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ABSTRACT

In this paper, we present a beamforming method that is robust
against thermal deformations for non-terrestrial reconfigurable in-
telligent surfaces (RIS). We analytically derive the expressions for
the worst-case bound on perturbations of the covariance matrix and
the corresponding steering vectors as functions of possible displace-
ments of RIS elements. We apply these bounds during the optimiza-
tion procedure to find the beamforming coefficients that are robust
to thermal deformations. Moreover, we present a simple heuristic to
obtain the constant modulus beamforming coefficients from the op-
timal beamforming via an array thinning operation. The simulation
results confirm the robustness of the proposed solution against ran-
dom but bounded perturbations caused by thermal deformations of
the reflective surface.

1. INTRODUCTION

The topic of non-terrestrial RIS-assisted communications [1, 2] re-
cently attracted extensive attention from the research community as
a promising technique to extend the functionality of antenna systems
at satellites [3–6]. While the cost of the deployment of active phase
arrays in space might be high, the usage of light-weight and low-cost
metamaterials with the additional possibility to adjust its parameters
in real-time directly in orbit looks like an appealing solution to en-
able beamforming.

However, the deployment of large antenna systems in space is
related to a number of challenges that complicate the design and
the implementation of such systems in practice. The deformations
of any large surface deployed in space [7] is one such factor. There
might be different reasons for such deformations but it mainly occurs
due to uneven spreading of temperature over the surface during op-
eration because different parts of a satellite are exposed to a varying
amount of sunlight which make them expand or shrink at different
degrees. As a result, the change of curvature influences the antenna
directivity and the level of the sidelobes [8].

Due to the potentially large size and higher operational fre-
quency, it is very likely that one of the sides of the communication
link will be located in the radiative near-field [9] which should
be taken into account during the analysis and the design of the
corresponding algorithms. The authors in [10, 11] analyze the per-
formance of RISs in the near-field and derive the power scaling
law for RISs assuming extremely large surfaces and the associated
near-field effects.
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However, as an initial contribution to the topic of robust reflec-
tive beamforming against geometry deformation, we assume that
both sides of the communication link are located in the far field.
The original goal is the investigation of methods to reduce the sensi-
tivity to practical impairments rather than achieve the best possible
performance by placing the reflective structure in the radiative near-
field. Further, we show that this simplification allows us to derive
an analytical expression on the bounds of the perturbations of the
covariance matrix and the array steering vectors. Nevertheless, we
see the extension to the case of the radiative near field as a potential
direction for follow-up research investigations.

Additionally, for this report, we limit ourselves to only linear
geometries of reflecting apertures to derive the initial results that can
also be extended to planar and arbitrary geometries of RISs. For con-
venience, we refer to such devices as reflecting line arrays (RLAs).
Similarly to RISs, we can control the phase of the reflected signal
at each element of an RLA thus implementing the reflective beam-
forming. We assume that an RLA is a passive device in the sense
that it has no ability to process signals and requires external control
for operation. We also assume that the cell of an RLA can be con-
figured to absorb or reflect the impinging signal. For the impinging
signal, we can only control the phase of the reflection coefficients.
In this work, we ignore the reflection losses, the dependency of the
amplitude on the phase, and mutual coupling effects.

In this paper, we analyze the application of a reconfigurable in-
telligent surface for enabling adaptive beamforming under thermal
deformations. To this end, we present robust reflective beamform-
ing for non-terrestrial networks under thermal deformations. We de-
rive bounds on norms of perturbations of the compounding steering
vector and the matrix of the overall noise reflected by the RIS as a
function of the bound on the coordinate displacements. These results
facilitate the robust deployment of large-size low-cost antenna sys-
tems in space with high directivity and high antenna gains that will
enable direct ground-to-space connectivity of conventional mobile
phones and provide seamless coverage across all areas on Earth with
a cellular connection and internet [12].

Notation: In our work, we use the following notation. We use
a, a, and A to represent a scalar, a vector, and a matrix, respectively.
AT, and AH are the matrix transpose and the conjugate transpose,
respectively. Furthermore, z∗ is the conjugate of a complex number,
|a| is the magnitude of a scalar, ∥a∥2 represents the 2-norm, ∥A∥F
denotes the Frobenius norm. We use ⊙ to denote the element wise
(Hadamard) product. We refer to the (m,n) element of a matrix A

via
[
A
]
m,n

.
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2. SYSTEM MODEL

We consider a SISO communication system that communicates via
an RLA in the far field in space. Due to periodic exposure to sun
and shadowing effects, the surface of such an RLA will experience
a temperature gradient causing random deformations of the reflec-
tive aperture. We show how the information about the worst-case
deformations might be taken into account during the design stage to
improve the system performance in terms of the RLA directivity.

For simplicity, we assume that each element of the RLA has a
unit gain and the corresponding effective aperture Ae = λ2

4π
. How-

ever, generalizations are possible. We consider the orientation of the
RLA along the x-axis and consisting of Ncell elements. We assume
that the phase center of the RLA matches the origin of the coordinate
system. The spacing between elements is denoted as ∆.

2.1. Signal model

Following [13] the received signal at the ground terminal after the
reflection at the RLA can be written as

y =

Ncell−1∑
n=0

√
Ptxβe

−jφ
(rfl)
n · ejφ

(rla)
n · ejφ

(imp)
n · s+ z, (1)

which can also be rewritten in the vector form

y =
√

Ptxβ aH
rfl Φaimps+ z ∈ C, (2)

where aimp ∈ CNcell×1 is the steering vector comprising the re-
sponses between the transmitter and every cell of the RLA, Φ ∈
CNcell×Ncell is a diagonal matrix consisting of the phase coefficients
for RLA’s elements, arfl ∈ CNcell×1 is the steering vector com-
prising the responses between the receiver and every element of the
RLA, Ptx is the transmit power, z is a sample of the additive white
Gaussian noise (AWGN), and β is the overall path gain. For sim-
plicity, we assume β = 1.

Both steering vectors aimp ∈ CNcell×1 and arfl ∈ CNcell×1

have an identical structure and can be defined as a function of the
spatial direction µ in the following way

a(µ) = e−j( M−1
2 )µ ·

[
1 ejµ · · · ej(M−1)µ

]T
, (3)

where we define the spatial frequency as µ(θ) = − 2π
λ
∆sin(θ),

while θ is the angle towards the source or the user, respectively. For
simplicity, we assume that each element of the RLA is isotropic and
its complex response does not depend on the spatial frequency µ.

For the conventional reflective beamforming, the phase coeffi-
cients across the RLA can be found as the difference between the
phases for the reflected and the impinging signals [14]

φ(rla)
n = φ(rfl)

n − φ(imp)
n ∈ R. (4)

2.2. Optimization function

The reflective beampattern of the RLA F ( θ,ϕ; θtx ) for the given
elevation angle of interest θ and the vector of RLA phase coefficients
ϕ, parametrized by the elevation angle of the source θtx in the far
field can be found as

F ( θ,ϕ; θtx ) =
∣∣∣(ϕ ⊙ aimp ( θtx ) )

H · a(θ)
∣∣∣2 (5)

= ϕH
( (

a∗
imp ⊙ a

) (
a∗
imp ⊙ a

)H )
ϕ (6)

= ϕHaca
H
c ϕ, (7)

where we introduce a new variable to shorten the notation ac =
a∗
imp ⊙ a. We drop the dependency on the angles to simplify the

notation.
The corresponding directivity of an RLA can be defined as

D ( θ; θtx,ϕ ) = 4π
F ( θ; θtx,ϕ )∫ π

0
F ( θ; θtx,ϕ ) sin (θ) dθ

. (8)

Similarly to [15], we can rewrite it in the matrix form as

D ( θ; θtx,ϕ ) =
ϕHA(θ; θtx)ϕ

ϕHB(θtx)ϕ
, (9)

where

A(θ; θtx) = a∗
impa

T
imp ⊙ aaH, (10)

B(θtx) =
1

2

∫ π/2

−π/2

(
a∗
impa

T
imp ⊙ aaH

)
sin (θ) dθ (11)

=
1

2

(
a∗
impa

T
imp ⊙

∫ π/2

−π/2

aaH sin (θ) dθ

)
(12)

=
1

2

(
a∗
impa

T
imp ⊙ R

)
. (13)

The elements of the matrix R =
∫ π/2

−π/2
aaH sin (θ) dθ can be eval-

uated in a closed form [16]. To this end, the (m,n)-th element can
be written as [

R
]
m,n

= 2 si

(
2π

λ
∥pm − pn∥

)
, (14)

where pm and pn are the coordinate vectors of the m-th and n-th
elements, correspondingly, and si (x) = sin(x)

x
.

Conventional methods for robust beamforming [17–19] assume
the availability of the covariance matrix or signal snapshots during
the adaptation process. Unfortunately, for an RIS the situation dif-
fers. An RIS is a passive device and any measurements might be
conducted only indirectly and are usually associated with high sig-
nalling overheads. This motivates us to look for new methods that do
not need such information. A similar problem is solved in the field
of antenna beam pattern synthesis where the desired beamforming
coefficients are computed based on the antenna model and the co-
ordinates of the sensors. Convex optimization methods can also be
applied to solve this class of problems [15, 20].

In this paper, we maximize the directivity of the RLA subject to
constant modulus constraints (CMCs)

(P1): maximize
ϕ

D ( θ; θtx,ϕ ) (15a)

|ϕi| = 1, 0 ≤ arg (ϕi) ≤ 2π, (15b)
∀i ∈ [ 0 .. Ncell − 1 ] .

However, the corresponding optimization problem is non-convex
[15], therefore we propose to consider the following convex relax-
ation

(P2): minimize
ϕ

ϕHB(θtx)ϕ (16a)

subject to ϕHA(θ; θtx)ϕ = 1, (16b)

which is equivalent to (15a). After we find a solution for (P2) we
perform aperture thinning [21] that is based on the randomization
technique in order to satisfy the CMCs.



2.3. Impact of thermal deformations

We assume that the parameters experience fluctuations due to ther-
mal deformations, even though we know the coordinates of the phase
centers for the transmitter, the RLA, and the receiver perfectly.

We assume that the thermal deformations lead to displacement
∆p,n ∈ R2, n ∈ [ 0, Ncell − 1 ] in (x, y) coordinates of every ele-
ment of the RLA. We use the deterministic uncertainty region model
in which the error is bounded, i.e., ∥∆p,n∥2 ≤ σ. We assume that
different coordinates are uncorrelated, while the maximum pertur-
bation is known. Also we assume identical bounds in x and y di-
rections, i.e., σx = σy = σ. Hence, he actual position of a sensor
belongs to the set

P(σ)
∧
=
{
p̃ | p̃ = p+ perr, ∥perr∥ ≤ σ

}
. (17)

As a result, the deflection of the RLA causes additional phase
shifts common for impinging and reflected steering vectors. Further,
we show that the thermal deformations have an impact not only on
the impinging aimp and the reflected arfl steering vectors but also
on the matrix B(θtx). We present, in this paper, how to design the
robust reflective beamforming for an RLA based on the knowledge
of the bound σ on the norm of the displacement perr.

Next, we describe how to find the bound on the error of the n-th
element of the compound vector ac = a∗

imp ⊙ a and then general-
ize the result on the norm for the perturbation of the whole vector.
First, we compute the first-order Taylor expansion which is a valid
approximation for small perturbations.

ej(αn+αn,err ) = ejαn + jαn,erre
jαn +O

(
α2
n,err

)
(18)

≈ ejαn +∆α,n, (19)

where ∆α,n = j αn,err e
jαn . Thus it can be shown that the norm of

the perturbation is equal to ∥∆α,n∥ = |αn,err|.
In our work we assume that αn = − 2π

λ
pT
nu, where p =

[ pn, 0 ]
T ∈ R2 is the vector of coordinates of the n-th element of

the RLA and u = [ sin (θ) , cos (θ) ]T ∈ R2. Then the perturbed
value α̃n can be written as

α̃n = −2π

λ
(pn + perr,n )T u = −2π

λ
pT
nu− 2π

λ
pT
err,nu, (20)

where we can write αn,err = − 2π
λ
pT
err,nu. Based on this result, we

can conclude that the value of αn,err can be bounded by an ellipsoid
of the form

E =

{
2π

λ
uTperr,n | ∥perr,n∥ ≤ σ

}
. (21)

However, in this paper, we consider the worst-case bound, which
can be written as pT

err,nu ≤
√
2σ, taking into account that

|cos (θ) + sin (θ)| ≤
√
2. As a result, the bound on the perturbation

of the n-th element of the RLA can be found as ∥∆α,n∥ ≤ 2
√
2π
λ

σ.
Consequently, for the whole steering vector, the bound on the worst-
case perturbation can be found as the geometrical mean of bounds
for the individual elements

∥∆ac∥ =

√√√√Ncell∑
n=1

∆2
α,n ≤ 2

√
2π

λ

√
Ncellσ = γ. (22)

The expression (22) represents the worst-case bound on the norm
perturbation of the steering vector due to the sensor position dis-
placement caused by thermal deformations.

For the second step, we derive the bound on the perturbation
of the matrix B(θtx). The (m,n)-th element of the matrix can be
written as[

B(θtx)
]
m,n

= ej
2π
λ

∆pT
mnu · si

(
2π

λ
∥∆pmn∥

)
, (23)

where ∆pmn = pm −pn. We ignore the variations in phase for the
elements of the matrix B in the expression (23) and focus only on
the second term which represents the amplitude. The derivative of
the si () function can be written as

∂si (αx)

∂x
=

cos (αx)− si (αx)

x
. (24)

Note that in a neighborhood of x, the derivative gives us local infor-
mation about the direction of increase of the target function.

Let us denote the perturbed difference in distance between the
(m,n) pair of the RLA elements as ∆p̃mn = ∆pmn + emn. Then
we can write the expression (25) for the worst case perturbation of
the (m,n) element of the matrix B. We also assume that the norm
on the perturbation can be replaced by its bound, i.e., ∥emn∥ = 2σ.

Then the bound on the perturbation of the matrix B can be found
similarly as for the perturbation of the steering vector via the geo-
metric mean of the bounds for all elements of the matrix

∥∆B∥F = 2σ

√√√√Ncell∑
m=0

Ncell∑
n=0

[
∆B

]2
m,n

= η, (26)

where[
∆B

]
m,n

=
cos
(
2π
λ

∥∆pmn∥
)
− si

(
2π
λ

∥∆pmn∥
)

∥∆pmn∥
. (27)

As a result, we can calculate the worst-case bound η on the perturba-
tion of the matrix B caused by thermal deformation of the geometry
of the RLA.

3. ROBUST REFLECTIVE BEAMFORMING

The material in the section follows mainly the derivations in [17,22]
and we refer the interested readers to these publications for more
details.

According to our system model, the compounding vector ac

and the matrix B are known imprecisely, i.e., contain uncertainties.
They can be written as

ãc = ac +∆a and B̃ = B +∆B. (28)

in terms of perfect values and unknown perturbations. However, we
assume that these perturbations are caused by thermal deformations
of the geometry of the RLA and thus can be bounded assuming the
bound on the displacement of each element, i.e.,

∥∆a∥ ≤ γ and ∥∆B∥F ≤ η. (29)

The expressions (22) and (26) represent the bounds on the norms
of the perturbation of the compounding steering vector and the cor-
responding matrix as a function of the bound on the displacement,
respectively.

In this subsection, we describe the solution for the robust reflec-
tive beamforming for the RLA that takes into account the derived
bounds.



si

(
2π

λ
∥∆p̃mn∥

)
≈ si

(
2π

λ
(∥∆pmn∥ + ∥emn∥)

)
≤ si

(
2π

λ
∥∆pmn∥

)
+

cos
(
2π
λ

∥∆pmn∥
)
− si

(
2π
λ

∥∆pmn∥
)

∥∆pmn∥
∥emn∥ (25)

The updated optimization problem can be written as

(P3): min
ϕ

max
∥∆B∥≤η

ϕH(B +∆B)ϕ (30a)

subject to (ac +∆a)Hϕ = 1, ∀ ∥∆a∥ ≤ γ. (30b)

It can be shown [17,22,23] that the aforementioned optimization
problem can be relaxed and written in the following form1

(P4): minimize
ϕ

ϕH(B + ηI)ϕ (31a)

subject to Re
(
aH
c ϕ
)
≥ 1 + γ ∥ϕ∥ , (31b)

Im
(
aH
c ϕ
)
= 0, (31c)

where η and γ can be calculated using the expressions (22) and (26).
The presented optimization problem (P4) can be solved by available
solvers for convex programming. For example, it can be written in
the form of a Second Order Cone Program (SOCP) and be solved via
a primal-dual interior point method with the complexity O

(
N3

cell

)
.

However, practical designs require additional constraints (15b)
for constant modulus on weight coefficients, that were excluded
from (P4). In order to account for the constraint (15b) we propose
an ad hoc solution, namely, to implement an additional stage for
thinning of the RLA in order to imitate variation of the amplitude
across the aperture by changing the density of the elements [21].
Such a thinning operation might be performed during the design
stage or by accounting for the possibility to turn the cell elements
into the absorption mode.

4. SIMULATION RESULTS

In this section, we present the selected simulation results to demon-
strate the performance of the proposed robust reflective beamform-
ing for non-terrestrial networks under thermal deformations.

For the simulation setup we consider the RLA with Ncell =
32 and spacing ∆ = λ

5
. For the presented results, we ignore the

path loss and consider the worst case directivity as the metric of the
performance. The worst-case directivity is calculated as

Dwc =

∣∣∣(ac(θrx, θtx) + e )H ϕ
∣∣∣2

ϕH(B + ηI)ϕ
, where e = −γ

w

∥w∥
ej∠ϕHa.

(32)

During the thinning operation we evaluate 1000 random sequences
of indices and choose the one with the largest achieved directivity.
For the first reference algorithms we consider the expression (4),
which is used to calculate the reflection coefficients as the difference
in phase between the impinging and the reflected waves. For the sec-
ond algorithm we consider worst-case beamforming based on [17]
accounting for the perturbations of the steering vectors.

In Fig. 1 we can observe that the proposed solution has a bet-
ter performance in terms of the directivity in comparison to non-
optimized and partially optimized solutions. The continues line cor-
respond to a solution after thinning, the dashed lines correspond to
solutions prior to thinning.

1We omit the detailed derivation due to the restriction on space for the
conference version of the paper.

Fig. 1. The performance of the proposed robust reflective beamform-
ing. The dashed lines relates to the solutions before thinning. The
solid lines are obtained by applying the thinning procedure to the
solution of the corresponding convex programs.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we present a method for robust reflective beamform-
ing for non-terrestrial communications. We analytically derive the
bounds on the perturbations of the covariance matrix and the steering
vectors as functions of the coordinate displacement of the elements
of the reflective geometry. The presented simulation results confirm
the derivations and show the performance of the beamforming un-
der worst case perturbations. These results show the possibility of
designing better space antenna systems that are able to provide di-
rect connectivity to existing mobile terminals on Earth and provide
cellular access to the internet to sparsely populated rural areas of the
world.

The results of this paper open several directions for future re-
search. These include a modification of the presented bounds to bet-
ter represent the model through ellipsoidal uncertainty regions. This
might be necessary if the maximum bound along different axes vary.
Moreover, an extension of the uncertainty region to three dimensions
is also relevant. We can also extend the presented results to the case
of two-dimensional or distributed reflective structures.

Furthermore, an extension to multi-user scenarios, i.e., the RIS-
assisted broadcast channel, can be considered. In this case, the di-
rectivity is replaced by the SINR in the objective function. The ther-
mal deformation model is used, and a similar optimization model
can be derived. Of particular interest is also an extension of the de-
scribed worst-case beamforming and a derivation of the correspond-
ing bounds for the near-field regime of operation, when one or both
sides of the communications link are within the near-field region of
an RLA or an RIS.
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