computing the modified version of the
global eigenvalues was proposed based on the summation of
the singular values sets computed from the different unfoldings
instead of the multiplication of the singular values of the d-
mode unfoldings [12] of the tensor. According to [13], the
generalized algorithm N -D MDL based on the MDL criteria
shows a better performance in comparison with the classical
model order estimation methods.

In [14], the authors proposed to exploit one of the features of
the closed-form PARAFAC (CFP) decomposition later called
SECSI [15]. It is the fact that we get multiple estimates of
each factor matrix before the last step of SESCI. If the model
order is estimated correctly these estimates are not completely
different.

Another technique for the model order selection (MOS) us-
ing the stochastic gradient Langevin dynamics (SGLD) method
was presented in [16]. In the first step, the multi-linear data
is sampled using the SGLD. Moreover, the authors proposed
the preconditioned SGLD method (PSGLD) for sampling that
takes into account the local geometry of the target data density.
In the next step of the MOS, the marginal likelihood is
estimated using stochastic thermodynamics integration (STI).
It was shown that the mode of the estimated likelihood
corresponds to the model order of the multi-dimensional data.

In [17], the authors proposed to determine the model order
via the estimation of the redundancy in the resulting factor ma-
trices after the CP decomposition. To this end, the correlation
between components from the factor matrices is computed as
a quantitative assessment of their similarity. Consequently, by
changing the rank of the CP decomposition and by evaluating
redundancy, the model order can be estimated.

In [18], the authors proposed a technique to find the ”knee”
of an error curve to determine the number of clusters. This
technique can also be used to estimate the model order. In [19],
the authors implemented the k-means clustering algorithm to
separate the 1-mode singular values of the covariance tensor
into two clusters: the signal cluster with large singular values
and the noise cluster with the remaining smaller singular val-
ues. The number of elements in the signal cluster is assumed
as the model order. Also, several methods for estimating the
order of CP models were presented in [20], [21].

The estimation of the model order in biomedical signal
processing problems is often based on the results of a visual
inspection of the singular values or some assumptions about
the structure of the data. To avoid this visual inspection and
to provide a systematic approach for model order estimation
in practical applications, we propose a novel robust to noise
method based on the LineAr Regression of Global Eigenvalues
(LaRGE). In addition to the initial results presented in [22],
in this paper, we provide a more detailed derivation of the
equations of the LaRGE method. Moreover, we introduce
a heuristic alternative by incorporating a penalty function
(LaRGE-PF) that shows an improved performance in the
case of relatively small tensors. We compare the performance
of LaRGE and LaRGE-PF with the classical AIC, MDL,
and M-EFT schemes and their N -dimensional extensions.
Furthermore, we provide detailed results of the model order
estimation and the subsequent low-rank tensor decomposition

of measured EEG data during Intermittent Photic Stimulation.
In Section II the multi-dimensional data model is presented.

Section III describes the proposed LaRGE and LaRGE-PF
schemes. As a benchmark, classical methods AIC, M-EFT, and
their extensions to the multi-dimensional cases are reviewed
in Section IV. The discussion of the computational complexity
is presented in Section V. Section VI describes the simulation
scenarios and compares the performance of LaRGE, LaRGE-
PF, AIC, MDL, M-EFT, N -D AIC, N -D MDL, and N -D EFT.
Inspired by the good performance of LaRGE and LaRGE-
PF, we also implemented them for model order estimation of
EEG recordings. The results are presented in Section VII. In
Section VIII, we conclude the paper.

II. DATA MODEL AND NOTATION

In this paper, the following notation, a, a, A, and A are
used to denote scalars, column vectors, matrices, and tensors,
respectively. Moreover, a(i) defines the element (i) of a vector
a. The same applies to a matrix A (i, j) and a tensor A
(i, j, k). The tensor ID,R is D-dimensional super-diagonal
tensor of size R × R × . . . × R, which is equal to one if
all D indices are equal and zero otherwise. The d-mode
product between a D-way tensor of size Md along mode
d = 1,2, . . . ,D represented as A ∈ CM1×M2×⋅⋅⋅×MD and a
matrix U ∈ CJ×Md is written as A ×d U . It is computed by
multiplying all d-mode vectors of A with U , whereas the d-
mode vectors of A are obtained by varying the d-th index
from 1 to MD and keeping all other indices fixed. Using the
forward ordering [6] of all d-mode vectors as the columns of
a matrix yields the d-mode unfolding of A which is denoted
by [A]

(d) ∈ CMd×Md+1⋅...⋅MD ⋅M1⋅...⋅Md−1 .
The CP decomposition of a D-way noiseless tensor X 0 ∈

CM1×M2×M3×⋅⋅⋅×MD is represented as

X 0 = ΛD,R ×1 F 1 ×2 F 2 ×3 F 3 × ⋅ ⋅ ⋅ ×D FD, (1)

where F d ∈ CMd×R(d = 1,2,3, . . .D) are the factor matrices,
R is the order of the CP model or the rank of the tensor
X 0, and ΛD,R is a super-diagonal tensor with loading factors
λr(r = 1,2,3, . . . ,R) on its super-diagonal that normalize the
columns of the factor matrices to length one to avoid the
scaling ambiguity of the CP decomposition.

In practice, the recorded data are corrupted by noise. The
tensor that is constructed from observations can be defined as

X = X 0 +N , (2)

where N ∈ CM1×M2×M3×⋅⋅⋅×MD is the additive noise tensor.
Therefore, (1) can be rewritten as

X = ΛD,R ×1 F 1 ×2 F 2 ×3 F 3 × ⋅ ⋅ ⋅ ×D FD +N . (3)

Obviously, the rank of the tensor X is not equal to R. In
general, it is bigger. Therefore, after a CP decomposition of
the tensor with observations X , we obtain the estimates F̂ d ∈
CMd×R(d = 1,2,3, . . .D) of factor matrices F d ∈ CMd×R(d =
1,2,3, . . .D)

X ≈ ΛD,R ×1 F̂ 1 ×2 F̂ 2 ×3 F̂ 3 × ⋅ ⋅ ⋅ ×D F̂D. (4)
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On the other side, the HOSVD model of a tensor X is
defined by

X = S ×1 U1 ×2 U2 ×3 U3 × ⋅ ⋅ ⋅ ×D UD, (5)

where S ∈ CM1×M2×M3×⋅⋅⋅×MD is the core tensor and U r ∈
CMd×Md , (d = 1,2,3, . . .D) are the unitary factor matrices.

As shown in [11], [12], [23] the d-mode singular values that
are contained in the core tensor S play a major role in the
problem of multi-dimensional model order estimation. The d-
mode singular values can be computed via the Singular Value
Decomposition (SVD) of the d-mode unfolding of the tensor
X according to

[X ]
(d) = Ud ⋅Σd ⋅V H

d , (6)

where Ud ∈ CMd×Md , V d ∈ CM̃d×M̃d are unitary matrices
and Σd ∈ CMd×M̃d is a diagonal matrix that has the d-mode
singular values σ

(d)
i on the main diagonal, M̃d = M

Md
, and

M = ∏D
d=1Md. Moreover, equations (2) and (6) connect the

tensor case and the matrix case.

III. LARGE METHOD FOR MULTI-DIMENSIONAL MODEL
ORDER ESTIMATION

A. Global Eigenvalues

As is shown in (5), the d-mode singular values represent
the internal structure of the data and should be exploited for
model order estimation. However, tensors with real data may
have different d-ranks in different modes. Moreover, when
an approximate low-rank CP decomposition is computed, an
estimate of the rank of the noiseless model that is equal for all
d-mode unfoldings has to be found. Therefore, we can define
global eigenvalues as proposed in [12] and [23] as the product
of all squared d-mode singular values with the same indices
as follows

λ̃
[G]
i =

D

∏
d=1

(σ(d)i )
2
, i = 1,2,3, . . . ,M [G], (7)

where M [G] = min (Md) , d = 1,2,3, . . . ,D.
Assuming that the global eigenvalues include the informa-

tion about the signals and the noise, the set of global eigenval-
ues can be divided into two subsets. One subset contains the
global eigenvalues that represent the noise in the observations.
These global eigenvalues are called noise global eigenvalues.
The other subset contains the signal global eigenvalues. The
number of the signal global eigenvalues corresponds to the
model order or the rank of the tensor X 0 as well as the
number of sources or components in the noisy observations.
Furthermore, the global eigenvalues contain the information
about the model order in all d-mode unfoldings. Therefore,
the multi-linear structure of the information is kept for the
tensors and can be evaluated.

B. LaRGE method

The presented LaRGE algorithm for model order estimation
based on the global eigenvalues uses the following assump-
tions that correspond to the most practical cases of calculating

an approximate CP decomposition in case of noise-corrupted
low rank data.
● The smallest dimension of the multi-linear data is greater

than the model order.
● The set of global eigenvalues includes at least one noise

global eigenvalue that is represented by the smallest
global eigenvalue. Therefore, the maximum value of the
estimating model order is not greater than M [G]−1 [12],
[23].

● According to [12] and [23] the noise global eigenvalues
have approximately an exponential profile.

Hence, starting from the smallest global eigenvalue, the noise
global eigenvalues follow a straight line on a logarithmic scale
(due to their approximate exponential distribution)

λ
[G]
i = ln (λ̃[G]i ) . (8)

Therefore, we want to determine a linear approximation
λ̂
[G]
i of the actual noise global eigenvalues profile λ

[G]
i on

a logarithmic scale based on the least squares criterion

min
⎛
⎝

M [G]
−k

∑
i=M [G]

(λ̂[G]i − λ[G]i )
2⎞
⎠
, (9)

where λ̂
[G]
i = a1 ⋅ i + a2, i = M [G],M [G] − 1,M [G] −

2, . . . ,M [G] − k, and k is the step index. We sequentially
approximate the profile of the noise global eigenvalues via
a straight line starting from the smallest global eigenvalues
with indices i = M [G] and i = M [G] − 1 for k = 1. Using
this linear approximation the value of the next largest noise
eigenvalue can be predicted.

In each step k = 1,2, ....,M [G] − 1 the absolute prediction
error ∆[G]

M [G]−k is calculated according to

∆
[G]

M [G]−k = λ
[G]

M [G]−k − λ̂
[G]

M [G]−k. (10)

A small value of the absolute prediction error indicates that
a noise global eigenvalue is found. On the contrary, a big
prediction error can be indicative of a signal global eigenvalue.

To normalize the scale of values of the prediction errors,
we define the relative prediction error

δM [G]−k =
∆
[G]

M [G]−k

∣λ̂[G]
M [G]−k∣

=
λ
[G]

M [G]−k − λ̂
[G]

M [G]−k

∣λ̂[G]
M [G]−k∣

. (11)

We consider the standard deviation of the approximation
error σ2

M [G]−k to automatically find the first signal global
eigenvalue

σM [G]−k =

¿
ÁÁÁÀ1

k

M [G]−k

∑
i=M [G]

(∆[G]i − µ
∆
[G]
M[G]−k

)
2

, (12)

where the µ
∆
[G]
M[G]−k

is the mean value of ∆[G]i for i =M [G]−

k, ...M [G] that is defined as

µ
∆
[G]
M[G]−k

= 1

k

M [G]
−k

∑
i=M [G]

∆
[G]
i . (13)

The standard deviation σM [G]−k−1 takes into account all
errors in previous steps. Intuitively, starting from the smallest
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Fig. 1: The global eigenvalues profile (top) and the PESDR
curve (bottom) for a random tensor X ∈ R100 × 350 × 30

with a known rank 5. (a) Uncorrelated case, SNR=-3 dB, (b)
correlated case, SNR=11 dB

noise global eigenvalue, the first signal global eigenvalue can
be automatically found by comparing the relative prediction
error and the standard deviation of the approximation errors
in the previous steps. To this end, we consider the Prediction
Error to Standard Deviation Ratio (PESDR)

PESDRk =
δM [G]−k

σM [G]−k−1
, k = 1,2, ...,M [G] − 1. (14)

To illustrate the behavior of the PESDR curve with respect
to the profile of the global eigenvalues, we have constructed
two random tensors with a known rank equal to five and
dimensions 100×350×30 for the CP model (1). The first tensor
has uncorrelated columns in all factor matrices. The correlation
of all factor matrices for the second tensor is defined by the
vector r2 = [0.6 0.7 0.3]T according to [24]. Gaussian noise
is added to each tensor according to the CP model (3) with
SNR=-3 dB and SNR=11 dB for the uncorrelated and the
correlated case, respectively. The SNR is defined as

SNR = 10 ⋅ log10
E{∥X 0∥F

2)}
E{(∥N ∥F

2)}
, dB, (15)

where the E{⋅} denotes the expected value.
Figure 1 depicts the profile of the global eigenvalues and the

computed PESDR coefficients for the constructed tensors. The
straight line fits the profile of the noise global eigenvalues. It is

seen that the first number i, where the PESDR curve exceeds a
certain threshold ρ corresponds to the rank of the noisy tensor.

To formalize this criterion for the model order or the rank
estimation, we can consider the following hypotheses:

H
(N)
k ∶ λ[G]

M [G]−k is a noise global eigenvalue (16)

H
(S)
k ∶ λ[G]

M [G]−k is a signal global eigenvalue. (17)

In each step k = 1,2, ...,M [G] − 1 or for each index i =
M [G]−k the PESDR is compared to the threshold ρ according
to

H
(N)
k ∶ PESDRk < ρ (18)

H
(S)
k ∶ PESDRk ≥ ρ (19)

The first index k for which the hypothesis H
(N)
k fails deter-

mines the estimated model order or the rank of the tensor and
which is computed as R̂LaRGE =M [G] − k−1.

C. LaRGE with penalty function (LaRGE-PF)

According to the global eigenvalues approach [12], [23]
the number of global eigenvalues that are used for model
order estimation is equal to the smallest dimension of the
tensor. In real-world applications, the smallest dimension can
be relatively small compared to the rank. In the first steps of
estimating the standard deviation of the approximation error
σM [G]−k−1, the resulting estimate tends to zero. Hence, the
PESDR can have outliers that exceed the threshold ρ. To avoid
such a misclassification, we additionally ensure that σM [G]−k−1
exceeds a threshold ϵ. If not, then the current step k is not taken
into account for the model order estimation. In this paper, we
set ϵ = 1.2 ⋅ 10−3.

Moreover, we also consider the slightly modified ”PESDR
with penalty function (PESDR-PF)” criterion that penalizes
the standard deviation in the first steps

PESDR-PFk =
δM [G]−k

PF(M [G], k − 1) ⋅ σM [G]−k−1
=

= 1

log10(M [G] − k − 1)
⋅ δM [G]−k

σM [G]−k−1
.

(20)

In the first estimation steps, the indices of the corresponding
global eigenvalues k are small and the argument of the
logarithm (M [G] − k−1) in the denominator of the penalty
function is relatively big. Therefore, the values of the penalty
function (PF) have big weights. Hence, the denominator of the
ratio becomes bigger and outliers are damped. As the number
of steps increases, i.e., as the index k increases, the value
of the penalty function decreases and the damping effect is
reduced.

D. Threshold determination

The threshold ρ is related to the statistical distribution of the
absolute prediction error ∆[G]i or the relative prediction error
δ
[G]
i . This statistical distribution is not known for applications

with measured real data. Therefore, numerical methods can
instead be used for the threshold determination.
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In this paper, the threshold ρ is obtained by the Monte Carlo
simulations. For this purpose, we define the probability of false
alarm or false positive Pfp, the probability of missing or false
negative Pfn, and the probability of detection PoD.

The probability of false positive Pfp is the conditional prob-
ability of the hypotheses H

(S)
k and H

(N)
k that the proposed

method in step k = 1,2, . . .M [G] − 1 falsely classifies a noise
global eigenvalue as a signal global eigenvalue and is defined
as

Pfp = Pr (H(S)k ∣H(N)k ) = Pr (R̂LaRGE > R ∣ R) . (21)

A big value of this probability means that the rank or the
model order can be overestimated.

The probability of false negative Pfn expresses the con-
ditional probability of the hypotheses H

(N)
k and H

(S)
k that

the proposed method mistakenly determines the model order
smaller than the actual order in step k = 1,2, . . .M [G] − 1.
This probability is defined as

Pfn = Pr (H(N)k ∣H(S)k ) = Pr (R̂LaRGE < R ∣ R) . (22)

The model order or the rank can be underestimated if the value
of Pfn is big.

The probability of detection is the conditional probability of
the hypotheses H(S)k and H

(S)
k that in step k = 1,2, . . .M [G]−

1 the model order is estimated correctly

PoD = Pr (H(S)k ∣H(S)k ) = Pr (R̂ = R) . (23)

By considering a large number of trials we have obtained
the functional dependency of the probabilities of false positive
Pfp(ρ), false negative Pfn(ρ), and the probability of detection
PoD(ρ) as a function of the threshold ρ.

To this end, we generate a data tensor X 0 for the CP
model (1). All elements of the factor matrices are drawn from
a zero-mean real-valued Gaussian distribution. Moreover, all
columns of the factor matrices F d, d = 1,2,3, . . .D are not
correlated. For all simulations, noiseless tensors of rank R = 5
are constructed. The elements of the noise tensorN are drawn
independently from a zero-mean Gaussian distribution with the
variance σ2

n and the SNR that is defined as in (15).
For the first simulation, the size of the noisy tensor is set

to M1 = 25,M2 = 30,M3 = 35. The SNR is fixed at SNR=8
dB, and the value of the threshold ρ varies in the range from
0.1 to 2.1. The curves of the probabilities Pfp, Pfn, and PoD
of the LaRGE method obtained after 5000 Monte Carlo trials
are shown in Figure 2.

For the second simulation, the size of the noisy tensor is
set to M1 = 60,M2 = 100,M3 = 70 and SNR=0 dB. Figure
3 shows the curves of the probabilities Pfp, Pfn, and PoD of
the LaRGE method obtained after 5000 Monte Carlo trials for
this scenario.

For the third simulation, the size of the noisy tensor (SNR=
-9 dB) is significantly increased and is set to M1 = 78,M2 =
1000,M3 = 102. The resulting curves of the probabilities Pfp,
Pfn, and PoD of the LaRGE method are depicted in Figure 4.

For the forth scenario, a four-dimensional noisy tensor
(SNR= -9 dB) of size M1 = 60,M2 = 60,M3 = 60,M4 = 60
is generated. The obtained curves of the probabilities Pfp, Pfn,
and PoD of the LaRGE method are shown in Figure 5.
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Fig. 2: The functional dependencies of Pfn (top), PoD (mid-
dle), Pfp (bottom) on the threshold ρ for the noisy CP model,
SNR=8 dB, X ∈ R25 × 30 × 35, the true rank is R = 5.

Using the results of the Monte Carlo simulations, a nu-
merical value for the threshold ρ can be obtained by setting
the probabilities Pfp and Pfn to an appropriate value. In this
paper, we want to keep these probabilities below 1% as used
in [11] and [12]. Simulations for small tensors show that the
probability Pfn = 0.01 corresponds to the threshold ρ = 0.57
(Figure 2). Moreover, a smaller value of the false negative
probability Pfn of the LaRGE-PF method eventually provides
a gain in terms of the correct detection probability PoD as
shown in Figure 2.

On the other hand, for bigger tensors (Figure 3) the thresh-
old ρ = 0.57 corresponds to Pfp = 0.01. Furthermore, Figure
3 shows that for an implementation of LaRGE-PF for tensors
of size 60×100×70 the probabilities Pfp and Pfn are equal to
zero, and hence, a correct detection probability PoD = 100%
is obtained for the values of ρ from 1 to 1.2. Both LaRGE and
LaRGE-PF can provide a probability of correct detection PoD
= 100% for tensors of larger sizes or dimensions as shown in
Figures 4 and 5.

For instance, LaRGE provides PoD = 100% for the thresh-
old ρ in the range from 0.63 to 0.77 and LaRGE-PF in the
range from 0.75 to 0.98 for tensors of size 78×1000×102. For
4-dimensional tensors of size 60 × 60 × 60 × 60 a probability
of correct detection PoD = 100% can be obtained for the
threshold ρ in the range from 0.5 to 0.75 using LaRGE and
in the range from 0.6 to 0.92 using LaRGE-PF.

Summing up, we can note that considering the Pfp, Pfn, or
PoD, the value of the threshold can be chosen. In this paper,
we consider the value of the threshold ρ = 0.57 that provides
a good trade-off between small values of Pfp and Pfn for both
small and large tensors and can be chosen in real applications.
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Fig. 3: The functional dependencies of Pfn (top), PoD (mid-
dle), Pfp (bottom) on the threshold ρ for the noisy CP model,
SNR=0 dB, X ∈ R60 × 100 × 70, the true rank is R = 5.

IV. CLASSICAL METHODS FOR MULTI-DIMENSIONAL
MODEL ORDER ESTIMATION

To compare the performance of the proposed LaRGE
method to the state-of-the-art, we use AIC, MDL, and M-
EFT as well as their multi-dimensional extensions N -D AIC,
N -D MDL, N -D EFT as a benchmark in this paper.

The classical AIC and MDL methods are based on infor-
mation theory and these methods have originally been applied
to one dimensional data. According to [10] the AIC criterion
is given by

AICi = −2N [s](M [σ] − i)L(i) + 2i (2M [σ] − i) , (24)

where N [s] and M [σ] are the number of snapshots and
the number of the eigenvalues σi of the covariance matrix
Rxx ∈ CM [σ]

×M [σ]
of the observation X , respectively.

The covariance matrix Rxx is the Gram matrix of the X ∈
CM [σ]

×M and is defined as Rxx =XXH . Note that the L(i)
in (24) is the log-likelihood that represents the residual error
and is defined as

L(i) = log10 [
g(i)
a(i)
] . (25)

The functions g(i) and a(i) are the geometric and arithmetic
means of the eigenvalues σi of the covariance matrix Rxx,
respectively. The second term in (24) is a penalty for over-
fitting.

Contrary to the AIC criterion, the MDL criterion penalizes
the over-fitting more strongly

MDLi = −N [s](M [σ] − i)L(i)+

+1
2
i (2M [σ] − i) log10 (N

[s]) .
(26)
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Fig. 4: The functional dependencies of Pfn (top), PoD (mid-
dle), Pfp (bottom) on the threshold ρ for the noisy CP model,
SNR= -9 dB, X ∈ R78 × 1000 × 102, the true rank is R = 5.

Minimizing these cost functions, the model order can be
estimated as

R̂AIC = argmin
i
{AICi} , (27)

R̂MDL = argmin
i
{MDLi} . (28)

In [12] and [23], the authors have proposed an extension of
the AIC (24) and MDL (26) methods to multidimensional data.
This can be achieved by replacing the eigenvalues σi of the
covariance matrix Rxx by the global eigenvalues λ[G]i defined
in equation (8). Replacing the eigenvalues of the covariance
matrix by the global eigenvalues in (24) - (26), with some
straightforward manipulations, we obtain

AIC[G]i = −2N (s)(M [G] − i)L[G](i) + 2i (2M [G] − i) , (29)

MDL[G]i = −N (s)(M [G] − i)L[G](i)+

+1
2
i (2M [G] − i) log10 (N

(s)) ,
(30)

where

L[G](i) = log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝
M [G]

∏
k=i+1

λ
[G]
k

⎞
⎠

1

M [G] − i

1

M [G] − i
⋅
M [G]

∑
k=i+1

λ
[G]
k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (31)

Finaly, the model order is estimated by the minimization of
the costs functions

R̂N−D AIC = argmin
i
{AIC[G]i } , (32)
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Fig. 5: The functional dependencies of Pfn (top), PoD (mid-
dle), Pfp (bottom) on the threshold ρ for the noisy CP model,
SNR= -9 dB, X ∈ R60 × 60 × 60 × 60, the true rank is R = 5.

R̂N−D MDL = argmin
i
{MDL[G]i } . (33)

The M-EFT method is based on the assumption
that the eigenvalue profile of the covariance matrix
Rxx ∈ CM [σ]

×M [σ]
of the observations X with white

Gaussian noise has an exponential distribution in the noise-
only case [12]. Sequentially approximating this profile by a
decaying exponential and finding the biggest gap between the
predicted and the actual eigenvalue, the model order can be
estimated. In each step k = 1,2, . . .M [σ] − 1 the predicted
value is computed using the following equation

λ̂
[σ]

M [σ]−k = (1 +
1

k
) ⋅ 1 − q(k + 1,N [σ])

1 − q(k + 1,N [σ])k+1
⋅
k−1

∑
i=0

σM [σ]−i,

(34)

where the approximating function q(α,β) is defined as

q(α,β) = exp
⎡⎢⎢⎢⎢⎢⎣
−

¿
ÁÁÀ 30

α2 + 2
−
√

900

(α2 + 2)2
− 720 ⋅ α
β(α4 + α2 − 2)

⎤⎥⎥⎥⎥⎥⎦
.

(35)

By setting a threshold η and testing the following hypotheses

H
(N)
k+1 ∶

σM [σ]−k − λ̂
[σ]

M [σ]−k

λ̂
[σ]

M [σ]−k

≤ η (36)

H
(S)
k+1 ∶

σM [σ]−k − λ̂
[σ]

M [σ]−k

λ̂
[σ]

M [σ]−k

> η. (37)

the model order R̂M-EFT = M [σ] − k can be estimated when
the noise hypothesis H

(N)
k+1 fails in step k = 1,2, . . .M [σ] − 1.

A similar approach as for N -D AIC and N -D MDL is used
to extend M-EFT to N -D EFT and can be easily implemented
by replacing the eigenvalues σi of the covariance matrix Rxx

in the equations (34) - (37) by the global eigenvalues λ
[G]
i .

It might appear at first sight that the ideas of M-EFT, N -
D EFT and the proposed LaRGE and LaRGE-PF are related.
However, they have significant differences. The transformation
of the global eigenvalues to the logarithmic scale allows us
to obtain the best fit of a linear approximation to the profile
of the global eigenvalues for all possible cases, sizes, and
dimensions. In contrast to the M-EFT, the restriction on the
white Gaussian distribution of the noise is removed and a
preliminary specification of the probability of false alarm is not
required. Furthermore, considering the PESDR as an objective
function, the gap between the noise and the signal global
eigenvalues can be found more precisely.

V. COMPUTATIONAL COMPLEXITY

The proposed LaRGE and LaRGE-PF methods overall
require O(M3) + O(10M2) + O(7M) operations, where
the M = M [G] is the number of the global eigenvalues
that are used for the model order estimation. The greatest
complexity of the methods is given by the linear regression
(O(6M2)) and the calculation of the PESDR coefficients
(O(M3) +O(4M2) +O(4M)).

The AIC and MDL methods have complexity O(M2) +
O(0.5M2 + 0.5M) + O(10M) [25], while, M-EFT scheme
requires O(27M2) + O(6M) operations. Moreover, for all
methods that take into account the multi-linear structure of
the data, additional (D − 1)M multiplications are needed to
compute the global eigenvalues, where D is the number of the
tensor dimensions.

However, the major complexity of all MOS schemes comes
from the computation of the HOSVD of the tensor X ∈
CM1×M2×M3×⋯×MD to obtain the d-mode singular values. For
each set of the d-mode singular values, the SVD of the d-mode
unfolding is computed that requires O(M2

d ⋅M1 ⋅M2⋯Md−1 ⋅
Md+1⋯MD) operations [26]. For example, the HOSVD of
the symmetric tensor X with dimensions M = M1 = M2 =
M3 = ⋯ = MD has complexity O(D ⋅M4) that is increased
by increasing the tensor size. Note that several schemes to
compute an approximate CPD also require an initial HOSVD
(e.g., SECSI [15]). As a result, only the additional steps
for model order estimation should be counted, whereas the
complexity of these steps is relatively small compared to the
complexity of the HOSVD.

In Figure 6 the results of simulations to evaluate the
computational complexity of the HOSVD and all considered
MOS schemes are shown. All simulations are performed on
a laptop computer with an Intel(R) Core(TM) i5-9300H 2.4
GHz CPU with a 8 GB RAM. During the 5000 trials 3-D
symmetric tensors of different sizes are constructed. The size
of each tensors dimension M =M1 =M2 =M3 is varied from
30 to 140 and the mean time of the HOSVD and all considered
MOS schemes are separately estimated.

Clearly, the mean time of the HOSVD steadily increases
with the size of the tensor dimensions. When the size of the
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3-D symmetric tensor, model order R = 5, SNR = 10 dB.

symmetric tensor dimensions is bigger than fifty, the HOSVD
requires more time in comparison with the proposed MOS
schemes.

VI. EXPERIMENTAL RESULTS. SYNTHETIC SIMULATIONS

In this section, we present simulation results to demonstrate
the performance of the proposed LaRGE and LaRGE-PF
methods in comparison with the classical AIC, MDL, N -D
AIC, N -D MDL, M-EFT, and N -D EFT methods. We set the
threshold ηM-EFT = 0.23 for the M-EFT, ηN−D EFT = −0.033
for the N -D EFT, and ρ = 0.57 for the LaRGE and LaRGE-
PF methods and compare the probability of correct detection
PoD = Pr(R̂ = R) versus the SNR.

A data tensor for the CP model (1) with factor matrices
F d, d = 1,2,3 . . .D, is generated. The factor matrices contain
elements drawn from a zero-mean Gaussian distribution with
unit variance σ2

s . Two different scenarios are used for the sim-
ulations with respect to the correlation of the columns in the
factor matrices. In the first scenario, the correlation between
the columns in the factor matrices F d, d = 1,2,3 . . .D, is
parameterized by the vectors r1 = [0 0 0]T and r1 = [0 0 0 0]T
for 3-D and 4-D tensors, respectively. The second scenario
corresponds to the correlated case, and the correlation of the
columns of the factor matrices is parameterized by the vectors
r2 = [0.6 0.3 0.9]T and r2 = [0.6 0.3 0.9 0.1]T for 3-D and
4-D tensors, respectively [15]. We consider two cases when
the rank of the generated noiseless tensors is fixed at R = 5
and R = 20. According to the model (3), the elements of the
noise tensor N are drawn independently from a zero-mean
Gaussian distribution with variance σ2

n. The results have been
averaged over 5000 Monte Carlo trials.

In Figure 7 we compare the performance of the classical
methods AIC, MDL, 3-D AIC, 3-D MDL, M-EFT, 3-D EFT
and the proposed LaRGE and LaRGE-PF methods for a tensor
with the following dimensions M1 = 25,M2 = 30,M3 = 35.
The obtained results confirm the better performance of the 3-
D extensions of AIC, MDL, and M-EFT. Also, the proposed
LaRGE and LaRGE-PF methods outperform the classical
methods in the uncorrelated case. However, in the correlated
case the LaRGE, LaRGE-PF, and 3-D EFT show close results
for low SNRs.
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Fig. 7: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R25 × 30 × 35, the true rank is
R = 5, uncorrelated case (top), correlated case (bottom).
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Fig. 8: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R25 × 30 × 35, the true rank is
R = 20, uncorrelated case (top), correlated case (bottom).

Similarly, in Figure 8 we evaluate the probability of correct
detection of all considered methods using tensors of the same
size but with a higher rank R = 20. In this case, 3-D AIC, 3-
D MDL, LaRGE, and LARGE-PF show a close performance
in terms of the probability of correct detection, especially in
the correlated case. Moreover, the 3-D EFT method shows a
better performance for low SNRs. However, the PoD of this
method does not reach one and stays close to 0.9 even for high
SNRs. Therefore, LaRGE and LaRGE-PF in the uncorrelated
case as well as 3-D AIC and 3-D MDL in the correlated case
are preferred for the model order estimation when the size of
the tensors is small and the rank is high.

Figures 9 and 10 depict a scenario where the rank of the
tensor with dimensions M1 = 78,M2 = 1000,M3 = 102 is
equal to 5 and 20, respectively. The LaRGE and LaRGE-PF
methods outperform other considered classical methods in the
correlated and the uncorrelated cases. Moreover, we can see
that the 3-D AIC, 3-D MDL, AIC, and MDL methods show
similar results. This effect can be explained as follows.
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Fig. 9: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R78 × 1000 × 102, the true rank
is R = 5, uncorrelated case (top), correlated case (bottom).
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Fig. 10: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R78 × 1000 × 102, the true rank
is R = 20, uncorrelated case (top), correlated case (bottom).

For AIC and MDL, the d-mode singular values are used
from the biggest dimension of the tensor and their number
is equal to the biggest dimension M [σ] = max(Md), d =
1,2,3, . . . ,D. In our case, the largest number of d-mode
singular values is M [σ] = 1000 for the second dimension
of the tensor with dimensions M1 = 78,M2 = 1000,M3 =
102. However, for 3-D AIC and 3-D MDL the number of
global eigenvalues is limited by the smallest tensor dimension
M [G] = min(Md), d = 1,2,3, . . . ,D. In the considered case,
the first dimension is the smallest (M1 = 78). Therefore, the
accuracy of the AIC and MDL is better and close to that of
3-D AIC and 3-D MDL.

We have also performed Monte Carlo simulations for a 4-
D tensor scenario with dimensions M1 = 60,M2 = 60,M3 =
60,M4 = 60 and ranks R = 5 and R = 20. Figures 11 and
12 show the results for this scenario. The curves are grouped
in three groups and demonstrate a better performance of the
methods that take into account the multi-linear structure of the
data. M-EFT and 4-D EFT outperform AIC, MDL and 4-D
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Fig. 11: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R60 × 60 × 60 × 60, the true rank
is R = 5, uncorrelated case (top), correlated case (bottom).
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Fig. 12: Probability of correct detection PoD versus the SNR
for the noisy CP model, X ∈ R60 × 60 × 60 × 60, the true rank
is R = 20, uncorrelated case (top), correlated case (bottom).

AIC, 4-D MDL, respectively. Moreover, LaRGE and LaRGE-
PF outperform the methods based on AIC and MDL by more
than 12 dB and 4-D EFT by 10 dB.

Summarizing the results of the simulations, we can note that
for small size low-rank tensors, the advantage of LaRGE-PF
in terms of the probability of correct detection is more pro-
nounced than for big 3-D tensors or 4-D tensors in comparison
with the LaRGE method. Moreover, it is advantageous to use
the LaRGE method for the model order estimation of tensors
with a large rank and size.

VII. BIOMEDICAL SIGNAL PROCESSING

A. Preprocessing and Decomposition

The proposed LaRGE and LaRGE-PF methods presented in
this paper are used to analyze measured EEG data. These data
were recorded from twelve healthy volunteers, numbered 1 to
12 in this paper, at the Biomagnetic Center of the University
Hospital in Jena, Germany, for the investigation of the Photic
Driving (PD) effect [27],[28]. This effect occurs when the
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brain is stimulated by Intermittent Photic Stimulation (IPS).
The PD effect is used to assess the effects of medications and
for the diagnosis of several neurophysiological diseases like
Alzheimer, schizophrenia, and some forms of epilepsy.

The recorded EEG signals were filtered in the frequency
range from 3 Hz to 40 Hz in a preprocessing step. The
individual frequency of alpha rhythm fα was determined for
each volunteer prior to the main experiment. The resulting
alpha frequencies for volunteers 1 to 12 are, in this order,
9.6, 10.7, 10.4, 10.8, 10.7, 10.8, 7.5, 10.8, 11.0, 10.7, 12.2,
and 10.3 Hz. To investigate the PD effect, twenty stimulation
frequencies fstim = [0.40 0.45 0.50 0.55 0.60 0.70 0.80
0.90 0.95 1.00 1.05 1.10 1.30 1.60 1.90 1.95 2.00 2.05 2.10
2.30] ⋅fα were generated. Each stimulation of the particular
frequency was presented in 30 stimulation trains. Each train
consisted of 40 periods with pulse/cycle duration of 0.5.
Between each train and frequency block there were resting
periods of 4 seconds and 30 seconds, respectively.

To investigate the proposed LaRGE method for the model
order estimation, two different cases are considered in this
paper. 3-D tensors are constructed for the first case. To this
end, the Fast Fourier Transform is used for obtaining the
frequency distribution of the EEG signals. As a result, we
have different complex tensors with dimensions channels ×
frequency × trains for each stimulation frequency and volun-
teer. The frequency and train dimensions have fixed sizes: 281
and 30, respectively. The size of the channel dimension varies,
because a small number of non-functional EEG channels are
excluded in the preprocessing step. The resulting 3-D tensors
have dimensions channels×frequency×train.

For the second case that is considered in this paper, the
wavelet decomposition is used to construct 4-D tensors. The
second and third dimensions of these tensors represent the
frequency-time distribution obtained after the complex Morlet
decomposition. The wavelet coefficients between 3.003 Hz
(1000/333 Hz) and 15.15 Hz (1000/66 Hz) are selected for
the analysis. This frequency range spans the frequencies of
the theta and alpha rhythms [29]. The size of the time
dimension varies from 5 seconds up to 20 seconds depending
on the stimulation frequency. The resulting 4-D tensors have
dimensions channels ×frequency×time×train.

In the first step of the model order estimation, the HOSVD
of the constructed tensors is computed. Next, the global
eigenvalues are obtained and the model order is estimated
using the LaRGE method, the LaRGE method with penalty
function (LaRGE-PF), and classical AIC and MDL methods
(N -D AIC, N -D MDL, AIC, and MDL). To obtain the factor
matrices of the dominant components, the CP decomposition
of each tensor is computed via SECSI [15] in the 3-D case and
via SECSI-GU [30] in the 4-D case using the estimated rank
of LaRGE and LaRGE-PF. The threshold ρ = 0.57 is fixed for
both LaRGE and LaRGE-PF to ensure that the probability Pfn
is not greater than 0.01. To eliminate the scaling ambiguity,
the loading factors of the components are computed if the rank
is more than one according to

λr =
D

∏
d=1

∥F̂ d(r)∥F , r = 1 . . . R̂, (38)
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Fig. 13: The global eigenvalues profile (top) and PESDR curve
(bottom) for the tensor with EEG data X ∈ C103 × 281 × 30

of volunteer 4 at stimulation frequency 0.5⋅fα.

where F̂ d(r) ∈ CMd×R̂ is the r-column of the estimated factor
matrix F̂ d according to the CP model (4), R̂ is the estimated
rank and, D is the number of tensor dimensions.

In the rest of this section, we present some results that have
been obtained during the analysis of 3-D and 4-D tensors. In
the following figures, the profiles of global eigenvalues and the
PESDR curves are shown. Moreover, the channel, frequency,
and train signatures are presented for the 3-D case, and the
channel, frequency, time, and train signatures are presented for
the 4-D case. All components of the factor matrices are sorted
in the order of decreasing loading factors computed according
to (38).

B. Processing of 3-D tensors

Figure 13 depicts the profile of the global eigenvalues and
the PESDR coefficients for the tensor of volunteer 4 at stim-
ulation frequency 0.5 ⋅ fα. Starting from the global eigenvalue
λM [G] ,M [G] = 30 we look for the first PESDR coefficient that
exceeds the threshold ρ. In the considered case, this PESDR
coefficient has the index 2 and the second global eigenvalue is
classified as a signal global eigenvalue. Therefore, the LaRGE
method estimates the rank 2 for this case. Figure 14 depicts
the dominant components of the factor matrices obtained via
the CP decomposition with the assumption that the rank of the
tensor is equal to 2. During the whole stimulation, the theta
rhythm dominates which is evidenced by the distributions of
both components in the spatial and frequency domains that are
presented in Figure 14. The other state-of-the-art model order
estimation schemes considered in this paper have estimated the
rank as follows R̂LaRGE-PF = 3, R̂3-D AIC = 10, R̂3-D MDL = 13,
R̂3-D EFT = 29, R̂AIC = 49, R̂MDL = 43, R̂M-EFT = 280.

C. Processing of 4-D tensors

The results of processing a 4-D tensor with dimensions
channel×frequency×time×train for volunteer 1 are depicted in
Figures 15 and 16. The LaRGE method reliably estimates the
model order as 2. Moreover, the bottom plot of Figure 15

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3222737

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Ilmenau. Downloaded on November 17,2022 at 14:53:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 14: Channel, frequency, and train signature for volunteer
4 and stimulation frequency 0.5⋅fα after the CP decomposition
of the tensor with real EEG data X ∈ C103 × 281 × 30 and
estimated rank 2. The loading factors of the components are
λ1 = 0.2941, λ2 = 0.2382.

shows the PESDR curve that is obtained according to LaRGE-
PF. The suppression effect of the penalty function is clearly
seen in this figure.

The dominant components of the factor matrices after the
tensor decomposition show response in the alpha and theta
frequencies. The alpha rhythm, as expected, is observed in
the occipital region of the brain while the theta rhythm is
dominant in the central region. Moreover, the theta rhythm
has a resonance effect that is visible in the frequency and
time dimensions in Figure 16 for component one. The other
state-of-the-art model order estimation schemes considered in
this paper estimate the model order of this tensor as R̂4-D AIC =
24, R̂4-D MDL = 25, R̂4-D EFT = 29, R̂AIC = 205, R̂MDL = 203,
R̂M-EFT = 219. In the considered cases with EEG data the N -D
AIC, N -D MDL, as well as N -D EFT methods overestimate
the model order. Moreover, the classical AIC, MDL, and M-
EFT schemes overestimate the model order significantly. It
makes the factor matrices after the CP decomposition more
redundant that leads to the difficulties in the interpretation of
results.

D. Special cases

A number of interesting cases could be observed during
our investigations. Fig. 17 depicts the profile of the global
eigenvalues and the PESDR curves for LaRGE and LaRGE-
PF. None of the PESDR coefficients computed according to
the LaRGE method exceeds the threshold ρ = 0.57. In such a
case, the model order can be estimated as one. Or the threshold
can be decreased to the value equal to the largest PESDR
coefficient. Therefore, the threshold can be updated to the new
value ρ = 0.5236 in the considered case. Alternatively, the
estimated model order based on LaRGE-PF can be used (see
Figure 18).

The profile of the global eigenvalues and the PESDR curves
for a tensor with EEG data recorded from volunteer 11 at
stimulation frequency fstim = 0.6 ⋅ fα are depicted in Figure
19. As in the previous case, none of the PESDR coefficients
exceeds the threshold. However, the PESDR coefficients with
numbers 4 and 18 are very close to the threshold. As proposed
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Fig. 15: The global eigenvalues profile (top), PESDR curve
(middle) and PESDR-PF curve (bottom) for the tensor with
EEG data X ∈ C268×838×105×30 of volunteer 1 at stimulation
frequency 0.40⋅fα.

Fig. 16: Channel, frequency, time and train signature for
volunteer 1 and stimulation frequency 0.40⋅fα after the
CP decomposition of the tensor with real EEG data
X ∈ C268×838×105×30 and estimated rank 2. The loading
factors of the components are λ1 = 0.1809 λ2 = 0.1037.

before, the model order estimated with LaRGE-PF can be used
in this case.

The factor matrices obtained after the CP decomposition
with rank 4 are depicted in Figure 20. In all topographic plots,
a channel that has an abnormally big amplitude as compared to
the adjacent channels is clearly revealed. This channel can be
marked as ”bad” channel, and it means that the corresponding
sensor had an imperfect connection with the surface of the
skin during the measurements. Such channels contain artifacts
with low or high amplitudes and should be removed from
the observations during preprocessing (which failed for this
channel in this case). After removing this channel, the tensor
was constructed and the model order was estimated again. In
Figure 21 the profile of the global eigenvalues and the PESDR
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Fig. 17: The global eigenvalues profile (top), PESDR curve
(middle) and PESDR-PF curve (bottom) computed for the
tensor with real EEG data X ∈ C106×281×30 of volunteer
8 at stimulation frequency 0.50⋅fα.

Fig. 18: Channel, frequency, and train signature for volunteer
8 and stimulation frequency 0.5⋅fα after the CP decomposition
of the tensor with real EEG data X ∈ C106×281×30 and
estimated rank 4. The loading factors of the components are
λ1 = 0.2476,λ3 = 0.2239, λ4 = 0.2090, λ2 = 0.1728.
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Fig. 19: The global eigenvalues profile (top), PESDR curve
(middle) and PESDR-PF curve (bottom) computed for the
tensor with real EEG data X ∈ C103×281×30 of volunteer
11 at stimulation frequency 0.60⋅fα.

Fig. 20: Channel, frequency, and train signature for volunteer
11 and stimulation frequency 0.6⋅fα after the CP decompo-
sition of the tensor with real EEG data X ∈ C103×281×30

and estimated rank 4. The loading factors of the components
are λ3 = 0.2883, λ2 = 0.2830, λ1 = 0.2751, λ4 = 0.2092. The
arrows indicate a ”bad’ channel.
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Fig. 21: The global eigenvalues profile (top) and PESDR
curve (bottom) computed for the tensor with real EEG data
X ∈ C102×281×30 of volunteer 11 at stimulation frequency
0.60⋅fα after ”bad” channel removal.

Fig. 22: Channel, frequency, time and train signature for volun-
teer 11 and stimulation frequency 0.60⋅fα after the CP decom-
position of the tensor with real EEG data X ∈ C102×281×30

and estimated rank 1.

curve are depicted after removing the ”bad” channel. The eigh-
teenth PESDR coefficient becomes significantly smaller and
the first coefficient exceeds the threshold now. The obtained
factor matrices after channel removal and subsequent tensor
decomposition are depicted in Figure 22.

VIII. CONCLUSION

In this paper, we have presented the robust to noise LaRGE
and LaRGE-PF methods of model order estimation based on
the global eigenvalues of noise-corrupted low-rank tensors.
Using the HOSVD of a measurement tensor, these global
eigenvalues can be computed. Starting from the smallest global
eigenvalues, the PESDR is calculated using linear regression.
If it is larger than a predefined threshold ρ we have found the
smallest signal global eigenvalue, i.e., the approximate model
order R̂. To prevent the misclasification in the first steps of
this procedure, the modified LaRGE method with a heuristic
penalty function (LaRGE-PF) has been proposed. LaRGE-PF
suppresses the outliers of the PESDR curve for the tensors
with small dimensions.

Monte Carlo simulations have been conducted to determine
the best value of the threshold. To this end, the probabilities of
false positive, false negative, and correct detection have been
defined. To achieve a small probability of false positive and
false negative for both small and large tensors the selected
value of the threshold is ρ = 0.57. Moreover, we have com-
pared LaRGE and LaRGE-PF with classical AIC, MDL, M-

EFT, N -D AIC, N -D MDL, and N -D EFT methods. LaRGE
and LaRGE-PF show an increased robustness to noise and
outperform the classical methods significantly.

In this paper, we have also used the LaRGE and LaRGE-
PF methods to estimate the model order of measured EEG
data during an experimental investigation of the photic driving
effect. The dominant components can be reliably detected by
exploiting the PESDR curve.

If ”bad” channels have been identified from the extracted
dominant components, PESDR coefficients with a high ampli-
tude could be observed. This effect might be very important
for practical applications such as the automatic detection and
removal of artifactual EEG channels and could be investigated
in future research. Moreover, LaRGE could be extended to
coupled tensors decompositions.
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