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Abstract—Coupled tensor decompositions proved to be a valu-
able tool for many signal processing applications, including
biomedical data analysis, source separation, data fusion, and
many others. In this paper, we present an algorithm to calculate
the coupled (BTD) of multiple three-dimensional tensors with
a coupled mode and possibly an unknown rank structure. The
proposed approach is composed of three main parts, the first is an
extension of the linear regression of global eigenvalues (LaRGE)
technique to estimate the number of blocks and sum of multilinear
ranks in the coupled tensors. The second part accounts for the
calculation of the preliminary multilinear factors of the coupled
BTD by means of the semi-algebraic framework for approximate
CP decompositions via simultaneous matrix diagonalizations
(SECSI). The last part contains the final refinement procedures
that return the estimated BTD factors. Moreover, we provide some
synthetic data simulations showing that the proposed algorithm
demonstrates more stable and accurate results than the schemes
from the literature.

Index Terms—Coupled factorization, block-term decomposi-
tion, data fusion, tensor decomposition.

I. INTRODUCTION

The apparent popularity of tensors in all possible signal
processing areas is an eloquent indication that they are evi-
dently an effective and promising tool for many applications,
from statistics and communications to linguistics and big data
analysis. Apart from their mild uniqueness conditions and data
structure preserving qualities, tensor decompositions provide
effective denoising and feature extraction capabilities [1].

The focus of this paper falls on the block-term decomposi-
tions (BTD), to be more specific, on the coupled decomposition
in rank-(Lr, Lr, 1) terms. Although, it might be not yet as
wildly used as, for example, the Higher-Order Singular Value
Decomposition (HOSVD) [2], [3] or the Canonical Polyadic
Decomposition (CPD) (sometimes also referred to as CAN-
DECOMP or PARAFAC) [4], [5], the BTDs prove to be
particularly interesting for applications where the data have a
heterogeneous rank structure and possess collinearity is some
of the modes. There are some variations in the definitions
of the block-term decomposition based on the ranks of the
block-terms. These definitions, uniqueness conditions, and the
algebraic and optimization-based algorithms are well described
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Foundation (DFG) under grant no. HA 2239/14-1 (AdAMMM) and grant no.
ZH 640/2-1 (AdAMMM).

in [6]–[11]. From the applications point of view, the rank-
(Lr, Lr, 1) block-term decomposition appears to be the most
attractive one. It has found its applications in communications,
biomedical data processing, image and graph analysis, and
many others [12]–[22]. Commonly, when it comes to appli-
cations, the question that arises before applying any low-rank
approximation concerns the rank of the tensor. Given that it
is rarely known beforehand, one should find a way to define
it. Some techniques to estimate the factors and the ranks of a
single block-term tensor are introduced in [23]–[26].

Another direction, in which the BTDs are evolving, is the
computation of coupled decompositions and data fusion. Many
applications that have multiple related data sets to be analyzed
can genuinely benefit from coupled factorizations. They often
provide more flexible uniqueness conditions and improved
feature extraction capabilities, and thus deeper insights into
the data. The studies on the uniqueness and the algorithms for
coupled decompositions, including the coupled BTD, can be
found in [27]–[30].

In this paper, we propose a new approach to estimate
the factors of the coupled block-term decomposition of mul-
tiple tensors with a common mode based on the coupled
extension of the semi-algebraic framework for approximate
CP decompositions via simultaneous matrix diagonalizations
(SECSI) [31], [32]. Moreover, we show how the multilinear
rank structure of the coupled rank-(Lr, Lr, 1) decomposition
can be estimated based on the extension of the linear regression
of global eigenvalues (LaRGE) and clustering techniques.
The simulation results show that compared to the algorithm
in [30], [33], which requires a known rank structure to perform
the decomposition, the proposed algorithm is more accurate,
numerically stable, and can perform the decomposition even if
the ranks are not available beforehand.

Notation. Matrices and vectors are denoted by upper-case
(A) and lower-case (a) bold-faced letters, respectively. Bold-
faced calligraphic letters denote tensors (A). The superscripts
{·}T and {·}H denote the transpose and Hermitian transpose,
respectively. The Khatri-Rao and outer products are denoted as
⋄ and ◦, respectively. Additionally, we denote the higher-order
norm of a tensor A by ∥A∥H, and the Frobenius norm of a
matrix A by ∥A∥F. The n-mode unfolding of the tensor A is
denoted as [A](n) (we use the reverse cyclical ordering of the
columns [2]). The n-mode product between a tensor A and a
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matrix B is written as A×nB. Id,R denotes a super-diagonal
d-dimensional tensor of size R× · · · ×R with elements equal
to one if all d indices are equal and zero otherwise, and 1R is
a column vector of ones of size R.

II. DATA MODEL

Let us consider a set of M noise-corrupted three-dimen-
sional tensors X (m) ∈ CI

(m)
1 ×I

(m)
2 ×I3 with the third mode in

common. Then the coupled rank-(Lr, Lr, 1) BTD of M tensors
can be written as follows

X (m) = X (m)
0 +N (m) =

R∑
r=1

(
A(m)

r ·B(m)T
r

)
◦ cr +N (m)

(1)

= I3,ΣLr ×1 A
(m) ×2 B

(m) ×3 C
o +N (m), (2)

where m ∈ {1, . . . ,M}, and R is a number of block-terms
with ranks Lr, r ∈ {1, . . . , R} (we assume that the multilinear
ranks L

(m)
r are equal for all M tensors (L(1)

r = L
(2)
r = . . . =

L
(m)
r = Lr), which is usually the case for the coupled data

sets1). For simplicity of notation, ΣLr refers to
∑R

r=1 Lr.
Moreover, X (m)

0 ∈ CI
(m)
1 ×I

(m)
2 ×I3 is a noise-free BTD tensor,

and N (m) ∈ CI
(m)
1 ×I

(m)
2 ×I3 is an additive noise tensor. The

factors A
(m)
r ∈ CI

(m)
1 ×Lr can be stacked in a matrix A(m)

as A(m) = [A
(m)
1 ,A

(m)
2 , ...,A

(m)
R ] ∈ CI

(m)
1 ×ΣLr , and the

individual factors B
(m)
r ∈ CI

(m)
2 ×Lr are represented as a

submatrices of B(m) = [B
(m)
1 ,B

(m)
2 , ...,BR] ∈ CI

(m)
2 ×ΣLr .

The common vectors cr are stacked in the matrix C =
[c1, c2, ..., cR] ∈ CI3×R. Then, it can be seen from (2), that
the BTD in (1) may be viewed as a CP decomposition with
CP-rank ΣLr and with repeated or linearly depended columns
in Co

Co =
[
c1 · 1T

L1
, c2 · 1T

L2
, · · · , cR, ·1T

LR

]
∈ CI3×ΣLr . (3)

In this paper, we use this link between the two decompositions
to first calculate the initial estimates in the coupled CPD form
and subsequently convert them to coupled BTD factors.

III. RANK STRUCTURE ESTIMATION

Since in most of the tensor decomposition applications the
rank structure is usually unknown, its correct estimation be-
comes essential in relation to low-rank tensor decompositions.
While a number of algorithms for CPD rank estimation are
available in the literature, there are not yet many options
for block-term decompositions. Moreover, to the best of our
knowledge, there are no techniques devoted to the estimation of
ranks in coupled BTD models. Therefore, in this contribution,
we present an extension of the LaRGE technique [34], [35]
to estimate the rank structure of the coupled rank-(Lr, Lr, 1)
decomposition. The LaRGE algorithm estimates the CP-rank
of a tensor by performing a linear regression of its noise
eigenvalues, which commonly follow an exponential decline,
i.e., a linear decline on a logarithmic scale. Since the signal

1Ranks can be different across the block-terms r.

eigenvalues do not posses the same property, the linear appro-
ximation will fail when reaching signal eigenvalues, which will
indicate the detection of the rank. In the following, we present
the extension of LaRGE for coupled BTD rank estimation.

Given a set of M noise-corrupted three-dimensional tensors
X (m) ∈ CI

(m)
1 ×I

(m)
2 ×I3 as in (1), the coupled HOSVD of

X (m) can be written as

X (m) = S(m) ×1 U
(m)
1 ×2 U

(m)
2 ×3 U3, (4)

where S(m) ∈ CI
(m)
1 ×I

(m)
2 ×I3 are the core tensors, U (m)

1 ∈
CI

(m)
1 ×I

(m)
1 and U

(m)
2 ∈ CI

(m)
2 ×I

(m)
2 are composed of the left

singular vectors of the 1- and 2-mode unfoldings of X (m)

computed from [X (m)](n) = U
(m)
n Σ

(m)
n V

(m)H
n , where Σ

(m)
n

contains the n-mode singular values σ
(m)
(n),i, n ∈ {1, 2} on

its main diagonal. U3 ∈ CI3×I3 is the common unitary
matrix calculated from the SVD of the concatenated 3-mode
unfoldings of X (m) [32], and therefore, σ(m)

(3),i is common for
all tensors. For model order estimation, we are interested in
the first J = min{I3, I(m)

n } singular values.
Due to the asymmetric rank structure, we divide the rank

estimation processes into two separate procedures. In the first
run, only the semi-global eigenvalues λ̃

(m)
(1,2),i, i = {1, . . . , J}

λ̃
(m)
(1,2),i =

(
σ
(m)
(1),i

)2
·
(
σ
(m)
(2),i

)2
(5)

from the 1- and 2-mode are used to estimate ΣLr. To take into
account the information from all coupled tensors, we compute
the geometric mean of M semi-global eigenvalues in (5) as
follows

λ̃(1,2),i =
M

√
λ̃
(1)
(1,2),i · λ̃

(2)
(1,2),i · ... · λ̃

(M)
(1,2),i. (6)

Since there are rank deficiencies in the 3-mode, we consider it
separately to estimate the number of block-terms R using the

3-mode eigenvalues λ̃
(m)
(3),i =

(
σ
(m)
(3),i

)2
averaged along all M

tensors as

λ̃(3),i =
M

√
λ̃
(1)
(3),i · λ̃

(2)
(3),i · ... · λ̃

(M)
(3),i. (7)

Then, the linear regression is applied separately to λ(1,2),i =

ln
(
λ̃(1,2),i

)
and λ(3),i = ln

(
λ̃(3),i

)
to estimate ΣLr and

R, respectively. For notational convenience, in the following,
we simply use λi which will refer either to λ(1,2),i or λ(3),i,
depending on which rank, ΣLr or R, is to be estimated. The
estimation starts from the smallest noise eigenvalue (i = J),
and subsequently finds a linear prediction λ̂i by moving up the
scale. For each step k in the prediction, the relative prediction
error is computed as

δJ−k =
λJ−k − λ̂J−k∣∣∣λ̂J−k

∣∣∣ =
∆J−k∣∣∣λ̂J−k

∣∣∣ , (8)

followed by the standard deviation of the approximation error

σJ−k =

√√√√1

k

J−k∑
i=J

(
∆i −

1

k

J−k∑
i=J

∆i

)2

, (9)
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Fig. 1: PoD vs. Threshold. Simulation parameters: ΣLr = 9, R = 3,
Lr = [2, 3, 4] (asymmetric), SNR = −11 dB; ΣLr = 20, R = 4,
Lr = [5, 5, 5, 5] (symmetric), SNR = −5 dB. 300 Monte-Carlo trials.

where ∆i is the absolute prediction error. Then, by computing
the ratio between the relative prediction error and the standard
deviation of the approximation errors in the previous steps
as PESDRk = δJ−k

σJ−k−1
, the algorithm can detect the first

signal eigenvalue (corresponding either to ΣLr or R) if the
Prediction Error to Standard Deviation Ratio (PESDR) exceeds
the predefined threshold ρ for the first time. For a more
detailed description of the LaRGE algorithm, we refer the
reader to [34], [35]. Fig. 1 shows the probabilities of detection
(PoD) with respect to a threshold ρ for the estimation of ΣLr

(Fig. 1(a)) and R (Fig. 1(b)), respectively. For this simulation,
we generated two and four coupled BTD tensors X (1)

0 ∈
C50×60×70, X (2)

0 ∈ C52×60×70, X (3)
0 ∈ C54×60×70, and

X (4)
0 ∈ C55×60×70 with the 3-mode in common, and added

zero mean circularly symmetric complex Gaussian (ZMCSCG)
noise. The SNR is −11 dB in the asymmetric case and −5 dB
in the symmetric case. For higher SNRs, the PoD tends to one
for all ρs in the considered range. As it can be observed, the
threshold value does not depend on the number of tensors and
is approximately equal to 0.75 for ΣLr and to 3.0 for R.

IV. CPD-BASED COMPUTATION OF THE COUPLED
RANK-(Lr, Lr, 1) BTD

We divide the proposed BTD algorithm into three main
parts, an initial estimation step based on the simultaneous ma-
trix diagonalizations (SECSI), clustering, and final refinements,
which will be explained in the following.

Initial coupled BTD estimates via coupled CPD: In order
to compute the initial coupled BTD estimates, we employ
the SECSI framework for the coupled CPD. The coupled
decomposition with rank ΣLr is performed on the BTD tensors
as in (2). SECSI utilizes the simultaneous matrix diagonaliza-
tion (SMD) [36] approach that defines several heuristics to
enhance the accuracy of the CP decomposition [31], [32]. The
main steps of SECSI include the computation of the truncated
HOSVD and a subsequent estimation of the transformation
matrices that represent the connection between the CPD and
truncated HOSVD. Assuming that the coupled HOSVD has
been previously computed in the rank estimation step in (4), it
can be directly truncated without calculating the full HOSVD
again. Assuming the noiseless case, the coupled truncated
HOSVD of M tensors X (m)

0 with the third mode in common

is written as

X (m)
0 = S [s](m) ×1 U

[s](m)
1 ×2 U

[s](m)
2 ×3 U

[s]
3 , (10)

where S [s](m) ∈ CΣLr×ΣLr×ΣLr are the core tensors, and
a set of truncated unitary matrices U

[s](m)
1 ∈ CI

(m)
1 ×ΣLr ,

U
[s](m)
2 ∈ CI

(m)
2 ×ΣLr , and U

[s]
3 ∈ CI3×ΣLr span the column

space of the corresponding n-mode unfolding of X (m)
0 . Given

that these unitary matrices share the same column space as the
CPD factors in (2), the CPD factor matrices can be expressed
through three non-singular transform matrices T

(m)
1 , T

(m)
2 ,

and T3 as follows
A(m) = U

[s](m)
1 T

(m)
1 , B(m) = U

[s](m)
2 T

(m)
2 ,

Co = U
[s]
3 T3.

(11)

The inverses of the transform matrices diagonalize the core
tensors S [s](m). Thus, if we consider, for instance, a tensor
S(m)

3 such that S(m)
3 = S [s](m) ×3 U

[s]
3 , and a tensor D3 =

I3,ΣLr
×3 Co, then S(m)

3 = D3 ×1 T
(m)
1 ×2 T

(m)
2 , where

every ith 3-mode slice of D3 is a diagonal matrix D3,i with
the ith row of Co on its main diagonal. The previous equation
can be rewritten as

S
(m)
3,i = T

(m)
1 D3,iT

(m)T
2 , (12)

where S
(m)
3,i is the ith 3-mode slice of S(m)

3 , i ∈ {1, . . . , I3}.
By multiplying (12) from either the right-hand side (rhs) or
the left-hand side (lhs) by an arbitrary pivot slice (S

(m)
3,p )-1,

p ∈ {1, . . . , I3}, the asymmetric SMD problem in (12) can be
transformed to a symmetric one

S
(m)rhs
3,i = S

(m)
3,i

(
S

(m)
3,p

)-1

= T
(m)
1

(
D3,iD3,p

-1
)(

T
(m)
1

)-1
,

(13)

S
(m)lhs
3,i =

((
S

(m)
3,p

)-1
S

(m)
3,i

)T

= T
(m)
2

(
D3,iD3,p

-1
)(

T
(m)
2

)-1
.

(14)

Consequently, the transform matrices T
(m)
1 and T

(m)
2 can

be estimated by means of SMD [37]. The matrix Co can
be then retrieved from the jointly diagonalized matrices D3,i

up to one scaling ambiguity per column, and for each SMD
problem (rhs or lhs), the factors A(m) and B(m) are ob-
tained either from (11) or from a Least Squares (LS) fit as
A(m) = [X (m)

0 ](1) · (B(m) ⋄ Co)T+ or B(m) = [X (m)
0 ](2) ·

(Co ⋄A(m))T+. Similar SMD problems can be constructed by
multiplying the core tensors S [s](m) by U

[s](m)
1 or U [s](m)

2 in
the 1-mode or the 2-mode, respectively. This, in general, will
lead in total to 2 + 4M SMD problems, and thus 4 + 2M
estimates of the third factor matrix and six sets of estimates
of non-coupled factor matrices [32]. Then the final best set
of factor estimates can be chosen according to a predefined
heuristic [31]. However, we have observed in practice, that in
contrast to the CPD model data, the BTD constructed data
always lead to the final estimates chosen from the 3-mode
SMDs. Therefore, to estimate the BTD factors by means of
SECSI, we only solve the SMDs in (12). Due to the page
limitations, we refer the reader to [31], [32] for more details
on the SECSI and coupled SECSI frameworks.
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Clustering: The solution of SMDs in (13) or (14) leads
to initial estimates Â(m), B̂(m), and Ĉo(m) in the CPD form.
Therefore, in the next step, the matrix Ĉo(m) with collinear
columns has to be brought to the proper BTD form, which can
be done by k-means clustering. By applying the clustering to
Ĉo(m), we retrieve permutation matrices P (m) which assign
each column in Ĉo(m) to one of the R clusters. Additionally,
the k-means finds the optimal number of elements in each
cluster (Lr). Therefore, it can be also employed in cases when
the multilinear ranks are not known. For the cases with a
known rank structure, clustering with size constraints can be
used [38]. By multiplying Â(m), B̂(m), and Ĉo(m) by the
permutation matrices P (m), we rearrange their columns in a
way that the columns corresponding to rth block are grouped
together and follow the correct order as in the description
of (1). These permuted factors are denoted as Ã(m), B̃(m),
and C̃o(m).

Final refinements: To return the final BTD estimates of
A

(m)
r , B

(m)
r , and cr, the collinear columns in C̃o(m) have

to be reduced. This can be performed by one ALS iteration
as follows. First, recalculate Ã(m) and B̃(m) with a current
C̃o(m) as Ã(m) = [X (m)](1) ·(B̃(m) ⋄C̃o(m))T+, and B̃(m) =

[X (m)](2) · (C̃o(m) ⋄ Ã(m))T+. Then the submatrices in C̃o(m)

are reduced to vectors as follows [8]

C̃(m) = [X (m)](3)·

·
[(

Ã
(m)
1 ⋄ B̃(m)

1

)
1L1 , · · · ,

(
Ã

(m)
R ⋄ B̃(m)

R

)
1LR

]T+
.

(15)

Since there are M similar estimates of C, we choose the one
with the smallest reconstruction error, and use the obtained
Ã(m), B̃(m), and C̃ as an initialization of the Nonlinear Least
Squares (NLS) algorithm in [30].

V. NUMERICAL RESULTS

In this section, we compare the performances of the pro-
posed coupled BTD algorithm with the algorithm from the
Tensorlab toolbox which is based on the Structured Data
Fusion via Nonlinear Least Squares (SDF-NLS) in [30]. For
the simulations, we have generated two coupled BTD tensors
X (1)

0 ∈ C50×60×70 and X (2)
0 ∈ C54×60×70 according to the

model in (1), and added the noise tensors N (m) containing
ZMCSCG entries with variance σ2

n. Accordingly, the SNR is
defined as 1/σ2

n. The 3-mode is in common.
We use two metrics to compare the performances, squared

reconstruction error (SRE) and squared factor reconstruction
error (SFRE)

SRE =

∥∥X̂ 0 −X 0

∥∥2
H

∥X 0∥2H
, SFRE =

∥∥∥F̂ · Pc − F
∥∥∥2
F

∥F ∥2F
, (16)

where X̂ 0 is a tensor reconstructed from the estimated BTD
factors, F and F̂ denote the original and estimated factors
C or (A

(m)
r B

(m)T
r ), respectively. The matrix Pc resolves the

permutation and scaling. The errors for A(m) and B(m) are
shown together due to inherent matrix product ambiguities [7].
The complementary cumulative distribution functions (CCDFs)
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Fig. 2: CCDF vs. Reconstruction errors. SNR = 20 dB. Red and
magenta lines with crosses denote the proposed algorithm, and blue
and green lines with circles denote the Tensorlab [30], [33] algorithm.
Simulation parameters: R = 3, Lr = [2, 3, 4] (asymmetric); R = 4,
Lr = [5, 5, 5, 5] (symmetric). 300 Monte-Carlo trials.

of SRE and SFRE are presented in Fig. 2. The errors for
(A

(m)
r B

(m)T
r ) are averaged across all values of r. C-SECSI-

NLS corresponds to the NLS initialized with the proposed
coupled SECSI-based approach, and GEVD-NLS denotes the
generalized eigenvalue decomposition based initialization. As
it can be seen, the proposed algorithm significantly outper-
forms the GEVD-NLS. It can be explained by the fact that in
contrast to the GEVD in [33], the SECSI framework uses an
SMD-based approach which takes all the slices of a tensor into
account and chooses the best estimate instead of considering
only one pencil in GEVD, which makes its performance more
stable.

VI. CONCLUSIONS

In this paper, we have introduced a new algorithm to
estimate the factors of the coupled rank-(Lr, Lr, 1) BTD of
multiple tensors with a common mode based on the coupled
extension of the semi-algebraic framework for approximate
CP decompositions via simultaneous matrix diagonalizations
(SECSI). Additionally, we have shown how the multilinear
rank structure of the coupled rank-(Lr, Lr, 1) decomposition
can be estimated based on the extension of the LaRGE scheme
and clustering techniques. The numerical results demonstrate
that compared to the GEVD-based approach in [30], [33],
the proposed SECSI-based initialization guaranties the conver-
gence, and therefore is more accurate and numerically stable.
Moreover, in contrast to [30], [33], our approach allows per-
forming the decomposition even if the ranks are not available
beforehand. Therefore it can be further used in real data ap-
plications with unknown rank structure, for instance, in EEG-
MEG, since these signals are usually recorded simultaneously
and thus exhibit coupling.
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