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Abstract—The block-term decompositions (BTD) represent ten-
sors as a linear combination of low multilinear rank terms and
can be explicitly related to the Canonical Polyadic decomposition
(CPD). In this paper, we introduce the SECSI-BTD framework,
which exploits the connection between two decompositions to esti-
mate the block-terms of the rank-(Lr, Lr, 1) BTD. The proposed
SECSI-BTD algorithm includes the initial calculation of the factor
estimates using the SEmi-algebraic framework for approximate
Canonical polyadic decompositions via SImultaneous Matrix Di-
agonalizations (SECSI), followed by clustering and refinement pro-
cedures that return the appropriate rank-(Lr, Lr, 1) BTD terms.
Moreover, we introduce a new approach to estimate the multilinear
rank structure of the tensor based on the HOSVD and k-means
clustering. Since the proposed SECSI-BTD algorithm does not
require a known rank structure but can still take advantage of the
known ranks when available, it is more flexible than the existing
techniques in the literature. Additionally, our algorithm does not
require multiple initializations, and the simulation results show that
it provides more accurate results and a better convergence behavior
for an extensive range of SNRs.

Index Terms—Block-term decomposition, tensor, SECSI,
Canonical Polyadic, k-means, model order.

I. INTRODUCTION

OWING to multidimensionality-related benefits, tensor-
based techniques have become a primary tool for many

signal processing applications. Compared to classical matrix
factorizations, tensor decompositions possess more relaxed
uniqueness conditions and preserve the data’s original, often
inherently multidimensional structure. This enables modeling a
signal across multiple domains and facilitates the interpretation
of results. Additionally, a variety of tensor factorizations allow
choosing a technique that best suits a given task or data.
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Probably the most prominent and extensively used tensor
decompositions are the Higher-Order Singular Value Decom-
position (HOSVD) [1], [2] and the Canonical Polyadic Decom-
position (CPD), sometimes also referred to as CANDECOMP
or PARAFAC [3], [4], [5]. They have found their applications
in a wide range of fields, including statistics, communications,
localization, biomedical signal processing, source separation,
and many others [5], [6]. Furthermore, both decompositions
have several variations and extensions, and the block-term de-
composition (BTD) can be considered one of them. Depending
on the ranks of sub-blocks in the BTD, several types of this de-
composition have been distinguished in the literature, for exam-
ple, decomposition in rank-(L,L, 1) terms, in rank-(L,M,N)
terms, or in rank-(L,M, ·) terms [7], [8]. In this article, our
focus falls on the block-term decomposition in rank-(Lr, Lr, 1)
terms, which has gained increasing attention from researchers
in the last decade.

Whereas CPD techniques are quite well understood in the
literature (there are elegant uniqueness theorems, stable and
powerful tools for their computation and model order estima-
tion), block-term decompositions are still a subject of active
research since they pose a more complex problem due to inherent
ambiguities and weaker uniqueness properties. Interestingly,
exactly these properties render the block-term decompositions
attractive for some applications since their uniqueness con-
ditions are less strict, and they can be applied under more
general circumstances than the CPD. However, state-of-the-art
BTD frameworks as, for example, Tensorlab [9], do not always
provide a stable decomposition performance, implying that they
are prone to erroneous estimation of the factors for a great
range of possible model parameters (these can be traced back to
suboptimal initialization of the BTD-algorithm). An additional
challenge that arises before computing the BTD is the estimation
of the number of BTD terms and the multilinear ranks. For
instance, in Tensorlab solutions, the number of rank-(Lr, Lr, 1)
terms as well as the Lrs have to be known beforehand, which
might not be the case for some applications.

Recently, block-term decompositions have received a lot of
attention in different research areas. The authors in [7], [8],
[10], [11], [12], [13] introduce the definitions, link to CPD,
and the uniqueness conditions for different types of block-term
decompositions as well as optimization-based and algebraic
algorithms to estimate the block-term factors assuming that the
rank structure is known beforehand. On the other hand, the
authors in [14], [15], [16], [17], [18] present the hierarchical
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iteratively reweighted least squares (HIRLS) and the alternating
group lasso (AGL) algorithms that estimate both the ranks and
the factors of rank-(Lr, Lr, 1) BTDs. However, they do not
exploit prior knowledge of ranks when available and require
multiple initializations to ensure convergence. Another recent
article on the multilinear rank decomposition investigates the
conditions under which the decomposition in rank-(Lr, Lr, 1)
terms is unique and can be computed via an eigenvalue decom-
position [19]. The BTD algorithm based on the group sparsity
property of the loading matrices introduced in [20] also allows
performing the decomposition and the model order estimation.
Still, it is limited to a rank-(L,L, 1) BTD with equal multilinear
ranks.

Other research directions, which further exploit the BTD,
include a wide variety of different applications and the exten-
sion to coupled decompositions. For instance, the uniqueness
conditions and the algorithms for coupled CPD and BTD in
rank-(Lr,n, Lr,n, 1) terms are discussed in [21], [22], and struc-
tured data fusion by means of coupled tensor decompositions
is presented in [23]. The authors in [24] use a coupled block
simultaneous generalized Schur decomposition to calculate the
coupled rank-(Lm, Ln, ·) BTD. In contrast to the current work,
in [25], we propose an algorithm to calculate the coupled rank-
(Lr, Lr, 1)BTD of multiple tensors with a common mode which
often occurs in biomedical data applications [26]. Moreover,
several authors have presented many other practical applications
of the BTD, which include communications signal processing,
radar, and image and graph analysis [27], [28], [29], [30], [31],
[32], [33], [34]. The nonnegative rank-(Lr, Lr, 1) and coupled
rank-(Lr, Lr, 1) decompositions with application to hyperspec-
tral imagery and cartography are investigated in [35], [36], [37].
The authors in [38] propose an algorithm to compute the rank-
(L,M,N ) BTD of large streaming tensor datasets. Another way
of looking at the CPD and BTD is discussed in [39], [40]. The au-
thors view these decompositions as a special case of the Tucker
decomposition and introduce the Krylov-Levenberg-Marquardt
algorithm to compute it. Compared to the rank-(Lr, Lr, 1) BTD
studied in this article, the BTD in [39] is considered as a sum
of Tucker tensors with a block diagonal core tensor which in
turn requires prior knowledge of the block-structure (multilinear
ranks).

Contributions: This article proposes a new approach to cal-
culate the block-term decomposition in rank-(Lr, Lr, 1) terms
based on the SEmi-algebraic framework for approximate Canon-
ical polyadic decompositions via SImultaneous Matrix Diag-
onalizations (SECSI) [41], which shows enhanced numerical
stability even for low SNR scenarios. In contrast to the schemes
in [14], [15], [16], [18], our algorithm does not require multiple
initializations to ensure convergence. Moreover, compared to
the algorithm in [9], the proposed approach can perform the
decomposition even with an unknown rank structure. To this
end, we introduce an extension of the LineAr Regression of
Global Eigenvalues (LaRGE) scheme, originally designed for
for the estimation of the CPD rank of a noise-corrupted low-rank
tensor, to estimate the number ofLr terms. The article also shows
how theLrs can be estimated through k-means clustering. Com-
pared to our work in [25], this contribution explores a general

Fig. 1. Block diagram of the SECSI-BTD framework.

rank-(Lr, Lr, 1) decomposition of a single three-dimensional
tensor with possibly unknown block- and multilinear ranks.
We provide a detailed description of the proposed approach,
including the CPD to BTD transformation, the estimation of
ranks, and the calculation of the BTD factors. Moreover, we
conduct extensive and thorough synthetic data simulations to
validate the proposed algorithm and compare it to the schemes
from the literature. We refer to the proposed rank-(Lr, Lr, 1)
BTD framework as SECSI-BTD. It should be mentioned that
it does not require a known rank structure but can still exploit
prior knowledge of the model order when available. Altogether,
the SECSI-BTD framework to compute an approximate BTD
from noise-corrupted measurements is composed of three main
blocks (Fig. 1):
� The model order estimation block based on the LineAr

Regression of Global Eigenvalues (LaRGE) scheme to esti-
mate the number of block-terms and the sum of multilinear
ranks (can be skipped if the ranks are known beforehand);

� The computation of the initial estimates using the BTD
extension of the SECSI framework and clustering, which
includes the calculation of the initial rank-(Lr, Lr, 1) de-
composition factors via simultaneous matrix diagonaliza-
tions and clustering via the k-means algorithm;

� The refinement procedures that bring the initial estimates
to the BTD form and return the final estimates of rank-
(Lr, Lr, 1) terms by employing ALS or NLS iterations [8],
[13].

For notational simplicity, hereafter, by writing “BTD” we
refer to BTD in rank-(Lr, Lr, 1) terms.

Notation: Matrices and vectors are denoted by upper-case (A)
and lower-case (a) bold-faced letters, respectively. Bold-faced
calligraphic letters denote tensors (A). The superscripts {·}T,
{·}H, {·}-1, and {·}+ denote the transpose, Hermitian transpose,
matrix inverse, and Moore–Penrose pseudoinverse, respectively.
Moreover, the mth column and the lth row of A is denoted as
A(:,m) and A(l,:), respectively. The operator D{·} denotes the
construction of a diagonal matrix with diagonal elements being
the entries of the input vector. We use ⊗, �, and ◦ to denote
the Kronecker, Khatri-Rao (column-wise Kronecker), and outer
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Fig. 2. Rank-(Lr, Lr, 1) BTD with L1 = 3, L2 = 2, and R = 2 as a CPD
with repeated columns in the 3-mode (matrix C).

products, respectively. The n-mode unfolding of the tensor A
is denoted as [A](n) (we use the reverse cyclical ordering of the
columns [1]), and the n-mode product between a tensor A and a
matrix A is denoted as A×n A [1]. The operator ‖ · ‖F denotes
the Frobenius norm. Additionally, we denote the Frobenius norm
of a tensor A by ‖A‖F defined as the square root of the sum of
the squares of all its elements, or equally, as the Frobenius norm
of an arbitrary n-mode unfolding of the tensor [5]. An identity
matrix of size d× d is denoted as Id, whereas Id,R denotes a
super-diagonal d-dimensional tensor of size R×R× · · · ×R
with elements equal to one if all d indices are equal and zeros
otherwise. A column vector of ones of size R is denoted as 1R.
The field of real (R) or complex (C) numbers is represented by
F. To ease the notation, we use ΣLr to denote

∑R
r=1 Lr.

This article is organized as follows. Section II provides some
preliminaries on the BTD. In Section III, we present an algorithm
to estimate the model order of the rank-(Lr, Lr, 1) BTD. Then,
we introduce a simultaneous matrix diagonalization (SMD)-
based technique to calculate the block-term factor matrices in
Section IV. Section V presents the refinement procedures to
construct the final estimates. The numerical results are shown in
Section VI, and Section VII is devoted to conclusions.

II. PRELIMINARIES: BTD VS. CPD

In this article, we exploit the connection between the CPD
and BTD to estimate the block-terms of a rank-(Lr, Lr, 1) de-
composition. Even though their uniqueness properties differ, the
BTD and CPD have much in common. The BTD can be seen as a
special case of the CPD with collinearity in one of the factors, see
Fig. 2. Then, the rank-(Lr, Lr, 1) BTD of a three-dimensional
noise-corrupted tensor T ∈ F

I×J×K can either be written in a
BTD form [9]

T =

R∑
r=1

(
Ar ·BT

r

) ◦ cr +N , (1)

or in a CPD form

T =

R∑
r=1

Lr∑
�=1

Ar,(:,�) ◦Br,(:,�) ◦ cr +N (2)

= I3,ΣLr
×1 A×2 B ×3 C

(r) +N , (3)

where R and Lr are the number of block-terms and the mul-
tilinear ranks, respectively. Moreover, Ar ∈ F

I×Lr and Br ∈
F
J×Lr are the r-th submatrices of A and B so that A =

[A1,A2, . . .,AR] ∈ F
I×ΣLr and B = [B1,B2, . . .,BR] ∈

F
J×ΣLr . The vectors cr ∈ F

K×1, r = {1, . . ., R} are stacked in

the matrix C so that C = [c1, c2, . . ., cR] ∈ F
K×R. The matrix

C(r) = [c1 · 1T
L1
, c2 · 1T

L2
, . . . , cR · 1T

LR
] ∈ F

K×ΣLr (4)

has repeated (or linearly dependent) columns. Then, the BTD
in (1) and (2) can be viewed as CPD with linear dependencies in
the third factor matrix or, similarly, the CPD can be considered as
a BTD with allLrs being equal to one. With repeated or colinear
columns in C(r), Kruskal’s condition [42] for uniqueness is
evidently not satisfied. On the other hand, it has been shown
in [7], [19] that the BTD is more attractive in this regard and can
be uniquely determined under more relaxed conditions than the
CPD. At the same time, while the CPD is said to be essentially
unique up to an arbitrary permutation and scaling of its rank-one
terms, an additional matrix product ambiguity occurs when con-
sidering the essential uniqueness of the multilinear-rank terms
in the BTD

ArB
T
r = (ArHr)

(
H -1

r B
T
r

)
= A′rB

′T
r , (5)

where Hr is an arbitrary nonsingular matrix. Since this sub-
matrix product ambiguity is hard to resolve, the BTD is often
written in the following form

T =

R∑
r=1

Er ◦ cr +N , (6)

where Ar and Br are merged into Er ∈ F
I×J such that Er =

ArB
T
r [7].

In the next sections, we will introduce an approach to deter-
mine the number of terms R and the multilinear ranks Lr using
the HOSVD and clustering, followed by an estimation of the
BTD factors via SECSI [41].

III. HOSVD-BASED MODEL ORDER ESTIMATION

In the most common applications of the BTD, such as ECG
and EEG-MEG data processing or source separation, the rank
structure is usually not available beforehand. Some papers deter-
mine the ranks by trial and error, which is very straightforward
but not efficient [26], [43]. The authors in [14], [15], [16], [18]
propose approaches that compute the factors and ranks of the
BTD jointly in an iterative way which is computationally not
effective in cases when, for example, only the rank structure
itself is a subject of interest. In this article, we show how to
estimate the model order of noise-corrupted BTD tensors by
separating the signal and noise subspaces based on an extension
of the linear regression of global eigenvalues (LaRGE) approach
in [44].

To this end, let us consider a noise-corrupted three-
dimensional measurement tensor T given by T = T 0 +N ∈
F
I×J×K , where T 0 =

∑R
r=1(Ar ·BT

r ) ◦ cr ∈ F
I×J×K is the

noiseless BTD structured data, and N ∈ F
I×J×K is an additive

noise tensor. Whereas the rank of the first two modes of this
rank-(Lr, Lr, 1) block-term decomposition is assumed to be
equal to ΣLr, the rank in the 3-mode is assumed to be R. Then,
the HOSVD of T is given by

T = S ×1 U1 ×2 U2 ×3 U3, (7)
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where S ∈ F
I×J×K is a core tensor, and U1 ∈ F

I×I , U2 ∈
F
J×J , and U3 ∈ F

K×K contain the left singular vectors of the
n-mode unfoldings of X computed from [T ](n) = UnΣnV

H
n ,

n ∈ {1, 2, 3}, where Σn contains the n-mode singular values
σ
(n)
i on its main diagonal. The n-mode singular values σ

(n)
i

are related to the n-mode eigenvalues λ
(n)
i of [T ](n)[T ]H(n)

through λ
(n)
i = (σ

(n)
i )2. Moreover, the eigenvalues can be

computed asdiag(λ(n)
1 , . . . , λ

(n)
Q ) = [S](n) · [S]H(n), whereQ ∈

{I, J,K} and [S](n) is the n-mode unfolding of the core tensor
S in (7).

The main concept of LaRGE is based on the fact that (asymp-
totically) the noise eigenvalues have an exponential decay and,
therefore, unlike the signal eigenvalues, can be approximated
by a straight line on a logarithmic scale. Hence, the point
where the linear regression fails will indicate the detection of
the smallest signal eigenvalue and, accordingly, the rank. In
the original LaRGE algorithm for the estimation of the CPD
rank, the authors perform the linear regression on the so-called
global eigenvalues [45]. The ith global eigenvalue is equal to
the product of the ith n-mode eigenvalues, where i = 1, . . . ,M ,
M = min{I, J,K}. The assumption that all factors in the CPD
model have the same rank/column dimension allows taking
into account the eigenvalues from all modes and leads to more
reliable estimates. On the other hand, as it follows from the
definition of the multilinear rank decompositions, not all the
n-mode ranks have to be equal. If this asymmetric rank structure
is not taken into account, the global eigenvalues might be heavily
affected by the rank deficiencies in the third mode. Therefore, we
split the BTD rank structure estimation procedure into two runs
to accommodate this. During the first run, theΣLr are estimated
based on the semi-global eigenvalues from the 1-mode and the
2-mode

λ̃
(1,2)

i =
(
σ
(1)
i

)2
·
(
σ
(2)
i

)2
, (8)

and during the second run, only the 3-mode is used

λ̃
(3)

i =
(
σ
(3)
i

)2
. (9)

The linear regression scheme can be applied toλ(1,2)
i = ln λ̃

(1,2)

i

and λ
(3)
i = ln λ̃

(3)

i separately to estimate ΣLr and R as follows.
Starting from the smallest eigenvalue λM , find a prediction λ̂i

of the next eigenvalue on a logarithmic scale1 subject to

min
a1,a2

(
M−k∑
i=M

(
λ̂i − λi

)2)
, (10)

where λ̂i = a1i+ a2 is the smallest eigenvalue, k =
{1, . . . ,M − 1} is the step index, and M is equal to min{I, J}
when estimating ΣLr and to K when estimating R. For each

1Since the further rank estimation steps are the same for both ΣLr and R, for
notational simplicity, we skip the superscripts (1,2) and (3) inλi (λi corresponds

to λ
(1,2)
i when estimating ΣLr , and to λ

(3)
i when estimating R) and M .

step k calculate the relative prediction error as follows

δM−k =
λM−k − λ̂M−k∣∣∣λ̂M−k

∣∣∣ =
ΔM−k∣∣∣λ̂M−k

∣∣∣ . (11)

Next, calculate the standard deviation of the approximation error
as

σM−k =

√√√√1

k

M−k∑
i=M

(
Δi − 1

k

M−k∑
i=M

Δi

)2

, (12)

where the second quantity in parentheses denotes the mean value
of the absolute prediction error Δi. Then, compute the ratio
between the relative prediction error and the standard deviation
of the approximation errors in the previous steps as

PESDRk =
δM−k

σM−k−1
. (13)

The first signal eigenvalue is detected when the Prediction Error
to Standard Deviation Ratio (PESDR) exceeds the predefined
threshold ρ for the first time. The number of signal eigenvalues
corresponds to an estimate ofΣLr when regression is performed
on the 1-mode and 2-mode eigenvalues, and to an estimate of
R when the 3-mode eigenvalues are used. The estimate of ΣLr

is further employed for the computation of initial estimates via
SECSI, while the estimate of R is used for the clustering of the
BTD terms.

We refer to the proposed model order estimation algorithm
(for the BTD) as LaRGE-BTD, whose main steps are sum-
marized in Algorithm 1. Moreover, to avoid estimation errors
appearing due to a relatively small difference between the rank
and the smallest dimension of the tensor, LaRGE with a penalty
function (LaRGE PF) can be employed [46]. The penalty func-
tion ensures that the value of σM−k exceeds a certain threshold
ε, which allows reducing the outliers that may lead to wrong
estimates. For more details on the LaRGE algorithm, we refer
the reader to [44].

The numerical results of the LaRGE-BTD estimation per-
formance are demonstrated in Fig. 3. For the simulations,
1000 complex-valued tensors were constructed according to the
model in (1) with factor matrix entries drawn from a zero-mean
uncorrelated Gaussian distribution with variance σ2

n. Accord-
ingly, the SNR is defined as 1/σ2

n. Fig. 3(a) depicts the percent-
age of correct rank estimates as a function of the threshold ρ.
As it can be observed, different thresholds should be used for
the estimation of the number of block terms and for the sum of
the multilinear ranks. According to the simulation results, the
recommended threshold ρ for R and ΣLr are between 1.5− 2
and 0.4− 0.5, respectively. The second simulation in Fig. 3(b)
shows the performance of LaRGE-BTD as a function of the SNR
(ρR = 1.5 and ρΣLr

= 0.5). As it can be seen, the estimation
of the number of block terms R is more reliable. This can be
explained by the fact that the difference between ΣLr and the
dimensions of a tensor is smaller than the difference between R
and the dimensions of a tensor.
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Algorithm 1: LaRGE-BTD: ΣLr (case 1) and R (case 2).

Require: 3-way tensor T ∈ F
I×J×K

1: σ(n)
i ← HOSVD(T )

2: Case 1: M = min{I, J}, Case 2: M = K
3: for i = 1, . . . ,M do
4: Case 1: λ̃i = (σ

(1)
i )2 · (σ(2)

i )2; Case 2: λ̃i = (σ
(3)
i )2

5: λi = ln λ̃i

6: end for
7: for k = 1, . . . ,M − 1 do
8: prediction λ̂M−k
9: δM−k = λM−k−λ̂M−k

|λ̂M−k | = ΔM−k
|λ̂M−k |

10: σM−k =
√

1
k

∑M−k
i=M (Δi − 1

k

∑M−k
i=M Δi)2

11: PESDRk = δM−k
σM−k−1

12: if (PESDRk−1 < ρ) ∧ (PESDRk ≥ ρ) then
13: Rank = M − k
14: break
15: end if
16: end for

IV. EXTENSIONS OF THE SECSI FRAMEWORK FOR

BLOCK-TERM DECOMPOSITION

In contrast to previous simultaneous matrix diagonalization
(SMD)-based approaches [47], the SECSI framework exploits
the tensor structure of the CPD to construct not only one but
the full set of possible SMDs. By solving all SMDs, multiple
estimates of the factor matrices can be obtained, and strategies
have been presented to choose the best estimate in a subsequent
step [41].

In this contribution, we introduce an extension of SECSI
that enables the computation of initial estimates of the rank-
(Lr, Lr, 1) block-term decomposition. The new extension in-
cludes the following major enhancements and contributions:
� An introduction of a new heuristic that reduces the number

of SMDs to be computed, thereby decreasing the compu-
tational load.

� An estimation of the multilinear ranks Lr using clustering.
� A befitting partitioning of the columns of the estimated

matrices A and B into multilinear rank submatrices.
� A design of highly reliable initial BTD estimates that

guarantees the convergence of the refinement procedures
and does not require multiple initializations.

A. Brief Overview of the SECSI Framework

The SECSI framework has originally been designed to decom-
pose a tensor into the sum of rank-1 terms. Before presenting its
extension to a multilinear rank decomposition, let us review its
main steps.

1) Truncated HOSVD: Let T 0 ∈ F
I×J×K be a noise-free

tensor with a given (or estimated) rank d whose CPD is given
by

T 0 = I3,d ×1 F 1 ×2 F 2 ×3 F 3, (14)

where F 1, F 2, and F 3 are the corresponding factor matrices.

Fig. 3. Performance of LaRGE-BTD. Tensor of size 40× 40× 40 with
R = 3, Lr = [3, 3, 3]. Results are averaged over 1000 Monte-Carlo trials.

The first step of SECSI is the computation of a truncated
HOSVD2 of T to generate a truncated core tensor S [s] ∈
F
d×d×d and a set of truncated unitary matrices U

[s]
1 ∈ F

I×d,

U
[s]
2 ∈ F

J×d, and U
[s]
3 ∈ F

K×d that span the column space of
the corresponding n-mode unfolding of T 0

T 0 = S [s] ×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 . (15)

Only the first d singular values and their corresponding left
singular vectors are chosen to take into account the given (or
estimated) CPD rank. The columns of each of the unitary matri-
ces span the same vector space as the CPD factor matrices in the
same mode. Thus, there exist three non-singular d× d transform
matrices3 T 1, T 2, and T 3 that diagonalize the core tensor S [s]

2If the HOSVD has been already calculated during the LaRGE-based rank
estimation step (Section III), then it can be further truncated in the first step of
SECSI without a need to calculate it again. This will significantly reduce the
computational cost.

3The assumption of the existence of the three non-singular transform matrices
holds when the CPD is not rank deficient in any of the three modes, i.e.,
all factor matrices have full column rank. If the CP decomposition is rank
deficient in one mode, the corresponding transform matrix and SMDs do not
exist anymore. However, if the remaining two modes are not rank deficient, we
can still construct two SMDs (left-hand and right-hand sides) that do not contain
the transform matrix corresponding to the rank-deficient mode. Therefore, the
SECSI framework is applicable if at least two of the tensor modes are not rank
deficient.
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and provide a connection between the two sets of matrices

F 1 = U
[s]
1 · T 1, F 2 = U

[s]
2 · T 2, F 3 = U

[s]
3 · T 3. (16)

In the next step, these transformation matrices are estimated (in
several different ways).

2) Simultaneous Matrix Diagonalization of the Core Tensor’s
Slices: It has been shown in [41] that the n-mode slices of the
core tensor S have a direct relation to the columns of the n-
mode’s factor matrix and the transformation matrices of the other
two modes from (16). For example, if S(3)

(:,:,k) is the k-th 3-

mode slice of the modified core tensor S(3) = S [s] ×3 U
[s]
3 ∈

F
d×d×K , and ĉk is the k-th row of F 3, then

D {ĉk} = T -1
1 · S(3)

(:,:,k) · (TT
2 )

-1. (17)

Equation (17) corresponds to a non-symmetric SMD [41]. It can
be converted into a symmetric one by multiplying (17) by the
inverse of an arbitrary pivoting slice p ∈ {1, . . . ,K} from either
the right-hand side (rhs)

S(3)rhs
(:,:,k) = S(3)

(:,:,k) · (S(3)
(:,:,p))

-1 (18)

= T 1 · D {ĉk} · D {ĉp}-1 · T -1
1 , (19)

or the left-hand side (lhs)

S(3)lhs
(:,:,k) = ((S(3)

(:,:,p))
-1 · S(3)

(:,:,k))
T (20)

= T 2 · D {ĉk} · D {ĉp}-1 · T -1
2 . (21)

The slice with the smallest condition number4 is considered as
a clever choice for a pivot. As it can be seen from (19) and
(21), the transform matrices T 1 and T 2 can be estimated by
simultaneous diagonalization of all slices ofS(3)rhs andS(3)lhs,
respectively. Moreover, from the diagonal elements of the jointly
diagonalized matrices, estimates of F 3 can be obtained from
the right-hand side SMD (19) or the left-hand side SMD (21).
The ambiguity that is brought to each column by D{ĉp}-1 lies
within the scaling ambiguity that is inherent for any CPD and
can therefore be ignored. The current implementation of SECSI
employs the SMD algorithm described in [49], which builds
up the transformation matrix iteratively out of alternating shear
matrices and unitary transform matrices. The acquired T 1 (T 2)
obtained from this SMD can be used to estimate F 1 (F 2)
according to (16). After two of the three factor matrix estimates
have been found, a least squares solution for the last factor can
be computed from one of the following equations

F 1 = [T 0](1) · (F 2 � F 3)
T+,

F 2 = [T 0](2) · (F 3 � F 1)
T+,

F 3 = [T 0](3) · (F 1 � F 2)
T+. (22)

The similarity between this problem and the generalized eigen-
value decomposition (GEVD) approach that is used to initialize
the Tensorlab algorithm should be mentioned here. Whereas

4The condition number of a matrix A is defined as the ratio of its largest
singular value to the smallest singular value and quantifies the sensitivity of the
Ax = b problem to the changes in A [48].

both algorithms are essentially pencil-based, the approach
in [50] uses only two slices of the tensor to compute a generalized
eigenvalue decomposition and, subsequently, estimate the factor
matrices. In contrast, the SECSI framework uses an SMD-based
approach that examines different modes and, instead of consid-
ering only one subpencil, takes all the slices of the tensor into
account.

The authors in [51] study the performances of the pencil-
based algorithms for the CPD and state that “for every pencil-
based algorithm, there exists an open set of the rank r tensors in
R

n1×n2×n3 for which it is unstable” and the instability is caused
by a significant difference between the condition number of a
tensor rank decomposition [52] in R

n1×n2×n3 and R
n1×n2×2:

the expected condition number of a tensor rank decomposition
for n1 × n2 × 2 tensors is much larger on the average than the
tensor condition number5 for n1 × n2 × n3 tensors. The article
also states that “as n3 increases, very large condition numbers
become increasingly unlikely”. Consequently, the fact that we
consider the simultaneous matrix diagonalization of tensors of
size d× d×K ((18)–(20)), according to the aforementioned
article, greatly increases the probability of a low tensor condition
number, and consequently, leads to more stable solutions.

Another CPD algorithm that improves the accuracy of the
GEVD-based solutions is proposed in [53]. The authors in-
troduce the GESD approach that exploits not one but many
subpencils of the tensor to find the generalized eigenvectors
and eigenspaces that correspond to sufficiently well-separated
generalized eigenvalues. Two of the three factor matrices are
then obtained by combining information from the different
subpencils. The GESD algorithm outperforms the GEVD, espe-
cially for the correlated factors case, and therefore its extension
to block-term decompositions might be promising. Compared to
the GESD, SECSI does not consider the subpencils of the tensor
but all the slices jointly. Moreover, in the non-degenerate CPD
cases, the algorithm allows computing the SMDs in different
modes (not only in the 3-mode) to get the best solution.

3) Choice of the Final Estimate: As mentioned above, the
three factor matrices can either be retrieved by the left-hand
side estimate or the right-hand side estimate, which enables
a choice out of two sets of estimated factor matrices for each
mode, resulting in 6 sets of factor matrix estimates for a ten-
sor with three dimensions. The best accuracy in terms of the
reconstruction error can be achieved by considering all com-
binations of estimated factor matrices F 1, F 2, and F 3 (from
all SMDs) and choosing the combination with the smallest
reconstruction error as final estimates (“Best Matching (BM)”
approach). Since, in this case, all the combinations, including
the factor matrices from different SMDs have to be checked,
this solution is computationally quite expensive. On the positive
side, the SECSI framework offers several heuristics that allow
controlling the trade-off between performance and complexity.
Therefore, the final estimates of the framework can be chosen
according to predefined heuristics, which are based on different
selection criteria such as reconstruction error, condition number,

5Here, by “condition number” and “tensor condition number” we refer to
“condition number of tensor rank decomposition” [51], [52].
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or SMD residuals. The SECSI framework features the following
heuristics to choose from [41]:
� REC PS (reconstruction error - paired solutions): Instead

of enabling factor matrix combinations from different
SMDs as in the “BM” approach, only the combinations
that originate from the same SMD (“paired solutions”)
are evaluated. As an accuracy measure, this heuristic uses
the reconstruction error between the tensor reconstructed
from the estimated loading matrices and the original data
tensor. The set of matrices that provides the smallest re-
construction error is picked as the final output.

� RES (SMD residuals): Out of all estimates, the set of factor
matrices that originate from the “best” SMD is used, which
is the SMD whose transformation matrix T provides the
best diagonalization of the n-mode core tensor slices, thus
leaving the smallest residual error. The residual error is
defined as the average Frobenius norm of the off-diagonal
elements of the tensor slice pencils after the estimated
transformation matrices T and T -1 are applied to it.

� CON PS (condition number - paired solutions): Instead of
solving all possible SMD problems, only the two SMDs
in the mode where the pivot slice has the best condition
number are computed. The final solution is selected from
the SMD (left-hand side or right-hand side) that yields the
lower reconstruction error. Subsequently, the two solutions
are compared in terms of their reconstruction error, and the
one which yields the lower reconstruction error is returned
as the final solution. The combinations between the es-
timates from the two different SMDs are not considered
(“paired solutions”). This heuristic is the fastest since not
all SMDs have to be solved.

These heuristics allow reducing computational complexity
by offering an excellent trade-off between the complexity and
accuracy of the solution. Since the smallest possible recon-
struction error is achieved by the “best matching” approach,
we consider it as a benchmark solution that determines the
achievable reconstruction error in the SECSI framework.

The proposed BTD extension of SECSI uses new BTD
heuristics which exploit the prior knowledge of the block-term
structure of the tensor to reduce the computational load of
SECSI.

B. Extension to Block-Term Decomposition

SECSI is capable of computing an approximate CPD even in
so-called “degenerate” cases, meaning that one factor matrix has
proportional (or highly correlated) columns or if one dimension
of the tensor is smaller than the CP-rank of the tensor. In these
cases, a non-singular transformation matrix for the correspond-
ing mode does not exist. However, to be able to generate an
estimate for the CPD factor matrices of a three-way array, at
least two of the three transformation matrices have to exist and
have to be non-singular, so that (19) and (21) can be obtained. If
a BTD scenario is viewed as a special case of the CPD, one of
the CPD factor matrices must have repeated columns, leading
to a degenerate case. A CPD approximation is still possible
under these circumstances, although it is only essentially unique

(see (5) in Section II). Note that the existence of the transforma-
tion matrices coincides with one of the sufficient conditions for
essential uniqueness defined in [7].

Reducing the Computational Load of the SMDs: High nu-
merical stability of the estimates (which makes them favorable)
obtained via SECSI comes with computational cost. If we con-
sider the BTD as a special case of the CPD, we assume that one of
the factors has linearly dependent columns. This can be exploited
to decrease the computational load of the SECSI framework. For
most of the heuristics, all six possible SMD have to be calculated
in order to choose the best estimate. This is reasonable in case
of the CPD because, apart from the different dimensions of the
tensor for each of the modes, the CPD problem is a symmetrical
one and the factor matrices often feature similar mathematical
properties. In the case of a BTD however, the problem becomes
asymmetrical due to the specific rank structure, which is also one
of the reasons why two of the factor matrices are only unique up
to the product of their submatrices. Moreover, this asymmetry
affects the choice of the estimates in the last step of SECSI as
follows.

If one of the modes is rank deficient (assume the third mode in
case of the rank-(Lr, Lr, 1) BTD), the corresponding transform
matrix and the SMDs where this transform matrix is present do
not exist anymore. However, we can still construct the two SMDs
(left-hand side and right-hand side, equations (19) and (21)) in
the 3-mode. Then, the 3-mode factor matrix can be directly
obtained from the K diagonal matrices, and the remaining
factors are estimated from the transform matrix and the least
squares fit. This procedure will result in two sets of estimates
for every factor matrix.

The following numerical experiments demonstrate the prob-
abilities with which the final solutions were chosen from par-
ticular SMDs when applying SECSI on CPD- and BTD-model
tensors. First, we generate three factor matrices with CP rank
ΣLr and random complex Gaussian-distributed entries accord-
ing to the model in (14) to build up a CPD tensor. After that, a
noise tensor with a small power is added to the tensor. Then, we
decompose the noise-distorted tensor via the SECSI framework
with the “REC PS” heuristic and track which of the 6 sets of
estimated factor matrices is used as the final output. As the
histogram in Fig. 4(a) shows, there are no preferred modes in
the CPD scenario, and the final estimates can originate from all
SMDs with a non-zero probability.

The second simulation is conducted in the same way as the one
described above, but the tensor is now constructed from block-
terms according to (1) and with the multilinear rank-(Lr, Lr, 1)
structure. Whereas the first and second mode factor matrices A
and B have ΣLr distinct columns, the third mode factor matrix
C(r) has repeated columns as in (3). The results for the second
simulation are shown in Fig. 4(b). It can be seen that for the
BTD-constructed tensor in all cases one of the estimates with
the diagonalizations in the 3-mode is used, whereas no such
tendency can be seen for the CPD-constructed tensor.

These simulations demonstrate the advantages of the utiliza-
tion of different mode SMDs in the original SECSI framework
for the CPD. In a given application, we might not know be-
forehand in which mode the rank deficiency will occur. Most
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Fig. 4. Histogram of paired solutions chosen by SECSI (”REC PS”) after com-
paring their reconstruction errors. “lhs” and “rhs” refer to the left-hand side and
right-hand side transformation matrix estimate, respectively. T ∈ R20×30×40,
SNR = 50 dB. Results are averaged over 1000 Monte-Carlo trials.

of the GEVD-based algorithms, by default, are applied to the
3-mode slices and fail to obtain an accurate solution when the
rank-deficiencies occur in the other modes. SESCI, by contrast,
constructs all SMDs, and allows choosing the solution with the
best performance (in terms of the chosen selection criterion)

Nevertheless, the computation of the SMDs in all modes
increases the computational time. Therefore, we have added new
heuristics to the SECSI-framework: “REC PS BT” (reconstruc-
tion error - paired solutions - block-terms) and “RES BT” (resid-
ual error - block-terms). Similarly to the CPD-SECSI heuristics
described in Section IV-A3, they choose the final estimates based
on the reconstruction error and SMD residual error, respectively.
In contrast, to the original heuristics, they only consider the
SMDs in the 3-mode. The “REC PS BT” heuristic solves both
right-hand and left-hand side SMDs and picks the estimates
from the SMD that provides the smallest reconstruction error.
The “RES BT” heuristic computes the final estimates only from
one SMD that provides the best diagonalization in terms of the
residual error. This lowers the computation time of the SMDs
up to a factor of three (depending on which heuristic is used as
a reference).

Since in the BTD case, we only consider “paired solutions”,
i.e, the final estimates always originate from the same SMD
problem, the scaling and permutation ambiguities of the factor
matrices are consistent and do not affect the reconstruction error.

Restoring the Submatrix Structure: As it can be observed
from (1) and (3), the BTD can be transformed into a CPD
by repeating the r-th column of C in (1) Lr times. Whereas
the transformation of C from the BTD into C(r) in the CPD
is therefore rather trivial (if the submatrix structure of A and
B is assumed to be known), the reverse operation is a more
challenging task. After performing an approximate CPD on the

noise-corrupted BTD tensor, the estimated matrix Ĉ
(r)

will not
perfectly match the structure of C(r) in (4). The columns in

Ĉ
(r)

will be arbitrarily permuted and scaled, and the repeated

columns in C(r) will not be explicitly equal in Ĉ
(r)

. Therefore,
one has to find an efficient way to reduce the number of columns

of the estimated matrix Ĉ
(r)

to R columns to obtain Ĉ without
clipping off valuable information.

First, let us consider the output of the SECSI-framework. In

the noiseless case, the columns of Ĉ
(r)

are repetitions of the
columns of Ĉ in a random order. For the computation of Ĉ from

the CPD approximation Ĉ
(r)

, the submatrix structure of A and
B has to be restored. This means that the columns which belong
to the same (Lr, Lr, 1)-term need to be adjacent to each other. In
the noiseless case, this can be done by rearranging the columns

of Ĉ
(r)

so that equal columns are adjacent and by rearranging the
columns of Â and B̂ in the same way. If the tensor is disturbed

by noise, however, the repeated columns of Ĉ
(r)

become more
distinct from each other, bringing up the need for a more so-
phisticated approach. The k-means clustering, a commonly used
technique in data analysis, shows to be quite effective for this
task since it only requires the number of clusters to be known be-
forehand [54]. It is a simple, iterative algorithm that tries to find
a set of cluster centers so that the summed squared distance of all
elements to their nearest cluster center is minimized. In the BTD
context, each cluster belongs to a different (Lr, Lr, 1) block
term, and if there were no clustering errors, the r-th cluster will
contain Lr columns. In our simulations, we use the k-means++
algorithm with a distance measure defined as a cosine of an angle

between two unit-norm vectors (cos θ =
Re{cH

i cj}
‖ci‖‖cj‖ ). After the

columns of Ĉ
(r)

have been grouped into clusters, a permutation

matrix P can be retrieved that rearranges the columns of Ĉ
(r)

so that all columns that belong to the same cluster are adjacent
to each other. By multiplying Â and B̂ by the same permutation
matrix, their submatrix structure can be restored. The k-means
clustering algorithm is also used in the GEVD initialization of
the Tensorlab BTD algorithm [9]. It can be observed that in some
cases, the k-means fails to generate clusters of the desired size
from the GEVD estimates. In that event, the Tensorlab algorithm
switches to random initialization. As discussed in Section IV-A2,
these instabilities might be caused by the fact that the expected
tensor condition number of the selected two-slices subtensor
might be very high on the average, compared to the expected
tensor condition number of the more-than-two slices tensor. On
the contrary, SECSI exploits the information of all available
tensor slices which stabilizes its performance. In cases when
the Lrs are not available, we utilize k-means to estimate the
multilinear ranks. But if the multilinear ranks are known, we



2616 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 71, 2023

Algorithm 2: SECSI-BTD framework for rank-(Lr, Lr, 1)
BTD with rank estimation.

Require: 3-way tensor T
1: R̂, ˆΣLr ← LaRGEBT(T ) �Ranks est.

2: Â, B̂, Ĉ
(r) ← SECSIBT(T , ˆΣLr) �Factors in CPD

form
3: P , L̂rs← k-means(Ĉ, R) �Clustering

4: Ã, B̃, C̃
(r) ← reordering(Â, B̂, Ĉ

(r)
, L̂r, P )

5: Ãr, B̃r, c̃r ← refinement �C in BT form, ALS/NLS

employ the constrained k-means to guarantee the appropriate
cluster sizes [55]. Another approach to calculate Lr based on
Symmetric Joint Block Diagonalization (S-JBD) is proposed
in [19]. However, it still requires prior knowledge of R and
ΣLr.

V. REFINEMENTS

After clustering, the columns of Â, B̂, and Ĉ
(r)

are sorted
in a way that the columns that belong to the same submatrix
are adjacent to each other. We denote the permuted matrices

as Ã, B̃, and C̃
(r)

. Next, the following refinement steps can be
applied to generate the final block term estimates as in (1). At this

stage, the matrix C̃
(r)

still contains the colinear columns ordered
according to R clusters and needs to be brought to the BTD
form. In other words, the colinear columns have to be reduced.
To perform the reduction effectively, i.e., without cutting off any
data, we first refine the matrices Ã and B̃ in an ALS fashion as
follows

Ã = [T ](1) (B̃ � C̃
(r)
)T+, (23)

B̃ = [T ](2) (C̃
(r) � Ã)T+. (24)

This step incorporates the multiple estimates of the columns of

C̃
(r)

into Ã and B̃. Then, an estimate of C ∈ F
K×R can be

computed using equation for C̃ from the ALS-based scheme for
the BTD in [8]

C̃ = [T ](3) [(Ã1 � B̃1) · 1L1
, . . . , (ÃR � B̃R) · 1LR

]T+.
(25)

Next, to finalize the factor matrix estimation, a suitable re-
finement scheme can be applied (either using nonlinear least
squares (NLS) or alternating least squares (ALS) [8], [13]). In the
BTD-ALS procedure, the factor matrices Ã and B̃ are updated
as

Ã = [T ](1) (B̃ �sm C̃)T+, (26)

B̃ = [T ](2) (C̃ �sm Ã)T+, (27)

where �sm denotes the submatrix-wise Khatri-Rao prod-
uct defined for two matrices X = [X1, . . .,XR] ∈ F

I×ΣLr

and Y = [Y 1, . . . ,Y R] ∈ F
J×ΣLr as X �sm Y = [X1 ⊗

Y 1, . . . ,XR ⊗ Y R] ∈ C
IJ×ΣL2

r . The matrix C̃ is updated as
in (25). The NLS/ALS schemes are run until one of the stopping
criteria is met (the relative change between two successive

iterations is small, the maximum number of iterations is reached,
or the change in objective function value relative to the tensor
norm is less than a specified tolerance).

The proposed SECSI-BTD framework to compute the rank-
(Lr, Lr, 1) BTD with rank estimation is summarized in Algo-
rithm 2. For tensors with a known rank structure, step 1 can be
skipped.

VI. NUMERICAL RESULTS

In this section, we conduct simulations with synthetically
generated data to assess the performance of the proposed al-
gorithms and compare it to the algorithms from the Tensorlab
toolbox [9], [13] for computing an approximate rank-(Lr, Lr, 1)
decomposition.

The tensors for simulations are constructed according to the
rank-(Lr, Lr, 1) BTD model in (1) where the factor matrices
have been drawn from a zero mean circularly symmetric com-
plex Gaussian (ZMCSCG) distribution with unit variance, and
the noise tensor N have been formed from ZMCSCG entries
with variance σ2

n. Accordingly, the SNR is defined as 1/σ2
n.

We use two different accuracy measures, a relative squared
reconstruction error (SRE) and a relative squared factor error
(SFE), to evaluate the accuracy of an estimated BTD. The SRE
is defined as

SRE =

∥∥∥T̂ − T 0

∥∥∥2
F

‖T 0‖2F
, (28)

where T 0 is the original noise-free tensor, and T̂ is a ten-
sor reconstructed from the estimated BTD factors as T̂ =∑R

r=1(Ãr · B̃T

r ) ◦ c̃r. The SFE for the matrix C is defined as

SFE =

∥∥∥C̃ · P c −C
∥∥∥2
F

‖C‖2F
, (29)

where the matrix P c corrects the permutation and scaling am-
biguity that is inherent in the estimation of the factor matrices.
These ambiguities are resolved as follows. First, the columns of
both C̃ and C are normalized to unit norm. The permutation is
corrected by rearranging the columns in C̃ so that the inner prod-
uct c̃Hr · cr between the estimated and original factor columns
is maximized. Then, the scaling is resolved by multiplying
the estimated columns by their scalar projection c̃Hr · cr in the
direction of the original vectors cr. Whereas the matrix C can
be estimated up to scaling and column permutation ambiguities,
the multilinear factor matrices Ar and Br are only unique
up to the products of their submatrices due to the submatrix
product ambiguities show in (5). Therefore, when evaluating
the performance for the matrices Ar and Br, in case of the SFE
calculations we consider the products ArB

T
r as follows

SFE(ABT) = E

⎧⎪⎨
⎪⎩
∥∥∥ÃrB̃

T

r −ArB
T
r

∥∥∥2
F

‖ArBT
r ‖F

⎫⎪⎬
⎪⎭ , (30)
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Fig. 5. T ∈ C20×30×40 with asymmetric and symmetric multilinear rank structures. Averaged over 1000 Monte-Carlo trials.

where Ar and Br are the original factor matrices, and Ãr and
B̃r are the estimated factors after resolving the permutation and
scaling ambiguities.

We compare the estimation performances of the proposed
SECSI-BTD algorithm with the performance of the NLS algo-
rithm with GEVD initialization from [13], which has been com-
monly used in many BTD applications [26], [43], [56], [57]. For
the proposed SECSI-BTD approach, we examine both the ALS
and NLS refinement procedures. ALS stops when the change
in the reconstruction error between two successive iterations is
less than a specified threshold (10−6) or the maximum number
of iterations (30) is reached. For the NLS refinement, we use the
nonlinear least squares procedure based on Gauss-Newton with
dogleg trust region from Tensorlab [9] with its default settings.
The algorithm stops when one of the following criteria is met:
the maximum number of iterations has been reached (200), the
change in the objective function value relative to the norm of
the tensor is less than a specified tolerance (10−12), or the ratio
of the step size relative to the norm of the current iterate is less
than a specified tolerance (10−6). To ensure a fair comparison,
the rank structure is assumed to be known for all algorithms.

In the simulations, we consider four scenarios with asymmet-
ric and symmetric multilinear rank structures. In the first two
scenarios, the tensors are of size (20× 30× 40) with the rank
structures R = 3, Lr = [2, 3, 4] and R = 4, Lr = [5, 5, 5, 5].
In the other two scenarios, the tensors have a smaller 3-mode
dimension and are of size (30× 40× 15) with Lr = [2, 3, 4]
and Lr = [2, 2, 2]. The SRE and SFE performances for T ∈

C
20×30×40 and T ∈ C

30×40×15 are shown in Figs. 5 and 6,
respectively. The blue curves denote the proposed SECSI-BTD
approach with the “REC PS BT” heuristic and ALS refinement,
red lines correspond to SECSI-BTD with “REC PS BT” and
NLS refinement, the green and the light blue curves denote the
SECSI-BTD approach with the “RES” heuristic and ALS or
NLS refinements, respectively. The NLS algorithm with GEVD-
based initialization from [13] is denoted with yellow color.
Figs. 5(a), (d), 6(a), and (d) show the complementary cumulative
distribution functions (CCDF) with respect to the reconstruction
errors for all scenarios (for better visual representation without
overwhelming the figures, we plot only 10 out of 1000 markers
on the CCDF plots). The vertical dashed lines represent the mean
of the errors for each algorithm. The factor reconstruction errors
with respect to SNRs for the matrix C in different scenarios are
shown in Figs. 5(b), (e), 6(b), and (e). As it can be observed,
the proposed algorithms outperform the GEVD-based scheme
in a large range of SNRs for all scenarios. In a scenario with
Lr = [5, 5, 5, 5] (difficult scenario, since ΣLr = I = 20) the
SECSI-BTD schemes with the NLS refinement show a better
convergence behavior than the other algorithms. The CCDFs
with respect to SFE for the matrix productsArB

T
r are presented

in Figs. 5(c), (f), 6(c), and (f). As can be seen from the CCDF
plots, the GEVD scheme results in more outliers, and the pro-
posed algorithms provide better initialization and, consequently,
more stable performance in all scenarios. The explanations of
the increased robustness of the SMD-based initialization are
discussed in Section IV-A2.
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Fig. 6. T ∈ C
30×40×15 with asymmetric and symmetric multilinear rank structures. Averaged over 1000 Monte-Carlo trials.

TABLE I
AVERAGE RUN TIME OF THE ALGORITHMS IN DIFFERENT SCENARIOS [SEC]

The average run times of the algorithms for SNR = 20dB are
shown in Table I (the algorithm performances were evaluated
on an Intel Xeon Gold 6342 CPU 2.80 GHz machine running
Linux CentOS 7, kernel 3.10.0-1160.el7.x86_64 and MATLAB
R2020b 64-bit). We can observe that for the scenario with
T ∈ C

30×40×15 and Lr = [2, 2, 2], the SECSI-BTD with ALS
refinement is almost three times faster than the GEVD-NLS and
SECSI-NLS algorithms, which show similar time performance.
In case of the scenario with T ∈ C

30×40×15 and Lr = [2, 3, 4],
the algorithms show a comparable time performance with the
SECSI-BT-ALS being slightly faster on average. For the sce-
narios with T ∈ C

20×30×40 the proposed algorithms are slower
than the GEVD-NLS solutions. However, considering that the
SECSI-BTD schemes provide more accurate and reliable error
performance results, they can be an appealing solution for ap-
plications where accuracy is more important. Moreover, SECSI-
BTD is still faster than the GEVD-based approaches for the cases
where the dimension in the rank-deficient mode is smaller than

in other modes. These differences in the computational time
performances are explained by the fact that the rank-deficient
mode determines the dimensionality of the SMD problem: it
increases the number of matrices to be jointly diagonalized.
Similary, the time increase in the third scenario is related to
the increased sizes of simultaneously diagonalized matrices
(ΣLr = 20). However, for these scenarios, the complexity might
still be decreased by considering a more efficient diagonalization
algorithm than in [49].

VII. CONCLUSION

In this article, we have exploited the connection between
the Canonical Polyadic and the rank-(Lr, Lr, 1) block-term
decompositions and presented the SECSI-BTD framework to
compute an approximate rank-(Lr, Lr, 1) BTD. We have di-
vided the proposed algorithm into three main blocks, which
include the rank structure estimation, the initial estimation of
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the BTD factors, and a final refinement procedure. For the rank
structure estimation, we have introduced an extension of the
LaRGE technique for CPD model order estimation to estimate
the number of blocks and the sum of Lrs in the BTD. Moreover,
a procedure that uses clustering for the estimation of multilinear
ranks has been presented. Furthermore, we have shown how the
Semi-algebraic framework for approximate CPD via Simulta-
neous Matrix Diagonalizations (SECSI) can be employed for
the computation of the initial BTD factors. Additionally, new
heuristics have been added to the original algorithm to reduce the
computational time and make the estimation more efficient. In
the last block of the algorithm, we have presented the clustering
and refinement procedures that return the final rank-(Lr, Lr, 1)
decomposition estimates. The simulation results have shown that
the proposed SECSI-BTD algorithm outperforms the state-of-
the-art techniques in terms of accuracy and robustness, espe-
cially in the context of factor reconstruction errors. The run
time simulations show that the time complexity depends on the
ranks and dimensionality of the rank-deficient mode, and the
algorithm is faster than the state-of-the-art schemes for some
scenarios. Moreover, our algorithm does not require multiple
initializations or a known rank structure. However, it can still
take advantage of the known ranks when available, which makes
it more flexible than the existing techniques in the literature.
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