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Abstract—Estimating the joint probability mass function
(PMF) of a set of random variables from partially observed data
is a crucial part of statistical learning and data analysis, with
applications in areas such as recommender systems and data
classification. Recently, it has been proposed to estimate the joint
PMF based on the maximum likelihood (ML) of the data, fitted
to a low-rank canonical polyadic decomposition (CPD) model
of the joint PMF. To this end, a hybrid alternating-directions
expectation-maximization (AD-EM) algorithm was proposed to
solve the ML optimization problem, consisting of computationally
expensive AD iterations followed by an EM refinement stage. It
is well known that the convergence rate of EM decreases as
the fraction of missing data increases. In this paper, we address
the slow convergence of the EM algorithm. By adapting the
squared iterative methods (SQUAREM) acceleration scheme to
the context of PMF estimation, we propose the SQUAREM-PMF
algorithm to speed up the convergence of the EM algorithm.
Moreover, we demonstrate that running the computationally
cheaper EM algorithm alone after an appropriate initialization
is sufficient. Numerical results on both synthetic and real data in
the context of movie recommendation show that our algorithm
outperforms state-of-the-art PMF estimation algorithms.

Index Terms—Joint PMF estimation, tensor decomposition,
maximum likelihood (ML), expectation-maximization (EM), rec-
ommendation systems.

I. INTRODUCTION

Estimating the probability mass function (PMF) from partial
observations of a discrete random vector (RV) is a core
problem in statistics, which has recently been considered
in a variety of disciplines, ranging from signal processing
and machine learning to econometrics and social sciences.
Having access to the joint PMF has been considered the
gold standard in categorical data analysis [1] as it allows
to compute any marginal or conditional distribution of the
involved variables. Based on observing a realization of some
of its elements, classical estimates, such as the maximum a
posteriori (MAP) or minimum mean square error (MMSE)
estimates of the missing elements (or features) are readily
available. The necessity arises quite commonly in practice.
For instance, in data classification, a set of observed features
is provided and the task is to predict the label corresponding to
these features. Alternatively, consider recommender systems,
e.g., for movies. In this case, the core database contains a “K
users by N movies” rating matrix, which contains, for each
of the K users, ratings (entered by that user) of some (usually
very few) of the N movies. The goal is to infer, based on that
partially filled matrix, how a given user would rate each of the
movies which she/he has not watched, in order to recommend

to her/him a new movie for which her/his projected rating is
high.

In practice, however, the full PMF, which can be structured
as an N -way tensor, is rarely known, and needs to be estimated
from the core database during a “training” or a “learning”
stage. Unfortunately, this is not a trivial task, since using
straightforward histogram-type estimation of the tensor to
within a reasonable accuracy quickly becomes intractable as
the required amount of observed data grows exponentially
with the tensor’s order N . Having partly observed realizations
only exacerbates the situation as in this case histogram-based
estimates require an even larger amount of observed data, so
as to properly cover all possible co-occurrences.

Using tensor algebra, the authors in [1] have shown that
if reliable estimates of marginal distributions of order greater
than or equal to 3 are available, the full joint PMF can be
recovered. Based on their finding that a joint PMF can always
be represented by a naı̈ve Bayes model (provided the rank
of the canonical polyadic decomposition (CPD) model is high
enough), the authors show how the complete joint PMF can be
recovered from the marginals via a coupled non-negative ten-
sor factorization approach. The resulting optimization problem
is solved by an alternating optimization (AO) scheme based
on the alternating direction method of multipliers (ADMM)
and is formulated in the ordinary least-squares (LS) sense.

While LS-based methods are conducive for algorithm de-
sign, they are not naturally suitable for measuring distances
between PMF tensors. In particular, it is not severely penalized
when attributing an extremely small (or even zero) probability
to certain elements of the estimated PMF, even when the
empirical evidence may suggest that the respective vector
values are feasible. Therefore, the authors in [2] proposed
to replace the LS criterion in the approximate coupled fac-
torization in [1] by the Kullback-Leibler divergence (KLD).
Moreover, the follow-up work [3] showed that when a KLD-
based criterion is applied directly to all of the observed partial
data (rather than only to estimated subtensors of a fixed order),
the resulting PMF estimate coincides with the maximum
likelihood (ML) estimate. The resulting problem is then solved
via an alternating directions (AD) scheme. Additionally, it is
shown how to employ expectation-maximization (EM, [4]) for
obtaining the ML estimate.

While the EM-based algorithm is computationally cheaper
than an AD-type optimization algorithm, theoretical results
have shown that the convergence rate of EM decreases as the



fraction of missing data increases [5]. In addition, the authors
in [3] observed that EM may be sensitive to initialization.
The authors therefore proposed a hybrid iterative computation
scheme, which runs a few AD-type optimization steps first
in order to reach a “sufficiently close” initialization point for
the EM algorithm and then proceeds with iterations of the
computationally cheaper EM algorithm.

In this paper, we address the slow convergence of the
EM algorithm proposed in [3]. By adapting the SQUAREM
method [6] to the context of PMF estimation, we propose
the SQUAREM-PMF algorithm to accelerate the convergence
of the EM algorithm. Additionally, we give a concise sum-
mary on the mathematical rationale of the method to provide
the intuition behind the speed-ups. We demonstrate through
carefully designed synthetic-data simulations that SQUAREM-
PMF accelerates the convergence of EM. Moreover, we show
that the initial iterations of the AD-type scheme are not nec-
essary when initializing the EM iterations with factor matrices
and component weights drawn from a uniform distribution
and with appropriate normalization to the probability simplex.
We further test EM and SQUAREM-PMF on real data and
show that SQUAREM-PMF performs comparably to EM and
outperforms the AO-ADMM method from [1].

A. Notation

A scalar, a vector, a matrix and a tensor are denoted by x,
x, X and X , respectively. X and Y represent N -dimensional
random vectors. Further, we denote the transpose operator and
the Euclidean norm of a vector as T and ∥·∥, respectively. The
vertical stacking of the columns of X into a column vector is
denoted by vec(X), while the p×p identity matrix is denoted
by Ip.

II. PRELIMINARIES

In order to describe our improved method, we first introduce
the considered data model, the minimized objective function
and the update equations for the EM scheme derived in [3].

Given a discrete random vector X = [X1, . . . , XN ]
T ∈ RN

with Xn taking discrete integer values in [1, In] for
n = 1, . . . , N , its joint PMF is described by a
tensor X ∈ RI1×···×IN , where X (i1, . . . , iN ) =
Pr{X1 = i1, . . . , XN = iN}. In practice, X often admits a
low-rank CPD X = Jλ;A1, . . . ,AN K with R components,
with the factors as well as the vector λ confined to the
probability simplex [1]. As in the previous work [3], we
model the case where the variable Xn is unobserved with
probability p (independently among all variables), resulting
in the (partially) observed random vector Y = [Y1, . . . , YN ]

T

with entries

Yn =

{
Xn w.p. 1− p

0 w.p. p
, n = 1, . . . , N. (1)

Our goal is to estimate X given a finite number T of i.i.d.
realizations of Y .

The probability of observing a particular realization y of Y
is given by

Pr{y} = q · Pr{Xn1
= yn1

, . . . , XnB
= ynB

}

= q ·
R∑

r=1

λrAn1
(yn1

, r) · · ·AnB
(ynB

, r), (2)

where B ∈ [0, N ] denotes the number of nonzero ele-
ments of y, n1, . . . , nB denotes their respective indices, and
q = pN−B(1− p)B . The remaining N −B factors inside the
sum vanish by marginalization of the N observed elements
[1]. Given T i.i.d. observations y[1], . . . ,y[T ], their joint log-
likelihood function takes the form

logPr{y[1], . . . ,y[T ];θ}

=

T∑
t=1

log

R∑
r=1

λr

B[t]∏
b=1

Anb[t](ynb[t][t], r) + c,
(3)

where θ = {λ,A1, . . . ,AN} represents the model parame-
ters, B[t] is the number of nonzero (observed) elements in
y[t], n1[t], . . . , nB[t][t] are their indices, and, finally, c =∑T

t=1 log q[t] is a constant which is irrelevant to the maxi-
mization of (3). The optimization problem for ML estimation
is therefore given by

min
{An}N

n=1,λ
−

T∑
t=1

log

R∑
r=1

λr

B[t]∏
b=1

Anb[t](ynb[t][t], r) (4)

subject to λ > 0, 1Tλ = 1

An ≥ 0, 1TAn = 1T, n = 1, . . . , N.

The EM algorithm consists of two steps. In the E-Step, the
a posteriori distribution of the latent variable given the current
observations y[1], . . . ,y[T ] and parameters θ(k) (at the k-th
iteration) is computed. By defining z[t] = [yT[t], s[t]]T ∈
RN+1, consisting of the observed vectors, augmented by the
unknown Bayesian state s[t] ∈ {1, . . . , R} from which the
complete vector x[t] is drawn, we find

Q(θ,θ(k)) = E{z[1], . . . ,z[T ];θ |y[1], . . . ,y[T ];θ(k)}

=

R∑
r=1

(
C(k)

r log λr +

N∑
n=1

In∑
i=1

K(k)
r (n, i) logAn(i, r)

)
, (5)

where ct,r(θ
(k)) = Pr(s[t] = r |y[t];θ(k)), C

(k)
r =∑T

t=1 ct,r(θ
(k)) and K

(k)
r (n, i) =

∑
t:yn[t]=i ct,r(θ

(k)), where
the latter is a summation over the observed indices. In the M-
Step, θ(k) is updated by the parameter values which maximize
Q(θ,θ(k)). The maximizing solutions can be shown to admit
a closed form consisting of simple divisions [3], i.e.,

λ(k+1)
r =

C
(k)
r∑R

g=1 C
(k)
g

and A(k+1)
n (i, r)=

K
(k)
r (n, i)∑In

j=1 K
(k)
r (n, j)

. (6)

III. PROPOSED SOLUTION

The EM algorithm is attractive due to its computationally
cheap closed-form updates as well as its stability since it
guarantees a monotonic increase in the likelihood. However,
the algorithm typically exhibits linear convergence whose rate



is inversely related to the proportion of missing information
in the observed data [5]. This means that if a large portion of
data is missing, the convergence may be quite slow. In this
section, we describe the SQUAREM algorithm proposed in
[6] to accelerate EM convergence and propose an adaptation
procedure that allows the algorithm to be applicable in the
context of PMF estimation.

A. The EM Fixed Point

The fixed point of a function is defined as an element of
the function’s domain that is mapped to itself by the function.
Concretely, if f(x) = x for a function f , then x is a fixed point
of f . Let θ ∈ Ω ⊆ Rp be a parameter vector in the space Ω.
The EM algorithm implicitly defines a mapping θ 7→ f(θ) to
itself such that

θ(k+1) = f(θ(k)) ∈ Rp, k = 0, 1, 2, . . . (7)

where f is the EM mapping and k is the current iteration.
Thus, if θ(k) converges to the point θopt, then θopt is a fixed
point of the algorithm since θopt = f(θopt).

Taking the Taylor series expansion of (7) about the point
θopt, we have that

f(θ(k)) ≈ f(θopt) + J(θopt)(θ
(k) − θopt), (8)

and hence

θ(k+1) − θopt ≈ J(θopt)(θ
(k) − θopt), (9)

where J(θopt) ∈ Rp×p is the Jacobian matrix of f(θ)
evaluated at θopt. Thus, (8) shows that in a small neighborhood
of θopt, the EM algorithm can be approximated by a linear
equation.

The linear approximation to the EM fixed-point mapping al-
lows the application of a linear extrapolation scheme to locate
the fixed point. Define a residual function g(θ) ≜ f(θ) − θ.
Then, the Taylor series expansion of g(θ) about a point θ(k)

is given by

g(θ) ≈ g(θ(k)) + J(θ(k))(θ − θ(k)). (10)

To find the fixed point, we set (10) to zero, since g(θ) = 0 ⇒
f(θ) = θ. Solving (10) for θ yields

θ = θ(k) − J−1(θ(k))g(θ(k)). (11)

Our goal is to find an iterative scheme for locating the fixed
point of the EM algorithm. Using (10) and the approximation
J(θ(k)) ≈ (1/αk)Ip [6], we may write two Taylor series
expansions for g(θ), one about θ(k) and the other about
f(θ(k)) = θ(k+1), i.e.,

g0(θ) ≈ g(θ(k)) +
1

αk
(θ − θ(k)),

g1(θ) ≈ g(θ(k+1)) +
1

αk
(θ − θ(k+1)).

(12)

Setting the two equations to zero and solving for θ yields two
different linear approximations for the fixed point, i.e.,

θ(0) = θ(k) − αkg(θ
(k)),

θ(1) = θ(k+1) − αkg(θ
(k+1)).

(13)

By constraining αk to be negative, we minimize the dis-
crepancy measure −∥θ(1) − θ(0)∥2/αk between the two es-
timates of the fixed point. Define r(k) ≜ θ(k+1) − θ(k) and
v(k) = g(θ(k+1))− g(θ(k)). The optimal αk is then given by

αk = −∥r(k)∥/∥v(k)∥. (14)

Thus, the fixed-point approximation in (11) can be ex-
pressed in terms of an iterative scheme, i.e.,

θ(k+1) = θ(k) − αkg(θ
(k))

= θ(k) − αk(f(θ
(k))− θ(k))

= θ(k) − αkr
(k). (15)

It is instructive to express (15) in terms of the error between
the current estimate θ(k) and the optimal estimate (after
convergence) θopt as these will form the foundation for the
squaring method on which SQUAREM is based. To this end,
we first note that f(θ) can be expanded in a Taylor series
about θopt to give

f(θ(k)) ≈ θopt + J(θopt)(θ
(k) − θopt)

f(f(θ(k))) ≈ θopt + J2(θopt)(θ
(k) − θopt).

(16)

Defining the error ε(k) ≜ θ(k)−θopt and using (16), we express
the vectors r(k) and v(k) as

r(k) = f(θ(k))− θ(k)

= θopt + J(θopt)ε
(k) − θ(k)

= (J(θopt)− Ip)ε
(k)

(17)

and
v(k) = g(θ(k+1))− g(θ(k))

= f(f(θ(k)))− 2f(θ(k)) + θ(k)

= (J(θopt)− Ip)
2ε(k).

(18)

Therefore, by subtracting θopt from (15), the following error
relation holds for the EM algorithm

ε(k+1) = ε(k) − αk(θ
(k+1) − θ(k))

= ε(k) − αk(θopt − J(θopt)ε
(k) − θ(k))

= [Ip − αk(J(θopt)− Ip)]ε
(k).

(19)

B. Obtaining SQUAREM via Squaring

In developing SQUAREM, posing the following quadratic
problem comes in handy

min
x

f(x) =
1

2
xTQx− bTx, x ∈ Rp, (20)

where Q ∈ Rp×p is a positive-definite and symmetric matrix
and b ∈ Rp. Solving this problem is equivalent to finding x
such that Qx = b since taking the derivative and setting it to
zero gives Qx−b = 0. Useful insights can be gained from this
linear problem since it takes the same form as the EM fixed
point problem in (9). Note that since Q is positive-definite,
this problem has a unique solution given by xopt = Q−1b.

The classical steepest descent or Cauchy method for (20) is

x(k+1) = x(k) − µkg
(k), (21)



Table I: The adapted SQUAREM algorithm for PMF estima-
tion (SQUAREM-PMF).

SQUAREM-PMF
Input: {An,0}Nn=1, λ0

Output: ML estimates {Ân}Nn=1, λ̂
1. Construct θ0 = [vecT(A1,0), . . . , vecT(AN,0),λ

T
0 ]

T

2. for k = 1, . . . ,K
3. θ1 = f(θ0)
4. θ2 = f(θ1)

5. r(k) = θ1 − θ0
6. v(k) = (θ2 − θ1)− r(k)

7. αk = −∥r(k)∥/∥v(k)∥
8. modify αk (see Table II)
9. θ0 = f(θ(k))

10. if ∥θ(k) − θ0∥ < ϵ

11. Reconstruct {A(k)
n }Nn=1 and λ(k) from θ(k)

12. break
13. end if
14. end for

where g(k) = ∇f(x) = Qx− b and µk is the step size. The
convergence rate depends on the matrix Q and can be slow if
Q is ill-conditioned. To overcome this problem, the Cauchy-
Barzillai-Borwein (CBB) method [7], whose convergence rate
is superior to that of the Cauchy method, has been proposed.
The CBB method yields the following update equation for (20)

x(k+1) = x(k) − 2µkg
(k) + µ2

kQg(k). (22)

A simple relationship between (21) and (22) can be estab-
lished by deriving error relations for both methods. Letting
e(k+1) ≜ x(k) − xopt, we have for the Cauchy method (21)

e(k+1) = e(k) − µkg
(k)

= e(k) − µk(Qx(k) − b)

= e(k) − µkQ(x(k) −Q−1b)

= (Ip − µkQ)e(k), (23)

and for the CBB method,

e(k+1) = e(k) − 2µkg
(k) + µ2

kQg(k)

= e(k) − 2µkQe(k) + µ2
kQ

2e(k)

= (Ip − 2µkQ+ µ2
kQ

2)e(k)

= (Ip − µkQ)2e(k). (24)

Comparing (23) and (24), it is evident that the CBB method
is just a “squared” version of the Cauchy method. By analogy,
we can therefore “square” the error relation of the EM fixed
point in (19) to obtain the so-called SQUAREM algorithm.
Since the EM fixed point can be approximated by a linear
equation (cf. (9)), it follows that the squaring approach can
be applied to improve the convergence of the EM algorithm.
Thus, the error relation for SQUAREM is

ε(k+1) =
[
Ip − αk

(
J(θopt)− Ip

)]2
ε(k). (25)

As in the case of EM (cf. (15)), we expand (25) as follows

ε(k+1)= [Ip − 2αk(J(θopt)− Ip) + α2
k(J(θopt)− Ip)

2]ε(k)

= ε(k) − 2αkr
(k) + α2

kv
(k). (26)

Table II: Proposed adaptation procedure for the step size αk.

Adaptation of αk

1. if αk > −1
2. αk = −1
3. θ(k) = θ0 − 2αkr

(k) + α2
kv

(k) = θ2
4. else
5. θ(k) = θ0 − 2αkr

(k) + α2
kv

(k)

6. if nonnegativity constraint violated

7. αk,i =
r
(k)
i ±

√
r
(k)2

i −v
(k)
i θ0,i

v
(k)
i

, i = 1, . . . , p

8. find the legal segment(s) on the αk-axis
9. ᾱk ← segment edge closest to optimal αk

10. if ᾱk > αk

11. θ(k) = θ0 − 2ᾱkr
(k) + ᾱ2

kv
(k)

12. else
13. θ(k) = θ0 − 2αkr

(k) + α2
kv

(k)

14. θ(k) ← P(θ(k))
15. end if
16. end if
17. compute L(θ(k))

18. while L(θ(k)) > L(θ(k−1))
19. αk = (αk − 1)/2

20. θ(k) = θ0 − 2αkr
(k) + α2

kv
(k)

21. θ(k) ← P(θ(k))

22. compute L(θ(k))
23. end while
24. end if

From (26), it follows that

θ(k+1) = θ(k) − 2αkr
(k) + α2

kv
(k). (27)

C. The SQUAREM-PMF algorithm

While the SQUAREM algorithm in [6] accelerates the con-
vergence of the EM algorithm, it is applied in a more general
context where there are no constraints on the parameters.
However, for PMF estimation, the estimated parameters must
fulfill the probability simplex constraints, i.e., Ân ≥ 0,∀n,
λ̂ > 0 (nonnegativity); and 1TÂn = 1T,∀n, 1Tλ̂ = 1 (sum-
to-one). Fortunately, the update equation (27) ensures that the
sum-to-one constraint is always fulfilled. On the other hand,
the nonnegativity constraint may be violated because some
choices of αk yield parameter vectors with negative elements.
Therefore, we propose an adaptation procedure for αk which
ensures that the nonnegativity constraint is fulfilled.

Table I presents the SQUAREM-PMF algorithm, which
largely follows the same steps as SQUAREM [6]. We focus
on the modification of αk in Step 8, which is summarized
in more detail in Table II. Steps 1-3 and 17-23 ensure that
the algorithm converges to a stationary point regardless of the
starting point, while preserving the stability of EM [6]. This is
achieved by selecting αk such that the negative log-likelihood
(NLL) L(θ(k)) (cf. (4)) of the updated parameter vector is less
than the NLL of the previous parameter vector.

To ensure that the nonnegativity constraint is fulfilled, we
adopt the following approach, described in Steps 5-16. After
updating the parameter vector, we check whether all the
elements of θ(k) are nonnegative. If not, we set each element
of θ(k) to zero and solve the resulting p quadratic equations for
αk, ending up with two solutions, say (αk,i,1, αk,i,2), for each



equation. Each such solution pair defines segments on the αk-
axis of the form (−∞, αk,i,1]∪ [αk,i,2, ∞) or [αk,i,1, αk,i,2],
within which any value enforces nonnegativity on the corre-
sponding element of θ(k). Therefore, the intersection of all p
segments yields one or more legal segments, i.e., with values
of αk that enforce nonnegativity on all elements of θ(k).

Informed by the fact that we should always use the optimal
step size (cf. Table I, Step 7) whenever feasible for maximum
acceleration [6], we select the segment edge closest in distance
to the optimal αk as the step size, ᾱk. This step size is used
only if it is larger than the optimal αk to avoid multiple
likelihood computations later; otherwise we use the optimal
αk and project θ(k) onto the probability simplex using an
algorithm such as the one presented in [8].

The nonnegativity constraint may be violated once again
after modifying αk in Step 19. Thus, we apply the projection
algorithm [8] once more on θ(k). Note that the earlier approach
described in Steps 5-16 cannot be used at this stage, as the
objective is to ensure that αk is chosen such that the NLL
always decreases. Indeed, there is always a tradeoff between
the rate of convergence and the stability of the algorithm [6].

It is important to note that in our simulations, we observed
that using the projection algorithm without selecting the step
size ᾱk resulted in a huge performance degradation in the
runtime. This is an indication that our approach is justified and
points to a possible relationship between ᾱk and the NLL.

IV. SIMULATIONS

In this section, we investigate the performance of the PMF
estimation algorithms through carefully designed numerical
simulations. In the first part, we use synthetic data to study
the convergence performance of SQUAREM-PMF compared
to EM, AD-EM, and triplet-based AO-ADMM. In the second
part, we investigate the performance of the algorithms using
real data in the context of movie recommendation. Here, we
compare the performance of SQUAREM-PMF to triplet-based
AO-ADMM and to EM.

A. Synthetic-Data Experiments

We consider a similar setup to [3] with N = 5 random
variables, each taking one of In = 10 discrete values for n =
1, . . . , N such that the full PMF tensor X has 105 elements.
The true PMF is realized by a rank R = 5 CPD with the
elements of the factor matrices An ∈ R10×5 and of the loading
vector λ ∈ R5 being drawn independently from a uniform
distribution, and being normalized to satisfy the probability
simplex constraints.

We obtain T = 105 observed vectors y[t], t = 1, . . . , T
as follows. The latent state s[t] is drawn according to the
prior probability given by λ, then the elements of a complete
vector x[t] (i.e., xn[t]) are drawn independently according
to An(: , s[t]), i.e., the s[t]-th column of An. To obtain the
observed vector y[t], elements of x[t] are randomly hidden
with an outage probability of p = 0.25. EM, SQUAREM-
PMF, and AO-ADMM are initialized by drawing the elements
of the factor matrices and loading vectors randomly from a

Table III: Comparison of average runtime, average number of
iterations and convergence success rate (out of 1000 trials) for
AD-EM, EM and SQUAREM-PMF.

AD-EM EM SQUAREM-PMF

Average runtime [s] 1046 588 161

Average no. of iterations 2415 2779 505

Convergence success rate 954 932 1000

uniform distribution (and normalizing appropriately to fulfill
the probability simplex constraints), while for AD-EM, 20 AD
iterations are used to initialize the subsequent EM part.

Fig. 1 compares the convergence of EM, AD-EM, AO-
ADMM, and SQUAREM-PMF in terms of the negative log-
likelihood (cf. (4)) minus the minimum mean value (per trial)
across all four algorithms (NLL − NLLmin), as well as the
MSE of the parameter vector θ(k), given by ∥θ(k) − θ∥2/M ,
where θ ∈ RM is the ground-truth parameter vector. Since
each SQUAREM-PMF iteration consists of three EM updates
(Steps 3, 4, and 9), the maximum number of iterations is set to
K = 104 and K = 3×104 for SQUAREM-PMF and EM / AD-
EM, respectively. Furthermore, we set K = 103 and K = 105

for AO and ADMM, respectively. The results are presented
as a function of the number of SQUAREM-PMF iterations,
with the EM / AD-EM plots consisting of the value at every
third iteration (i.e., 3, 6, 9, ...) for proper scaling. Similarly, we
select ADMM values at equal intervals for each AO sweep so
that we obtain 104 values as required for plotting. The results
are averaged over L = 1000 independent trials. We set the
stopping threshold ϵ to be 10−7.

We observe that SQUAREM-PMF converges faster than EM
and achieves a comparable performance. Note that the final
NLL is of the order of nearly 106 and hence the difference
between EM and SQUAREM-PMF in the final NLL−NLLmin
is negligible. In addition, SQUAREM-PMF decreases the NLL
monotonically and thus preserves the stability of EM. We
also observe that EM converges to a better MSE compared
to AD-EM, demonstrating that the initial (computationally
expensive) AD iterations are not necessary. It can be seen that
all three EM-based algorithms (which use all the observed
data) perform better than the marginal-based AO-ADMM,
despite the fact that the latter is allowed to run for many more
iterations.

Fig. 2 shows the empirical complementary cumulative dis-
tribution function (CCDF) for the number of iterations and
the runtime. We omit AO-ADMM since it would require a
huge number of iterations (and, hence, much more runtime) to
converge to a comparable result to the EM-based algorithms.
The acceleration provided by SQUAREM-PMF in terms of
the number of iterations and the runtime is clearly visible.
This can be appreciated by looking at the average runtime in
Table III. We see that, on average, SQUAREM-PMF speeds up
convergence by a factor of about 3.6 and requires far fewer
iterations. The convergence success rate is another measure



Figure 1: Convergence of the MSE of the parameter vector θ(k) and the NLL−NLLmin for EM, AD-EM, AO-ADMM, and
SQUAREM-PMF.

Figure 2: CCDF of the number of iterations and the runtime for SQUAREM-PMF, EM, and AD-EM. The vertical lines represent
the mean value for each algorithm.

of interest, i.e., how many trials fulfill the stopping criterion
as opposed to running the maximum number of iterations
allowed. For all trials, SQUAREM-PMF converges before
exhausting the maximum number of iterations, while for some
trials, EM does not fulfill the stopping criterion and would
need more iterations to converge.

B. Real-Data Experiments

We also evaluate the performance of the EM and
SQUAREM-PMF algorithms for the task of recommendation
systems by using the MovieLens dataset [9]. This dataset con-
tains movie ratings on a 5-star scale with half-star increments,
i.e., {0.5, . . . , 5.0}, which are provided by a number of users,
and movies are described by their genre. Initially, we select
three genres from the entire dataset, i.e., action, animation,
and comedy, and keep 10 top-rated movies to form a user-
movie matrix. Subsequently, we extract the ratings of users
who have rated more than two movies and map the ratings
to a discrete scale {1, . . . , 10}, i.e., the alphabet size of each

movie is In = 10, n = 1, . . . , 10. In this way, we obtain
the initial rating matrix Y ∈ RT×N , where T stands for the
number of users and N is the number of movies. This initial
rating matrix has an outage probability p = 0.4, i.e., 40 % of
the ratings are missing.

Our goal is to estimate the joint PMF of the ratings of
N = 10 random variables (movies), which take values from
{1, . . . , 10}. Therefore, the joint PMF tensor X is a 10-th
order tensor with 1010 elements. Note that in the case of real-
data experiments, the ground-truth joint PMF and the rank R
of its CPD are unknown. However, the latter is a single discrete
variable that can be tuned, e.g., by going through the training,
validation, and testing procedures as in machine learning.

To this end, we shuffle the users within the initial rating
matrix, consisting of 84751 users. Then 70% of the data
samples are used for training, 10% for validation, and 20%
for testing. The training matrix is used to calculate third-
order marginal PMFs for AO-ADMM, from which the factor
matrices and loading vector are estimated. The EM and



Table IV: RMSE and MAE of MovieLens rating predictions
from different algorithms.

Algorithm Estimator RMSE MAE

AO-ADMM
MMSE 0.8452±0.004 0.6595±0.003

MAP 0.9715±0.006 0.6558±0.004

EM
MMSE 0.8192±0.004 0.6430±0.003

MAP 0.9731±0.006 0.6498±0.005

SQUAREM-PMF
MMSE 0.8193±0.004 0.6429±0.003

MAP 0.9735±0.006 0.6496±0.004

Global average 0.9385±0.004 0.7305±0.003

User average 0.9399±0.005 0.7270±0.004

Movie average 0.9399±0.005 0.7270±0.004

Random guess 2.1077±0.010 1.7145±0.009

SQUAREM-PMF algorithms use Y directly to estimate the
model. In the validation stage, we seek to estimate R and the
AO-ADMM learning rate. To achieve this, for each user in
the validation sub-matrix, we hide one rating. The conditional
expectation (i.e., the MMSE estimate) of the missing rating is
given by

ŝn,t=

In∑
in=1

in Pr(in |s1,t, . . . , sn−1,t, sn+1,t, . . . , sN,t), (28)

where the ratings of the t-th user are s[t] = [s1,t, . . . , sN,t],
and sn,t is set to zero if the rating is unobserved. This
procedure is repeated for ranges of values of R and AO-
ADMM learning rates. The model with minimized root mean
squared error (RMSE) between the true and predicted rating
(averaged over all users) is used further for the retraining, i.e.,
we combine datasets from training and validation and estimate
{An}Nn=1 and λ again. The RMSE averaged over L = 20
independent trials is given by

RMSE =

√√√√ 1

L · Tval

L∑
ℓ=1

Tval∑
t=1

|ŝn,t,ℓ − sn,t,ℓ|2 (29)

where Tval denotes the number of users in the validation
dataset. Finally, we use the retrained model for testing the
performance of the algorithms.

For each user in the testing matrix, we hide one rating
and predict it using the estimated model. In addition to the
conditional expectation (MMSE estimate) in (28), this is done
via the MAP rule which is given by

ŝn,t= arg max
in∈{1,...,In}

Pr(in |s1,t, . . . , sn−1,t, sn+1,t, . . . , sN,t). (30)

As naı̈ve predictors, we use also the global average of all
ratings, the user average, the movie average, and random
guessing. To evaluate the quality of the predictors, we use the
RMSE from (29) (with Ttest users) and mean absolute error
(MAE), defined as

MAE =
1

L · Ttest

L∑
ℓ=1

Ttest∑
t=1

|ŝn,t,ℓ − sn,t,ℓ|, (31)

where Ttest refers to the number of users in the testing matrix.
In Table IV the performance of all three algorithms in

terms of the RMSE and the MAE is compared. We observe
that both EM and SQUAREM-PMF outperform AO-ADMM.
While the latter works with a subset of available ratings, EM
and SQUAREM-PMF use all the available data to predict
the missing ratings. Importantly, SQUAREM-PMF performs
comparably to EM but converges faster, further demonstrating
its efficiency.

V. CONCLUSION

We have investigated the problem of efficiently estimating a
low-rank PMF from partially observed data. In particular, we
have addressed the slow convergence of the EM algorithm
proposed in [3]. By adapting the SQUAREM acceleration
scheme [6] to the context of PMF estimation, we propose
the SQUAREM-PMF algorithm to speed up the convergence
of the EM algorithm. Using synthetic data, we have shown
that SQUAREM-PMF accelerates EM by a factor of about
3.6 and requires much fewer iterations to converge. Moreover,
running the EM algorithm alone without prior initialization
using the AD-type scheme is sufficient. Through simulations
on real data, we have demonstrated that SQUAREM-PMF is
applicable to tasks such as movie recommendation where it
performs comparably to EM and outperforms AO-ADMM, a
state-of-the-art PMF estimation algorithm.
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