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SALSA: A Sequential Alternating Least Squares
Approximation Method For MIMO Channel

Estimation
Sepideh Gherekhloo, Khaled Ardah, Martin Haardt

Abstract—In this paper, we consider the channel estima-
tion problem in sub-6 GHz uplink wideband multiple-input
multiple-output (MIMO)-orthogonal frequency-division multi-
plexing (OFDM) communication systems, where a user equip-
ment with a fully-digital beamforming structure is communicat-
ing with a base station having a hybrid analog-digital (HAD)
beamforming structure. A novel channel estimation method
called Sequential Alternating Least Squares Approximation
(SALSA) is proposed by exploiting a hidden tensor structure
in the uplink measurement matrix. Specifically, by showing that
any MIMO channel matrix can be approximately decomposed
into a summation of R factor matrices having a Kronecker
structure, the uplink measurement matrix can be reshaped into
a 3-way tensor admitting a Tucker decomposition. Exploiting
the tensor structure, the MIMO channel matrix is estimated
sequentially using an alternating least squares (ALS) method.
Detailed simulation results are provided showing the effectiveness
of the proposed SALSA method as compared to the classical
least squares and linear minimum mean squared-error (LMMSE)
methods.

Index Terms—Channel estimation, massive MIMO, Tucker
tensor decomposition, alternating least squares, linear minimum
mean squared-error.

I. INTRODUCTION

MAssive multiple-input multiple-output (MIMO) [1] is
one of the key enabling technologies of 5G-NR mobile

communications [2] and it shall remain relevant in future 6G
wireless systems. By employing a large number of antennas at
the base station (BS) relative to the number of scheduled users,
massive MIMO systems increase the data throughput relative
to legacy systems by providing a large beamforming gain
and an improved multi-user interference suppression owing
to its high spatial resolution [3]. Recently, massive MIMO
communications have received a special attention with the
introduction of millimeter-wave (mm-wave)-based wireless
communications [4], since the use of massive MIMO in
such systems becomes a requirement rather than an option
to compensate the high pathloss encountered in the wireless
communications at higher frequencies. However, it is well-
known that the promised theoretical massive MIMO gains
heavily rely on the availability of accurate channel state
information (CSI) and the considered beamforming structure.

On the one hand, classical fully-digital (FD) beamforming
structures, which generally provide the maximum beamform-
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ing gain, require a dedicated radio frequency (RF) chain for
each antenna element. This increases not only the implemen-
tation cost and complexity of massive MIMO systems, but
also the circuit energy consumption. A promising solution to
these issues relies on the recently introduced hybrid analog-
digital (HAD) beamforming structures [4]–[8], which use
a combination of analog beamforming in the RF domain
and digital beamforming in the baseband domain to reduce
the number of RF chains as compared to FD beamforming
structures, e.g., the number of RF chains can be as small as
the number of transmitted data streams.

On the other hand, in 5G-NR systems, for example, the
BS estimates the CSI from uplink sounding reference signals
(SRS) emitted by the user terminals (UEs). In mm-wave
systems, the CSI estimation problem is often transformed
into a multi-dimensional direction-of-arrival (DoA) estimation
problem [9]–[11], thanks to the low-rank (sparse) nature of
mm-wave MIMO channels [4], where several techniques,
e.g., compressed sensing [9], [10] and ESPRIT [11], [12]
can be readily employed to obtain a high CSI estimation
accuracy while requiring a small number of training over-
head. Differently, in sub-6 GHz-based systems, the MIMO
channels often experience a high-rank nature, which makes
most, if not all, mm-wave-based MIMO channel estimation
methods unfeasible. To this end, classical channel estimation
techniques, e.g., least-squares (LS) and linear minimum mean
squared-error (LMMSE) methods [13], [14] can be used to
estimate sub-6 GHz-based MIMO channels. However, these
methods were originally developed for single-antenna and
small-scale MIMO systems. Moreover, the LS-based method
suffers from a severe performance degradation in difficult
scenarios, e.g., with a small number of training snapshots
and/or a low signal-to-noise ratio (SNR). On the other hand,
the LMMSE-based methods require some prior estimation of
the statistical channel correlation matrix and noise variance,
which makes it challenging to realize LMMSE in practice [15],
[16]. Since sub-6 GHz massive MIMO communications are,
and will remain, an integral part of current and future wireless
communication systems, more efficient channel estimation
techniques than the classical methods are required.

In this paper, we consider the channel estimation problem
in sub-6 GHz uplink wideband MIMO-OFDM communication
systems, where a single-user with a FD beamforming structure
communicates with a BS having a HAD beamforming struc-
ture. As the main contribution, we propose a novel channel
estimation method called Sequential Alternating Least Squares
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Approximation (SALSA) by exploiting a hidden tensor struc-
ture in the uplink measurement matrix. Specifically, by show-
ing that any MIMO channel matrix can be approximately
decomposed into a summation of R factor matrices having
a Kronecker structure. In this case, the uplink measurement
matrix can be reshaped into a 3-way tensor admitting a Tucker
decomposition [17]. Exploiting such a tensor representation,
the MIMO channel matrix can be estimated sequentially using
the classical alternating least squares (ALS) method [18].
Detailed simulation results are provided showing that the
SALSA-based approach can achieve a more accurate channel
estimation in difficult scenarios as compared to the classical
LS- and LMMSE-based approaches.

Finally, we note that several tensor-based channel estimation
methods have been proposed in the literature, e.g., [17]–
[23], and references therein. However, these methods exploit
simplified design assumptions on the antenna array structure
and channel matrices, which generally lead to a relatively
straightforward tensor modeling. Nonetheless, practical chan-
nel models, e.g., the 3GPP clustered delay line (CDL) chan-
nel model [24], [25], do not necessarily comply with these
assumptions, and therefore, the existing methods, in many
cases, cannot be employed. On the other hand, the proposed
SALSA method does not require these assumptions on the
channel model, which renders it very general and appealing
for practical implementations.

Notation: The transpose, the complex conjugate, the conju-
gate transpose (Hermitian), and the Kronecker product are de-
noted as AT, A∗, AH, and ⊗, respectively. Moreover, vec{A}
forms a vector by staking the columns of A over each other,
stack{A1, . . . ,An} forms a matrix by stacking A1, . . . ,An

over each other, and blkdiag{A1, . . . ,An} forms a block-wise
diagonal matrix by placing A1, . . . ,An on its main diagonal.
The n-mode product of a tensor A ∈ CI1×I2×...,×IN with a
matrix B ∈ CJ×In is denoted as A×n B.

II. SYSTEM MODEL

We consider an uplink single-user wideband MIMO-OFDM
communication system, as depicted in Fig. 1, where a UE
with NUE antennas is communicating with a BS with NBS
antennas over NSC subcarriers. The UE has a FD beamforming
structure while the BS has a HAD beamforming structure with
NRF ≤ NBS radio-frequency (RF) chains. We assume that the
NBS antennas and the NRF RF chains are divided equally1 into
NG ≥ 1 groups, where each group has N̊BS = NBS

NG
antennas

and N̊RF = NRF
NG

RF chains (i.e., NBS = NG · N̊BS and NRF =

NG · N̊RF) and the RF chains in every group are connected
with every antenna element in the same group.

We assume a block-fading channel model, where the chan-
nel coherence-time TC is divided into TBSTUE transmission
time intervals (TTIs), i.e., every block has TUE snapshots.
The received signal by the BS in the (i, j)th TTI over the
kth subcarrier, with i ∈ {1, . . . , TBS}, j ∈ {1, . . . , TUE},
k ∈ {1, . . . , NSC}, can be expressed as

ȳk,i,j = ĀH
i Hkfk,jsk,j + ĀH

i z̄k,i,j ∈ CNRF , (1)

1To simplify the exposition, we assume that NBS, NRF, and NG are selected
so that N̊BS and N̊RF are integer numbers, without loss of generality.
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Fig. 1: An uplink MIMO-OFDM communication system.

where fk,j ∈ CNUE is the (k, j)th precoding vector, sk,j ∈ C
is the training symbol, z̄i,j ∈ CNBS is the BS additive
white Gaussian noise with zero mean and variance σ2

n, and
Hk ∈ CNBS×NUE is the kth subcarrier frequency-domain
MIMO channel matrix. Moreover, Āi ∈ CNBS×NRF denotes
the analog combining matrix at the ith block at the BS, which
has a block-diagonal structure given as2

Āi =
1√
N̊BS

· blockdiag{Āi,1, . . . , Āi,NG} ∈ CNBS×NRF , (2)

where Āi,g ∈ CN̊BS×N̊RF is the gth block-matrix with constant
modulus entries, i.e.,

∣∣[Āi,g][r,c]
∣∣ = 1, where [Āi,g][r,c] is the

(r, c)th entry of Āi,g .
Initially, we collect the measurement vectors {ȳk,i,j}TUE

j=1

next to each other as Ȳk,i = [ȳk,i,1, . . . , ȳk,i,TUE ], which can
be written as

Ȳk,i = ĀH
i HkFk + ĀH

i Z̄k,i ∈ CNRF×TUE , (3)

where Fk = [fk,1sk,1, . . . ,fk,TUEsk,TUE ] ∈ CNUE×TUE and
Z̄k,i = [z̄k,i,1, . . . , z̄k,i,TUE ]. We assume that Fk,∀k, are
designed with orthonormal rows, i.e., FkF H

k = INUE ,∀k, and
TUE ≥ NUE. After applying the right-filtering to (3) we obtain

Yk,i = Ȳk,iF
H = ĀH

i Hk + Zk,i ∈ CNRF×NUE , (4)

where Zk,i = ĀH
i Z̄k,iF

H
k . Next, we collect the measure-

ment matrices {Yk,i}TBS
i=1 on the top of each other as Yk =[

Y T
k,1, . . . ,Y

T
k,TBS

]T
, which can be written as

Yk = AHk + Zk ∈ CL×NUE , (5)

where L = TBSNRF, A =
[
Ā1, . . . , ĀTBS

]H ∈ CL×NBS ,
and Zk =

[
ZT
k,1, . . . ,Z

T
k,TBS

]T
. After that, we collect the

measurement matrices {Yk}NSC
k=1 next to each other as Y =

[Y1, . . . ,YNSC ], which can be written as

Y = AH + Z ∈ CL×NUENSC , (6)

where Z =
[
Z1, . . . ,ZNSC

]
and H =

[
H1, . . . ,HNSC

]
∈

CNBS×NUENSC is the total MIMO channel matrix.

2Note that if NG = 1, the above analog structure coincides with the known
fully-connected analog structure [5], where every RF chain is connected to
every antenna element. On the other hand, if NG = NRF, the above analog
structure coincides with the known partially-connected analog structure [5],
where every RF chain is connected to a unique subset of antenna elements.
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Given the measurement matrix in (6), a LS-based method
can be used to obtain an estimate of the total MIMO channel
matrix as [14]

ĤLS = [A]+Y =
[
Ĥ1, . . . , ĤNSC

]
∈ CNBS×NUENSC , (7)

where [A]+ = AH(AAH)−1 is the Moore-Penrose pseudo-
inverse of A. Note that, due to the left filtering, the LS-based
method requires that L ≥ NBS, i.e., TBS ≥ NBS

NRF
to provide

an accurate channel estimate. On the other hand, the LMMSE
estimator of H can be written as [14]

ĤLMMSE = RHAH
(
ARHAH + σ2

nIL
)−1

Y , (8)

where RH = E{HHH} is the statistical channel correlation
matrix of H [15], [16].

III. THE PROPOSED SALSA METHOD

To obtain a more accurate channel estimate while reducing
the training overhead, we propose in this section a novel
channel estimation method called SALSA, which is derived by
exploiting a hidden tensor structure in the measurement matrix
in (6). To show this, we first recall the following propositions
from [26]–[28].

Proposition 1: Let X be a matrix given as

X = X1 ⊗X2 =


X1,1 . . . X1,J1

. . .

XI1,1 . . . XI1,J1

 ∈ CI×J , (9)

where X1 ∈ CI1×J1 , X2 ∈ CI2×J2 , I = I1I2, J = J1J2, and
Xn,m = [X1][n,m]X2 is the (n,m)th block-matrix of X . Let
K ∈ CI1J1×I2J2 be a rank-one matrix given as

K = stack{vec{X1,1}T, . . . , vec{XI1,1}T, . . . , vec{XI1,J1}T}
= vec{X1}vec{X2}T, (10)

with the rank-one truncated-SVD given as K = σuvH, where
u ∈ CI1J1 and v ∈ CI2J2 are the left and right singular
vectors of K, respectively, and σ is the associated singular
value. Then, the optimal solution to

minimize
X1,X2

‖X −
(
X1 ⊗X2

)
‖2F (11)

can be obtained as

X1 = reshape{√σu, I1, J1} (12)

X2 = reshape{√σv∗, I2, J2}. (13)

Proof: Please refer to [27] for more details.
Proposition 2: For any given I × J matrix X , it can

be approximately written as a summation of R ≥ 1 factor
matrices as

X =

R∑
r=1

Xr =

R∑
r=1

X1,r ⊗X2,r, (14)

where Xr = X1,r ⊗ X2,r, X1,r ∈ CI1×J1 , and X2,r ∈
CI2×J2 , I = I1I2, and J = J1J2.

Proof: The proof follows directly by applying Proposition 1
sequentially [28]. The corresponding Proposition is summa-
rized in Algorithm 1.

Algorithm 1 Sequential Kronecker Factorization

1: Input: A matrix X ∈ CI×J
2: Select R, I1, J1, I2, J2 such that I = I1I2 and J = J1J2

3: for r = 1 to R do
4: Get Xr = X −∑r−1

r′=1 X1,r′ ⊗X2,r′

5: Given Xr, get X1,r and X2,r using (12) and (13),
respectively

6: end for
7: Output: X̂ =

∑R
r=1 X1,r ⊗X2,r ∈ CI×J
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Fig. 2: MSE vs. the number of channel factor matrices R
assuming NBS = 64, NUE = 4, and NSC = 16, where MSE =
‖H−∑R

r=1 Cr⊗Br‖2F. Here, the total MIMO channel matrix
H =

[
H1, . . . ,HNSC

]
∈ CI×J is generated following the

3GPP CDL channel model [24], [25] with the main system
parameters outlined in Table I in Section IV.

Let I = NBS and J = NUENSC. Then, from Proposition 2,
the total frequency-domain MIMO channel matrix H ∈ CI×J
in (6) can be approximately written as

H ≈
R∑
r=1

Cr ⊗Br ∈ CI×J , (15)

where Br ∈ CI1×J1 , Cr ∈ CI2×J2 , I = I1I2, and J = J1J2.
As shown in Fig. 2, the approximation becomes tighter as the
number of channel factor matrices R increases. More impor-
tantly, we can see that in case of full rank channels, the optimal
value of R, denoted in the figure by Ropt, is dependent on the
division scenario of I and J , where Ropt ≈ min{I1J1, I2J2}.
In other words, reducing the dimension of one of the channel
factor matrices, i.e., Br ∈ CI1×J1 or Cr ∈ CI2×J2 , reduces
the value of Ropt.

Let L = TBSNRF. Then, by substituting (15) into (6), and
assuming R is sufficiently large, e.g., R ≥ min{I1J1, I2J2},
we can write

Y = A

(
R∑
r=1

Cr ⊗Br

)
+ Z =

R∑
r=1

A(Cr ⊗Br) + Z

=

R∑
r=1

Yr + Z ∈ CL×J , (16)

where Yr = A(Cr ⊗Br) ∈ CL×J . Note that Yr can be seen
as the 1-mode unfolding of a 3-way Tucker tensor given as

Yr = S ×1 A×2 B
T
r ×3 C

T
r ∈ CL×J1×J2 , (17)
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where S ∈ ZI×I1×I2 is the core-tensor with the 1-mode
unfolding given as [S](1)

def
= II [17]. The `-mode unfolding

of Yr, ` = {1, 2, 3}, can be expressed as

[Yr](1) = A[S](1)(Cr ⊗Br) ∈ CL×J , (18)

[Yr](2) = BT
r [S](2)(Cr ⊗AT) ∈ CJ1×LJ2 , (19)

[Yr](3) = CT
r [S](3)(Br ⊗AT) ∈ CJ2×LJ1 . (20)

From (17), the 3-way Tucker tensor form of (16) can be
expressed as

Y =

R∑
r=1

Yr + Z ∈ CL×J1×J2 , (21)

where Z is the 3-way tensor representation of the noise matrix
Z. This latter formulation suggests that the factor matrices
{Br,Cr}Rr=1 can be estimated sequentially as follows. Let
Yr be the tensor obtained at the rth sequential step as

Yr = Y −
r−1∑
r′=1

Yr′ ∈ CL×J1×J2 . (22)

Then, by exploiting the 2-mode and the 3-mode unfoldings,
the rth factor matrices Br and Cr can be obtained using, e.g.,
the ALS method [18], where one factor matrix is assumed to
be fixed when solving for the other. Specifically, Br and Cr

can be obtained as

BT
r = [Yr](2)

[
Ψ2

]+
= [Yr](2)Ψ

H
2 [Ψ2Ψ

H
2 ]−1 (23)

CT
r = [Yr](3)

[
Ψ3

]+
= [Yr](3)Ψ

H
3 [Ψ3Ψ

H
3 ]−1, (24)

where Ψ2 and Ψ3 are given as

Ψ2 = [S](2)(Cr ⊗AT) ∈ CI1×LJ2 (25)

Ψ3 = [S](3)(Br ⊗AT) ∈ CI2×LJ1 . (26)

Algorithm 2 summarizes the proposed SALSA method for
estimating the total MIMO channel matrix H ∈ CI×J , which
is guaranteed to converge monotonically to, at least, a local
optimum solution [18].

Algorithm 2 SALSA For MIMO-OFDM Channel Estimation

1: Input: Measurement matrix Y ∈ CL×J as in (6)
2: Select R ≥ 1, Nmax-iter ≥ 1, I1, I2, J1, and J2 such that
I = I1I2 = NBS and J = J1J2 = NUENSC

3: Obtain the 3-way Tucker tensor Y in (21) from Y
4: for r = 1 to R do
5: Get Yr = Y −∑r−1

r′=1 Ŷr′

6: Initialize C
(0)
r ∈ CI2×J2 , e.g., randomly

7: for n = 1 to Nmax-iter do
8: Get B(n)

r using (23) for given C
(n−1)
r

9: Get C(n)
r using (24) for given B

(n)
r

10: end for
11: Set B̂r = B

(Nmax-iter)
r and Ĉr = C

(Nmax-iter)
r

12: Get Ŷr = S×1 A×2 B̂
T
r ×3 Ĉ

T
r , go back to Step (5)

13: end for
14: Output: ĤSALSA =

∑R
r=1 Ĉr ⊗ B̂r ∈ CI×J

Note that, due to the right filtering, the SALSA method in
Algorithm 2 requires that (C1) I1 ≤ LJ2 and (C2) I2 ≤ LJ1,

i.e., TBS ≥ min
{

I1
NRFJ2

, I2
NRFJ1

}
to provide an accurate chan-

nel estimation. Therefore, under practical settings, the SALSA
method in Algorithm 2 requires less training overhead than
the LS method in (7). On the other hand, assuming that the
complexity of calculating the Moore-Penrose pseudo-inverse
of an n×m matrix is on the order of O(min{n,m}3), where
O denotes the Big O notation, then the complexity of the LS
method in (7) is on the order of O(min{L, J})3, while for
the SALSA method in Algorithm 2 the complexity is on the
order of O(R ·Nmax-iter · I3

1 · I3
2 ), assuming that the (C1) and

(C2) conditions are satisfied. Moreover, for LMMSE in (8),
the complexity is on the order of O(L3), assuming that the
complexity of calculating the inverse of an n×n matrix is on
the order of O(n3).

IV. SIMULATION RESULTS

We adopt the 3GPP CDL channel model described in
TR 38.901 [24], where a step-by-step tutorial of it along
the MATLAB scripts for channel generation is presented
in [25]. Specifically, in our simulation, we first generate
a time-domain channel tensor H ∈ CNBS×NUE×Ntaps , where
Ntaps represents the number of time-domain channel taps
calculated according to [25, Eqn. (64)] and using the system
parameters shown in Table I. Then, we perform a NSC-point
FFT operation along the third dimension for each receive-
transmit antenna pair to obtain the frequency-domain channel
tensor H ∈ CNBS×NUE×NSC , where the kth slice matrix, i.e.,
Hk = H[:,:,k] ∈ CNBS×NUE represents the kth subcarrier
frequency-domain MIMO channel matrix.

We show the simulation results in terms of the nor-
malized mean-square-error (NMSE) that is defined as
NMSE = E{‖H − ĤX‖2F}/E‖H‖2F}, where X ∈
{LS, LMMSE, SALSA}. The signal-to-noise ratio (SNR) is
defined as SNR = E{‖Y−Z‖2F}/E{‖Z‖2F}. In all simulation
scenarios, we set NUE = 4, NSC = 16, TUE = NUE = 4,
NRF = 4, NG = 2, and assume a random generation of
the analog decoding matrix A ∈ CTBSNRF×NBS , where every
nonzero entry is obtained as a = 1/

√
N̊BS · ejφ, where

φ ∈ [0, 2π].
For the LMMSE method, we assume that the statistical

channel correlation matrix, i.e., RH , is obtained as

RH = Rtrue
H + β ·Rnoise

H , (27)

where Rtrue
H is the true statistical channel correlation matrix

obtained as an average of T = 1000 channel realizations, i.e.,

Rtrue
H =

1

T

T∑
t=1

HtH
H
t , (28)

with Ht =
[
Ht,1, . . . ,Ht,NSC

]
∈ CNBS×NUENSC being the

tth channel realization. Moreover, Rnoise
H is an additive-noise

covariance matrix and β is a noise power scaling parameter
obtained such that β = ‖RH −Rtrue

H ‖2F/‖Rtrue
H ‖2F. Note that,

β = 0 can be considered as the ideal scenario, which is used in
[15] as a baseline approach for some RH estimation methods.
On the other hand, for scenarios with β > 0, we demonstrate
the impact of the estimation accuracy of RH on the estimation
accuracy of the LMMSE method.
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Fig. 3: NMSE vs. SNR for different simulation scenarios.

TABLE I: System Parameters

Parameter Value

Scenario UMi
Cell radius 100 m

BS (UE) height 10 (1.5) m
Carrier frequency fc 4 GHz

Sampling frequency fs 30.72 MSamples/s
No. of subcarriers NSC 16

No. of antennas at BS NBS 16 (4× 4) or 64 (8× 8)

No. of antennas at UE NUE 4 (2× 2)

Polarization Single

Initially, we assume that NBS = 64 and show simulation
results investigating the best division scenario of I and J with
the constraints of I = I1I2, J = J1J2, Id ≥ 1, Jd ≥ 1, and
Id, Jd are Natural numbers, where d ∈ {1, 2}. Recall that
I = NBS and J = NUENSC. Therefore, we have I = J = 64
and the candidate numbers of Id and Jd are 1, 2, 4, 8, 16, 32,
and 64. Therefore, we have in total 49 different division
scenarios, e.g., Scenario 1: {[I1, I2, J1, J2] = [64, 1, 64, 1]}
and Scenario 2: {[I1, I2, J1, J2] = [64, 1, 32, 2]}. We have
simulated the SALSA algorithm using all the 49 possible
scenarios. In Fig. 3(a), we show the NMSE versus SNR
results for some selected I and J division scenarios. The other
scenarios are not shown, due to space limitations, but we note
that their NMSE performance are inferior compared to the
shown scenarios.

From Fig. 3(a), when TBS = 12, i.e., L = TBSNRF = 48 <
NBS, the analog training matrix A ∈ CL×NBS , i.e., the first
factor matrix of the measurement tensor in (17), is left non-
invertible, i.e., [A]+A 6= I . Therefore, the LS-based method
has a very bad channel estimation accuracy. Differently, we
can see that the LMMSE method provides the highest channel
estimation accuracy, thanks to the prior knowledge of the
statistical channel correlation matrix RH and noise variance
σ2
n. On the other hand, we can see that the best NMSE of

SALSA method is achieved when I1 = 8, I2 = 8, J1 = 64,
and J2 = 1, i.e., when Br ∈ C8×64 and Cr ∈ C8×1,∀r. The
main reason is that by dividing I = 64 equally between I1 and
I2, i.e., I1 = I2 = 8, SALSA reduces the impact of the non-
invertibility of A by distributing it between the second (i.e.,
Br) and the third (i.e., Cr) factor matrices of the measurement
tensor, which leads to a better channel estimation accuracy. On
the other hand, by setting J1 = 64 and J2 = 1, the required

number of channel factor matrices R reduces as compared to
the other division scenario, as we have illustrated in Fig. 2.

Differently, when TBS = 16, i.e., L = NBS, the ana-
log training matrix A is left invertible, i.e., [A]+A = I .
Therefore, the LS-based method has a high channel estima-
tion accuracy. Moreover, we can see that the LMMSE-based
method maintains its superiority, providing the best channel
estimation accuracy. For SALSA, we have noticed that the
best channel estimation accuracy is obtained with the scenario
of [I1, I2, J1, J2] = [1, 64, 64, 1], i.e., when Br ∈ C1×64 and
Cr ∈ C64×1 (or, not shown in the figure, with scenario of
[I1, I2, J1, J2] = [64, 1, 1, 64], i.e., when Br ∈ C64×1 and
Cr ∈ C1×64). With both of these scenarios, the channel matrix
H ∈ C64×64 in (15) is decomposed into a summation of R
factor matrices Br ⊗ Cr ∈ C64×64, each having a rank-one,
i.e., rank{Br ⊗ Cr} = 1,∀r, leading to a better estimation
accuracy and approaching the LMMSE-based method.

In Fig. 3(b), we show the NMSE versus SNR results
obtained by varying the number of channel factor matrices,
i.e., R, and the noise-power scaling parameter of RH , i.e., β.
Clearly, Fig. 3(b) shows that the channel estimation accuracy
of LMMSE decreases as β increases, since increasing β
imitates a decrease of the estimation accuracy of RH . On
the other hand, Fig. 3(b) shows that the channel estimation
accuracy of SALSA increases with the increasing R in the
high SNR region (i.e., SNR ≥ 15 dB) while it decreases
with the increasing R in the low SNR region (i.e., SNR <
15 dB). The main reason is that, in the high SNR region,
where the impact of noise is minimal, by increasing R we
succesively estimate more factor matrices belonging to the
subspace of the true channel matrix. This leads to a better
channel estimation accuracy, as we have illustrated in Fig. 2
for noiseless channel matrices. On the other hand, the channel
measurement tensor is noise limited in the low SNR region.
Therefore, the sequentially estimated channel factor matrices
become very noisy above a certain R as they mainly belong to
the noise subspace. In other words, in this case, as R increases,
the influence of the noise increases and the overall estimation
accuracy decreases. Clearly, for every SNR level, there is an
optimal R value (i.e., Ropt) wherein the channel estimation
accuracy is maximized. We conjecture that Ropt is in function
of the noise variance σ2

n, which we leave for a follow up future
work.

Finally, in Fig. 3(c), we show NMSE versus SNR simulation
results by varying the number of antenna elements at the BS,
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i.e., NBS. For a fair comparison, we adjust the number of
training blocks TBS so that both considered scenarios have
the same ratio of L

NBS
= 0.75 (recall that L = TBSNRF).

From Fig. 3(c), we can observe that the SALSA method has
a similar behavior for both NBS scenarios. In the low SNR
region, the SALSA method has a better channel estimation
accuracy than LMMSE, while LMMSE has a better channel
estimation accuracy than SALSA in the high SNR region.
However, the main difference is that with the smaller NBS
value (i.e., NBS = 16 in the figure), the SALSA method, with
fixed R value, maintains its estimation accuracy superiority
over the LMMSE for a higher SNR level as compared to
the scenario with the larger NBS value (i.e., NBS = 64 in
the figure). This can be explained with reference to Fig. 2,
which shows that the optimal R value (i.e., Ropt) is smaller
with the smaller factor matrices (i.e., when NBS = 16, we
have [I1, I2] = [4, 4] and, therefore, Ropt ≈ 4, while when
NBS = 64, we have [I1, I2] = [8, 8] and, therefore, Ropt ≈ 8.
Note that [J1, J2] = [64, 1] for both scenarios).

V. CONCLUSION

In this paper, we have proposed a novel channel estimation
method for MIMO-OFDM sub-6 GHz communication systems
called SALSA. We have shown that an accurate channel
estimation can be obtained with a small training overhead by
exploiting a hidden tensor structure in the received measure-
ment matrix, which estimates the channel matrix sequentially
using an ALS-based method. Our results show that the SALSA
method outperforms the conventional LS-based method, es-
pecially in the low training overhead. Moreover, it is shown
that SALSA, under some settings, outperforms LMMSE-based
methods with an ideal knowledge of the statistical channel
correlation matrix, in the low SNR region, while it approaches
it in the high SNR region. Given that SALSA does not require
the prior knowledge of the statistical channel correlation
matrix, as compared to LMMSE, makes it more appealing
for practical implementations.
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