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ABSTRACT

In this paper, we present an analytical proof of equivalence of
the signal processing in the reduced aperture element space
and in beamspace produced by the combination of multiple
adjacent DFT beams with a subsequent constraining of the
resulting magnitudes. This link finds applications in millime-
ter wave (mmWave) communications and radars that are typ-
ically equipped with a small number of RF chains and em-
ploy hybrid beamforming with analog phase shifters. This
result unifies the transceiver designs, reduces complexity, and
proves the applicability of state-of-the-art beamspace-based
methods. It has a special implication for channel estimation
at the initial stage when terminals acquire coarse estimates of
the Sectors-of-Interest (SoIs). We show that the constrained
groups of beams are equivalent to DFT beamformers of a
smaller size aperture and present a closed-form expression of
the corresponding effective aperture length as a function of
the number of beams. We also derive an approximation of
this expression to find the indices of the active array elements
in a closed form. Finally, we verify this theory and analyze
the accuracy of the proposed approximation using numerical
simulations.

Index Terms— Hybrid beamforming, DFT beampace,
aperture reduction, constrained combination of DFT beams

1. INTRODUCTION

Hybrid beamforming architectures [1], [2] are character-
ized by a relatively small number of digital branches (or RF
chains) which are connected to a large number of antennas
via a network of analog phase shifters. Such an analog part
can be seen as a beamspace transformation block that projects
the input signals at the antennas to a lower dimensional space
of RF chains. This is the reason why beamspace algorithms
have become a common approach for signal processing at
mmWave frequencies [1], [2]. At the same time, many hy-
brid beamforming algorithms for the mmWave frequency
range require prior information about the spatial locations
of the dominant paths for proper operation. Different well-
known subspace-based high-resolution parameter estimation
techniques such as Beamspace MUSIC [3], Beamspace ES-

PRIT [4], including the recently proposed R-D Unitary Ten-
sor ESPRIT in DFT beamspace [5] can be applied to solve
this task.

This work is a result of our investigations on methods for
initial (coarse) channel estimation for wireless communica-
tions and radars operating in the millimeter wave frequency
range. In [5] we have proposed a two-step channel estimation
algorithm to obtain accurate information about the parame-
ters of dominant multipath components. However, the current
implementation requires two different algorithms which in-
creases the complexity of the proposed solution. The link pre-
sented in this paper allows us to replace R-D Tensor-ESPRIT
in element space by R-D Tensor-ESPRIT in DFT beamspace
in [5] because we can consider the aperture reduction as an
operation that makes the DFT beams wider without changing
their shape. As a result, we can reduce the hardware complex-
ity and unify the design of the channel estimation module for
the mmWave transceiver.

In this paper, we present a link between the aperture re-
duction in element space and the combination of multiple ad-
jacent DFT beams with the subsequent projection of the re-
sulting amplitudes in the beamspace. We analytically prove
this link, present the derivation of it, and show the expression
for the indices of the active antenna elements after projection.
Moreover, we present a closed-form expression of the effec-
tive aperture length as a function of the number of beams.

In this paper, we follow the same notation as in [5].

2. SYSTEM MODEL

In this investigation, we focus only on uniform linear arrays
at the receiver side with M antennas. However, the presented
results can be extended to the transmitter side and to differ-
ent array configurations, for example, to uniform rectangular
arrays. Without loss of generality, we also assume that M is
an even number. The spacing between elements is equal to ∆.
We define the aperture length normalized by the inter-element
spacing of the linear array asA =M . The array steering vec-
tor a(µ) ∈ CM×1 is defined as

a(µ) = α(µ) · e−j(
M−1

2 )µ ·
[
1 ejµ · · · ej(M−1)µ

]T
, (1)IC
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where µ(θ) = − 2π
λ ∆sin(θ) is the spacial frequency, while θ

is the corresponding angle of arrival (AoA), α(µ) represents
the complex response of each antenna element as a function
of the spatial frequency µ. Further, we assume α(µ) = 1.
We choose the phase center of the antenna array to be in the
middle of the array aperture.

For the beamforming vector, we use the phase-shifted
columns of a DFT matrix. The column wk ∈ CM×1 is
defined as

wk =
[
w

(0)
k · · · w

(m)
k · · · w

(M−1)
k

]T
= e−j(

M−1
2 )γk ·

[
1 ejγk ej2γk · · · ej(M−1)γk

]T
, (2)

where γk = k 2π
M , k ∈ {0, 1, . . . ,M − 1} is the phase in-

crement between two adjacent antenna elements that corre-
sponds to the spatial frequency of the pointing direction [6].

The DFT beamspace manifold for the k-th beam can be
expressed as bk(µ) = wH

k a(µ), which after inserting the defi-
nition of the steering vector a(µ) and the beamforming vector
wk can be written as in [6]

bk(µ) = e−j(
M−1

2 )(µ−γk) ·
M−1∑
m=0

ejm(µ−γk). (3)

Then we can simplify the expression (3) by applying the sum-
mation rule for the geometric progression SM = qM−1

q−1 and

taking into account that ejα−e−jα

2j = sin (α) as

bk(µ) =
e−j

M
2 (µ−γk)

e−j
1
2 (µ−γk)

· e
jM(µ−γk) − 1

ej(µ−γk) − 1
=

sin
(
M
2 (µ− γk)

)
sin

(
1
2 (µ− γk)

) .
(4)

3. EQUIVALENCE FORMULATION

In this section, we derive a closed-form expression of the ef-
fective aperture length as a function of the number of beams.

First, we consider the average1 the corresponding weights
for two consecutive DFT beams. We start with evaluating the
amplitudes of the beamforming vector and then analyze the
resulting beam pattern.

For two beamforming vectors wk and wk+1, the resulting
amplitude w(m)

c at the antenna element with the index m can
be written as

w
(m)

c,k+ 1
2

=
1

2

(
w

(m)
k + w

(m)
k+1

)
= e

j(m−M−1
2 )γk+1

2 · cos
[(
m− M − 1

2

)
π

M

]
, (5)

where we used γk+ 1
2
=

(
k + 1

2

)
2π
M and the property ejα+e−jα

2 =

cos (α).

1Averaging instead of summation ensures that the magnitudes of the re-
sulting coefficients will be within the range [0, 1].

As we can see from expression (5), the resulting beam is
pointing in the direction between the two beams

(
k + 1

2

)
2π
M

while the change in the magnitude over the array aperture is
determined by the cosine function that has the largest value
near the middle of the aperture cos

(
1
M · π

2

)
≈ 1 and the low-

est values at the edges cos
(
M−1
M · π

2

)
≈ 0 for an even value

of M .
Then we round the resulting amplitudes to the closest in-

teger value (0 or 1) to perform the projection onto a finite
set of allowable values. We can find the indices of the active
antenna elements with the unit amplitude if we consider the
amplitude of the expression (5)

cos

[(
m− M − 1

2

)
π

M

]
≥ 1

2
. (6)

From where we can get the argument as

−π

3
≤
[(
m− M − 1

2

)
π

M

]
≤ π

3
,

M − 1

2
− M

3
≤ m ≤ M − 1

2
+
M

3
. (7)

The expression (7) allows us to find the indices of active ar-
ray elements to broaden the resulting beamforming vector and
satisfy constraints imposed on the beamforming amplitudes.

It can also be shown that the resulting beam pattern as a
function of the direction of arrival might be found as

bcp,k+ 1
2
(µ) = e

−j(M−1
2 )

(
µ−γ

k+1
2

)
·
⌊ 5M−3

6 ⌋∑
m=⌈M−3

6 ⌉
e
jm

(
µ−γ

k+1
2

)

≈
sin

(
2
3M

2

(
µ− γk+ 1

2

))
sin

(
1
2

(
µ− γk+ 1

2

)) . (8)

For large values of M the expression in (8) can be treated as
an exact one rather than as an approximation. As a result, we
can see that this projection leads to the DFT-shaped beams
but with an increased angular width of the resulting mainlobe
in the far-field.

Moreover, it can be observed that for large M the lower
bound of the effective normalized aperture for the constrained
combination of two beams is equal to
A(eff)(B = 2;M) =

⌊
2
3M

⌋
.

Following the same procedure, we can show that the in-
dices of the active antenna elements in case of taking the av-
erage of three consecutive beams can be found as

M − 1

2
− M

2π
cos−1

(
1

4

)
≤ m ≤ M − 1

2
+
M

2π
cos−1

(
1

4

)
.

(9)

The lower bound of the length of the resulting effective nor-
malized aperture in this case is equal to

A(eff)(B = 3;M) =

⌊
2 · cos−1

(
1
4

)
2π

M

⌋
≈

⌊
5

12
M

⌋
. (10)
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Next, we show that the m-th element of the resulting vec-
tor wc after the summation over B consecutive beams can be
written as

w
(m)

c,k+B−1
2

=
1

B
·
B−1∑
l=0

w
(m)
k+l =

1

B
·
B−1∑
l=0

ej(m−M−1
2 )(k+l) 2π

M

=
1

B
· ej(m−M−1

2 ) 2π
M k ·

B−1∑
l=0

ej(m−M−1
2 ) 2π

M l, (11)

which by applying the same properties that we used to sim-
plify the expression (3) leads to

ej(m−M−1
2 )(k+B−1

2 ) 2π
M ·

sin
[(
m− M−1

2

)
π
MB

]
B sin

[(
m− M−1

2

)
π
M

] . (12)

The resulting beam is pointing in the direction of the center
of the group of B beams with the corresponding spatial fre-
quency of

(
k + B−1

2

)
2π
M , while the amplitudes over different

array elements are defined by the second term of the expres-
sion (12).

After that, we turn to find the general expression for the
active elements of the array after constraining the resulting
magnitude. To this end, we need to find such indices m that
will satisfy the following expression

sin
[(
m− M−1

2

)
π
MB

]
B sin

[(
m− M−1

2

)
π
M

] ≥ 1

2
. (13)

The expression (13) has no analytical solution and might
be solved only approximately. However, we show that the
accuracy of this approximation is sufficient for practical ap-
plications.

For small values of the argument, i.e., when M is large,
one can approximate the expression by a si () function

sin (αx)

α sin (x)
≈ sin (αx)

αx
= si (αx)

!
=

1

2
, (14)

which we can further approximate using the first three com-
ponents of the Taylor series

si (αx) ≈ 1− (αx)2

3!
+

(αx)4

5!

!
=

1

2
(15)

for the range of the main lobe of the si () function. We are
interested in the solutions of the expression (15) that are close
to the origin. They can be found analytically by solving the
equation (15) of the 4-th order and are equal to

x = ±
√

10−
√
40

α
= ±ψ0

α
≈ ± 2

α
, (16)

where ψ0 =
√
10−

√
40 .

Using the approximation (14) and the solution (16) we can
find the indices of the active antenna elements in (13) for the

combination of B beams as

− ψ0 ≤
(
m− M − 1

2

)
π

M
B ≤ ψ0,

M − 1

2
− ψ0

M

πB
≤ m ≤ M − 1

2
+ ψ0

M

πB
, (17)

while the corresponding general expression for the lower
bound of the effective normalized aperture length is equal to

A(eff)(B;M) ≈
⌊
2ψ0

πB
M

⌋
. (18)

The resulting beam pattern for B consecutive DFT beams af-
ter projection onto the weights {0, 1} can be written as

bcp,k′(µ) ≈
sin

(
M ′

2 (µ− γk′)
)

sin
(
1
2 (µ− γk′)

) , (19)

where k′ = k + B−1
2 is the spatial center of the resulting

beam andM ′ = 2ψ0

πBM is the effective size of the normalized
aperture after projection.

We should keep in mind that the resulting expression (17)
for the indices is based on the approximation (14) that is valid
only for large values M and B. As a result, for B = {2, 3}
this expression might lead to inaccurate results. Thus, for rel-
atively small groups of beams, it is better to use the expres-
sions (7) for the combinations of two beams and (9) in the
case of three beams.

4. SIMULATION RESULTS

In this part, we present selected simulation results to illustrate
the obtained analytical expressions. The simulations are ob-
tained via a numerical evaluation of the beampattern in the
far-field of the antenna array and a numerical analysis of the
target parameters. For the simulation setup, we consider a
uniform linear array withM = 64 elements and inter-element
spacing ∆ = λ/2.

The comparison of the amplitude distribution for the orig-
inal and the reduced apertures can be observed in Fig. 1(a)
and 1(d). In Fig. 1(a) we show two consecutive DFT beams
k = {0, 1} in gray color. The combination of two beams
without any restriction on magnitude is given in red color.
The constrained combination of the two beams is shown in
blue color. We can observe that the resulting beampattern has
the same shape as the original DFT beams but with a wider
width of the main lobe and a similar level of side lobes with
respect to the maximum gain. Thus we can conclude that it
corresponds to a smaller array aperture. Similar results can
be observed for the case when B = 3, k = {0, 1, 2} in the
Fig. 1(d), where the resulting beam has an even wider main
lobe.

The resulting constrained combination of beams (blue
curves in Fig. 1(a), 1(d) have the same level of sidelobes
≈ −13 dB as the original DFT beams (grey curves in
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(a) Beamspace manifolds for B = 2.
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(d) Beamspace manifolds for B = 3.
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(e) Amplitudes over the aperture for B = 3.
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Fig. 1. Numerical results and accuracy analysis.

Fig. 1(a), 1(d)). However, the gain of the resulting beam
will be lower due to the smaller size of the corresponding
apertures. Using the conventional analysis of antenna ar-
rays [7], we can show that the level of the first sidelobes
for the unconstrained combination of beams (red curves in
Fig. 1(a), 1(d)) is reduced with an increase of the number of
beams B and can be approximated by

SLL dB ≈ 20 log10

∣∣∣∣∣ 2π
B∑
n=1

(−1)n

1 + 2n

∣∣∣∣∣ . (20)

However, it comes at the cost of varying amplitudes at differ-
ent antennas.

The amplitude weights across the aperture of the array
are shown in Fig. 1(b) for B = 2 and in Fig. 1(e) for B =
3. The blue lines on these figures correspond to amplitudes
for B = 2, and for B = 3. The yellow line corresponds
to the approximation based on (14). The red line shows the
magnitude over the aperture of the array after the projection
onto the set of weights. The grey line represents the level 1

2 .
The approximation error of the expression in (14) is

shown in Fig. 1(c). The approximation error is shown in
terms of the normalized squared error (NSE), which is calcu-
lated using the expression

NSE =
|x− xapprox|2

|x|2
. (21)

For each curve, two special points are marked that correspond
to the beam groups B = 2 (square marker), B = 3 (cir-
cle marker), where the NSE has an abnormal behavior. We

can see from the Fig. 1(c) that the approximation error for
(14) decreases exponentially with an increase of the number
of beams B in the group.

For the results depicted in Fig. 1(f), we compare the re-
sulting aperture for different sizes of groups of beams with
the approximation in (18). The red line corresponds to the ex-
act aperture size obtained by numerical evaluation. The blue
line is the lower bound on the aperture size provided by the
expression in (18). The blue and yellow stars correspond to
the analytical expressions on the aperture size for the cases
when B = 2 and B = 3. As we can see, they match the
aperture size obtained via numerical simulations.

5. CONCLUSION

In this paper, we present a link between amplitude-constrained
combinations of DFT beams in beamspace and aperture re-
duction in element space. This result can be applied to switch
signal processing from element space to beamspace for appli-
cations involving uniform linear arrays. This is, for example,
the case for communications and radars operating in the
mmWave frequency range when only a limited number of RF
chains is available, as described in [5]. We prove this link
analytically and derive a general expression for the indices of
active sensors. The presented simulation results confirm this
derivation and show the accuracy of the proposed closed-form
expression of the effective aperture length as a function of the
number of beams. These results facilitate the development of
transceivers and radars for the mmWave frequency range via
a unification of the design and a reduction of the complexity.
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