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Abstract — It is a major task in EEG analysis to identify 

signal components based on time-frequency distributions. The 

main objective is to decompose a multichannel EEG into time-

frequency-space atoms. A lot of work was done in the field of 

subspace estimation with two of the aforementioned three 

dimensions, e.g., by using an SVD, PCA or ICA as well as 

space-time filtering or beam-forming. A more powerful 

approach is the use of tensor decompositions. For example, 

PARAFAC (Parallel Factor) analysis decomposes a tensor into 

rank-one components and thereby represents a 

multidimensional extension of the SVD. This renders it an 

attractive approach for EEG signal analysis. The selection of 

an appropriate time-frequency preprocessing scheme improves 

the results of the PARAFAC analysis. In a first study, we have 

investigated several time-frequency preprocessing techniques 

to create a tensor in time, frequency, and space for multi-

channel EEG signals. The common approach in PARAFAC 

analysis is the use of a wavelet transformation based on the 

MORLET wavelet as a preprocessing step. In this paper, we 

show that preprocessing based on the Wigner distribution 

leads to much better results than a wavelet analysis. First 

results have been obtained by the use of EEG signals of evoked 

potentials.  
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I. INTRODUCTION  

Finding the components of activity in the brain from 

recorded EEG signals is a great challenge in the field of 

biomedical signal analysis. This knowledge can be used to 

detect and localize sources of epileptic seizures as well as  

sources of cognitive processing like speech or auditory 

handling. Unfortunately, the solutions to these types of 

inverse problems may not be unique: Different sources in 

the brain can produce the same EEG pattern on the scalp.  

Therefore, different approaches to find a suitable 

approximation have been developed. For example, 

LORETA is one out of a class of methods which resolve the 

ambiguity by assuming that neighboring neurons are active 

synchronously [1]. This guarantees that a set of bipolar 

sources exists over the whole cortical surface.  

Another approach is based on the dipole model. It is 

assumed that there exist a limited number of dipoles as point 

sources in the brain. Dipole fitting methods estimate the 

location of these dipoles by iterative calculations. It has to be 

defined how many dipoles have to estimated, where they can 

be and how they interact in time. To improve the estimation 

process, preprocessing of the signal in the form of a subspace 

decomposition can be applied. There exist several 

contributions in the field of EEG processing for applying 

techniques such as PCA, ICA, SVD (which ignore the spatial 

information) or beam-forming strategies (which exploit the 

spatial information) [2]. However, not all the assumptions for 

these methods are fulfilled in the case of EEG signals. 

Moreover, not all dimensions (time, frequency, space) are 

integrated in the analysis. 

Tensor-based methods are a more natural approach to 

handle signals that vary in more than two dimensions (e.g., 

time, space, and frequency). The well-known PARAFAC 

decomposition (also known as CANDECOMP) is a powerful 

approach to decompose a tensor into components. In the last 

few years a lot of work was done in applying  PARAFAC for 

EEG signal analysis, e.g., for estimating the sources of 

cognitive processing using a Wavelet decomposition [3], for 

ERP analysis [4] or for epileptic seizure localization [5]. It is 

well known that Wavelet analysis is not always a suitable 

time-frequency decomposition because it may not provide 

adequate time and frequency resolution. Due to this problem 

we compare the results of a Wavelet decomposition in an ERP 

analysis with a Wigner distribution. In this contribution, both 

methods are applied as preprocessing steps for a new closed-

form PARAFAC solution [12,13]. 

II. MATERIAL AND METHODS  

A. Signal Component Analysis 

Preprocessing 
The first step in the signal component analysis is 

applying preprocessing in the form of an appropriate time-

frequency decomposition (TFD). That means that the 

measured time signal from each channel is transformed into 

a time-frequency representation in order to resolve both, the 
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temporal evolution as well as the frequency content of the 

measured signal. 

There exist a large number of methods to perform this 

task. An approach that is very often used is some form of 

wavelet analysis. In particular, the continuous wavelet 

transform (CWT) can be applied to decompose a signal into 

its time and frequency content [6]. The CWT at scale a  and 

time t  of a signal ( )x t  is defined as 

 ( , ) ( ) ( , , )C a x t a t dtτ ϕ τ
+∞

−∞

= �       (1) 

where ϕ  represents the chosen wavelet. Common choices 

include the class of biorthogonal wavelets, Debauchy 

wavelets, and the MORLET wavelets. The disadvantage of 

CWT-based time-frequency preprocessing is the limited 

resolution, especially in the low-frequency region, which is 

very important in EEG signal analysis. 

A more powerful approach to time-frequency analysis is 

given by the family of Wigner-Ville distribution functions, 

based on the seminal work by Wigner in 1932 and Ville in 

1948. The distribution is based on the temporal correlation 

function (TCF) ( , )q t
x

τ of the complex signal ( )x t  

 
*( , ) -

2 2
q t x t x t

x

τ τ
τ

� � � �
= +	 � 	 �


 � 
 �
.      (2) 

The Fourier Transform (FT) of the TCF with respect to 

the lag parameter τ leads to the Wigner-Ville Distribution 

(WVD) of ( )x t  
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The main drawback of the TCF is that it produces cross 

terms in the WVD and in the Ambiguity Function (AF), 

which is the FT of TCF with respect to t. On the other hand, 

its advantage is that time and frequency resolution can be 

adjusted separately. Cohen introduced a class of TFDs 

based on the WVD which allow the use of kernel functions 

for reducing cross terms [7]. There exist a great variety of 

TFDs for a large number of applications.  

To apply the Pseudo WVD (PWD), the WVD has to be 

filtered with a one-dimensional filter as a sliding window 

function. This leads to a spectral leakage but has no effect 

on the cross terms in time-frequency plane.  

One way to reduce the influence of these cross terms is 

the construction of a cross-shaped low-pass filter which 

allows high time and frequency resolution and has a large 

time and frequency support. This method is the Reduced 

Interference Distribution (RID) which can be combined 

with several window functions [8]. 

Three-Way PARAFAC 
After the time-frequency analysis the overall signal 

comprises three dimensions: For every channel, the signal is 

represented by a time-frequency matrix.  

Therefore, the signal can be expressed as a three-

dimensional tensor 

 T F CN N N× ×
∈X �  (4) 

where TN  and FN  represent the number of samples in 

time and frequency and CN  the number of channels, 

respectively. In order to separate signal components in this 

tensor, three-dimensional extensions of the singular value 

decomposition can be used. The SVD has a long standing 

history in signal component analysis in the form of PCA. 

In the tensor case, the PARAFAC decomposition is 

known as a multi-dimensional extension of the SVD that 

decomposes a tensor into a minimal sum of rank-one 

tensors. The underlying model can be represented in the 

following fashion 
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Here, ( )n iu t  and ( )n jv f  represent the sampled time and 

frequency responses of the n -th component at time instant 

it  and frequency bin jf , respectively. Also, ( )nw k  

represents the strength of the n -th component in the k -th 

channel. Moreover, d  represents the number of signal 

components (i.e., the model order) of the signal. In practice, 

the measured tensor does not obey the model exactly for a 

number of reasons:  

• There is noise in the system. For EEG data this noise is 

in general not Gaussian distributed and also not 

spatially uncorrelated. 

• The individual components are not necessarily rank-

one, each of them may have a higher rank. 

• The superposition of components is not ideally linear, 

nonlinear couplings have been observed and are in 

general included in the models. 

• The observed process is not stationary. This issue can 

be partially taken care of by dividing the original signal 

into smaller time intervals and analyzing each interval 

on its own.   
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Therefore, we require an algorithm to compute an appro-

ximate fit of a measured tensor to a PARAFAC model. 

Also, we need an algorithm that is numerically stable to 

cope with the non-ideal conditions in practical data. 

The existing algorithms to compute approximate 

PARAFAC model fits can coarsely be divided into three cate-

gories. The first category includes the iterative algorithms. 

These are based on the alternating least squares (ALS) idea 

[9]: In each iteration, two of the three factors are fixed and the 

third factor is computed via a least squares fit. Then, this factor 

is fixed and the next one is optimized for in a similar fashion. 

This iterative procedure is repeated until convergence is de-

tected. While it can be shown that ALS converges 

monotonically, it is not guaranteed that it reaches the global 

optimum. Also, the number of iterations may be too big for 

practical purposes. A large amount of research was dedicated 

to making ALS faster either through smart initializations or 

optimized update rules. A fast implementation of ALS is 

given by the PARAFAC-algorithm [10], which is available in 

the N-way toolbox. 

The second class of algorithms are suboptimal solutions 

that enable a closed-form solution through coarse approxima-

tions. Well-known methods in this category include the 

Generalized Rank Annihilation Method (GRAM) and the 

Direct Trilinear Decomposition (DTLD) [11]. While these 

methods are very fast, the obtained fit is usually not very 

satisfactory. 

Finally, the third class of algorithms for approximate 

PARAFAC model fitting is based on a framework intro-

duced in [12, 13], which shows a class of closed-form solu-

tions that can achieve a very good performance without the 

necessity of ALS iterations. The approach is based on the 

Higher-Order SVD [14] and simultaneous matrix diagonali-

zations. The authors demonstrate the enhanced robustness 

of the Closed-Form PARAFAC scheme which renders it an 

attractive approach for the non-ideal EEG signals. 

B. EEG Recording 

The EEG signal is recorded from a 23 year old woman, 

healthy and right-handed. The position of the 64 EEG 

electrodes is based on the international 10-10-system with 

earlobe reference [(A1+A2)/2]. The sampling frequency is 

chosen to 1000 sps. For preprocessing of the raw signal, 

several filters are applied: a 7 Hz high-pass, a 135 Hz low-

pass and a band-stop filter between 45 and 55 Hz.  

Because of the investigation of effects in the field of 

evoked potentials we use data taken from a visual stimulus. 

The subject is sitting in front of a hemispherical perimeter. 

The stimulus is set by a 20 ms central flash with white LED 

here realized for the right eye. The experiment is repeated 

1600 times. The triggered EEG answers are averaged over 

all 1600 trials for all channels (see Fig.1). 

III. RESULTS  

We have applied the signal component analysis scheme 

to the measured EEG data. For the results shown here, the 

Closed-Form PARAFAC algorithm is applied together with 

three preprocessing methods: a CWT with MORLET 

Wavelets, the PWD, and the RID. The analysis is carried 

out on the windowed EEG signal. The window length is 

80 ms with an overlap of 20 ms between adjacent windows. 

Hence, 47 windows are analyzed for the whole one second 

signal. As it was stated before the number of components 

has to be determined by hand. For the results shown here, 

three components are used.  

Fig. 2 shows the six windows with MORLET preprocessing 

as time-frequency plot and component strength for all three 

a) b)  

Fig. 1: a) Time course of ERP from an occipital EEG channel b) Time 

course for all 64 channels – occipital channels show the response earlier 

than frontal ones     

 

Fig. 2: We display the three components for six adjacent time windows 

(from left to right) from 101 to 280 ms with MORLET as preprocessing step. 

For each component in each window the spatial distribution is indicated by 

a topographical plot, the time-frequency signature by the image below and 

the bar visualizes the strength of the component. 



Identification of Signal Components in Multi-Channel EEG Signals ... 1229 

_______________________________________________________________
  IFMBE Proceedings Vol. 22  

_________________________________________________________________
 

components. It is expected that there is a strong component in 

the right hemisphere right from the beginning of the signal. 

This was already observed from the potential mapping in a 

previous study. Because of the bad time resolution for low 

frequencies and the bad frequency resolution for high 

frequencies, the CWT cannot exactly localize the signal 

sources. Much better results are achieved with a WVD. 

Fig. 3 shows the results of the PWD. The localization is 

much more accurate than using the MORLET analysis. Cross 

terms are not reduced in this kind of analysis and hence 

spectral leakage occurs. The use of RID leads to a reduction 

of the cross terms, which can be seen in Fig. 4. However, 

for RID there is a leakage in time and frequency which 

influences the spatial localization of the sources.  

The Closed-form PARAFAC solution offers new 

possibilities in the dipole fitting estimation. The next studies 

will show whether it is possible to take into account the 

non-stationary nature of EEG signals even better. This can 

be achieved by a sliding window for example. Furthermore 

we have to develop a procedure to track the components in 

their temporal evolution. At the moment, components are 

ordered by their power, which may however vary over time.  

IV. CONCLUSIONS  

The choice of an appropriate preprocessing scheme is an 

important factor for the success of the entire EEG signal 

analysis process. We have observed that WVD based 

methods enhance the spatial localization of components 

compared to Wavelet based methods since they have a 

better time and frequency resolution compared to Wavelet 

or STFT analysis. We have shown that RID based 

preprocessing can be useful to reduce the cross terms, 

however, it also introduces unwanted leakage effects. 

Optimizing the cross term suppression is hence an issue of 

future studies. 
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